1
|
Montes C, Zhang J, Nolan TM, Walley JW. Single-cell proteomics differentiates Arabidopsis root cell types. THE NEW PHYTOLOGIST 2024; 244:1750-1759. [PMID: 38923440 DOI: 10.1111/nph.19923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 06/09/2024] [Indexed: 06/28/2024]
Abstract
Single-cell proteomics (SCP) is an emerging approach to resolve cellular heterogeneity within complex tissues of multi-cellular organisms. Here, we demonstrate the feasibility of SCP on plant samples using the model plant Arabidopsis thaliana. Specifically, we focused on examining isolated single cells from the cortex and endodermis, which are two adjacent root cell types derived from a common stem cell lineage. From 756 root cells, we identified 3763 proteins and 1118 proteins/cell. Ultimately, we focus on 3217 proteins quantified following stringent filtering. Of these, we identified 596 proteins whose expression is enriched in either the cortex or endodermis and are able to differentiate these closely related plant cell types. Collectivity, this study demonstrates that SCP can resolve neighboring cell types with distinct functions, thereby facilitating the identification of biomarkers and candidate proteins to enable functional genomics.
Collapse
Affiliation(s)
- Christian Montes
- Department of Plant Pathology, Entomology, and Microbiology, Iowa State University, Ames, IA, 50011, USA
| | - Jingyuan Zhang
- Department of Biology, Duke University, Durham, NC, 27708, USA
| | - Trevor M Nolan
- Department of Biology, Duke University, Durham, NC, 27708, USA
- Howard Hughes Medical Institute, Duke University, Durham, NC, 27708, USA
| | - Justin W Walley
- Department of Plant Pathology, Entomology, and Microbiology, Iowa State University, Ames, IA, 50011, USA
| |
Collapse
|
2
|
Wang J, Xue B, Awoyemi O, Yuliantoro H, Mendis LT, DeVor A, Valentine SJ, Li P. Parallel sample processing for mass spectrometry-based single cell proteomics. Anal Chim Acta 2024; 1329:343241. [PMID: 39396304 PMCID: PMC11471953 DOI: 10.1016/j.aca.2024.343241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 09/10/2024] [Accepted: 09/11/2024] [Indexed: 10/15/2024]
Abstract
BACKGROUND Single cell mass spectrometry (scMS) has shown great promise for label free proteomics analysis recently. To present single cell samples for proteomics analysis by MS is not a trivial task. Existing methods rely on robotic liquid handlers to scale up sample preparation throughput. The cost associated with specialized equipment hinders the broad adoption of these workflows, and the sequential sample processing nature limits the ultimate throughput. RESULTS In this work, we report a parallel sample processing workflow that can simultaneously process 10 single cells without the need of robotic liquid handlers for scMS. This method utilized 3D printed microfluidic devices to form reagent arrays on a glass slide, and a magnetic beads-based streamlined sample processing workflow to present peptides for LC-MS detection. We optimized key operational parameters of the method and demonstrated the quantification consistency among 10 parallel processed samples. Finally, the utility of the method in differentiating cell lines and studying the proteome change induced by drug treatment were demonstrated. SIGNIFICANCE The present method allows parallel sample processing for single cells without the need of expensive liquid handlers, which has great potential to further improve throughput and decrease the barrier for single cell proteomics.
Collapse
Affiliation(s)
- Jing Wang
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, WV, USA
| | - Bo Xue
- Shared Research Facilities, West Virginia University, Morgantown, WV, USA
| | - Olanrewaju Awoyemi
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, WV, USA
| | - Herbi Yuliantoro
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, WV, USA
| | - Lihini Tharanga Mendis
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, WV, USA
| | - Amanda DeVor
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, WV, USA
| | - Stephen J Valentine
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, WV, USA
| | - Peng Li
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, WV, USA.
| |
Collapse
|
3
|
Stanisheuski S, Ebrahimi A, Vaidya KA, Jang HS, Yang L, Eddins AJ, Marean-Reardon C, Franco MC, Maier CS. Thermal inkjet makes label-free single-cell proteomics accessible and easy. Front Chem 2024; 12:1428547. [PMID: 39233922 PMCID: PMC11371764 DOI: 10.3389/fchem.2024.1428547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 07/31/2024] [Indexed: 09/06/2024] Open
Abstract
In this study, we adapted an HP D100 Single Cell Dispenser - a novel low-cost thermal inkjet (TIJ) platform with impedance-based single cell detection - for dispensing of individual cells and one-pot sample preparation. We repeatedly achieved label-free identification of up to 1,300 proteins from a single cell in a single run using an Orbitrap Fusion Lumos Mass Spectrometer coupled to either an Acquity UPLC M-class system or a Vanquish Neo UHPLC system. The developed sample processing workflow is highly reproducible, robust, and applicable to standardized 384- and 1536-well microplates, as well as glass LC vials. We demonstrate the applicability of the method for proteomics of single cells from multiple cell lines, mixed cell suspensions, and glioblastoma tumor spheroids. As additional proof of robustness, we monitored the results of genetic manipulations and the expression of engineered proteins in individual cells. Our cost-effective and robust single-cell proteomics workflow can be transferred to other labs interested in studying cells at the individual cell level.
