1
|
Imran MAS, Carrera M, Pérez-Polo S, Pérez J, Barros L, Dios S, Gestal C. Insights into Common Octopus (Octopus vulgaris) Ink Proteome and Bioactive Peptides Using Proteomic Approaches. Mar Drugs 2023; 21:md21040206. [PMID: 37103345 PMCID: PMC10142993 DOI: 10.3390/md21040206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/21/2023] [Accepted: 03/21/2023] [Indexed: 03/29/2023] Open
Abstract
The common octopus (Octopus vulgaris) is nowadays the most demanded cephalopod species for human consumption. This species was also postulated for aquaculture diversification to supply its increasing demand in the market worldwide, which only relies on continuously declining field captures. In addition, they serve as model species for biomedical and behavioral studies. Body parts of marine species are usually removed before reaching the final consumer as by-products in order to improve preservation, reduce shipping weight, and increase product quality. These by-products have recently attracted increasing attention due to the discovery of several relevant bioactive compounds. Particularly, the common octopus ink has been described as having antimicrobial and antioxidant properties, among others. In this study, the advanced proteomics discipline was applied to generate a common octopus reference proteome to screen potential bioactive peptides from fishing discards and by-products such as ink. A shotgun proteomics approach by liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) using an Orbitrap Elite instrument was used to create a reference dataset from octopus ink. A total of 1432 different peptides belonging to 361 non-redundant annotated proteins were identified. The final proteome compilation was investigated by integrated in silico studies, including gene ontology (GO) term enrichment, pathways, and network studies. Different immune functioning proteins involved in the innate immune system, such as ferritin, catalase, proteasome, Cu/Zn superoxide dismutase, calreticulin, disulfide isomerase, heat shock protein, etc., were found in ink protein networks. Additionally, the potential of bioactive peptides from octopus ink was addressed. These bioactive peptides can exert beneficial health properties such as antimicrobial, antioxidant, antihypertensive, and antitumoral properties and are therefore considered lead compounds for developing pharmacological, functional foods or nutraceuticals.
Collapse
|
2
|
Porfírio CTMN, Souza PFN, Ramos MV, Campos FAP, Freitas SF, Oliveira JPB, Furtado GP, Barbosa JSS, Frota TL, Nagano CS, Silva RGG, Hussain G, Freitas CDT. Serine carboxypeptidases from the carnivorous plant Nepenthes mirabilis: Partial characterization and heterologous expression. Int J Biol Macromol 2022; 198:77-86. [PMID: 34963626 DOI: 10.1016/j.ijbiomac.2021.12.104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 12/06/2021] [Accepted: 12/17/2021] [Indexed: 11/23/2022]
Abstract
This study aimed to partially characterize the three main serine carboxypeptidases (SCP3, SCP20, and SCP47) from Nepenthes mirabilis. Furthermore, one peptidase (SCP3) was chosen for further heterologous expression in Escherichia coli Shuffle®T7. SCP3 also was characterized in terms of its allergenic potential using bioinformatics tools. SCP3, SCP20, and SCP47 showed very similar 3D structures and mechanistic features to other plant serine peptidases belonging to clan SC and family S10. Although SCP3 was obtained in its soluble form, using 1% ethanol during induction with 0.5 mM IPTG at 16 °C for 18 h, it did not show proteolytic activity by zymography or in vitro analysis. SCP3 presented a few allergenic peptides and several cleavage sites for digestive enzymes. This work describes additional features of these enzymes, opening new perspectives for further studies for characterization and analysis of heterologous expression, as well as their potential biotechnological applications.
