1
|
Sun Y, Zhao M, Liu Z, Shi H, Zhang X, Zhao Y, Ma Z, Yu G, Xia G, Shen X. Preparation and characterization of lactoferrin-polyphenol conjugate with stabilizing effects on fish oil high internal phase Pickering emulsions. Food Chem X 2024; 24:101836. [PMID: 39380573 PMCID: PMC11459405 DOI: 10.1016/j.fochx.2024.101836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 08/29/2024] [Accepted: 09/12/2024] [Indexed: 10/10/2024] Open
Abstract
The combination of protein and polyphenol is an effective approach to improve the stability of protein emulsions. The lactoferrin (LF)-(-)-epigallocatechin-3-gallate (EGCG) covalent complex (LF-EGCG) was first prepared by alkali-induced reaction, then the structure and physicochemical properties between LF-EGCG and non-covalent complex (LF + EGCG) were compared, and finally the stability of complexes to fish oil high internal Pickering emulsions (HIPPEs) was tested. Results showed that LF-EGCG had stronger antioxidant activity, higher thermal stability, and better surface wettability than LF + EGCG. Meanwhile, the complexes showed no cytotoxicity within the tested concentration range (12.5-200 μg/mL). The HIPPEs stabilized with LF-EGCG possessed smaller droplet size, higher ζ-potential, and more uniform oil/water proton distribution. Covalent treatment also enhanced the storage, thermal, freeze-thaw and physical stability of LF HIPPEs. Furthermore, due to the higher antioxidant activity and denser microstructure, LF-EGCG HIPPE can more effectively inhibit the oxidation of fish oil.
Collapse
Affiliation(s)
- Ying Sun
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Key Laboratory of Seafood Processing of Haikou, College of Food Science and Technology, Hainan University, Hainan 570228, China
| | - Mantong Zhao
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Key Laboratory of Seafood Processing of Haikou, College of Food Science and Technology, Hainan University, Hainan 570228, China
| | - Zhongyuan Liu
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Key Laboratory of Seafood Processing of Haikou, College of Food Science and Technology, Hainan University, Hainan 570228, China
| | - Haohao Shi
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Key Laboratory of Seafood Processing of Haikou, College of Food Science and Technology, Hainan University, Hainan 570228, China
| | - Xueying Zhang
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Key Laboratory of Seafood Processing of Haikou, College of Food Science and Technology, Hainan University, Hainan 570228, China
| | - Yongqiang Zhao
- Sanya Tropical Fisheries Research Institute, Sanya 572018, China
| | - Zhenhua Ma
- Sanya Tropical Fisheries Research Institute, Sanya 572018, China
| | - Gang Yu
- Sanya Tropical Fisheries Research Institute, Sanya 572018, China
| | - Guanghua Xia
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Key Laboratory of Seafood Processing of Haikou, College of Food Science and Technology, Hainan University, Hainan 570228, China
- Collaborative Innovation Center of Provincial and Ministerial Co-Construction for Marine Food Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Xuanri Shen
- College of Food Science and Technology, Hainan Tropical Ocean University, Sanya 572022, China
| |
Collapse
|
2
|
Ktari N, Gargouri W, Jlaiel L, Trabelsi I, Ben Slima S, Bardaa S, Bendali F, Ben Salah R. Extraction, Purification, Characterization, and Wound Healing Effects of Novel Prickly Pear ( Opuntiaficus-indica (L.) Mill.) Heteropolysaccharides. Pharmaceuticals (Basel) 2024; 17:1410. [PMID: 39459048 PMCID: PMC11510737 DOI: 10.3390/ph17101410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/10/2024] [Accepted: 09/13/2024] [Indexed: 10/28/2024] Open
Abstract
Background: The present study undertakes the purification of a novel polysaccharide from Tunisian prickly pear (Opuntiaficus-indica (L.) Mill.) rackets (PPPRs) and the determination of its physicochemical properties, structure, antibacterial and antioxidant properties, as well as its in vitro and in vivo wound healing potential. Methods: The PPPR was structurally analyzed by Fourier Transform Infrared Spectroscopy (FTIR) and UV/Visible Spectroscopy, revealing characteristic bands of polysaccharides. According to thin-layer chromatography (TLC), high-performance liquid chromatography (HPLC), and Gas Chromatography-Mass Spectrometry (GC-MS) analyses. Results: The crude PPPR is an heteropolysaccharide composed of glucose (62.4%), galactose (19.37%), mannose (10.24%), and rhamnose (7.98%), with an average molecular weight of 90.94 kDa. This novel polysaccharide exhibited notable antioxidant potential assessed by four different in vitro assays: the 2-diphenyl-1-picrylhydrazyl (DPPH) scavenging assay, ferric reducing power, ferrous chelating activity, and scavenging activity against 2,2'-azino-bis-3-ethylbenzothiazoline-6-sulphonic acid (ABTS). In addition, the PPPR displayed high antibacterial activities with a MIC of 2.5 mg/mL against Salmonella Typhimurium and Pseudomonas aeruginosa, cytocompatibility properties, and non-cytotoxicity. Subsequently, the effect of the PPPR on skin wound healing was studied in a diabetic rat model induced by alloxan, revealing a significant acceleration in the wound healing process. This acceleration was evidenced by the expedited recovery of the dermis, increased formation of blood vessels, and enhanced tissue granulation. Conclusion: Therefore, the findings offer fresh perspectives on the creation of a potentially efficient and promising racket polysaccharide-based therapy for the treatment of persistent diabetic wounds.
Collapse
Affiliation(s)
- Naourez Ktari
- Laboratory of Biotechnology Microbial, Enzymatic and Biomolecules, Centre of Biotechnology of Sfax, Road of Sidi Mansour Km 6, P.O. Box 1177, Sfax 3018, Tunisia; (N.K.); (W.G.); (I.T.); (S.B.S.); (S.B.)
- Department of Life Sciences, Faculty of Science of Gabes, Omar Ibn Khattab Street, Gabes 6029, Tunisia
| | - Wafa Gargouri
- Laboratory of Biotechnology Microbial, Enzymatic and Biomolecules, Centre of Biotechnology of Sfax, Road of Sidi Mansour Km 6, P.O. Box 1177, Sfax 3018, Tunisia; (N.K.); (W.G.); (I.T.); (S.B.S.); (S.B.)
| | - Lobna Jlaiel
- Analytical Service, Centre of Biotechnology of Sfax, Road of Sidi Mansour Km 6, P.O. Box 1177, Sfax 3018, Tunisia;
| | - Imen Trabelsi
- Laboratory of Biotechnology Microbial, Enzymatic and Biomolecules, Centre of Biotechnology of Sfax, Road of Sidi Mansour Km 6, P.O. Box 1177, Sfax 3018, Tunisia; (N.K.); (W.G.); (I.T.); (S.B.S.); (S.B.)
| | - Sirine Ben Slima
- Laboratory of Biotechnology Microbial, Enzymatic and Biomolecules, Centre of Biotechnology of Sfax, Road of Sidi Mansour Km 6, P.O. Box 1177, Sfax 3018, Tunisia; (N.K.); (W.G.); (I.T.); (S.B.S.); (S.B.)
| | - Sana Bardaa
- Laboratory of Biotechnology Microbial, Enzymatic and Biomolecules, Centre of Biotechnology of Sfax, Road of Sidi Mansour Km 6, P.O. Box 1177, Sfax 3018, Tunisia; (N.K.); (W.G.); (I.T.); (S.B.S.); (S.B.)
| | - Farida Bendali
- Laboratoire de Microbiologie Appliquée, Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, Bejaia 06000, Algeria;
| | - Riadh Ben Salah
- Laboratory of Biotechnology Microbial, Enzymatic and Biomolecules, Centre of Biotechnology of Sfax, Road of Sidi Mansour Km 6, P.O. Box 1177, Sfax 3018, Tunisia; (N.K.); (W.G.); (I.T.); (S.B.S.); (S.B.)
| |
Collapse
|
3
|
Dhawefi N, Jedidi S, Sammari H, Ayari A, Jridi M, Sebai H. Diospyros kaki fruit aqueous extract individual/combined with famotidine mitigates peptic ulcer induced by alcohol in rats. Toxicol Res (Camb) 2024; 13:tfae155. [PMID: 39345794 PMCID: PMC11427753 DOI: 10.1093/toxres/tfae155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 06/11/2024] [Accepted: 09/17/2024] [Indexed: 10/01/2024] Open
Abstract
The present study was performed to evaluate the therapeutic impact of Diospyros kaki fruit aqueous extract (DKFAE) on ethanol induced peptic ulcer. The phytochemical studies of DKFAE were investigated using colorometric analysis. Gastric ulcer was induced by one dose of ethanol (5 ml/Kg, b.w) on 24 h empty stomach. Then, the plant extract (200, 400 mg/kg) was orally administrated for 2 weeks. Famotidine (FAM: 40 mg/kg, b.w.): a reference drug was also tested. The effect of mixture dose between the fruit extract and FAM (DKFAE, 50 mg/kg PC, p.o. + FAM, 50 mg/kg PC, p.o.) was also evaluated. One hour after induction of ulcer blood samples were collected, stomach acidity and volume, as well as lesion counts were measured, then stomach and intestine of scarified rats were subjected to biochemical, macroscopic and microscopic studies. Results showed that DKFAE exhibited an important antioxidant potential. In vivo, the results showed that alcohol induced gastric damage, improving oxidative stress markers level such as MDA and H2O2, gastric and intestinal calcium and free iron. The intoxication by ethanol also produce an inflammation occurred by high level of the C-reactive protein (CRP) and alkaline phosphatase (ALP) activity in plasma. In contrast, DKFAE and the mixture dose significantly protect against macroscopic and histological injuries, the secretory profile disturbances, lipid peroxidation, antioxidant enzymes activities and non enzymatic antioxidant level decrease induced by ethanol administration. More impressively, the mixture dose exerted the more excellent effect than DKFAE and famotidine each alone showing is possible synergism.
Collapse
Affiliation(s)
- Nourhène Dhawefi
- Laboratory of Functional Physiology and Valorization of Bio-Resources, University of Jendouba, Higher Institute of Biotechnology of Béja, Béja 9000 BP n° 382, Tunisia
- Laboratory of Sylvo-Pastoral Resources, University of Jendouba, Sylvo- Pastoral Institute of Tabarka, Tabarka 8110 Bp n° 345, Tunisia
| | - Saber Jedidi
- Laboratory of Functional Physiology and Valorization of Bio-Resources, University of Jendouba, Higher Institute of Biotechnology of Béja, Béja 9000 BP n° 382, Tunisia
- Laboratory of Sylvo-Pastoral Resources, University of Jendouba, Sylvo- Pastoral Institute of Tabarka, Tabarka 8110 Bp n° 345, Tunisia
| | - Houcem Sammari
- Laboratory of Functional Physiology and Valorization of Bio-Resources, University of Jendouba, Higher Institute of Biotechnology of Béja, Béja 9000 BP n° 382, Tunisia
- Laboratory of Sylvo-Pastoral Resources, University of Jendouba, Sylvo- Pastoral Institute of Tabarka, Tabarka 8110 Bp n° 345, Tunisia
| | - Ala Ayari
- Laboratory of Functional Physiology and Valorization of Bio-Resources, University of Jendouba, Higher Institute of Biotechnology of Béja, Béja 9000 BP n° 382, Tunisia
| | - Mourad Jridi
- Laboratory of Functional Physiology and Valorization of Bio-Resources, University of Jendouba, Higher Institute of Biotechnology of Béja, Béja 9000 BP n° 382, Tunisia
| | - Hichem Sebai
- Laboratory of Functional Physiology and Valorization of Bio-Resources, University of Jendouba, Higher Institute of Biotechnology of Béja, Béja 9000 BP n° 382, Tunisia
| |
Collapse
|
4
|
Oidor-Chan VH, Arellano-Mauricio AB, Del Valle-Mondragón L, Ibarra-Lara L, Ponce-Sánchez C, Rodríguez-Maldonado E, Mendoza-Espinoza JA, Cruz-Sosa F, Guarner-Lans V, Patlán M, Díaz de León-Sánchez F, Castrejón-Téllez V. Chemical analysis of freeze-dried seeds of Stenocereus stellatus (white tunillo) components and evaluation of their effect on prediabetes reversion in an experimental model in female Wistar rats. Food Funct 2024; 15:9235-9253. [PMID: 39162034 DOI: 10.1039/d4fo01908c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
Prediabetes is defined as a state of moderate hyperglycemia. Here, we used freeze-dried seeds of Stenocereus stellatus (white tunillo) as a possible therapeutic strategy for the treatment of prediabetes. In the aqueous extract of freeze-dried seeds of white tunillo, polyphenols were identified using the Folin-Ciocalteu technique, separated by UPLC and analyzed by infrared spectrophotometry. Five well-defined peaks with good resolution were observed in the chromatogram of the aqueous extract obtained by UPLC. Two of these peaks corresponded to polyphenols with similarity to quercetin and rutin. The subchronic oral administration of freeze-dried seeds of white tunillo for 14 days in a prediabetes model in female Wistar rats reversed hyperglycemia and glucose intolerance. Treatment with the freeze-dried seeds reversed the decrease in the hepatic expression of Akt, eNOS, and p-eNOSSer1177 but did not reverse the decrease in MnSOD, catalase, and GPx1. No changes in the expression of GPx4 and p-AktSer473 were observed in the pathological state or with the treatment but there was an increase in the expression and activity of eNOS. The bioactive compounds present in the freeze-dried seeds of Stenocereus stellatus could provide guidelines for studying the mechanisms of action through which they reverse signs of prediabetes.