Collapse
Affiliation(s)
| | - Arpa Ebrahimi
- Department of Chemistry, Oregon State University, Corvallis, OR, United States
| | - Kavi Aashish Vaidya
- Department of Biochemistry and Biophysics, College of Science, Oregon State University, Corvallis, OR, United States
| | | | - Liping Yang
- Department of Chemistry, Oregon State University, Corvallis, OR, United States
| | - Alex Jordan Eddins
- Department of Biochemistry and Biophysics, College of Science, Oregon State University, Corvallis, OR, United States
| | - Carrie Marean-Reardon
- Department of Biochemistry and Biophysics, College of Science, Oregon State University, Corvallis, OR, United States
| | - Maria Clara Franco
- Department of Biochemistry and Biophysics, College of Science, Oregon State University, Corvallis, OR, United States
- Center for Translational Science, Florida International University, Port St. Lucie, FL, United States
- Department of Cellular and Molecular Medicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, United States
| | | |
Collapse
|
4
|
Leduc A, Khoury L, Cantlon J, Khan S, Slavov N. Massively parallel sample preparation for multiplexed single-cell proteomics using nPOP. Nat Protoc 2024:10.1038/s41596-024-01033-8. [PMID: 39117766 DOI: 10.1038/s41596-024-01033-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 05/27/2024] [Indexed: 08/10/2024]
Abstract
Single-cell proteomics by mass spectrometry (MS) allows the quantification of proteins with high specificity and sensitivity. To increase its throughput, we developed nano-proteomic sample preparation (nPOP), a method for parallel preparation of thousands of single cells in nanoliter-volume droplets deposited on glass slides. Here, we describe its protocol with emphasis on its flexibility to prepare samples for different multiplexed MS methods. An implementation using the plexDIA MS multiplexing method, which uses non-isobaric mass tags to barcode peptides from different samples for data-independent acquisition, demonstrates accurate quantification of ~3,000-3,700 proteins per human cell. A separate implementation with isobaric mass tags and prioritized data acquisition demonstrates analysis of 1,827 single cells at a rate of >1,000 single cells per day at a depth of 800-1,200 proteins per human cell. The protocol is implemented by using a cell-dispensing and liquid-handling robot-the CellenONE instrument-and uses readily available consumables, which should facilitate broad adoption. nPOP can be applied to all samples that can be processed to a single-cell suspension. It takes 1 or 2 d to prepare >3,000 single cells. We provide metrics and software (the QuantQC R package) for quality control and data exploration. QuantQC supports the robust scaling of nPOP to higher plex reagents for achieving reliable and scalable single-cell proteomics.
Collapse
Affiliation(s)
- Andrew Leduc
- Departments of Bioengineering, Biology, Chemistry and Chemical Biology, Single Cell Proteomics Center, and Barnett Institute, Northeastern University, Boston, MA, USA.
| | - Luke Khoury
- Departments of Bioengineering, Biology, Chemistry and Chemical Biology, Single Cell Proteomics Center, and Barnett Institute, Northeastern University, Boston, MA, USA
| | | | - Saad Khan
- Departments of Bioengineering, Biology, Chemistry and Chemical Biology, Single Cell Proteomics Center, and Barnett Institute, Northeastern University, Boston, MA, USA
| | - Nikolai Slavov
- Departments of Bioengineering, Biology, Chemistry and Chemical Biology, Single Cell Proteomics Center, and Barnett Institute, Northeastern University, Boston, MA, USA.
- Parallel Squared Technology Institute, Watertown, MA, USA.
| |
Collapse
|
5
|
Leduc A, Xu Y, Shipkovenska G, Dou Z, Slavov N. Limiting the impact of protein leakage in single-cell proteomics. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.26.605378. [PMID: 39091738 PMCID: PMC11291177 DOI: 10.1101/2024.07.26.605378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Limiting artifacts during sample preparation can significantly increase data quality in single-cell proteomics experiments. Towards this goal, we characterize the impact of protein leakage by analyzing thousands of primary single cells that were prepared either fresh immediately after dissociation or cryopreserved and prepared at a later date. We directly identify permeabilized cells and use the data to define a signature for protein leakage. We use this signature to build a classifier for identifying damaged cells that performs accurately across cell types and species.