Collapse
Affiliation(s)
- Camila T M N Porfírio
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Centro de Ciências, Campus do Pici. Fortaleza, Ceará, CEP 60440-900, Brazil
| | - Pedro F N Souza
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Centro de Ciências, Campus do Pici. Fortaleza, Ceará, CEP 60440-900, Brazil.
| | - Márcio V Ramos
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Centro de Ciências, Campus do Pici. Fortaleza, Ceará, CEP 60440-900, Brazil
| | - Francisco A P Campos
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Centro de Ciências, Campus do Pici. Fortaleza, Ceará, CEP 60440-900, Brazil
| | - Samuel F Freitas
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Centro de Ciências, Campus do Pici. Fortaleza, Ceará, CEP 60440-900, Brazil
| | - João P B Oliveira
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Centro de Ciências, Campus do Pici. Fortaleza, Ceará, CEP 60440-900, Brazil
| | | | - José S S Barbosa
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Centro de Ciências, Campus do Pici. Fortaleza, Ceará, CEP 60440-900, Brazil
| | - Thalia L Frota
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Centro de Ciências, Campus do Pici. Fortaleza, Ceará, CEP 60440-900, Brazil
| | - Celso S Nagano
- Departamento de Engenharia de Pesca, Universidade Federal do Ceará, Fortaleza, CE, Brazil
| | - Rodolpho G G Silva
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Centro de Ciências, Campus do Pici. Fortaleza, Ceará, CEP 60440-900, Brazil
| | - Ghulam Hussain
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Centro de Ciências, Campus do Pici. Fortaleza, Ceará, CEP 60440-900, Brazil
| | - Cleverson D T Freitas
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Centro de Ciências, Campus do Pici. Fortaleza, Ceará, CEP 60440-900, Brazil.
| |
Collapse
|
3
|
Singh A, Mittal A, Benjakul S. Full Utilization of Squid Meat and Its Processing By-products: Revisit. FOOD REVIEWS INTERNATIONAL 2020. [DOI: 10.1080/87559129.2020.1734611] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Avtar Singh
- Department of Food Technology, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Thailand
| | - Ajay Mittal
- Department of Food Technology, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Thailand
| | - Soottawat Benjakul
- Department of Food Technology, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Thailand
| |
Collapse
|
4
|
Wang CH, Doan CT, Nguyen VB, Nguyen AD, Wang SL. Reclamation of Fishery Processing Waste: A Mini-Review. Molecules 2019; 24:E2234. [PMID: 31207992 PMCID: PMC6630555 DOI: 10.3390/molecules24122234] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 06/11/2019] [Accepted: 06/13/2019] [Indexed: 02/07/2023] Open
Abstract
: Seafood such as fish, shellfish, and squid are a unique source of nutrients. However, many marine processing byproducts, such as viscera, shells, heads, and bones, are discarded, even though they are rich sources of structurally diverse bioactive nitrogenous components. Based on emerging evidence of their potential health benefits, these components show significant promise as functional food ingredients. Fish waste components contain significant levels of high-quality protein, which represents a source for biofunctional peptide mining. The chitin contained in shrimp shells, crab shells, and squid pens may also be of value. The components produced by bioconversion are reported to have antioxidative, antimicrobial, anticancer, antihypertensive, antidiabetic, and anticoagulant activities. This review provides an overview of the extraordinary potential of processing fish and chitin-containing seafood byproducts via chemical procedures, enzymatic and fermentation technologies, and chemical modifications, as well as their applications.
Collapse
Affiliation(s)
- Chi-Hao Wang
- Department of Chemistry, Tamkang University, New Taipei City 25137, Taiwan; (C.-H.W.); (C.T.D.)
| | - Chien Thang Doan
- Department of Chemistry, Tamkang University, New Taipei City 25137, Taiwan; (C.-H.W.); (C.T.D.)
- Department of Science and Technology, Tay Nguyen University, Buon Ma Thuot 630000, Vietnam;
| | - Van Bon Nguyen
- Department of Science and Technology, Tay Nguyen University, Buon Ma Thuot 630000, Vietnam;
| | - Anh Dzung Nguyen
- Institute of Biotechnology and Environment, Tay Nguyen University, Buon Ma Thuot 630000, Vietnam;
| | - San-Lang Wang
- Department of Chemistry, Tamkang University, New Taipei City 25137, Taiwan; (C.-H.W.); (C.T.D.)