Collapse
Affiliation(s)
- Víctor Hugo Oidor-Chan
- Department of Biotechnology, Universidad Autónoma Metropolitana-Iztapalapa, Ciudad de México, Mexico.
| | | | | | - Luz Ibarra-Lara
- Department of Pharmacology, Instituto Nacional de Cardiología "Ignacio Chávez", Ciudad de México, Mexico.
| | - Claudia Ponce-Sánchez
- Experimental Biology Program, Universidad Autónoma Metropolitana-Iztapalapa, Ciudad de México, Mexico.
| | - Emma Rodríguez-Maldonado
- Laboratory of Cell Biology, Department of Physiology, Instituto Nacional de Cardiología "Ignacio Chávez", Ciudad de México, Mexico.
| | | | - Francisco Cruz-Sosa
- Department of Biotechnology, Universidad Autónoma Metropolitana-Iztapalapa, Ciudad de México, Mexico.
| | - Verónica Guarner-Lans
- Department of Physiology, Instituto Nacional de Cardiología "Ignacio Chávez", Juan Badiano No. 1, Col. Sección XVI, Tlalpan, 14080, Ciudad de México, Mexico.
| | - M Patlán
- Subdirection of Basic and Technological Research, Instituto Nacional de Cardiología "Ignacio Chávez", Ciudad de México, Mexico.
| | - Fernando Díaz de León-Sánchez
- Laboratory of Post-harvest of Plant Genetic Resources and Natural Products, Department of Health Sciences, Universidad Autónoma Metropolitana-Iztapalapa, Av. Ferrocarril San Rafael Atlixco, Núm. 186, Col. Leyes de Reforma 1 A Sección, Alcaldía Iztapalapa, C.P. 09310, Ciudad de México, Mexico.
| | - Vicente Castrejón-Téllez
- Department of Physiology, Instituto Nacional de Cardiología "Ignacio Chávez", Juan Badiano No. 1, Col. Sección XVI, Tlalpan, 14080, Ciudad de México, Mexico.
| |
Collapse
|
5
|
Ben Hamad Bouhamed S, Chaari M, Baati H, Zouari S, Ammar E. Extreme halophilic Archaea: Halobacterium salinarum carotenoids characterization and antioxidant properties. Heliyon 2024; 10:e36832. [PMID: 39281633 PMCID: PMC11401186 DOI: 10.1016/j.heliyon.2024.e36832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 08/21/2024] [Accepted: 08/22/2024] [Indexed: 09/18/2024] Open
Abstract
Important marine microorganisms are resources of renewable energy that may face global population growth and needs. The application of biomass metabolites, such as carotenoids and their derivatives, may solve some agro-food health problems. Herein, a new halophilic Archaea Halobacterium salinarum producing carotenoid was screened from a Tunisian solar Saltworks (Sfax). The identification of the carotenoid pigments was carried out using HPLC-MS/MS. The predominant pigments produced by this Halobacterium were bacterioruberin and its derivatives and the carotenoids production was found to be of 21.51 mg/mL. Moreover, the data revealed that the carotenoids extract exhibited a high antioxidant activity across four oxidizing assays. The present results suggested that carotenoids extracted from halophilic Archaea are interesting sources of natural antioxidants for future innovative applications in agro-food, cosmetic and health fields.
Collapse
Affiliation(s)
- Sana Ben Hamad Bouhamed
- Research Group of Agri-Food Processing Engineering, Laboratory of Applied Fluids Mechanics, Process Engineering and Environment, National Engineering School of Sfax, University of Sfax, Tunisia
| | - Marwa Chaari
- Research Group of Agri-Food Processing Engineering, Laboratory of Applied Fluids Mechanics, Process Engineering and Environment, National Engineering School of Sfax, University of Sfax, Tunisia
- National Engineering School of Sfax, University of Sfax, Laboratory of Environment Sciences and Sustainable Development, B.P. 1173 - 3038, Sfax, Tunisia
| | - Houda Baati
- National Engineering School of Sfax, University of Sfax, Laboratory of Environment Sciences and Sustainable Development, B.P. 1173 - 3038, Sfax, Tunisia
| | - Sami Zouari
- High Institute of Biotechnology of Sfax, University of Sfax, Laboratory of Medicinal and Environmental Chemistry, Sfax, Tunisia
- National Engineering School of Sfax, University of Sfax, Tunisia
| | - Emna Ammar
- National Engineering School of Sfax, University of Sfax, Laboratory of Environment Sciences and Sustainable Development, B.P. 1173 - 3038, Sfax, Tunisia
- National Engineering School of Sfax, University of Sfax, Tunisia
| |
Collapse
|
6
|
Soleimani-Amiri S, Hojjati M, Hossaini Z. Green synthesis and cytotoxic activity of functionalized naphthyridine. Mol Divers 2024:10.1007/s11030-024-10929-2. [PMID: 39117889 DOI: 10.1007/s11030-024-10929-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Accepted: 07/05/2024] [Indexed: 08/10/2024]
Abstract
A multicomponent synthesis of 1,8-naphthyridine with high yields utilizing benzaldehydes, malononitrile, phenol, and acetylenic esters in aqueous solution at room temperature in the presence of SiO2/Fe3O4 as a reusable catalyst is reported. Using the MTT test, the cytotoxic properties of all the produced compounds were assessed in vitro against cancer cell lines (MCF-7 and A549) and normal cell lines (BEAS-2B). It was discovered that the most effective cytotoxic agent, doxorubicin-like in its lack of selectivity, was the derivative 5h. On the other hand, the compound 5c might be regarded as an equipotent molecule with greater selectivity in relation to doxorubicin. Also, this study investigates the antioxidant effects of 1,8-naphthyridine carboxylates, along with other studies conducted in this study.
Collapse
Affiliation(s)
| | - Mahsa Hojjati
- Department of Natural Sciences, School of Science and Technology, The University of Georgia, 0171, Tbilisi, Georgia
| | | |
Collapse
|
7
|
Staroń A, Chwastowski J, Kijania-Kontak M, Wiśniewski M, Staroń P. Bio-enriched composite materials derived from waste cooking oil for selective reduction of odour intensity. Sci Rep 2024; 14:16311. [PMID: 39009707 PMCID: PMC11251015 DOI: 10.1038/s41598-024-67302-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 07/10/2024] [Indexed: 07/17/2024] Open
Abstract
Currently, pathogenic microorganisms are becoming more active in public utility areas like parking lots and waste shelters due to the accumulation of organic waste. This uncontrolled waste leads to decay, altering its composition and presenting a microbiological risk to public health. Additionally, it emits unpleasant odors containing chemicals that irritate the mucous membranes, causing discomfort in the nose, throat, and eyes by stimulating the trigeminal nerve. These odors can have various negative effects on both quality of life and public health. The study investigated the physicochemical properties of oil composites enriched with natural additives and determined their effectiveness in reducing the intensity of nuisance odours. The research showed over 82% reduction in decaying meat odour and almost 65% reduction in ammonia odour. A higher impact of the given composites on reducing the odour from decaying meat than from ammonia was observed. This may be due to the biocidal properties of the additives used (turmeric, thymol, salicylic acid, hops and curly sorrel) and the higher intensity of ammonia odor compared to meat-derived odour. Despite the non-porous nature of the solids tested (with similar specific surface areas ranging from 0.66 to 0.88 m2/g), they were capable of sorbing NH3.
Collapse
Affiliation(s)
- Anita Staroń
- Department of Engineering and Chemical Technology, Cracow University of Technology, 24 Warszawska St., 31-155, Cracow, Poland.
| | - Jarosław Chwastowski
- Department of Engineering and Chemical Technology, Cracow University of Technology, 24 Warszawska St., 31-155, Cracow, Poland
| | - Magda Kijania-Kontak
- Department of Civil Engineering, Cracow University of Technology, 24 Warszawska St., 31-155, Cracow, Poland
| | - Marek Wiśniewski
- Faculty of Chemistry, Nicolaus Copernicus University, 7 Gagarina St., 87-100, Toruń, Poland
| | - Paweł Staroń
- Department of Engineering and Chemical Technology, Cracow University of Technology, 24 Warszawska St., 31-155, Cracow, Poland
| |
Collapse
|
8
|
Wu W, Shi C, Zi Y, Gong H, Chen L, Kan G, Wang X, Zhong J. Effects of polyphenol and gelatin types on the physicochemical properties and emulsion stabilization of polyphenol-crosslinked gelatin conjugates. Food Chem X 2024; 22:101250. [PMID: 38440057 PMCID: PMC10910232 DOI: 10.1016/j.fochx.2024.101250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 02/04/2024] [Accepted: 02/19/2024] [Indexed: 03/06/2024] Open
Abstract
Herein, six types of polyphenol-crosslinked gelatin conjugates (PGCs) with ≥ two gelatin molecules were prepared using a covalent crosslinking method with two types of polyphenols (tannic acid and caffeic acid) and three types of gelatins (bovine bone gelatin, cold water fish skin gelatin, and porcine skin gelatin) for the emulsion stabilization. The structural and functional properties of the PGCs were dependent on both polyphenol and gelatin types. The storage stability of the conjugate-stabilized emulsions was dependent on the polyphenol crosslinking, NaCl addition, and heating pretreatment. In particular, NaCl addition promoted the liquid-gel transition of the emulsions: 0.2 mol/L > 0.1 mol/L > 0.0 mol/L. Moreover, NaCl addition also increased the creaming stability of the emulsions stabilized by PGCs except tannic acid-crosslinked bovine bone gelatin conjugate. All the results provided useful knowledge on the effects of molecular modification and physical processing on the properties of gelatins.