Collapse
Affiliation(s)
- Andrew Leduc
- Departments of Bioengineering, Biology, Chemistry and Chemical Biology, Single Cell Proteomics Center, Northeastern University, Boston, MA 02115, USA
| | - Yanxin Xu
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Gergana Shipkovenska
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Zhixun Dou
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Nikolai Slavov
- Departments of Bioengineering, Biology, Chemistry and Chemical Biology, Single Cell Proteomics Center, Northeastern University, Boston, MA 02115, USA
- Parallel Squared Technology Institute, Watertown, MA 02472, USA
| |
Collapse
|
6
|
Xie X, Truong T, Huang S, Johnston SM, Hovanski S, Robinson A, Webber KGI, Lin HJL, Mun DG, Pandey A, Kelly RT. Multicolumn Nanoflow Liquid Chromatography with Accelerated Offline Gradient Generation for Robust and Sensitive Single-Cell Proteome Profiling. Anal Chem 2024; 96:10534-10542. [PMID: 38915247 PMCID: PMC11482043 DOI: 10.1021/acs.analchem.4c00878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Peptide separations that combine high sensitivity, robustness, peak capacity, and throughput are essential for extending bottom-up proteomics to smaller samples including single cells. To this end, we have developed a multicolumn nanoLC system with offline gradient generation. One binary pump generates gradients in an accelerated fashion to support multiple analytical columns, and a single trap column interfaces with all analytical columns to reduce required maintenance and simplify troubleshooting. A high degree of parallelization is possible, as one sample undergoes separation while the next sample plus its corresponding mobile phase gradient are transferred into the storage loop and a third sample is loaded into a sample loop. Selective offline elution from the trap column into the sample loop prevents salts and hydrophobic species from entering the analytical column, thus greatly enhancing column lifetime and system robustness. With this design, samples can be analyzed as fast as every 20 min at a flow rate of just 40 nL/min with close to 100% MS utilization time and continuously for as long as several months without column replacement. We utilized the system to analyze the proteomes of single cells from a multiple myeloma cell line upon treatment with the immunomodulatory imide drug lenalidomide.
Collapse
Affiliation(s)
- Xiaofeng Xie
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602, United States
- MicrOmics Technologies, LLC, Spanish Fork, Utah 84660, United States
| | - Thy Truong
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602, United States
- MicrOmics Technologies, LLC, Spanish Fork, Utah 84660, United States
| | - Siqi Huang
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602, United States
| | - S Madisyn Johnston
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602, United States
| | - Simon Hovanski
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602, United States
| | - Abigail Robinson
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602, United States
| | - Kei G I Webber
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602, United States
| | - Hsien-Jung L Lin
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602, United States
| | - Dong-Gi Mun
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota 55905, United States
| | - Akhilesh Pandey
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota 55905, United States
- Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Ryan T Kelly
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602, United States
- MicrOmics Technologies, LLC, Spanish Fork, Utah 84660, United States
| |
Collapse
|
7
|
Martin KR, Le HT, Abdelgawad A, Yang C, Lu G, Keffer JL, Zhang X, Zhuang Z, Asare-Okai PN, Chan CS, Batish M, Yu Y. Development of an efficient, effective, and economical technology for proteome analysis. CELL REPORTS METHODS 2024; 4:100796. [PMID: 38866007 PMCID: PMC11228373 DOI: 10.1016/j.crmeth.2024.100796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/21/2024] [Accepted: 05/20/2024] [Indexed: 06/14/2024]
Abstract
We present an efficient, effective, and economical approach, named E3technology, for proteomics sample preparation. By immobilizing silica microparticles into the polytetrafluoroethylene matrix, we develop a robust membrane medium, which could serve as a reliable platform to generate proteomics-friendly samples in a rapid and low-cost fashion. We benchmark its performance using different formats and demonstrate them with a variety of sample types of varied complexity, quantity, and volume. Our data suggest that E3technology provides proteome-wide identification and quantitation performance equivalent or superior to many existing methods. We further propose an enhanced single-vessel approach, named E4technology, which performs on-filter in-cell digestion with minimal sample loss and high sensitivity, enabling low-input and low-cell proteomics. Lastly, we utilized the above technologies to investigate RNA-binding proteins and profile the intact bacterial cell proteome.
