1
|
Ma L, Zhang Y, Zhang P, Zhang H. Computational Insights into Cyclodextrin Inclusion Complexes with the Organophosphorus Flame Retardant DOPO. Molecules 2024; 29:2244. [PMID: 38792106 PMCID: PMC11124075 DOI: 10.3390/molecules29102244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 05/05/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024] Open
Abstract
Cyclodextrins (CDs) were used as green char promoters in the formulation of organophosphorus flame retardants (OPFRs) for polymeric materials, and they could reduce the amount of usage of OPFRs and their release into the environment by forming [host:guest] inclusion complexes with them. Here, we report a systematic study on the inclusion complexes of natural CDs (α-, β-, and γ-CD) with a representative OPFR of DOPO using computational methods of molecular docking, molecular dynamics (MD) simulations, and quantum mechanical (QM) calculations. The binding modes and energetics of [host:guest] inclusion complexes were analyzed in details. α-CD was not able to form a complete inclusion complex with DOPO, and the center of mass distance [host:guest] distance amounted to 4-5 Å. β-CD and γ-CD allowed for a deep insertion of DOPO into their hydrophobic cavities, and DOPO was able to frequently change its orientation within the γ-CD cavity. The energy decomposition analysis based on the dispersion-corrected density functional theory (sobEDAw) indicated that electrostatic, orbital, and dispersion contributions favored [host:guest] complexation, while the exchange-repulsion term showed the opposite. This work provides an in-depth understanding of using CD inclusion complexes in OPFRs formulations.
Collapse
Affiliation(s)
| | | | | | - Haiyang Zhang
- Department of Biological Science and Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| |
Collapse
|
2
|
Miguel-Rojas C, Pérez-de-Luque A. Nanobiosensors and nanoformulations in agriculture: new advances and challenges for sustainable agriculture. Emerg Top Life Sci 2023; 7:229-238. [PMID: 37921102 PMCID: PMC10754331 DOI: 10.1042/etls20230070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 10/19/2023] [Accepted: 10/23/2023] [Indexed: 11/04/2023]
Abstract
In the current scenario of climate change, global agricultural systems are facing remarkable challenges in order to increase production, while reducing the negative environmental impact. Nano-enabled technologies have the potential to revolutionise farming practices by increasing the efficiency of inputs and minimising losses, as well as contributing to sustainable agriculture. Two promising applications of nanotechnology in agriculture are nanobiosensors and nanoformulations (NFs). Nanobiosensors can help detect biotic and abiotic stresses in plants before they affect plant production, while NFs can make agrochemicals, more efficient and less polluting. NFs are becoming new-age materials with a wide variety of nanoparticle-based formulations such as fertilisers, herbicides, insecticides, and fungicides. They facilitate the site-targeted controlled delivery of agrochemicals enhancing their efficiency and reducing dosages. Smart farming aims to monitor and detect parameters related to plant health and environmental conditions in order to help sustainable agriculture. Nanobiosensors can provide real-time analytical data, including detection of nutrient levels, metabolites, pesticides, presence of pathogens, soil moisture, and temperature, aiding in precision farming practices, and optimising resource usage. In this review, we summarise recent innovative uses of NFs and nanobiosensors in agriculture that may boost crop protection and production, as well as reducing the negative environmental impact of agricultural activities. However, successful implementation of these smart technologies would require two special considerations: (i) educating farmers about appropriate use of nanotechnology, (ii) conducting field trials to ensure effectiveness under real conditions.