Collapse
Affiliation(s)
- Wenjuan Wu
- Medical Food Laboratory, Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai Institute for Pediatric Research, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
- National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Integrated Scientific Research Base on Comprehensive Utilization Technology for By-Products of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Cuiping Shi
- Medical Food Laboratory, Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai Institute for Pediatric Research, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Ye Zi
- Medical Food Laboratory, Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai Institute for Pediatric Research, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
- National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Integrated Scientific Research Base on Comprehensive Utilization Technology for By-Products of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Huan Gong
- Medical Food Laboratory, Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai Institute for Pediatric Research, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
- National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Integrated Scientific Research Base on Comprehensive Utilization Technology for By-Products of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Lijia Chen
- Medical Food Laboratory, Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai Institute for Pediatric Research, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
- National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Integrated Scientific Research Base on Comprehensive Utilization Technology for By-Products of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Guangyi Kan
- Medical Food Laboratory, Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai Institute for Pediatric Research, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
- National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Integrated Scientific Research Base on Comprehensive Utilization Technology for By-Products of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Xichang Wang
- National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Integrated Scientific Research Base on Comprehensive Utilization Technology for By-Products of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Jian Zhong
- Medical Food Laboratory, Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai Institute for Pediatric Research, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
- National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Integrated Scientific Research Base on Comprehensive Utilization Technology for By-Products of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, College of Food Science & Technology, Shanghai Ocean University, Shanghai 201306, China
- Department of Clinical Nutrition, College of Health Science and Technology, Shanghai Jiao Tong University School of Medicine, Shanghai 200135, China
- Marine Biomedical Science and Technology Innovation Platform of Lingang Special Area, Shanghai 201306, China
| |
Collapse
|
9
|
Lakhrem M, Eleroui M, Boujhoud Z, Feki A, Dghim A, Essayagh S, Hilali S, Bouhamed M, Kallel C, Deschamps N, de Toffol B, Pujo JM, Badraoui R, Kallel H, Ben Amara I. Anti-Vasculogenic, Antioxidant, and Anti-Inflammatory Activities of Sulfated Polysaccharide Derived from Codium tomentosum: Pharmacokinetic Assay. Pharmaceuticals (Basel) 2024; 17:672. [PMID: 38931340 PMCID: PMC11207104 DOI: 10.3390/ph17060672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/03/2024] [Accepted: 05/08/2024] [Indexed: 06/28/2024] Open
Abstract
The purpose of this paper was to investigate the anti-inflammatory and anti-angiogenic activities of sulfated polysaccharide from C. tomentosum (PCT) using carrageenan (CARR)-induced paw edema in a rat model and anti-vasculogenic activity on a chorioallantoic membrane assay (CAM) model. Based on in vitro tests of anti-radical, total antioxidant, and reducing power activities, PCT presents a real interest via its antioxidant activity and ability to scavenge radical species. The in vivo pharmacological tests suggest that PCT possesses anti-inflammatory action by reducing paw edema and leukocyte migration, maintaining the redox equilibrium, and stabilizing the cellular level of several pro-/antioxidant system markers. It could significantly decrease the malondialdehyde levels and increase superoxide dismutase, glutathione peroxidase, and glutathione activities in local paw edema and erythrocytes during the acute inflammatory reaction of CARR. PCT pretreatment was effective against DNA alterations in the blood lymphocytes of inflamed rats and reduced the hematological alteration by restoring blood parameters to normal levels. The anti-angiogenic activity results revealed that CAM neovascularization, defined as the formation of new vessel numbers and branching patterns, was decreased by PCT in a dose-dependent manner, which supported the in silico bioavailability and pharmacokinetic findings. These results indicated the therapeutic effects of polysaccharides from C. tomentosum and their possible use as anti-proliferative molecules based on their antioxidant, anti-inflammatory, and anti-angiogenic activities.
Collapse
Affiliation(s)
- Marwa Lakhrem
- Laboratory of Medicinal and Environment Chemistry, Higher Institute of Biotechnology, University of Sfax, Sfax 3000, Tunisia; (M.L.); (M.E.); (A.F.); (A.D.)
| | - Malek Eleroui
- Laboratory of Medicinal and Environment Chemistry, Higher Institute of Biotechnology, University of Sfax, Sfax 3000, Tunisia; (M.L.); (M.E.); (A.F.); (A.D.)
| | - Zakaria Boujhoud
- Laboratory of Health Sciences and Technologies, Higher Institute of Health Sciences of Settat, Settat 26000, Morocco;
| | - Amal Feki
- Laboratory of Medicinal and Environment Chemistry, Higher Institute of Biotechnology, University of Sfax, Sfax 3000, Tunisia; (M.L.); (M.E.); (A.F.); (A.D.)
| | - Amel Dghim
- Laboratory of Medicinal and Environment Chemistry, Higher Institute of Biotechnology, University of Sfax, Sfax 3000, Tunisia; (M.L.); (M.E.); (A.F.); (A.D.)
| | - Sanah Essayagh
- Laboratory Agrifood and Health, Faculty of Science and Technology, Hasan First University of Settat, Settat 26000, Morocco; (S.E.); (S.H.)
| | - Said Hilali
- Laboratory Agrifood and Health, Faculty of Science and Technology, Hasan First University of Settat, Settat 26000, Morocco; (S.E.); (S.H.)
| | - Marwa Bouhamed
- Laboratory of Anatomopathology, CHU Habib Bourguiba, University of Sfax, Sfax 3029, Tunisia;
| | - Choumous Kallel
- Laboratory of Hematology, CHU Habib Bourguiba, University of Sfax, Sfax 3029, Tunisia;
| | - Nathalie Deschamps
- Neurology Department, Cayenne General Hospital, Cayenne 97300, French Guiana; (N.D.); (B.d.T.)
- Clinical Investigation Center, CIC INSERM 142, Cayenne General Hospital Andrée Rosemon, Guiana University, Cayenne 97300, French Guiana
| | - Bertrand de Toffol
- Neurology Department, Cayenne General Hospital, Cayenne 97300, French Guiana; (N.D.); (B.d.T.)
| | - Jean Marc Pujo
- Emergency Department, Cayenne General Hospital, Cayenne 97300, French Guiana;
| | - Riadh Badraoui
- Department of Biology, University of Ha’il, Ha’il 81451, Saudi Arabia;
- Section of Histology-Cytology, Medicine Faculty of Tunis, University of Tunis El Manar, La Rabta 1007, Tunisia
| | - Hatem Kallel
- Biome and Immunopathology CNRS UMR-9017, Inserm U 1019, Université de Guyane, Cayenne 97300, French Guiana;
- Intensive Care Unit, Cayenne General Hospital, Cayenne 97300, French Guiana
| | - Ibtissem Ben Amara
- Laboratory of Medicinal and Environment Chemistry, Higher Institute of Biotechnology, University of Sfax, Sfax 3000, Tunisia; (M.L.); (M.E.); (A.F.); (A.D.)
- Biome and Immunopathology CNRS UMR-9017, Inserm U 1019, Université de Guyane, Cayenne 97300, French Guiana;
- Intensive Care Unit, Cayenne General Hospital, Cayenne 97300, French Guiana
| |
Collapse
|
10
|
Khan I, Khan U, Khan W, Alqathama A, Riaz M, Ahmad R, Mahtab Alam M. Antibacterial and antibiofilm potentials of Rumex dentatus root extract characterized by HPLC-ESI-Q-TOF-MS. Saudi J Biol Sci 2024; 31:103962. [PMID: 38419820 PMCID: PMC10899039 DOI: 10.1016/j.sjbs.2024.103962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 02/14/2024] [Accepted: 02/17/2024] [Indexed: 03/02/2024] Open
Abstract
The control of infections is one of the key strategies to treat cuts, wounds, lung, and skin infections. In this study the folkloric use of Rumex dentatus (R. dentatus) roots in the mentioned conditions was scientifically investigated. The methanolic (MeOH) crude extract of R. dentatus root was fractionated (n-hexane, ethyl acetate and water) via bioassay-guided method, and its antibacterial activity was evaluated using the agar well diffusion and Minimum inhibitory concentration (MIC) assays against clinical isolate of Pseudomonas aeruginosa (P. aeruginosa). The antibiofilm activity was measured using the crystal violet staining method. The crude extract, fractions and sub-fractions tested showed the MICs values ranging from 200 to 1000 μg/mL respectively. Among the fractions, notably, the water fraction exhibited the highest activity against P. aeruginosa. The water fraction was then subjected to thin layer chromatography (TLC). Following spectrometric analysis using HPLC-ESI-Q-TOF-MS, gallic acid and emodin were identified as the primary components within the same fraction, responsible for eliciting antibacterial and antibiofilm effects. The in-silico studies conducted with AutoDock Vina on the LasR protein, using both isolated gallic acid and emodin, confirm the binding affinity of these molecules to the active sites of the LasR protein that has regulatory role in building of biofilm formation and its pathogenicity. By scientifically validating the infection-controlling properties of R. dentatus, this research provides compelling evidence that supports its traditional use as reported in folklore. Moreover, this study contributes to our understanding of the plant's potential in managing infections, thereby substantiating its traditional therapeutic application in a scientific context.
Collapse
Affiliation(s)
- Imran Khan
- Department of Botany, Shaheed Benazir Bhutto University, Sheringal, Dir Upper 18050, Pakistan
| | - Uzma Khan
- Department of Botany, Hazara University, Mansehra, Pakistan
| | - Wajiha Khan
- COMSATS University Islamabad, Abbottabad Campus, Dept. of Biotechnology, Abbottabad, Pakistan
| | - Aljawharah Alqathama
- Department of Pharmaceutical Sciences, Pharmacy College, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Muhammad Riaz
- Department of Pharmacy, Shaheed Benazir Bhutto University, Sheringal, Dir Upper 18050, Pakistan
| | - Rizwan Ahmad
- Department of Natural Products, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, P.O Box # 1982, Dammam 31441, Saudi Arabia
| | - Mohammad Mahtab Alam
- Department of Basic Medical Sciences, College of Applied Medical Science, King Khalid University, Abha, Saudi Arabia
| |
Collapse
|
11
|
Hasani L, Ezzatzadeh E, Hossaini Z. Green synthesis and investigation of antioxidant and antibacterial activity of new derivatives of chromenoazepines employing CuO/TiO 2@MWCNTs. Mol Divers 2024:10.1007/s11030-023-10803-7. [PMID: 38403738 DOI: 10.1007/s11030-023-10803-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 12/27/2023] [Indexed: 02/27/2024]
Abstract
The synthesis of novel, high-yield derivatives of chromenoazepine was investigated in this work. CuO/TiO2@MWCNTs was used as a nanocatalyst in a multicomponent reaction involving 4-aminocumarine, activated acetylenic chemicals, and alkyl bromide in room temperature water to create these novel compounds. Using MCRs of 4-aminocumarine, isothiocyanate, and alkyl bromide in the presence of CuO/TiO2@MWCNTs as nanocatalysts in room-temperature water, chromenothiazepines were synthesized under comparable conditions. The freshly synthesized azepine exhibits antioxidant activity since its NH group has undergone two evaluation processes. Additionally, using two types of Gram-negative bacteria in a disk distribution procedure, the antibacterial activity of recently developed azepines was evaluated, and these compounds also inhibited the growth of Gram-positive bacteria. This method's benefits include quick reaction times, large product yields, and straightforward catalyst and product separation through easy steps.
Collapse
Affiliation(s)
- Leila Hasani
- Department of Chemistry, Ardabil Branch, Islamic Azad University, Ardabil, Iran
| | - Elham Ezzatzadeh
- Department of Chemistry, Ardabil Branch, Islamic Azad University, Ardabil, Iran.
| | | |
Collapse
|
12
|
Hezarcheshmeh NK, Godarzbod F, Abdullah MN, Hossaini Z. Green preparation of new pyrimidine triazole derivatives via one-pot multicomponent reactions of guanidine. Mol Divers 2024; 28:217-228. [PMID: 37943418 DOI: 10.1007/s11030-023-10754-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 10/22/2023] [Indexed: 11/10/2023]
Abstract
In this research the goal was to produce novel pyrimidine triazole compounds in high yields using triethylamin as an efficient catalyst. These new compounds were synthesized by using multicomponent reaction of aldehydes, guanidine, electron deficient acetylenic compounds, tert-butyl isocyanide and hydrazonoyle chloride in aqueous media. Due to the presence of an NH group, which was assessed using two different methodologies, newly synthesized pyrimidine triazoles have antioxidant properties. Additionally, the antibacterial activity of newly created pyrimidine triazoles was assessed using the disk distribution method with two different types of Gram-positive bacteria and Gram-negative bacteria, demonstrating that the use of these compounds prevented the growth of bacteria. Applied to the preparation of pyrimidine triazole derivatives, this method has short reaction times, high product yields, and the ability to separate catalyst and product using simple procedures.