Collapse
Affiliation(s)
- Katherine R Martin
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, USA
| | - Ha T Le
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, USA
| | - Ahmed Abdelgawad
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA; Department of Medical and Molecular Sciences, University of Delaware, Newark, DE 19716, USA
| | - Canyuan Yang
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, USA
| | - Guotao Lu
- CDS Analytical, LLC, Oxford, PA 19363, USA
| | - Jessica L Keffer
- Department of Earth Sciences, University of Delaware, Newark, DE 19716, USA
| | | | - Zhihao Zhuang
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, USA
| | - Papa Nii Asare-Okai
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, USA
| | - Clara S Chan
- Department of Earth Sciences, University of Delaware, Newark, DE 19716, USA; School of Marine Science and Policy, University of Delaware, Newark, DE 19716, USA
| | - Mona Batish
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA; Department of Medical and Molecular Sciences, University of Delaware, Newark, DE 19716, USA.
| | - Yanbao Yu
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, USA.
| |
Collapse
|
8
|
Colón Rosado J, Sun L. Solid-Phase Microextraction-Aided Capillary Zone Electrophoresis-Mass Spectrometry: Toward Bottom-Up Proteomics of Single Human Cells. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2024; 35:1120-1127. [PMID: 38514245 PMCID: PMC11157658 DOI: 10.1021/jasms.3c00429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 03/02/2024] [Accepted: 03/13/2024] [Indexed: 03/23/2024]
Abstract
Capillary zone electrophoresis-mass spectrometry (CZE-MS) has been recognized as a valuable technique for the proteomics of mass-limited biological samples (i.e., single cells). However, its broad adoption for single cell proteomics (SCP) of human cells has been impeded by the low sample loading capacity of CZE, only allowing us to use less than 5% of the available peptide material for each measurement. Here we present a reversed-phase-based solid-phase microextraction (RP-SPME)-CZE-MS platform to solve the issue, paving the way for SCP of human cells using CZE-MS. The RP-SPME-CZE system was constructed in one fused silica capillary with zero dead volume for connection via in situ synthesis of a frit, followed by packing C8 beads into the capillary to form a roughly 2 mm long SPME section. Peptides captured by SPME were eluted with a buffer containing 30% (v/v) acetonitrile and 50 mM ammonium acetate (pH 6.5), followed by dynamic pH junction-based CZE-MS. The SPME-CZE-MS enabled the injection of nearly 40% of the available peptide sample for each measurement. The system identified 257 ± 24 proteins and 523 ± 69 peptides (N = 2) using a Q-Exactive HF mass spectrometer when only 0.25 ng of a commercial HeLa cell digest was available in the sample vial and 0.1 ng of the sample was injected. The amount of available peptide is equivalent to the protein mass of one HeLa cell. The data indicate that SPME-CZE-MS is ready for SCP of human cells.
Collapse
Affiliation(s)
- Jorge
A. Colón Rosado
- Department of Chemistry, Michigan
State University, 578 S Shaw Lane, East Lansing, Michigan 48824, United States
| | - Liangliang Sun
- Department of Chemistry, Michigan
State University, 578 S Shaw Lane, East Lansing, Michigan 48824, United States
| |
Collapse
|
9
|
Yang Z, Jin K, Chen Y, Liu Q, Chen H, Hu S, Wang Y, Pan Z, Feng F, Shi M, Xie H, Ma H, Zhou H. AM-DMF-SCP: Integrated Single-Cell Proteomics Analysis on an Active Matrix Digital Microfluidic Chip. JACS AU 2024; 4:1811-1823. [PMID: 38818059 PMCID: PMC11134390 DOI: 10.1021/jacsau.4c00027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/08/2024] [Accepted: 03/08/2024] [Indexed: 06/01/2024]
Abstract
Single-cell proteomics offers unparalleled insights into cellular diversity and molecular mechanisms, enabling a deeper understanding of complex biological processes at the individual cell level. Here, we develop an integrated sample processing on an active-matrix digital microfluidic chip for single-cell proteomics (AM-DMF-SCP). Employing the AM-DMF-SCP approach and data-independent acquisition (DIA), we identify an average of 2258 protein groups in single HeLa cells within 15 min of the liquid chromatography gradient. We performed comparative analyses of three tumor cell lines: HeLa, A549, and HepG2, and machine learning was utilized to identify the unique features of these cell lines. Applying the AM-DMF-SCP to characterize the proteomes of a third-generation EGFR inhibitor, ASK120067-resistant cells (67R) and their parental NCI-H1975 cells, we observed a potential correlation between elevated VIM expression and 67R resistance, which is consistent with the findings from bulk sample analyses. These results suggest that AM-DMF-SCP is an automated, robust, and sensitive platform for single-cell proteomics and demonstrate the potential for providing valuable insights into cellular mechanisms.
