1
|
Toporowska J, Kapoor P, Musgaard M, Gherbi K, Sengmany K, Qu F, Soave M, Yen HY, Hansen K, Jazayeri A, Hopper JTS, Politis A. Ligand-induced conformational changes in the β1-adrenergic receptor revealed by hydrogen-deuterium exchange mass spectrometry. Nat Commun 2024; 15:8993. [PMID: 39424782 PMCID: PMC11489754 DOI: 10.1038/s41467-024-53161-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 10/02/2024] [Indexed: 10/21/2024] Open
Abstract
G Protein Coupled Receptors (GPCRs) constitute the largest family of signalling proteins responsible for translating extracellular stimuli into intracellular functions. They play crucial roles in numerous physiological processes and are major targets for drug discovery. Dysregulation of GPCRs is implicated in various diseases, making understanding their structural dynamics critical for therapeutic development. Here, we use Hydrogen Deuterium Exchange Mass Spectrometry (HDX-MS) to explore the structural dynamics of the turkey β1-adrenergic receptor (tβ1AR) bound with nine different ligands, including agonists, partial agonists, and antagonists. We find that these ligands induce distinct dynamic patterns across the receptor, which can be grouped by compound modality. Notably, full agonist binding destabilises the intracellular loop 1 (ICL1), while antagonist binding stabilises it, highlighting ICL1's role in G protein recruitment. Our findings indicate that the conserved L72 residue in ICL1 is crucial for maintaining receptor structural integrity and stabilising the GDP-bound state. Overall, our results provide a platform for determining drug modality and highlight how HDX-MS can be used to dissect receptor ligand interaction properties and GPCR mechanism.
Collapse
Affiliation(s)
| | | | | | | | | | - Feng Qu
- OMass Therapeutics, Oxford, UK
| | | | | | | | | | | | - Argyris Politis
- King's College London, London, UK.
- Faculty of Biology, Medicine and Health, School of Biological Sciences, The University of Manchester, Manchester, UK.
- Manchester Institute of Biotechnology, The University of Manchester, Manchester, UK.
| |
Collapse
|
2
|
Rincon Pabon JP, Akbar Z, Politis A. MSe Collision Energy Optimization for the Analysis of Membrane Proteins Using HDX-cIMS. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2024; 35:1383-1389. [PMID: 38842540 PMCID: PMC11228973 DOI: 10.1021/jasms.4c00093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/09/2024] [Accepted: 06/05/2024] [Indexed: 06/07/2024]
Abstract
Hydrogen/deuterium exchange mass spectrometry (HDX-MS) has evolved as an essential technique in structural proteomics. The use of ion mobility separation (IMS) coupled to HDX-MS has increased the applicability of the technique to more complex systems and has been shown to improve data quality and robustness. The first step when running any HDX-MS workflow is to confirm the sequence and retention time of the peptides resulting from the proteolytic digestion of the nondeuterated protein. Here, we optimized the collision energy ramp of HDMSE experiments for membrane proteins using a Waters SELECT SERIES cIMS-QTOF system following an HDX workflow using Phosphorylase B, XylE transporter, and Smoothened receptor (SMO) as model systems. Although collision energy (CE) ramp 10-50 eV gave the highest amount of positive identified peptides when using Phosphorylase B, XylE, and SMO, results suggest optimal CE ramps are protein specific, and different ramps can produce a unique set of peptides. We recommend cIMS users use different CE ramps in their HDMSE experiments and pool the results to ensure maximum peptide identifications. The results show how selecting an appropriate CE ramp can change the sequence coverage of proteins ranging from 4 to 94%.
Collapse
Affiliation(s)
- Juan Pablo Rincon Pabon
- Faculty of Biology, Medicine and Health, Division of Molecular and Cellular Function, The University of Manchester, Manchester M13 9PT, U.K
- Manchester Institute of Biotechnology, University of Manchester, Princess Street, Manchester M1 7DN, U.K
| | - Zulaikha Akbar
- Faculty of Biology, Medicine and Health, Division of Molecular and Cellular Function, The University of Manchester, Manchester M13 9PT, U.K
- Manchester Institute of Biotechnology, University of Manchester, Princess Street, Manchester M1 7DN, U.K
| | - Argyris Politis
- Faculty of Biology, Medicine and Health, Division of Molecular and Cellular Function, The University of Manchester, Manchester M13 9PT, U.K
- Manchester Institute of Biotechnology, University of Manchester, Princess Street, Manchester M1 7DN, U.K
| |
Collapse
|
3
|
Griffiths D, Anderson M, Richardson K, Inaba-Inoue S, Allen WJ, Collinson I, Beis K, Morris M, Giles K, Politis A. Cyclic Ion Mobility for Hydrogen/Deuterium Exchange-Mass Spectrometry Applications. Anal Chem 2024; 96:5869-5877. [PMID: 38561318 PMCID: PMC11024883 DOI: 10.1021/acs.analchem.3c05753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 03/20/2024] [Accepted: 03/21/2024] [Indexed: 04/04/2024]
Abstract
Hydrogen/deuterium exchange-mass spectrometry (HDX-MS) has emerged as a powerful tool to probe protein dynamics. As a bottom-up technique, HDX-MS provides information at peptide-level resolution, allowing structural localization of dynamic changes. Consequently, the HDX-MS data quality is largely determined by the number of peptides that are identified and monitored after deuteration. Integration of ion mobility (IM) into HDX-MS workflows has been shown to increase the data quality by providing an orthogonal mode of peptide ion separation in the gas phase. This is of critical importance for challenging targets such as integral membrane proteins (IMPs), which often suffer from low sequence coverage or redundancy in HDX-MS analyses. The increasing complexity of samples being investigated by HDX-MS, such as membrane mimetic reconstituted and in vivo IMPs, has generated need for instrumentation with greater resolving power. Recently, Giles et al. developed cyclic ion mobility (cIM), an IM device with racetrack geometry that enables scalable, multipass IM separations. Using one-pass and multipass cIM routines, we use the recently commercialized SELECT SERIES Cyclic IM spectrometer for HDX-MS analyses of four detergent solubilized IMP samples and report its enhanced performance. Furthermore, we develop a novel processing strategy capable of better handling multipass cIM data. Interestingly, use of one-pass and multipass cIM routines produced unique peptide populations, with their combined peptide output being 31 to 222% higher than previous generation SYNAPT G2-Si instrumentation. Thus, we propose a novel HDX-MS workflow with integrated cIM that has the potential to enable the analysis of more complex systems with greater accuracy and speed.