Collapse
Affiliation(s)
| | - Farideh Godarzbod
- Department of Chemistry, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Media Noori Abdullah
- Department of Chemistry, College of Science, Salahaddin University-Erbil, Kurdistan Region, Erbil, Iraq
| | - Zinatossadat Hossaini
- Department of Chemistry, Qaemshahr Branch, Islamic Azad University, Qaemshahr, Iran.
| |
Collapse
|
13
|
Khandan S, Yavari I. Formation of bis-spiropyrrolidines from isatin, secondary amines, and alkylidene Meldrum's acids. Mol Divers 2024; 28:85-95. [PMID: 36800110 DOI: 10.1007/s11030-023-10610-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 01/21/2023] [Indexed: 02/18/2023]
Abstract
A catalyst-free synthesis of stable bis-spiropyrrolidines from isatin, secondary amines, and alkylidene Meldrum's acids in MeCN in 75-95% yield is described. The antioxidant and antimicrobial properties of the synthesized compounds are investigated. For this purpose, the radical scavenging activities of four derivatives were studied by radical trapping of diphenylpicrylhydrazine and ferric reduction power experiments. Disk diffusion test on Gram-positive and Gram-negative bacteria was employed to investigate antibacterial activities of five derivatives.
Collapse
Affiliation(s)
- Samira Khandan
- Department of Chemistry, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Issa Yavari
- Department of Chemistry, Tarbiat Modares University, P.O. Box 14115-175, Tehran, Iran.
| |
Collapse
|
14
|
Wang D, Li H, Hou TY, Zhang ZJ, Li HZ. Effects of conjugated interactions between Perilla seed meal proteins and different polyphenols on the structural and functional properties of proteins. Food Chem 2024; 433:137345. [PMID: 37666124 DOI: 10.1016/j.foodchem.2023.137345] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 07/13/2023] [Accepted: 08/28/2023] [Indexed: 09/06/2023]
Abstract
The study aims to perform alkali-induced covalent modification of perilla seed meal protein (PSMP) using different polyphenols: gallic acid (GA), protocatechuic acid (PCA), caffeic acid (CA), apigenin (API) and luteolin (LU). Covalent binding between different polyphenols and PSMP was found to occur, with PSMP-LU showing the highest binding rate of 90.89 ± 1.37 mg/g; the fluorescence spectrum of PSMP-CA showed a maximum blue shift of Δ13.4 nm; the solubility increased from 69.626 ± 1.39 % to 83.102 ± 0.98 %. In order to better understand how these covalent conjugates, stabilize -carotene in emulsions, they were utilized as emulsifiers in an emulsion delivery method. The work further reveals the formation of PSMP-polyphenol conjugates and develops a novel emulsification system to deliver readily decomposable functional factors, providing a potential scenario for the application of PSMP and bioactive conjugates.
Collapse
Affiliation(s)
- Dan Wang
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan 030051, China
| | - He Li
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan 030051, China.
| | - Tian-Yu Hou
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan 030051, China
| | - Zhi-Jun Zhang
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan 030051, China
| | - Hui-Zhen Li
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan 030051, China
| |
Collapse
|
15
|
Li Q, Zhang L, Liao W, Liu J, Gao Y. Effects of chitosan molecular weight and mass ratio with natural blue phycocyanin on physiochemical and structural stability of protein. Int J Biol Macromol 2024; 256:128508. [PMID: 38040145 DOI: 10.1016/j.ijbiomac.2023.128508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 11/27/2023] [Accepted: 11/28/2023] [Indexed: 12/03/2023]
Abstract
Phycocyanin (PC), an algae-extracted colorant, has extensive applications for its water-solubility and fresh blue shade. When PC is added to acidified media, dispersions are prone to aggregate and decolorize into cloudy systems. For palliating this matter, chitosan with high, medium, and low molecular weights (HMC, MMC, and LMC) were adopted in PC dispersions, and their protective effects were compared based on physiochemical stabilities. The optimal mass ratio between chitosan and PC was identified as 1:5 based on preliminary evaluations and was supported by the higher ζ-potential (31.0-32.1 mV), lower turbidity (39.6-43.6 NTU), and polyacrylamide gel electrophoresis results. Through interfacial and antioxidant capacity analyses, LMC was found to display a higher affinity to PC, which was also confirmed by SEM images and the maximum increase in transition temperature of their complex (155.70 °C) in DSC measurements. The mechanism of electrostatic interaction reinforced by hydrophobic effects and hydrogen bonding was elucidated by FT-IR and Raman spectroscopy. Further comprehensive stability evaluations revealed that, without light exposure, LMC kept PC from internal secondary structure to external blueness luster to the maximum extent. While with light exposure, LMC was not so flexible as HMC, to protect chromophores from attack of free radicals.
Collapse
Affiliation(s)
- Qike Li
- Key Laboratory of Healthy Beverages, China National Light Industry Council, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, PR China; Department of Food Science, College of Agriculture & Life Sciences, Cornell University, Ithaca, NY 14853, USA.
| | - Liang Zhang
- Key Laboratory of Healthy Beverages, China National Light Industry Council, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, PR China
| | - Wenyan Liao
- Key Laboratory of Healthy Beverages, China National Light Industry Council, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, PR China
| | - Jinfang Liu
- Key Laboratory of Healthy Beverages, China National Light Industry Council, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, PR China.
| | - Yanxiang Gao
- Key Laboratory of Healthy Beverages, China National Light Industry Council, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, PR China.
| |
Collapse
|
16
|
Roosta HR, Samadi A, Bikdeloo M. Different cultivation systems and foliar application of calcium nanoparticles affect the growth and physiological characteristics of pennyroyal (Mentha pulegium L.). Sci Rep 2023; 13:20334. [PMID: 37989836 PMCID: PMC10663606 DOI: 10.1038/s41598-023-47855-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 11/19/2023] [Indexed: 11/23/2023] Open
Abstract
The aim of this study was to investigate the impact of different cultivation systems (soil cultivation, hydroponic cultivation in greenhouse conditions, and hydroponic vertical cultivation in plant factory under different LED lights) and foliar spraying of nano calcium carbonate on pennyroyal plants. Nano calcium carbonate was applied to the plants at a 7-day interval, three times, one month after planting. Results showed that the greenhouse cultivation system with calcium carbonate foliar spraying produced the highest amount of shoot and root fresh mass in plants. Additionally, foliar spraying of calcium carbonate increased internode length and leaf area in various cultivation systems. Comparing the effects of different light spectrums revealed that red light increased internode length while decreasing leaf length, leaf area, and plant carotenoids. Blue light, on the other hand, increased the leaf area and root length of the plants. The hydroponic greenhouse cultivation system produced plants with the highest levels of chlorophyll, carotenoids, and phenolic compounds. White light-treated plants had less iron and calcium than those exposed to other light spectrums. In conclusion, pennyroyal plants grown in greenhouses or fields had better growth than those grown in plant factories under different light spectrums. Furthermore, the calcium foliar application improved the physiological and biochemical properties of the plants in all the studied systems.
Collapse
Affiliation(s)
- Hamid Reza Roosta
- Department of Horticultural Sciences, Faculty of Agriculture and Natural Resources, Arak University, Arak, 38156-8-8349, Iran.
| | - Arman Samadi
- Department of Horticultural Sciences, Faculty of Agriculture and Natural Resources, Arak University, Arak, 38156-8-8349, Iran
| | - Mahdi Bikdeloo
- Department of Horticultural Sciences, Faculty of Agriculture and Natural Resources, Arak University, Arak, 38156-8-8349, Iran
| |
Collapse
|
17
|
Ozturk-Kerimoglu B, Heres A, Mora L, Toldrá F. Antioxidant peptides generated from chicken feet protein hydrolysates. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:7207-7217. [PMID: 37347843 DOI: 10.1002/jsfa.12802] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 06/18/2023] [Accepted: 06/20/2023] [Indexed: 06/24/2023]
Abstract
BACKGROUND As major industrial poultry by-products, chicken feet are considered as notable sources of several bioactive molecules. The current work covers the processing of chicken feet proteins as substrates to be hydrolysed by combinations of three commercial enzymes (Alcalase®, Flavourzyme® and Protana® Prime) during different hydrolysis periods and the evaluation of the identified peptides having antioxidant activity after simulated gastrointestinal digestion. RESULTS Enzymatic hydrolysis with Alcalase® and Protana® Prime combination for 4 h resulted in the highest activities. Reversed-phase high-performance liquid chromatographic separation of the purified hydrolysate yielded three active fractions that were further identified by nano-liquid chromatography-tandem mass spectrometry. The bioactivities of over 230 identified peptide sequences were estimated after simulated gastrointestinal digestion, and those peptides with the highest chance of exerting antioxidant activity were selected to be further synthesised and tested. In this sense, the synthesised dipeptides CF and GY showed the highest antioxidant capacity. CF presented IC50 values of 69.63 and 145.41 μmol L-1 in 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) and oxygen radical absorbance capacity (ORAC) assays, respectively. In contrast, GY IC50 values were 15.27 and 10.06 μmol L-1 in ABTS and ORAC assays, respectively. Significant differences (P < 0.05) were registered between peptides in the same antioxidant assays. CONCLUSION Overall, the findings emphasised the favourable impact of enzymatic hydrolysis with the obtaining of antioxidant peptides from poultry by-products that could be evaluated as a safe and economical source to retard oxidation in food systems. © 2023 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
| | - Alejandro Heres
- Ciencia de Alimentos, Instituto de Agroquímica y Tecnología de Alimentos (CSIC), Valencia, Spain
| | - Leticia Mora
- Ciencia de Alimentos, Instituto de Agroquímica y Tecnología de Alimentos (CSIC), Valencia, Spain
| | - Fidel Toldrá
- Ciencia de Alimentos, Instituto de Agroquímica y Tecnología de Alimentos (CSIC), Valencia, Spain
| |
Collapse
|
18
|
Essaidi I, Chouaibi M, Haj Koubaier H, Bouacida S, Snoussi A, Abassi Y, Bouzouita N. Arbutus unedo fruit syrup as a fortifying agent: effect on physicochemical, microbiological, rheological, sensory and antioxidant properties of yoghurt. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2023; 60:2835-2845. [PMID: 37711580 PMCID: PMC10497488 DOI: 10.1007/s13197-023-05801-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 06/19/2023] [Accepted: 07/11/2023] [Indexed: 09/16/2023]
Abstract
This study aims to assess the antioxidant and the antibacterial activities of Arbutus unedo fruits and to valorize its syrup by the incorporation in bi-layer yoghurt. The antioxidant activity of the ethanol 80% fruits and syrup extracts was evaluated by three methods namely DPPH·, ABTS·+ and FRAP. The antibacterial activity was tested against seven pathogenic bacteria using agar well diffusion method. The yoghurt was prepared using 10 and 20% layers of A. unedo syrup, physicochemical, rheological, microbiological and sensorial characteristics and the antioxidant activity were investigated during cold storage. The results revealed that the heat treatment decreased the phenolic compounds contents and the antioxidant activity in the syrup extract. Both fruits and syrup extracts demonstrated an antibacterial activity against the tested bacteria. The highest inhibition diameter (40 mm) was recorded for Aeromonas hydrophila at 100 mg/mL of fruit echtanolic extract. The prepared bi-layer yoghurts showed stability for the physicochemical and microbiological properties during storage. The rheological properties revealed that the A. unedo syrup increases the yoghurt consistency (k). The antioxidant activity of the yoghurt indicated that fermentation improved the radical scavenging power of the A. unedo syrup at the beginning and the activity decreased slowly during storage. Supplementary Information The online version contains supplementary material available at 10.1007/s13197-023-05801-4.