Collapse
Affiliation(s)
- Zhicheng Yang
- Department
of Analytical Chemistry, State Key Laboratory of Drug Research, Shanghai
Institute of Materia Medica, Chinese Academy
of Sciences, Shanghai 201203, China
- University
of the Chinese Academy of Sciences, Beijing 100049, China
| | - Kai Jin
- CAS
Key Laboratory of Bio-Medical Diagnostics, Suzhou Institute of Biomedical
Engineering and Technology, Chinese Academy
of Sciences, Suzhou 215163, China
| | - Yimin Chen
- Department
of Analytical Chemistry, State Key Laboratory of Drug Research, Shanghai
Institute of Materia Medica, Chinese Academy
of Sciences, Shanghai 201203, China
- University
of the Chinese Academy of Sciences, Beijing 100049, China
| | - Qian Liu
- Department
of Analytical Chemistry, State Key Laboratory of Drug Research, Shanghai
Institute of Materia Medica, Chinese Academy
of Sciences, Shanghai 201203, China
| | - Hongxu Chen
- School
of Chinese Materia Medica, Nanjing University
of Chinese Medicine, 138 Xianlin Avenue, Nanjing, Jiangsu 210023, China
| | - Siyi Hu
- CAS
Key Laboratory of Bio-Medical Diagnostics, Suzhou Institute of Biomedical
Engineering and Technology, Chinese Academy
of Sciences, Suzhou 215163, China
| | - Yuqiu Wang
- Department
of Analytical Chemistry, State Key Laboratory of Drug Research, Shanghai
Institute of Materia Medica, Chinese Academy
of Sciences, Shanghai 201203, China
| | - Zilu Pan
- Division
of Antitumor Pharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Fang Feng
- Division
of Antitumor Pharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Mude Shi
- Guangdong
ACXEL Micro & Nano Tech Co. Ltd., Foshan, Guangdong Province 528000, China
| | - Hua Xie
- University
of the Chinese Academy of Sciences, Beijing 100049, China
- Zhongshan
Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China
- Division
of Antitumor Pharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Hanbin Ma
- CAS
Key Laboratory of Bio-Medical Diagnostics, Suzhou Institute of Biomedical
Engineering and Technology, Chinese Academy
of Sciences, Suzhou 215163, China
- Guangdong
ACXEL Micro & Nano Tech Co. Ltd., Foshan, Guangdong Province 528000, China
| | - Hu Zhou
- Department
of Analytical Chemistry, State Key Laboratory of Drug Research, Shanghai
Institute of Materia Medica, Chinese Academy
of Sciences, Shanghai 201203, China
- University
of the Chinese Academy of Sciences, Beijing 100049, China
- Hangzhou
Institute for Advanced Study, University
of Chinese Academy of Sciences, Hangzhou 310024, China
| |
Collapse
|
10
|
Peters-Clarke TM, Coon JJ, Riley NM. Instrumentation at the Leading Edge of Proteomics. Anal Chem 2024; 96:7976-8010. [PMID: 38738990 DOI: 10.1021/acs.analchem.3c04497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2024]
Affiliation(s)
- Trenton M Peters-Clarke
- Department of Chemistry, University of Wisconsin─Madison, Madison, Wisconsin 53706, United States
- Department of Biomolecular Chemistry, University of Wisconsin─Madison, Madison, Wisconsin 53706, United States
| | - Joshua J Coon
- Department of Chemistry, University of Wisconsin─Madison, Madison, Wisconsin 53706, United States
- Department of Biomolecular Chemistry, University of Wisconsin─Madison, Madison, Wisconsin 53706, United States
- Morgridge Institute for Research, Madison, Wisconsin 53715, United States
| | - Nicholas M Riley
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|
11
|
Truong T, Kelly RT. What's new in single-cell proteomics. Curr Opin Biotechnol 2024; 86:103077. [PMID: 38359605 PMCID: PMC11068367 DOI: 10.1016/j.copbio.2024.103077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 01/19/2024] [Indexed: 02/17/2024]
Abstract
In recent years, single-cell proteomics (SCP) has advanced significantly, enabling the analysis of thousands of proteins within single mammalian cells. This progress is driven by advances in experimental design, with maturing label-free and multiplexed methods, optimized sample preparation, and innovations in separation techniques, including ultra-low-flow nanoLC. These factors collectively contribute to improved sensitivity, throughput, and reproducibility. Cutting-edge mass spectrometry platforms and data acquisition approaches continue to play a critical role in enhancing data quality. Furthermore, the exploration of spatial proteomics with single-cell resolution offers significant promise for understanding cellular interactions, giving rise to various phenotypes. SCP has far-reaching applications in cancer research, biomarker discovery, and developmental biology. Here, we provide a critical review of recent advances in the field of SCP.