Collapse
Affiliation(s)
- Damon Griffiths
- Faculty
of Biology, Medicine and Health, School of Biological Sciences, The University of Manchester, Manchester M13 9PT, United Kingdom
- Manchester
Institute of Biotechnology, University of
Manchester, Princess
Street, Manchester M1 7DN, United Kingdom
| | - Malcolm Anderson
- Waters
Corporation, Stamford Avenue, Altrincham Road, Wilmslow SK9 4AX, United
Kingdom
| | - Keith Richardson
- Waters
Corporation, Stamford Avenue, Altrincham Road, Wilmslow SK9 4AX, United
Kingdom
| | - Satomi Inaba-Inoue
- Department
of Life Sciences, Imperial College London, Exhibition Road, South Kensington, London SW7 2AZ, United Kingdom
- Rutherford
Appleton Laboratory, Research Complex at Harwell, Oxfordshire, Didcot OX11 0FA, United Kingdom
- Diffraction
and Scattering Division, Japan Synchrotron
Radiation Research Institute, SPring-8, 1-1-1, Kouto, Sayo, Hyogo 679-5198, Japan
| | - William J. Allen
- School
of Biochemistry, University of Bristol, Bristol BS8 1TD, United Kingdom
| | - Ian Collinson
- School
of Biochemistry, University of Bristol, Bristol BS8 1TD, United Kingdom
| | - Konstantinos Beis
- Department
of Life Sciences, Imperial College London, Exhibition Road, South Kensington, London SW7 2AZ, United Kingdom
- Rutherford
Appleton Laboratory, Research Complex at Harwell, Oxfordshire, Didcot OX11 0FA, United Kingdom
| | - Michael Morris
- Waters
Corporation, Stamford Avenue, Altrincham Road, Wilmslow SK9 4AX, United
Kingdom
| | - Kevin Giles
- Waters
Corporation, Stamford Avenue, Altrincham Road, Wilmslow SK9 4AX, United
Kingdom
| | - Argyris Politis
- Faculty
of Biology, Medicine and Health, School of Biological Sciences, The University of Manchester, Manchester M13 9PT, United Kingdom
- Manchester
Institute of Biotechnology, University of
Manchester, Princess
Street, Manchester M1 7DN, United Kingdom
| |
Collapse
|
4
|
James EI, Murphree TA, Vorauer C, Engen JR, Guttman M. Advances in Hydrogen/Deuterium Exchange Mass Spectrometry and the Pursuit of Challenging Biological Systems. Chem Rev 2021; 122:7562-7623. [PMID: 34493042 PMCID: PMC9053315 DOI: 10.1021/acs.chemrev.1c00279] [Citation(s) in RCA: 102] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
![]()
Solution-phase hydrogen/deuterium
exchange (HDX) coupled to mass
spectrometry (MS) is a widespread tool for structural analysis across
academia and the biopharmaceutical industry. By monitoring the exchangeability
of backbone amide protons, HDX-MS can reveal information about higher-order
structure and dynamics throughout a protein, can track protein folding
pathways, map interaction sites, and assess conformational states
of protein samples. The combination of the versatility of the hydrogen/deuterium
exchange reaction with the sensitivity of mass spectrometry has enabled
the study of extremely challenging protein systems, some of which
cannot be suitably studied using other techniques. Improvements over
the past three decades have continually increased throughput, robustness,
and expanded the limits of what is feasible for HDX-MS investigations.
To provide an overview for researchers seeking to utilize and derive
the most from HDX-MS for protein structural analysis, we summarize
the fundamental principles, basic methodology, strengths and weaknesses,
and the established applications of HDX-MS while highlighting new
developments and applications.
Collapse
Affiliation(s)
- Ellie I James
- Department of Medicinal Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Taylor A Murphree
- Department of Medicinal Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Clint Vorauer
- Department of Medicinal Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - John R Engen
- Department of Chemistry & Chemical Biology, Northeastern University, Boston, Massachusetts 02115, United States
| | - Miklos Guttman
- Department of Medicinal Chemistry, University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|
5
|
Engen JR, Botzanowski T, Peterle D, Georgescauld F, Wales TE. Developments in Hydrogen/Deuterium Exchange Mass Spectrometry. Anal Chem 2020; 93:567-582. [DOI: 10.1021/acs.analchem.0c04281] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- John R. Engen
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts 02115, United States
| | - Thomas Botzanowski
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts 02115, United States
| | - Daniele Peterle
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts 02115, United States
| | - Florian Georgescauld
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts 02115, United States
| | - Thomas E. Wales
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts 02115, United States
| |
Collapse
|