- Life Science Development Center, Tamkang University, New Taipei City 25137, Taiwan
| |
Collapse
|
5
|
Tanco S, Lorenzo J, Garcia-Pardo J, Degroeve S, Martens L, Aviles FX, Gevaert K, Van Damme P. Proteome-derived peptide libraries to study the substrate specificity profiles of carboxypeptidases. Mol Cell Proteomics 2013; 12:2096-110. [PMID: 23620545 DOI: 10.1074/mcp.m112.023234] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Through processing peptide and protein C termini, carboxypeptidases participate in the regulation of various biological processes. Few tools are however available to study the substrate specificity profiles of these enzymes. We developed a proteome-derived peptide library approach to study the substrate preferences of carboxypeptidases. Our COFRADIC-based approach takes advantage of the distinct chromatographic behavior of intact peptides and the proteolytic products generated by the action of carboxypeptidases, to enrich the latter and facilitate its MS-based identification. Two different peptide libraries, generated either by chymotrypsin or by metalloendopeptidase Lys-N, were used to determine the substrate preferences of human metallocarboxypeptidases A1 (hCPA1), A2 (hCPA2), and A4 (hCPA4). In addition, our approach allowed us to delineate the substrate specificity profile of mouse mast cell carboxypeptidase (MC-CPA or mCPA3), a carboxypeptidase suggested to function in innate immune responses regulation and mast cell granule homeostasis, but which thus far lacked a detailed analysis of its substrate preferences. mCPA3 was here shown to preferentially remove bulky aromatic amino acids, similar to hCPA2. This was also shown by a hierarchical cluster analysis, grouping hCPA1 close to hCPA4 in terms of its P1 primed substrate specificity, whereas hCPA2 and mCPA3 cluster separately. The specificity profile of mCPA3 may further aid to elucidate the function of this mast cell carboxypeptidase and its biological substrate repertoire. Finally, we used this approach to evaluate the substrate preferences of prolylcarboxypeptidase, a serine carboxypeptidase shown to cleave C-terminal amino acids linked to proline and alanine.
Collapse
Affiliation(s)
- Sebastian Tanco
- Institut de Biotecnologia i de Biomedicina and Departament de Bioquímica i de Biologia Molecular, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Alonso-del-Rivero M, Trejo SA, Rodríguez de la Vega M, González Y, Bronsoms S, Canals F, Delfín J, Diaz J, Aviles FX, Chávez MA. A novel metallocarboxypeptidase-like enzyme from the marine annelid Sabellastarte magnifica--a step into the invertebrate world of proteases. FEBS J 2009; 276:4875-90. [PMID: 19694804 DOI: 10.1111/j.1742-4658.2009.07187.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
After screening 25 marine invertebrates, a novel metallocarboxypeptidase (SmCP) has been identified by activity and MS analytical approaches, and isolated from the marine annelid Sabellastarte magnifica. The enzyme, which is a minor component of the molecularly complex animal body, as shown by 2D gel electrophoresis, has been purified from crude extracts to homogeneity by affinity chromatography on potato carboxypeptidase inhibitor and by ion exchange chromatography. SmCP is a protease of 33792 Da, displaying N-terminal and internal sequence homologies with M14 metallocarboxypeptidase-like enzymes, as determined by MS and automated Edman degradation. The enzyme contains one atom of Zn per molecule, is activated by Ca2+ and is drastically inhibited by the metal chelator 1,10-phenanthroline, as well as by excess Zn2+ or Cu2+, but moderately so by EDTA. SmCP is also strongly inhibited by specific inhibitors of metallocarboxypeptidases, such as benzylsuccinic acid and the protein inhibitors found in potato and leech (i.e. recombinant forms, both at nanomolar levels). The enzyme displays high peptidase efficiency towards pancreatic carboxypeptidase-A synthetic substrates, such as those with hydrophobic residues at the C-terminus but, remarkably, also towards the acidic ones. This property, previously described as for carboxypeptidase O-like activity, has been shown on long peptide substrates by MS. The results obtained in the present study indicate that SmCP is a novel member of the M14 metallocarboxypeptidases family (assignable to the M14A or pancreatic-like subfamily) with a wider specificity that has not been described previously.