Collapse
Affiliation(s)
- Ismahen Essaidi
- Research Laboratory Agrobiodiversity and Ecotoxicology, High Agronomic Institute of Chott Meriam, University of Sousse, B.P 47, 4042 Chott Meriam, Tunisia
| | - Moncef Chouaibi
- Food Engineering and Basic Science Department, Higher School of Food Industries, University of Carthage, 58, Alain Savary Street, 1003 Elkhadhra City, Tunisia
| | - Hayet Haj Koubaier
- Food Technology Department, Higher School of Food Industries, University of Carthage, 58, Alain Savary Street, 1003 Elkhadhra City, Tunisia
| | - Saoussen Bouacida
- Food Technology Department, Higher School of Food Industries, University of Carthage, 58, Alain Savary Street, 1003 Elkhadhra City, Tunisia
| | - Ahmed Snoussi
- Food Technology Department, Higher School of Food Industries, University of Carthage, 58, Alain Savary Street, 1003 Elkhadhra City, Tunisia
| | - Yosra Abassi
- Food Technology Department, Higher School of Food Industries, University of Carthage, 58, Alain Savary Street, 1003 Elkhadhra City, Tunisia
| | - Nabiha Bouzouita
- Food Technology Department, Higher School of Food Industries, University of Carthage, 58, Alain Savary Street, 1003 Elkhadhra City, Tunisia
| |
Collapse
|
19
|
Viana AJS, Alves de Carvalho A, Alves de Assis RM, Mendonça SC, Rocha JPM, Pinto JEBP, Bertolucci SKV. Impact of Colored Shade Nets on Biomass Production, Essential Oil Composition and Orientin and Isoorientin Content in Lippia gracilis Schauer. Chem Biodivers 2023; 20:e202300809. [PMID: 37702456 DOI: 10.1002/cbdv.202300809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 08/23/2023] [Indexed: 09/14/2023]
Abstract
The objective of this study was to evaluate the effect of ChromatiNet on vegetative growth, total antioxidant capacity, phenolic and essential oils (EOs) composition of Lippia gracilis. The plants were cultivated under full sunlight, black, blue and red ChromatiNet. The flavonoid content and antioxidant capacity were quantified spectrophotometrically. The C-glycosylflavone isomers (orientin and isoorientin) were isolated and identified by conventional spectroscopic techniques and measured using high-performance liquid chromatography-diode array detection. The EO was analysed by gas chromatography and gas chromatography-mass spectrometry. Environment influenced growth, total antioxidant capacity and phytochemical levels. Shoot dry weight, thymol, carvacrol and (E)-caryophyllene were favoured under red and black ChromatiNet. Root growth, EOs, caryophyllene oxide, p-cymene, flavonoids, orientin and isoorientin were favoured in sunlight. Growth and accumulation of EOs, flavonoids and photosynthetic pigments increased under blue ChromatiNet. Therefore, Lippia gracilis plants have plasticity related to the spectral quality of light and it cultivate depends of the phytochemicals of interest.
Collapse
Affiliation(s)
- Abraão José Silva Viana
- 1Laboratory of Phytochemistry and Medicinal Plants, Department of Agriculture, Federal University of Lavras, Lavras, Brazil, PO Box 3037, Lavras, 37203-202, Minas Gerais, Brazil
| | - Alexandre Alves de Carvalho
- Laboratory of Plant Tissue Culture and Medicinal Plants, Department of Agriculture, Federal University of Lavras, Lavras, 37203-202, Minas Gerais, Brazil
| | - Rafael Marlon Alves de Assis
- Laboratory of Plant Tissue Culture and Medicinal Plants, Department of Agriculture, Federal University of Lavras, Lavras, 37203-202, Minas Gerais, Brazil
| | - Simony Carvalho Mendonça
- 1Laboratory of Phytochemistry and Medicinal Plants, Department of Agriculture, Federal University of Lavras, Lavras, Brazil, PO Box 3037, Lavras, 37203-202, Minas Gerais, Brazil
| | - João Pedro Miranda Rocha
- 1Laboratory of Phytochemistry and Medicinal Plants, Department of Agriculture, Federal University of Lavras, Lavras, Brazil, PO Box 3037, Lavras, 37203-202, Minas Gerais, Brazil
| | - José Eduardo Brasil Pereira Pinto
- Laboratory of Plant Tissue Culture and Medicinal Plants, Department of Agriculture, Federal University of Lavras, Lavras, 37203-202, Minas Gerais, Brazil
| | - Suzan Kelly Vilela Bertolucci
- 1Laboratory of Phytochemistry and Medicinal Plants, Department of Agriculture, Federal University of Lavras, Lavras, Brazil, PO Box 3037, Lavras, 37203-202, Minas Gerais, Brazil
| |
Collapse
|
20
|
Parhami A, Yavari I, Najafi GR. A consecutive synthesis of spiro[cyclopenta[b]pyrrole-5,2'-indene] derivatives via spirocyclization/annulation reactions. Mol Divers 2023; 27:2001-2013. [PMID: 36224502 DOI: 10.1007/s11030-022-10535-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 09/23/2022] [Indexed: 10/17/2022]
Abstract
The reaction between ninhydrin-malononitrile adduct [2-(1,3-dioxo-1,3-dihydro-2H-inden-2-ylidene)malononitrile] and ethyl 2-(alkylamino)-4-aryl-4-oxo-but-2-enoates (prepared from ethyl 2,4-dioxo-4-arylbutanoate and alkylamines) in the presence of Et3N in MeCN at room temperature afforded 3-alkylamino-2-aryloyl-1',3',4-trioxo-1',3'-dihydrospiro[cyclopentane-1,2'-inden]-2-ene-5,5-dicarbonitriles in 78-95% yields. Five derivatives of these NH-acidic compounds are used to intercept the reactive zwitterionic intermediates generated from dimethyl acetylenedicarboxylate and Ph3P to produce dimethyl 4,4-dicyano-6-aryloyl-1-alkyl-1',3'-dioxo-1',2,3',4-tetrahydro-1H-spiro[cyclopenta[b]pyrrole-5,2'-indene]-2,3-dicarboxylates. Radical scavenging activity of four derivatives was investigated by radical trapping of diphenylpicrylhydrazine and ferric reduction power experiments. The antibacterial activities of six derivatives were studied by disk diffusion test on Gram-positive and Gram-negative bacteria.
Collapse
Affiliation(s)
- Azadeh Parhami
- Department of Chemistry, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Issa Yavari
- Department of Chemistry, Tarbiat Modares University, Tehran, P.O. Box 14115-175, Iran.
| | | |
Collapse
|
21
|
Hashem AH, Saied E, Ali OM, Selim S, Al Jaouni SK, Elkady FM, El-Sayyad GS. Pomegranate Peel Extract Stabilized Selenium Nanoparticles Synthesis: Promising Antimicrobial Potential, Antioxidant Activity, Biocompatibility, and Hemocompatibility. Appl Biochem Biotechnol 2023; 195:5753-5776. [PMID: 36705842 DOI: 10.1007/s12010-023-04326-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/10/2023] [Indexed: 01/28/2023]
Abstract
The green synthesis of selenium nanoparticles (Se NPs) had been synthesized by pomegranate peel extract (PPE). The antimicrobial, antioxidant, and anticancer activities of the synthesized Se NPs, as well as their hemocompatibility, were investigated. Se NPs were characterized by UV-Vis., SEM, XRD, HR-TEM, DLS, EDX, FTIR, and mapping techniques. HR-TEM image represented the spheroidal forms with moderately monodispersed NPs with a mean diameter 14.5 nm. The SEM image of Se NPs, incorporated with PPE, exhibits uniform NP surfaces, and the appearance was clear. The antimicrobial results confirmed the potential of Se NPs to hinder the growth of some tested pathogenic microbes. Results revealed that Se NPs exhibited promising antibacterial activity against Escherichia coli, Pseudomonas aeruginosa, Bacillus subtilis, Staphylococcus aureus, and Streptococcus mutans where inhibition zones were 29, 16, 41, 22, and 54 mm, respectively. Likewise, it exhibited antifungal activity where the values of inhibition zones were 41, 40, 38, and 36 mm against Candida albicans, Cryptococcus neoformans, Aspergillus fumigatus, and A. niger, respectively. The antioxidant activities of Se NPs at concentrations 250-4000 µg/mL were greater than 90% in all cases. Se NP concentrations of 500 µg/mL or less are safe in usage according to hemocompatibility study. Se NPs had an IC50 of 113.73 µg/mL in a cytotoxicity experiment. Results revealed that Se NPs have promising anticancer activities against MCF7 and Mg63 cancerous cell line, where IC50 was 69.8 and 47.9 μg/mL, respectively. In conclusion, Se NPs were successfully biosynthesized using PPE for the first time; these Se NPs had promising antimicrobial, antioxidant, and anticancer activities.
Collapse
Affiliation(s)
- Amr H Hashem
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Nasr City, 11884, Cairo, Egypt.
| | - Ebrahim Saied
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Nasr City, 11884, Cairo, Egypt
| | - Omar M Ali
- Department of Chemistry, Turabah Branch, Turabah University College, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | - Samy Selim
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka, 72341, Saudi Arabia
| | - Soad K Al Jaouni
- Department of Hematology/Oncology, Yousef Abdulatif Jameel Scientific Chair of Prophetic Medicine Application, Faculty of Medicine, King Abdulaziz University, 21589, Jeddah, Saudi Arabia
| | - Fathy M Elkady
- Microbiologu and Immunology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo, 11884, Egypt
| | - Gharieb S El-Sayyad
- Department of Microbiology and Immunology, Faculty of Pharmacy, Galala University, New Galala City, Suez, Egypt.
- Drug Microbiology Lab., Drug Radiation Research Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt.
| |
Collapse
|
22
|
Wang Y, Chen Y, Lv J, Li C, Wang F. Characterization of walnut protein isolate-polyphenol nanoconjugates for the developing a food-grade delivery system. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2023; 60:2454-2467. [PMID: 37424579 PMCID: PMC10326209 DOI: 10.1007/s13197-023-05768-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 04/30/2023] [Accepted: 05/11/2023] [Indexed: 07/11/2023]
Abstract
This study investigated the effects of the interaction of walnut protein isolate (WPI) with epigallocatechin gallate (EGCG), chlorogenic acid (CLA), (+)-catechin (CA), and ellagic acid (EA) on the structural and functional properties of proteins. The results for polyphenol binding equivalents and content of free amino and sulfhydryl groups as well as those from sodium dodecyl sulfate‒polyacrylamide gel electrophoresis confirmed the covalent interaction between WPI and the polyphenols. The binding capacities of the WPI-polyphenol mixtures and conjugates were as follows: WPI-EGCG > WPI-CLA > WPI-CA > WPI-EA. Fourier transform infrared spectroscopy (FTIR) and fluorescence spectrum analysis identified changes in the protein structure. The conjugation process obviously increased the polyphenols' antioxidant properties and the surface hydrophobicity was substantially reduced. WPI-EGCG conjugates had the best functional properties, followed by WPI-CLA, WPI-CA, and WPI-EA. Lycopene (LYC) was loaded into nanocarriers by WPI-EGCG self-assembly. These results indicated that WPI-polyphenol conjugates can be utilized to develop food-grade delivery systems to protect chemically lipophilic bioactive compounds. Graphical abstract Supplementary Information The online version contains supplementary material available at 10.1007/s13197-023-05768-2.
Collapse
Affiliation(s)
- Yuzhen Wang
- Department of Food Science and Engineering, College of Biological Sciences and Biotechnology, Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, No. 35, Tsinghua East Road, Haidian District, Beijing, 100083 China
| | - Yu Chen
- Department of Food Science and Engineering, College of Biological Sciences and Biotechnology, Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, No. 35, Tsinghua East Road, Haidian District, Beijing, 100083 China
| | - Jiao Lv
- Department of Food Science and Engineering, College of Biological Sciences and Biotechnology, Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, No. 35, Tsinghua East Road, Haidian District, Beijing, 100083 China
| | - Chang Li
- Department of Food Science and Engineering, College of Biological Sciences and Biotechnology, Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, No. 35, Tsinghua East Road, Haidian District, Beijing, 100083 China
| | - Fengjun Wang
- Department of Food Science and Engineering, College of Biological Sciences and Biotechnology, Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, No. 35, Tsinghua East Road, Haidian District, Beijing, 100083 China
| |
Collapse
|
23
|
Tan S, Lan X, Chen S, Zhong X, Li W. Physical character, total polyphenols, anthocyanin profile and antioxidant activity of red cabbage as affected by five processing methods. Food Res Int 2023; 169:112929. [PMID: 37254355 DOI: 10.1016/j.foodres.2023.112929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/25/2023] [Accepted: 04/27/2023] [Indexed: 06/01/2023]
Abstract
Understanding the influence of processing methods on the phytochemicals of fruits and vegetables is of importance in retaining the health-benefiting properties of those products. The aim of this study was to investigate the effects of five processing methods including freeze drying (FD), hot air drying (HD), water boiling (WB), steaming (ST), and pickling (PI) on the physical character, total polyphenols, anthocyanin profile and antioxidant activity of red cabbage. Different color and texture were observed after different processing methods. Total anthocyanin content was reduced by 73%, 72%, 41%, 16%, and 30% in FD, HD, WB, ST and PI processed red cabbage, respectively. PI samples showed the highest values of total polyphenols and DPPH scavenge activity among all the processed red cabbage. Both FD and HD samples had relatively low values of total polyphenols and DPPH scavenge activity. However, FD sample had the highest FRAP values. UPLC-QqQ-MS/MS analysis showed that fresh red cabbage contained 22 anthocyanins among which cyanidin-3-diglucoside-5-glucoside was the prominent. Compared with drying process, WB, ST and PI decreased the loss of most of the anthocyanin component in red cabbage. Correlation analysis indicated that antioxidant capacity as determined by DPPH of red cabbage was positively and significantly correlated with the total anthocyanins. This study suggested that drying induced significant loss of phytochemicals in red cabbage, and WB, ST, as well as PI were advisable ways for daily consumption of red cabbage considering the bioactive components. Especially, ST was the best way to retain anthocyanins in red cabbage.