Collapse
Affiliation(s)
- Cristina Miguel-Rojas
- Plant Breeding and Biotechnology, Andalusian Institute of Agricultural and Fisheries Research and Training (IFAPA), Centre Alameda del Obispo, Córdoba, Spain
| | - Alejandro Pérez-de-Luque
- Plant Breeding and Biotechnology, Andalusian Institute of Agricultural and Fisheries Research and Training (IFAPA), Centre Alameda del Obispo, Córdoba, Spain
| |
Collapse
|
3
|
Antonio M, Alcaraz MR, Falcone RD, Culzoni MJ. A micellar-enhanced fluorescence photoinduced four-way calibration method for the determination of multiclass pesticides in lemon juice. Anal Chim Acta 2023; 1279:341778. [PMID: 37827676 DOI: 10.1016/j.aca.2023.341778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 08/08/2023] [Accepted: 09/02/2023] [Indexed: 10/14/2023]
Abstract
In this work, a four-way multivariate calibration method for the simultaneous determination of four pesticides - carbendazim (CBZ), thiabendazole (TBZ), pirimiphos-methyl (PMM), and clothianidin (CLT) - in lemon juice is presented. Third-order data were acquired by registering the photoinduced fluorescence of the analytes as excitation-emission matrices at different times of UV-light irradiation, in the presence of organized media (direct micelles) as fluorescence enhancers. The optimal experimental conditions (pH 11.5 and 32 mmol L-1 hexadecyltrimethylammonium chloride surfactant) were determined through a central composite design using the response surface methodology. The analytes were individually calibrated, except for TBZ and CBZ due to the inner filter effect of TBZ on CBZ. Test samples containing all analytes and imidacloprid (as potential interference) were analysed. PARAFAC was utilized to evaluate both the trilinearity and quadrilinearity of the third-order data and four-way arrays, respectively. PMM was successfully determined with quadrilinear PARAFAC decomposition, whereas CLT, TBZ, and CBZ were satisfactorily modelled using U-PLS/RTL due to the loss of quadrilinearity caused by different phenomena. The profitable applicability of the analytical method in the CBZ, TBZ, PMM, and CLT determination in lemon juice samples was demonstrated, achieving limits of detection below the maximum residue levels reported by the European Commission, and mean recoveries at 90 ± 5%.
Collapse
Affiliation(s)
- Marina Antonio
- Laboratorio de Desarrollo Analítico y Quimiometría (LADAQ), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Ciudad Universitaria, Santa Fe, 3000, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, CABA, C1425FQB, Argentina
| | - Mirta R Alcaraz
- Laboratorio de Desarrollo Analítico y Quimiometría (LADAQ), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Ciudad Universitaria, Santa Fe, 3000, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, CABA, C1425FQB, Argentina.
| | - R Dario Falcone
- Departamento de Química, Universidad Nacional de Río Cuarto, Ruta Nacional 36, km 601, Río Cuarto, X5804BYA, Córdoba, Argentina; Instituto para el Desarrollo Agroindustrial y de la Salud (IDAS, CONICET-UNRC), Ruta Nacional 36, km 601, Río Cuarto, X5804BYA, Córdoba, Argentina
| | - María J Culzoni
- Laboratorio de Desarrollo Analítico y Quimiometría (LADAQ), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Ciudad Universitaria, Santa Fe, 3000, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, CABA, C1425FQB, Argentina.
| |
Collapse
|
4
|
Khan S, Iqbal S, Taha M, Hussain R, Rahim F, Shah M, Awwad NS, Ibrahium HA, Alahmdi MI, Dera AA, Ullah H, Bahadur A, Aljazzar SO, Elkaeed EB, Rauf M. Synthesis, in vitro biological assessment, and molecular docking study of benzimidazole-based thiadiazole derivatives as dual inhibitors of α-amylase and α-glucosidase. Front Chem 2023; 11:1125915. [PMID: 37214481 PMCID: PMC10196468 DOI: 10.3389/fchem.2023.1125915] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 03/07/2023] [Indexed: 05/24/2023] Open
Abstract
The clinical significance of benzimidazole-containing drugs has increased in the current study, making them more effective scaffolds. These moieties have attracted strong research interest due to their diverse biological features. To examine their various biological significances, several research synthetic methodologies have recently been established for the synthesis of benzimidazole analogs. The present study aimed to efficiently and quickly synthesize a new series of benzimidazole analogs. Numerous spectroscopic techniques, including 1H-NMR, 13C-NMR, and HREI-MS, were used to confirm the synthesized compounds. To explore the inhibitory activity of the analogs against α-amylase and α-glucosidase, all derivatives (1-17) were assessed for their biological potential. Compared to the reference drug acarbose (IC50 = 8.24 ± 0.08 µM), almost all the derivatives showed promising activity. Among the tested series, analog 2 (IC50 = 1.10 ± 0.10 & 2.10 ± 0.10 µM, respectively) displayed better inhibitory activity. Following a thorough examination of the various substitution effects on the inhibitory capacity of α-amylase and α-glucosidase, the structure-activity relationship (SAR) was determined. We looked at the potential mechanism of how active substances interact with the catalytic cavity of the targeted enzymes in response to the experimental results of the anti-glucosidase and anti-amylase. Molecular docking provided us with information on the interactions that the active substances had with the various amino acid residues of the targeted enzymes for this purpose.