Collapse
|
7
|
Cardenas-Lopez JL, Haard NF. Identification of a cysteine proteinase from Jumbo squid (Dosidicus gigas) hepatopancreas as cathepsin L. Food Chem 2009. [DOI: 10.1016/j.foodchem.2008.05.100] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
8
|
Rasmussen RS, Morrissey MT. Marine biotechnology for production of food ingredients. ADVANCES IN FOOD AND NUTRITION RESEARCH 2007; 52:237-92. [PMID: 17425947 DOI: 10.1016/s1043-4526(06)52005-4] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The marine world represents a largely untapped reservoir of bioactive ingredients that can be applied to numerous aspects of food processing, storage, and fortification. Due to the wide range of environments they survive in, marine organisms have developed unique properties and bioactive compounds that, in some cases, are unparalleled by their terrestrial counterparts. Enzymes extracted from fish and marine microorganisms can provide numerous advantages over traditional enzymes used in food processing due to their ability to function at extremes of temperature and pH. Fish proteins such as collagens and their gelatin derivatives operate at relatively low temperatures and can be used in heat-sensitive processes such as gelling and clarifying. Polysaccharides derived from algae, including algins, carrageenans, and agar, are widely used for their ability to form gels and act as thickeners and stabilizers in a variety of foods. Besides applications in food processing, a number of marine-derived compounds, such as omega-3 polyunsaturated fatty acids and photosynthetic pigments, are important to the nutraceutical industry. These bioactive ingredients provide a myriad of health benefits, including reduction of coronary heart disease, anticarcinogenic and anti-inflammatory activity. Despite the vast possibilities for the use of marine organisms in the food industry, tools of biotechnology are required for successful cultivation and isolation of these unique bioactive compounds. In this chapter, recent developments and upcoming areas of research that utilize advances in biotechnology in the production of food ingredients from marine sources are introduced and discussed.
Collapse
Affiliation(s)
- Rosalee S Rasmussen
- Seafood Laboratory, Department of Food Science and Technology, Oregon State University, Astoria, OR 97103, USA
| | | |
Collapse
|
9
|
CARDENAS-LOPEZ JOSELUIS, HAARD NORMANF. CYSTEINE PROTEINASE ACTIVITY IN JUMBO SQUID (DOSIDICUS GIGAS) HEPATOPANCREAS EXTRACTS. J Food Biochem 2005. [DOI: 10.1111/j.1745-4514.2005.00009.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
10
|
Ramírez-Zavala B, Mercado-Flores Y, Hernández-Rodríguez C, Villa-Tanaca L. Purification and characterization of a serine carboxypeptidase from Kluyveromyces marxianus. Int J Food Microbiol 2004; 91:245-52. [PMID: 14984772 DOI: 10.1016/s0168-1605(03)00409-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2003] [Revised: 06/10/2003] [Accepted: 07/02/2003] [Indexed: 11/19/2022]
Abstract
We purified a carboxypeptidase (CPY) from the yeast of Kluyveromyces marxianus. This enzyme was purified 170 times from a soluble extract of 100000 x g. Purification consisted in a fractionated precipitation with ammonium sulfate and two chromatographic steps consisting of anion exchange chromatography and hydrophobic interactions chromatography. The native enzyme depicted a molecular mass of 67 kDa by gel filtration. This serine carboxypeptidase depicted an optimal pH of 8.5 and was stable at a pH ranging from 6.0 to 9.0, its optimal temperature was of 45 degrees C and was unstable at temperatures above 55 degrees C; Michaelis constant and Vmax for N-benzoyl-l-tyrosine-p-nitroanilide were of 29 microM and 612 microM/min mg of protein, respectively. The enzyme was strongly inhibited by phenylmethylsufonyl fluoride (PMSF) and, to a lesser degree, by trans-epoxysuccinyl-l-leucylamido-(4-guanidine)-butane. This study indicated that K. marxianus carboxypeptidase could be an alternative to other animal-source carboxypeptidases in the industry.
Collapse
Affiliation(s)
- Bernardo Ramírez-Zavala
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, México D.F., Mexico
| | | | | | | |
Collapse
|