Collapse
Affiliation(s)
- Si Tan
- School of Advanced Agriculture and Bioengineering, Yangtze Normal University, Chongqing 408100, PR China.
| | - Xin Lan
- School of Advanced Agriculture and Bioengineering, Yangtze Normal University, Chongqing 408100, PR China
| | - Shan Chen
- School of Advanced Agriculture and Bioengineering, Yangtze Normal University, Chongqing 408100, PR China
| | - Xin Zhong
- School of Advanced Agriculture and Bioengineering, Yangtze Normal University, Chongqing 408100, PR China
| | - Wenfeng Li
- School of Advanced Agriculture and Bioengineering, Yangtze Normal University, Chongqing 408100, PR China
| |
Collapse
|
24
|
Nutraceutical potential, and antioxidant and antibacterial properties of Quararibea funebris flowers. Food Chem 2023; 411:135529. [PMID: 36689869 DOI: 10.1016/j.foodchem.2023.135529] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 01/12/2023] [Accepted: 01/18/2023] [Indexed: 01/21/2023]
Abstract
The flowers of Quararibea funebris tree are an important component of tejate, a traditional Mexican beverage. The flowers exhibited a high concentration of total polyphenolic compounds, total carotenoids, and vitamin C. UPLC analysis revealed the presence of salicylic acid, kaemferol-3-O-glucoside, trans-cinnamic acid, rutin, scopoletin, l-phenylalanine, 4-coumaric acid and quercetin-3-glucoside, among others metabolites. The flowers exhibited volatile compounds as isolongifolene, α-cedrene, 2,5,5-trimethyl-2,3,4,5,6,7-hexahydro-1H-2,4a-ethanonaphthalene, while that linoleic acid, palmitic acid, and linolenic acid were the major fatty acids present in the oil extract. Magnesium, potassium, and calcium were the minerals most abundant in the flowers. In addition the methanolic extract of the flowers exhibited antimicrobial properties against the tested pathogenic microbial strains. In conclusion, these results showed that the Q. funebris flowers not only have an aromatic and flavoring power for the Tejate beverage, but also contains compounds with antioxidant, antimicrobial, and nutraceutical potential, which helps to explain its therapeutic uses.
Collapse
|
25
|
Xue YT, Han YN, Wang Y, Zhang YH, Yin YQ, Liu BH, Zhang HL, Zhao XH. Effect of ferulic acid covalent conjugation on the functional properties and antigenicity of β-lactoglobulin. Food Chem 2023; 406:135095. [PMID: 36463600 DOI: 10.1016/j.foodchem.2022.135095] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 11/06/2022] [Accepted: 11/25/2022] [Indexed: 12/03/2022]
Abstract
Binding to phenolics can improve the functional properties of proteins. Changes in structure, functional properties, and antigenicity of β-lactoglobulin (β-LG) after covalent conjugation with ferulic acid (FA) at different mass ratios were reported here. The results of SDS-PAGE and gel exclusion chromatography confirmed that covalent complexes were formed. When the mass ratio of β-LG and FA was 10:6, the binding content of FA was the highest. Fluorescence spectroscopy, UV-visible absorption spectrometry, and FTIR analysis showed that the structure of the complexes was more stretched compared to native β-LG. The addition of FA significantly improved the emulsifying property of β-LG. When the mass ratio was 10:6, the radical scavenging activities of DPPH and ABTS reached 65.06% and 88.22%, respectively, and the antigenicity of β-LG reduced by about 35%. This study provides novel β-LG-FA complexes in food systems to reduce the antigenicity of β-LG and improve functional properties.
Collapse
Affiliation(s)
- Yu-Ting Xue
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, PR China; Department of Food Science, Northeast Agricultural University, Harbin 150030, PR China
| | - Ya-Ning Han
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, PR China; Department of Food Science, Northeast Agricultural University, Harbin 150030, PR China
| | - Yan Wang
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, PR China; Department of Food Science, Northeast Agricultural University, Harbin 150030, PR China
| | - Ying-Hua Zhang
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, PR China; Department of Food Science, Northeast Agricultural University, Harbin 150030, PR China; National Center of Technology Innovation for Dairy, Hohhot 010020, PR China.
| | - Yu-Qi Yin
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, PR China; Department of Food Science, Northeast Agricultural University, Harbin 150030, PR China
| | - Bo-Hao Liu
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, PR China; Department of Food Science, Northeast Agricultural University, Harbin 150030, PR China
| | - Han-Lin Zhang
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, PR China; Department of Food Science, Northeast Agricultural University, Harbin 150030, PR China
| | - Xin-Huai Zhao
- Department of Food Science, Northeast Agricultural University, Harbin 150030, PR China; School of Biology and Food Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, PR China.
| |
Collapse
|
26
|
Murugesan M, Kandhavelu M, Thiyagarajan R, Natesan S, Rajendran P, Murugesan A. Marine halophyte derived polyphenols inhibit glioma cell growth through mitogen-activated protein kinase signaling pathway. Biomed Pharmacother 2023; 159:114288. [PMID: 36682245 DOI: 10.1016/j.biopha.2023.114288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/18/2023] [Accepted: 01/18/2023] [Indexed: 01/21/2023] Open
Abstract
Plants that are pharmacologically significant require intensive phytochemical characterization for bioactive profiling of the compounds, which has enabled their safe use in ayurvedic medicine. The present study is focused on the phytochemical analyses, quantitative estimation and profiling of secondary metabolites of leaf extract, as well as the antioxidant and cytotoxic activity of the potent halophytes such as Avicennia marina, Ceriops tagal, Ipomoea pes-caprae, and Sonneratia apetala. The in vitro antioxidant property was investigated using DPPH, ferric reducing antioxidant capacity (FRAP) assay. Bioactive compounds such as phenols, flavonoids, saponin and alkaloids were quantitatively estimated from the extracts of A.marina, C.tagal, I.pes-capra and S.apetala, which possessed higher phenol content than the other studied halophytes. The extracts at 200 µg/ml revealed higher antioxidant activity than the standard ascorbic acid and it functions as a powerful oxygen free radical scavenger with 77.37%, 75.35% and 72.84% for S.apetala, I.pes-caprae and C.tagal respectively and with least IC50 for I.pes-caprae (11.95 µg/ml) followed by C.tagal (49.94 µg/ml). Cell viability and anti-proliferative activity of different polyphenolic fractions of C.tagal (CT1 and CT2) and I.pes-caprae fraction (IP) against LN229, SNB19 revealed Ipomoea as the promising anti-cytotoxic fraction. IP-derived polyphenols was further subjected to apoptosis, migration assay, ROS and caspase - 3 and - 7 to elucidate its potentiality as a therapeutic drug. IP-polyphenols was found to have higher percentage of inhibition than the CT1 and CT2 polyphenols of C.tagal on comparison with TMZ. All the above-mentioned in-vitro analysis further validated the ability of IP-polyphenols inducing cell death via ROS-mediated caspase dependent pathway. Further, proteomic and phospho-proteomic analysis revealed the potential role of IP-polyphenols in the regulation of cell proliferation through MMK3, p53, p70 S6 kinase and RSK1 proteins involved in mitogen-activated protein kinase signaling pathway. Our analysis confirmed the promising role of I.pes-caprae derived polyphenols as an anti-metastatic compound against GBM cells.
Collapse
Affiliation(s)
- Monica Murugesan
- Department of Zoology, Lady Doak College, Madurai Kamaraj University, Thallakulam, Madurai 625002, India
| | - Meenakshisundaram Kandhavelu
- BioMeditech and Tays Cancer Center, Tampere University Hospital, P.O. Box 553, 33101 Tampere, Finland; Molecular Signaling Group, Faculty of Medicine and Health Technology, Tampere University, P.O. Box 553, 33101 Tampere, Finland.
| | - Ramesh Thiyagarajan
- Department of Basic Medical Sciences, College of Medicine, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Kingdom of Saudi Arabia
| | - Sankar Natesan
- Department of Genetic Engineering, School of Biotechnology, Madurai Kamaraj University, Madurai 625021, India
| | - Priyatharsini Rajendran
- Department of Zoology, Lady Doak College, Madurai Kamaraj University, Thallakulam, Madurai 625002, India
| | - Akshaya Murugesan
- Department of Biotechnology, Lady Doak College, Madurai Kamaraj University, Thallakulam, Madurai 625002, India.
| |
Collapse
|
27
|
Park WL, Cho HD, Kim JH, Min HJ, Seo KI. Antioxidant activity and blood alcohol concentration lowering effect of fermented Hovenia dulcis fruit vinegar. Food Sci Biotechnol 2023; 32:299-308. [PMID: 36778092 PMCID: PMC9905395 DOI: 10.1007/s10068-022-01190-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 10/04/2022] [Accepted: 10/12/2022] [Indexed: 11/24/2022] Open
Abstract
In this study, Hovenia dulcis fruit fermented vinegar (HFV) was produced by the two-step fermentation of the H. dulcis fruit. The bioactivities before and after fermentation were compared. During the two-stage fermentation, the highest total acidity (4.99%) in the H. dulcis fruit extract juice was determined to be 16°Bx. During fermentation, the acetic acid content increased from 54.45 to 5404.30 mg%, and the fructose level in the HFV decreased from 130.68 to 54.91 mg%. The levels of DPPH and ABTS·+ free radicals scavenging activities, reducing power, hydrogen peroxide scavenging and β-carotene bleaching activities were found to be increased in HFV as compared to before fermentation. Furthermore, the serum alcohol and acetaldehyde levels were reduced significantly in HFV compared to before fermentation. This study shows that HFV enhances the antioxidant and alcohol degradation activities and can potentially be used as a functional drink to prevent hangovers.