Collapse
Affiliation(s)
- Thy Truong
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602, United States
| | - Ryan T Kelly
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602, United States.
| |
Collapse
|
12
|
Webber KGI, Huang S, Truong T, Heninger JL, Gregus M, Ivanov AR, Kelly RT. Open-tubular trap columns: towards simple and robust liquid chromatography separations for single-cell proteomics. Mol Omics 2024; 20:184-191. [PMID: 38353725 PMCID: PMC10963139 DOI: 10.1039/d3mo00249g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
Nanoflow liquid chromatography-mass spectrometry is key to enabling in-depth proteome profiling of trace samples, including single cells, but these separations can lack robustness due to the use of narrow-bore columns that are susceptible to clogging. In the case of single-cell proteomics, offline cleanup steps are generally omitted to avoid losses to additional surfaces, and online solid-phase extraction/trap columns frequently provide the only opportunity to remove salts and insoluble debris before the sample is introduced to the analytical column. Trap columns are traditionally short, packed columns used to load and concentrate analytes at flow rates greater than those employed in analytical columns, and since these first encounter the uncleaned sample mixture, trap columns are also susceptible to clogging. We hypothesized that clogging could be avoided by using large-bore porous layer open tubular trap columns (PLOTrap). The low back pressure ensured that the PLOTraps could also serve as the sample loop, thus allowing sample cleanup and injection with a single 6-port valve. We found that PLOTraps could effectively remove debris to avoid column clogging. We also evaluated multiple stationary phases and PLOTrap diameters to optimize performance in terms of peak widths and sample loading capacities. Optimized PLOTraps were compared to conventional packed trap columns operated in forward and backflush modes, and were found to have similar chromatographic performance of backflushed traps while providing improved debris removal for robust analysis of trace samples.
Collapse
Affiliation(s)
- Kei G I Webber
- Brigham Young University, Department of Chemistry and Biochemistry, Provo, Utah, 84602, USA.
| | - Siqi Huang
- Brigham Young University, Department of Chemistry and Biochemistry, Provo, Utah, 84602, USA.
| | - Thy Truong
- Brigham Young University, Department of Chemistry and Biochemistry, Provo, Utah, 84602, USA.
| | - Jacob L Heninger
- Brigham Young University, Department of Chemistry and Biochemistry, Provo, Utah, 84602, USA.
| | - Michal Gregus
- Northeastern University, Barnett Institute of Biological and Chemical Analysis, Department of Chemistry and Chemical Biology, College of Science, Boston, MA 02115, USA
| | - Alexander R Ivanov
- Northeastern University, Barnett Institute of Biological and Chemical Analysis, Department of Chemistry and Chemical Biology, College of Science, Boston, MA 02115, USA
| | - Ryan T Kelly
- Brigham Young University, Department of Chemistry and Biochemistry, Provo, Utah, 84602, USA.
| |
Collapse
|
13
|
Ye Z, Sabatier P, Martin-Gonzalez J, Eguchi A, Lechner M, Østergaard O, Xie J, Guo Y, Schultz L, Truffer R, Bekker-Jensen DB, Bache N, Olsen JV. One-Tip enables comprehensive proteome coverage in minimal cells and single zygotes. Nat Commun 2024; 15:2474. [PMID: 38503780 PMCID: PMC10951212 DOI: 10.1038/s41467-024-46777-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 03/11/2024] [Indexed: 03/21/2024] Open
Abstract
Mass spectrometry (MS)-based proteomics workflows typically involve complex, multi-step processes, presenting challenges with sample losses, reproducibility, requiring substantial time and financial investments, and specialized skills. Here we introduce One-Tip, a proteomics methodology that seamlessly integrates efficient, one-pot sample preparation with precise, narrow-window data-independent acquisition (nDIA) analysis. One-Tip substantially simplifies sample processing, enabling the reproducible identification of >9000 proteins from ~1000 HeLa cells. The versatility of One-Tip is highlighted by nDIA identification of ~6000 proteins in single cells from early mouse embryos. Additionally, the study incorporates the Uno Single Cell Dispenser™, demonstrating the capability of One-Tip in single-cell proteomics with >3000 proteins identified per HeLa cell. We also extend One-Tip workflow to analysis of extracellular vesicles (EVs) extracted from blood plasma, demonstrating its high sensitivity by identifying >3000 proteins from 16 ng EV preparation. One-Tip expands capabilities of proteomics, offering greater depth and throughput across a range of sample types.
Collapse
Affiliation(s)
- Zilu Ye
- State Key Laboratory of Common Mechanism Research for Major Diseases, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, China.