Collapse
Affiliation(s)
- Wool-Lim Park
- Department of Food Biotechnology, Dong-A University, Busan, 49315 Korea
| | - Hyun-Dong Cho
- Department of Pharmacology & Regenerative Medicine, University of Illinois at Chicago, Chicago, IL 60612 USA
| | - Jeong-Ho Kim
- Suncheon Research Center for Bio Health Care, Suncheon, 57922 Korea
| | - Hye-Ji Min
- Department of Food Biotechnology, Dong-A University, Busan, 49315 Korea
| | - Kwon-Il Seo
- Department of Food Biotechnology, Dong-A University, Busan, 49315 Korea
| |
Collapse
|
28
|
Zamani Hargalani F, Shafaei F, Khandan S, Rostami-Charati F. Green Synthesis and Biological Activity Investigation of New Pyrimidotriazinoazepines. Polycycl Aromat Compd 2023. [DOI: 10.1080/10406638.2023.2174995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Affiliation(s)
- Fariba Zamani Hargalani
- Department of Natural Resources and Environment, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Faezeh Shafaei
- Department of Chemistry, East Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Samira Khandan
- Department of Chemistry, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Faramarz Rostami-Charati
- Research Center for Conservation of Culture Relicst (RCCCR), Research Institute of Cultural Heritage & Tourism, Tehran, Iran
| |
Collapse
|
29
|
Barani KK, Mohammadi M, Ghambarian M, Azizi Z. Fe 3O 4/ZnO@MWCNT Promoted Green Synthesis of biological Active of New Azepinooxazepine Derivatives: Combination of Experimental and Theoretical Study. Polycycl Aromat Compd 2023. [DOI: 10.1080/10406638.2023.2177682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Affiliation(s)
| | - Marziyeh Mohammadi
- Department of Chemistry, Faculty of Science, Vali-e-Asr University of Rafsanjan, Rafsanjan, Iran
| | - Mehdi Ghambarian
- Gas Conversion Department, Faculty of Petrochemicals, Iran Polymer and Petrochemical Institute, Tehran, Iran
| | - Zahra Azizi
- Department of Chemistry, Karaj Branch, Islamic Azad University, Karaj, Iran
| |
Collapse
|
30
|
Biosynthesis and characterization of yellow pigment from Aspergillus nidulans strain JAS3 isolated from Thirumullavaram, Indian Ocean and its therapeutic activity against clinical pathogens. Biologia (Bratisl) 2023. [DOI: 10.1007/s11756-023-01337-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
31
|
Khandan S, Yavari I, Azizian J. A one-pot synthesis 3-alkoxycarbonyl-3,4-dihydro-2H-pyran-2-ones from vinylidene melderum's acids, dialkyl acetylenedicarboxylates, and simple alcohols. Mol Divers 2023; 27:125-133. [PMID: 35267130 DOI: 10.1007/s11030-022-10407-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 02/13/2022] [Indexed: 02/08/2023]
Abstract
A one-pot synthesis of 3-alkoxycarbonyl-3,4-dihydro-2H-pyran-2-ones from intermolecular hetero-Diels-Alder reaction between vinylidene Melderum's acids and dialkyl acetylenedicarboxylates, in the presence of simple alcohols at room temperature, is described. The advantages of this procedure are good yields, short reaction time, and easy workup. Antioxidant properties of four derivatives of these 3,4-dihydro-2H-pyran-2-ones, together with their antimicrobial activities, are investigated.
Collapse
Affiliation(s)
- Samira Khandan
- Department of Chemistry, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Issa Yavari
- Department of Chemistry, Tarbiat Modares University, PO Box 14115-175, Tehran, Iran.
| | - Javad Azizian
- Department of Chemistry, Science and Research Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
32
|
Liu X, Tian J, Zhou Z, Pan Y, Li Z. Antioxidant activity and interactions between whey protein and polysaccharides from different parts of Houttuynia cordata. Front Nutr 2023; 10:1020328. [PMID: 36761222 PMCID: PMC9905250 DOI: 10.3389/fnut.2023.1020328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 01/09/2023] [Indexed: 01/26/2023] Open
Abstract
Houttuynia cordata polysaccharides (PSY) are known to exhibit a variety of beneficial activities, but these are currently not specifically utilized in food. Hence, using the two edible parts of Houttuynia cordata, a herbaceous plant native to Southeast Asia, this study developed polysaccharides of a stem (HCPS)-whey protein concentrate (WPC) complex and a leaf (HCPL)-WPC complex, and studied their stability, structure and antioxidant activity. The results showed that stability differed in complexes with different proportions, exhibiting only relative stability in the two complexes in which the ratio of HCPS-WPC and HCPL-WPC was 1:4, but increased stability in the HCPL-WPC complex (ζ-potential of HCPL-WPC: | -21.87 mv| >ζ-potential of HCPS-WPC: | -21.70 mv|). Structural characterization showed that there was electrostatic interaction between HCPS and WPC and between HCPL and WPC. The HCPL-WPC was found to have better antioxidant activity. The findings of this study, thus, provide a reference for the development of Houttuynia cordata polysaccharide applications in food.
Collapse
|
33
|
Ghadiri Amrei SMH, Ahmadi M, Shahidi SA, Ariaii P, golestan L. Preparation, characterization, and antioxidant activity of nanoliposomes-encapsulated turmeric and omega-3. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2023. [DOI: 10.1007/s11694-022-01785-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
34
|
Karami Hezarcheshmeh N, Godarzbod F, Hamedanii NF, Vaseghi S. Ag/CdO/Fe 3O 4@MWCNTs Promoted Green Synthesis of Novel Triazinopyrrolothiazepine: Investigation of Antioxidant and Antimicrobial Activity. Polycycl Aromat Compd 2023. [DOI: 10.1080/10406638.2022.2162553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
| | - Farideh Godarzbod
- Department of Chemistry, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | | | - Samaneh Vaseghi
- Department of Chemistry, Science and Research Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
35
|
Mashal N, Azizian J, Larijani K, Nematollahi F, Azizian H. Baker’s Yeast Promoted Facile Synthesis of Spirooxadiazepines Using Multicomponent Reactions of Ninhydrin: Investigation of Biological Activity. Polycycl Aromat Compd 2023. [DOI: 10.1080/10406638.2022.2162552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Neda Mashal
- Department of Chemistry, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Javad Azizian
- Department of Chemistry, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Kambiz Larijani
- Department of Chemistry, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | | | - Homa Azizian
- Department of Medicinal Chemistry, School of Pharmacy, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
36
|
Tabarsaei N, Sayyed-Alangi SZ, Varasteh-Moradi A, Hossaini Z, Zafar Mehrabian R. Diastereoselective Synthesis of Trans-1 H-Chromeno[2,3- d]Pyrimidine-2,4,6(3 H)-Trione Derivatives by KF/Stilbite Zeolite NPs as a Novel Heterogeneous Nanocatalyst and Evaluation of Their Antimicrobial and Antioxidant Activity. Polycycl Aromat Compd 2022. [DOI: 10.1080/10406638.2022.2158883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Navisa Tabarsaei
- Department of Chemistry, Gorgan Branch, Islamic Azad University, Golesan, Iran
| | | | - Ali Varasteh-Moradi
- Department of Chemistry, Gorgan Branch, Islamic Azad University, Golesan, Iran
| | | | | |
Collapse
|
37
|
Tabarsaei N, Varasteh Moradi A, Sayyed Alangi SZ, Hossaini Z, Zafar Mmehrabian R. Synthesis and Investigation of Biological Activity of New Spiro Pyrrolo[3,4-d]Pyrimidine Derivatives. Polycycl Aromat Compd 2022. [DOI: 10.1080/10406638.2022.2149572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Affiliation(s)
- Navisa Tabarsaei
- Department of Chemistry, Gorgan Branch, Islamic Azad University, Gorgan, Iran
| | - Ali Varasteh Moradi
- Department of Chemistry, Gorgan Branch, Islamic Azad University, Gorgan, Iran
| | | | | | | |
Collapse
|
38
|
Tabarsaei N, Varasteh Moradi A, Sayyed Alangi SZ, Hossaini Z, Zafar Mmehrabian R. Facile Synthesis and Biological Activity Investigation of New Spiropyridoindole Derivatives via Multicomponent Reactions of Acetylisatin. Polycycl Aromat Compd 2022. [DOI: 10.1080/10406638.2022.2144914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Navisa Tabarsaei
- Department of Chemistry, Gorgan Branch, Islamic Azad University, Gorgan, Iran
| | - Ali Varasteh Moradi
- Department of Chemistry, Gorgan Branch, Islamic Azad University, Gorgan, Iran
| | | | | | | |
Collapse
|
39
|
Mezhoudi M, Salem A, Abdelhedi O, Fakhfakh N, Mabrouk M, Khorchani T, Debeaufort F, Jridi M, Zouari N. Development of active edible coatings based on fish gelatin enriched with Moringa oleifera extract: Application in fish ( Mustelus mustelus) fillet preservation. Food Sci Nutr 2022; 10:3979-3992. [PMID: 36348780 PMCID: PMC9632210 DOI: 10.1002/fsn3.2993] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 06/16/2022] [Accepted: 06/25/2022] [Indexed: 11/25/2022] Open
Abstract
An edible coating was developed using gelatin extracted from the skin of gray triggerfish (Balistes capriscus) and applied to the fillet of the smooth-hound shark (Mustelus mustelus). Moringa oleifera leaf extract was added to gelatin coating solution to improve its preservative properties. The phenolic profiles and antioxidant and antibacterial activities of M. oleifera extracts were determined. Phenolic acids constituted the largest group representing more than 77% of the total compounds identified in the ethanol/water (MOE/W) extract, among which the quinic acid was found to be the major one (31.48 mg/g extract). The MOE/W extract presented the highest DPPH• scavenging activity (IC50 = 0.53 ± 0.02 mg/ml) and reducing (Fe3+) power (EC0.5 = 0.57 ± 0.02 mg/ml), as well as interesting inhibition zones (20-35 mm) for the most tested strains. Coating by 3% of gelatin solution significantly reduced most deterioration indices during chilled storage, such as malondialdehyde (MDA), total volatile basic nitrogen (TVB-N), weight loss, pH, and mesophilic, psychrophilic, lactic, and H2S-producing bacterial counts. Interestingly, coating with gelatin solution containing MOE/W extract at 20 μg/ml was more effective than gelatin applied alone. Compared with the uncoated sample, gelatin-MOE/W coating reduced the weight loss and MDA content by 26% and 70% after 6 days of storage, respectively. Texture analysis showed that the strength of uncoated fillet increased by 46%, while the strength of fillet coated with gelatin-MOE/W only increased by 12% after 6 days of storage. Fish fillet coated with gelatin-MOE/W had the highest sensory scores in terms of odor, color, and overall acceptability throughout the study period.