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark.
| | - Pierre Sabatier
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
- Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Javier Martin-Gonzalez
- Core Facility for Transgenic Mice, Department of Experimental Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Akihiro Eguchi
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
| | - Maico Lechner
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
| | - Ole Østergaard
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
| | - Jingsheng Xie
- State Key Laboratory of Common Mechanism Research for Major Diseases, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, China
| | - Yuan Guo
- Tecan Group Ltd., Männedorf, Switzerland
| | | | | | | | | | - Jesper V Olsen
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
14
|
Lewandowski M, Morton S, Blake M, Squires E, Ahmad R, Walt DR, Budnik B. Single-Cell Proteomics Analysis with Tecan Uno and SCREEN Workflow. Methods Mol Biol 2024; 2817:157-175. [PMID: 38907154 DOI: 10.1007/978-1-0716-3934-4_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/23/2024]
Abstract
With advances in sample preparation, small-volume liquid dispensing technologies, high-resolution MS/MS instrumentation, and data acquisition methodologies, it has become increasingly possible to confidently investigate the heterogeneous proteome found within individual cells. In this chapter, we present an automated high-throughput sample preparation workflow based on the Tecan Uno instrument for quantitative single-cell mass spectrometry-based proteomics. Cells are analyzed by the Single-Cell Proteome Analysis platform (SCREEN), which was introduced earlier and provides deeper proteome coverage across single cells.
Collapse
Affiliation(s)
| | - Shad Morton
- Wyss Institute at Harvard University, Boston, MA, USA
| | | | | | - Rushdy Ahmad
- Wyss Institute at Harvard University, Boston, MA, USA
| | - David R Walt
- Wyss Institute at Harvard University, Boston, MA, USA
- Brigham and Women's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Bogdan Budnik
- Wyss Institute at Harvard University, Boston, MA, USA.
| |
Collapse
|
15
|
Truong T, Sanchez-Avila X, Webber KGI, Johnston SM, Kelly RT. Efficient and Sensitive Sample Preparation, Separations, and Data Acquisition for Label-Free Single-Cell Proteomics. Methods Mol Biol 2024; 2817:67-84. [PMID: 38907148 DOI: 10.1007/978-1-0716-3934-4_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/23/2024]
Abstract
We describe a sensitive and efficient workflow for label-free single-cell proteomics that spans sample preparation, liquid chromatography separations, and mass spectrometry data acquisition. The Tecan Uno Single Cell Dispenser provides rapid cell isolation and nanoliter-volume reagent dispensing within 384-well PCR plates. A newly developed sample processing workflow achieves cell lysis, protein denaturation, and digestion in 1 h with a single reagent dispensing step. Low-flow liquid chromatography coupled with wide-window data-dependent acquisition results in the quantification of nearly 3000 proteins per cell using an Orbitrap Exploris 480 mass spectrometer. This approach greatly broadens accessibility to sensitive single-cell proteome profiling for nonspecialist laboratories.
Collapse
Affiliation(s)
- Thy Truong
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, USA
| | - Ximena Sanchez-Avila
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, USA
| | - Kei G I Webber
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, USA
| | - S Madisyn Johnston
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, USA
| | - Ryan T Kelly
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, USA.
| |
Collapse
|
16
|
Orsburn BC. Analyzing Posttranslational Modifications in Single Cells. Methods Mol Biol 2024; 2817:145-156. [PMID: 38907153 DOI: 10.1007/978-1-0716-3934-4_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/23/2024]
Abstract
With the rapid expansion of capabilities in the analysis of proteins in single cells, we can now identify multiple classes of protein posttranslational modifications on some of these proteins. Each new technology that has increased the number of proteins measured per cell has likewise increased our ability to identify and quantify modified peptides. In this chapter, I will discuss our current capabilities, concerns, and challenges specific to this emerging field of study and the inevitable demand for services, providing a general review of concepts that should be considered.
Collapse
Affiliation(s)
- Benjamin C Orsburn
- The Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
17
|
Eberhard CD, Orsburn BC. A Multiplexed Single-Cell Proteomic Workflow Applicable to Drug Treatment Studies. Methods Mol Biol 2024; 2823:1-10. [PMID: 39052210 DOI: 10.1007/978-1-0716-3922-1_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
It is now well accepted that individual cells within a population will respond to treatment of the same drug in a heterogenous manner. Recent advances have allowed, for the first time, the quantitative analysis of the proteomes of single human cells by mass spectrometry. A major focus of many groups, including our own, has been to use this emerging technology to rapidly identify subpopulations of cells with unique drug response and adaptation methods. While the technology in single-cell proteomics today is progressing at a truly staggering rate, we will detail our current methods for applying highly multiplexed single-cell proteomics to drug treatment studies.