Collapse
Affiliation(s)
- Maram Mezhoudi
- University of Sfax, National Engineering School of SfaxResearch Laboratory of Enzyme Engineering and MicrobiologySfaxTunisia
- Higher Institute of Applied Biology of MedenineUniversity of GabesMedenineTunisia
| | - Ali Salem
- University of Sfax, National Engineering School of SfaxResearch Laboratory of Enzyme Engineering and MicrobiologySfaxTunisia
- Higher Institute of Applied Biology of MedenineUniversity of GabesMedenineTunisia
| | - Ola Abdelhedi
- University of Sfax, National Engineering School of SfaxResearch Laboratory of Enzyme Engineering and MicrobiologySfaxTunisia
| | - Nahed Fakhfakh
- University of Sfax, National Engineering School of SfaxResearch Laboratory of Enzyme Engineering and MicrobiologySfaxTunisia
- Higher Institute of Applied Biology of MedenineUniversity of GabesMedenineTunisia
| | - Mahmoud Mabrouk
- Arid Regions Institute of MedenineCentral LaboratoryMedenineTunisia
| | - Touhami Khorchani
- Arid Regions Institute of MedenineResearch Laboratory of Livestock and Wild LifeMedenineTunisia
| | - Frederic Debeaufort
- Univ. Bourgogne Franche‐Comté/AgrosupDijon, UMR PAM A02.102Physical‐Chemistry of Food and Wine LabDijonFrance
- Institut Universitaire de Technologie de Dijon, BioEngineering DepartmentDijon CedexFrance
| | - Mourad Jridi
- University of Sfax, National Engineering School of SfaxResearch Laboratory of Enzyme Engineering and MicrobiologySfaxTunisia
- University of JendoubaHigher Institute of Biotechnology of BejaBejaTunisia
| | - Nacim Zouari
- University of Sfax, National Engineering School of SfaxResearch Laboratory of Enzyme Engineering and MicrobiologySfaxTunisia
- Higher Institute of Applied Biology of MedenineUniversity of GabesMedenineTunisia
| |
Collapse
|
40
|
Aghaei-Meybodi Z, Mirabi A, Khandan S, Azizi B. Fe3O4/CuO/ZnO@MWCNT MNCs Promoted the Green Synthesis of Indenopyrimidin-1,2,4-Triazoles as Hybrid Molecules. Polycycl Aromat Compd 2022. [DOI: 10.1080/10406638.2022.2136214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Affiliation(s)
- Zahra Aghaei-Meybodi
- Department of Chemistry, East Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Ali Mirabi
- Department of Chemistry, Qaemshahr Branch, Islamic Azad University, Qaemshahr, Iran
| | - Samira Khandan
- Department of Chemistry, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Bayan Azizi
- Medical Laboratory Sciences Department, College of Health Sciences, University of Human Development, Sulaymaniyah, Iraq
| |
Collapse
|
41
|
Begum S, Jena S, Chand PK. Silver Nanocrystals Bio-Fabricated Using Rhizobium rhizogenes-Transformed In Vitro Root Extracts Demonstrate Health Proactive Properties. BIONANOSCIENCE 2022. [DOI: 10.1007/s12668-022-01040-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
42
|
Modified β-cyclodextrins: Rosmarinic acid inclusion complexes as functional food ingredients show improved operations (solubility, stability and antioxidant activity). Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107731] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
43
|
Ezzatzadeh E, Soleimani-Amiri S, Hossaini Z, Khandan Barani K. Synthesis and evaluation of the antioxidant activity of new spiro-1,2,4-triazine derivatives applying Ag/Fe3O4/CdO@MWCNT MNCs as efficient organometallic nanocatalysts. Front Chem 2022; 10:1001707. [PMID: 36262344 PMCID: PMC9574876 DOI: 10.3389/fchem.2022.1001707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 09/02/2022] [Indexed: 11/17/2022] Open
Abstract
We applied the Petasites hybridus rhizome water extract as green media so that Ag/Fe3O4/CdO@ multi-walled carbon nanotubes magnetic nanocomposites (Ag/Fe3O4/CdO@MWCNTs MNCs) could be prepared. We also evaluated its activity by using in the one-pot multicomponent reaction of acetophenones, diethyl oxalate, ammonium acetate, and activated carbonyl compounds such as ninhydrin, isatin and acenaphthylene-1,2-dione, and malononitrile and hydrazoyl chlorides in an aqueous medium at room temperature for the generation of spiro-1,2,4-triazines as new derivatives with tremendous output. Moreover, reducing organic pollutants from 4-nitrophenol (4-NP) was carried out by generating Ag/Fe3O4/CdO@MWCNTs in water at room temperature. The results displayed that Ag/Fe3O4/CdO@MWCNTs reduced pollutants of organic compounds in a short time. The synthesized spiro-1,2,4-triazines have NH and OH functional groups having acidic hydrogen with high antioxidant power. Also, the spiro-1,2,4-triazines exhibited antimicrobial ability. For this purpose, the disk diffusion method was applied and two kinds of bacteria, Gram-positive and Gram-negative, were employed for the analysis. Furthermore, we applied functional theory-based quantum chemical methods in order to better understand reaction mechanism density. To generate spiro-1,2,4-triazines, the applied process showed many properties such as reactions with short time, products with good yields, and simple extraction of catalyst from a mixture of reactions.
Collapse
Affiliation(s)
- Elham Ezzatzadeh
- Department of Chemistry, Ardabil Branch, Islamic Azad University, Ardabil, Iran
- *Correspondence: Elham Ezzatzadeh,
| | | | | | | |
Collapse
|
44
|
Hossaini Z, Mohammadi M, Sheikholeslami-Farahani F. Six-component synthesis and biological activity of novel spiropyridoindolepyrrolidine derivatives: A combined experimental and theoretical investigation. Front Chem 2022; 10:949205. [PMID: 36247666 PMCID: PMC9559721 DOI: 10.3389/fchem.2022.949205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 07/13/2022] [Indexed: 11/13/2022] Open
Abstract
Petasites hybridus rhizome water extract was used as green media for the preparation of Ag/Fe3O4/CdO@multi-walled carbon nanotubes magnetic nanocomposites (Ag/Fe3O4/CdO@MWCNTs MNCs), and its activity was evaluated by using in the one-pot multicomponent reaction of isatins, acetyl chloride, secondary amines, vinilidene Meldrum’s acid, primary amines, and malononitrile in an aqueous medium at room temperature for the generation of spiropyridoindolepyrrolidine as new derivatives with tremendous output. In addition, organic pollutant reduction of 4-nitrophenol (4-NP) was carried out by generated Ag/Fe3O4/CdO@MWCNTs in water at room temperature. The results displayed that Ag/Fe3O4/CdO@MWCNTs were reduced as pollutants of organic compounds in a short time. The synthesized spiropyridoindolepyrrolidine has an NH2 functional group that has acidic hydrogen and shows high antioxidant ability. Also, the spiropyridoindolepyrrolidine exhibited antimicrobial ability, and the method that is used for this purpose is the disk diffusion method, and two kinds of bacteria, Gram-positive and Gram-negative, were employed for this analysis. Also, to better understand the reaction mechanism density, functional theory-based quantum chemical methods have been applied. For the generation of spiropyridoindolepyrrolidine, the used process has many properties such as reactions with short time, product with good yields, and simple extraction of catalyst from the mixture of reaction.
Collapse
Affiliation(s)
- Zinatossadat Hossaini
- Department of Chemistry, Qaemshahr Branch, Islamic Azad University, Qaemshahr, Iran
- *Correspondence: Zinatossadat Hossaini,
| | - Marziyeh Mohammadi
- Department of Chemistry, Faculty of Science, Vali-e-Asr University of Rafsanjan, Rafsanjan, Iran
| | | |
Collapse
|
45
|
Single and Co-Cultures of Proteolytic Lactic Acid Bacteria in the Manufacture of Fermented Milk with High ACE Inhibitory and Antioxidant Activities. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8090448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In this study, single and co-cultures of proteolytic Lactobacillus delberueckii subsp. bulgaricus ORT2, Limosilactobacillus reuteri SRM2 and Lactococcus lactis subsp. lactis BRM3 isolated from different raw milk samples were applied as starter cultures to manufacture functional fermented milks. Peptide extracts from fermented milk samples were evaluated after fermentation and 7 days of cold storage for proteolytic, angiotensin-converting enzyme (ACE) inhibitory and antioxidant activity by different methods including 2, 2′-diphenyl-1-picrylhydrazyl (DPPH), ferric-reducing antioxidant power (FRAP), OH-radical scavenging, and total antioxidant (molybdate-reducing activity). The highest proteolysis was found in milk fermented by co-cultures of three strains. Fermentation with the mentioned bacteria increased ACE inhibitory and antioxidant activity of the final products which were dependent on peptide concentration. The crude peptide extract obtained from fermented milk with triple co-culture showed the highest ACE inhibitory activity (IC50 = 0.61 mg/mL) which was reduced after 7 days of cold storage (IC50 = 0.78 mg/mL). Similar concentration-dependent activities were found in antioxidant activity at different antioxidant assays. Overall, high proteolytic activity resulted in increased ACE inhibitory and antioxidant activities, but the highest activity was not necessarily found for the samples with the highest proteolytic activity. The results of this study suggest the potential of using co-cultures of L. delberueckii subsp. bulgaricus, L. reuteri and L. lactis subsp. Lactis to manufacture antihypertensive fermented milk.
Collapse
|
46
|
Aghaei-Meybodi Z, Ghambarian M, Khandan Barani K, Sheikholeslami-Farahani F. Green Synthesis and Study of Biological Activity of New Benzopyrimidoazepines: Reduction of Organic Pollutants Using Synthesized Fe 3O 4/TiO 2/CuO@MWCNTs MNCs. Polycycl Aromat Compd 2022. [DOI: 10.1080/10406638.2022.2118328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Affiliation(s)
- Zahra Aghaei-Meybodi
- Department of Chemistry, Faculty of Science, East Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Mehdi Ghambarian
- Gas Conversion Department, Faculty of Petrochemicals, Iran Polymer and Petrochemical Institute, Tehran, Iran
| | | | | |
Collapse
|
47
|
Ha HT, Tran‐Van H, Van Tran T, Nguyen HTN, Phan DTA. Study on chemical compositions, antioxidants and intracellular anti‐melanogenic activities of varieties of
Ganoderma lucidum
in Vietnam. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.16019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Hue Thi Ha
- Faculty of Chemical and Food Technology HCMC University of Technology and Education Ho Chi Minh City 70000 Vietnam
| | - Hieu Tran‐Van
- Laboratory of Biosensors, Faculty of Biology and Biotechnology
- Laboratory of Molecular Biotechnology University of Science Ho Chi Minh City 70000 Vietnam
- Vietnam National University Ho Chi Minh City 70000 Vietnam
| | - Thuan Van Tran
- Laboratory of Biosensors, Faculty of Biology and Biotechnology
- Laboratory of Molecular Biotechnology University of Science Ho Chi Minh City 70000 Vietnam
- Vietnam National University Ho Chi Minh City 70000 Vietnam
| | - Hanh Thi Ngoc Nguyen
- Faculty of Medicine Hong Bang International University Ho Chi Minh 70000 Vietnam
| | - Dao Thi Anh Phan
- Faculty of Chemical and Food Technology HCMC University of Technology and Education Ho Chi Minh City 70000 Vietnam
| |
Collapse
|
48
|
Kadhim MM, Tabarsaei N, Ghorchibeigi M, Sadeghi Meresht A. New MCRs in Ionic Liquid: Green Synthesis and Biological Activity Investigation of New Pyrazoloazepines: Application of Ag/Fe 3O 4/CdO@MWCNT MNCs in Reduction of Organic Pollutant. Polycycl Aromat Compd 2022. [DOI: 10.1080/10406638.2022.2106253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Affiliation(s)
- Mustafa M. Kadhim
- Medical Laboratory Techniques Department, Al-Farahidi University, Baghdad, Iraq
- Medical Laboratory Techniques Department, Al-Turath University College, Baghdad, Iraq
| | - Navisa Tabarsaei
- Department of Chemistry, Gorgan Branch, Islamic Azad University, Gorgan, Iran
| | - Mona Ghorchibeigi
- Department of Chemistry, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Abdollah Sadeghi Meresht
- Active Pharmaceutical Ingeredients Research Center (APIRC), Tehran Medicinal Science Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
49
|
Structural Characterization and Rheological and Antioxidant Properties of Novel Polysaccharide from Calcareous Red Seaweed. Mar Drugs 2022; 20:md20090546. [PMID: 36135735 PMCID: PMC9504466 DOI: 10.3390/md20090546] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/15/2022] [Accepted: 08/16/2022] [Indexed: 11/29/2022] Open
Abstract
A novel sulfated xylogalactan (JASX) was extracted and purified from the rhodophyceae Jania adhaerens. JASX was characterized by chromatography (GC/MS-EI and SEC/MALLS) and spectroscopy (ATR-FTIR and 1H/13C NMR) techniques. Results showed that JASX was constituted by repeating units of (→3)-β-d-Galp-(1,4)-3,6-α-l-AnGalp-(1→)n and (→3)-β-d-Galp-(1,4)-α-l-Galp-(1→)n substituted on O-2 and O-3 of the α-(1,4)-l-Galp units by methoxy and/or sulfate groups but also on O-6 of the β-(1,3)-d-Galp mainly by β-xylosyl side chains and less by methoxy and/or sulfate groups. The Mw, Mn, Đ, [η] and C* of JASX were respectively 600 and 160 kDa, 3.7, 102 mL.g−1 and 7.0 g.L−1. JASX exhibited pseudoplastic behavior influenced by temperature and monovalent salts and highly correlated to the power-law model and the Arrhenius relationship. JASX presented thixotropic characteristics, a gel-like viscoelastic behavior and a great viscoelasticity character. JASX showed important antioxidant activities, outlining its potential as a natural additive to produce functional foods.
Collapse
|
50
|
Soleimani-Amiri S, Mohammadi M, Faal Hamedani N, Dehbandi B. An Efficient Synthesis and Study of Biological Activity of New Pyrimidoazepines Using Ag/Fe 3O 4/TiO 2/CuO@MWCNTs Magnetic Nanocomposites: A Combined Experimental and Theoretical Investigation. Polycycl Aromat Compd 2022. [DOI: 10.1080/10406638.2022.2112709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Affiliation(s)
| | - Marziyeh Mohammadi
- Department of Chemistry, Faculty of Science, Vali-e-Asr University of Rafsanjan, Rafsanjan, Iran
| | | | - Behnam Dehbandi
- Department of Chemistry, Science and Research Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|