Collapse
Affiliation(s)
- Colten D Eberhard
- The Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Benjamin C Orsburn
- The Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
18
|
Jenkins C, Orsburn BC. Simple Tool for Rapidly Assessing the Quality of Multiplexed Single Cell Proteomics Data. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2023; 34:2615-2619. [PMID: 37991989 PMCID: PMC10704589 DOI: 10.1021/jasms.3c00238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 10/04/2023] [Accepted: 10/06/2023] [Indexed: 11/24/2023]
Abstract
Recent advances in the sensitivity and speed of mass spectrometers coupled with improved sample preparation methods have enabled the field of single cell proteomics to proliferate. While heavy development is occurring in the label free space, dramatic improvements in throughput are provided by multiplexing with tandem mass tags. Hundreds or thousands of single cells can be analyzed with this method, yielding large data sets which may contain poor data arising from loss of material during cell sorting or poor digestion, labeling, and lysis. To date, no tools have been described that can assess data quality prior to data processing. We present herein a lightweight python script and accompanying graphic user interface that can rapidly quantify reporter ion peaks within each MS/MS spectrum in a file. With simple summary reports, we can identify single cell samples that fail to pass a set quality threshold, thus reducing analysis time waste. In addition, this tool, Diagnostic Ion Data Analysis Reduction (DIDAR), will create reduced MGF files containing only spectra possessing a user-specified number of single cell reporter ions. By reducing the number of spectra that have excessive zero values, we can speed up sample processing with little loss in data completeness as these spectra are removed in later stages in data processing workflows. DIDAR and the DIDAR GUI are compatible with all modern operating systems and are available at: https://github.com/orsburn/DIDARSCPQC. All files described in this study are available at www.massive.ucsd.edu as accession MSV000088887.
Collapse
Affiliation(s)
- Conor Jenkins
- The
University of Maryland, College
Park, Maryland 20737, United States
| | - Benjamin C. Orsburn
- The
Johns Hopkins University Medical School, Baltimore, Maryland 21215, United States
| |
Collapse
|
19
|
Ctortecka C, Hartlmayr D, Seth A, Mendjan S, Tourniaire G, Udeshi ND, Carr SA, Mechtler K. An Automated Nanowell-Array Workflow for Quantitative Multiplexed Single-Cell Proteomics Sample Preparation at High Sensitivity. Mol Cell Proteomics 2023; 22:100665. [PMID: 37839701 PMCID: PMC10684380 DOI: 10.1016/j.mcpro.2023.100665] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/03/2023] [Accepted: 10/06/2023] [Indexed: 10/17/2023] Open
Abstract
Multiplexed and label-free mass spectrometry-based approaches with single-cell resolution have attributed surprising heterogeneity to presumed homogenous cell populations. Even though specialized experimental designs and instrumentation have demonstrated remarkable advances, the efficient sample preparation of single cells still lags. Here, we introduce the proteoCHIP, a universal option for single-cell proteomics sample preparation including multiplexed labeling up to 16-plex with high sensitivity and throughput. The automated processing using a commercial system combining single-cell isolation and picoliter dispensing, the cellenONE, reduces final sample volumes to low nanoliters submerged in a hexadecane layer simultaneously eliminating error-prone manual sample handling and overcoming evaporation. The specialized proteoCHIP design allows direct injection of single cells via a standard autosampler resulting in around 1500 protein groups per TMT10-plex with reduced or eliminated need for a carrier proteome. We evaluated the effect of wider precursor isolation windows at single-cell input levels and found that using 2 Da isolation windows increased overall sensitivity without significantly impacting interference. Using the dedicated mass spectrometry acquisition strategies detailed here, we identified on average close to 2000 proteins per TMT10-plex across 170 multiplexed single cells that readily distinguished human cell types. Overall, our workflow combines highly efficient sample preparation, chromatographic and ion mobility-based filtering, rapid wide-window data-dependent acquisition analysis, and intelligent data analysis for optimal multiplexed single-cell proteomics. This versatile and automated proteoCHIP-based sample preparation approach is sufficiently sensitive to drive biological applications of single-cell proteomics and can be readily adopted by proteomics laboratories.
Collapse
Affiliation(s)
- Claudia Ctortecka
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Vienna, Austria; Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA.
| | - David Hartlmayr
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Vienna, Austria; Cellenion SASU, Lyon, France
| | | | - Sasha Mendjan
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), Vienna, Austria
| | | | - Namrata D Udeshi
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Steven A Carr
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA.
| | - Karl Mechtler
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Vienna, Austria; Cellenion SASU, Lyon, France; Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), Vienna, Austria; The Gregor Mendel Institute of Molecular Plant Biology of the Austrian Academy of Sciences (GMI), Vienna BioCenter (VBC), Vienna, Austria.
| |
Collapse
|