Collapse
Affiliation(s)
- Shoaib Khan
- Department of Chemistry, Hazara University, Mansehra, Pakistan
| | - Shahid Iqbal
- Department of Chemistry, School of Natural Sciences (SNS), National University of Science and Technology (NUST), Islamabad, Pakistan
| | - Muhammad Taha
- Department of Clinical Pharmacy, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Rafaqat Hussain
- Department of Chemistry, Hazara University, Mansehra, Pakistan
| | - Fazal Rahim
- Department of Chemistry, Hazara University, Mansehra, Pakistan
| | - Mazloom Shah
- Department of Chemistry, Abbottabad University of Science and Technology (AUST), Abbottabad, Pakistan
| | - Nasser S. Awwad
- Department of Chemistry, King Khalid University, Abha, Saudi Arabia
| | - Hala A. Ibrahium
- Department of Biology, Nuclear Materials Authority, El Maadi, Egypt
- Department of Semi Pilot Plant, Nuclear Materials Authority, El Maadi, Egypt
| | - Mohammed Issa Alahmdi
- Department of Chemistry, Faculty of Science, University of Tabuk, Tabuk, Saudi Arabia
| | - Ayed A. Dera
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Hayat Ullah
- Department of Chemistry, University of Okara, Okara, Punjab, Pakistan
| | - Ali Bahadur
- Department of Chemistry, College of Science and Technology, Wenzhou-Kean University, Wenzhou, China
| | - Samar O. Aljazzar
- Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Eslam B. Elkaeed
- Department of Pharmaceutical Sciences, College of Pharmacy, AlMaarefa University, Riyadh, Saudi Arabia
| | - Muhammad Rauf
- Department of Chemistry, School of Science, University of Management and Technology, Lahore, Pakistan
| |
Collapse
|
5
|
Roy A, Manna K, Dey S, Pal S. Chemical modification of β-cyclodextrin towards hydrogel formation. Carbohydr Polym 2023; 306:120576. [PMID: 36746567 DOI: 10.1016/j.carbpol.2023.120576] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 12/28/2022] [Accepted: 01/08/2023] [Indexed: 01/15/2023]
Abstract
β-CD is a cyclic oligosaccharide, which has trunked cone like structure. The unique structure makes it efficient for numerous applications. Though, the native β-CD has many issues like low solubility, absence of sufficient functionalities and lower complexation ability with guest molecules. One of the most effective paths to increase the efficiency of cyclodextrins is the generation of polycyclodextrins. In this perspective article, we have summarized the recent reports on the synthetic methods towards the modification of β-CD. Besides, this article reviews the current improvements of two types of β-CD centered supramolecular hydrogels: one is supramolecular hydrogels prepared from CD-based poly(pseudo)rotaxanes and the other is supramolecular hydrogels developed through the host-guest interaction between small guest molecules and CDs. The Polycyclodextrins have established noteworthy applications in several areas ranging from adsorbents for organic pollutants removal to effective carriers of bioactive agents.
Collapse
Affiliation(s)
- Arpita Roy
- Department of Chemistry and Chemical Biology, Indian Institute of Technology (ISM) Dhanbad, Jharkhand 826004, India.
| | - Kalipada Manna
- Department of Chemistry and Chemical Biology, Indian Institute of Technology (ISM) Dhanbad, Jharkhand 826004, India
| | - Shaon Dey
- Department of Chemistry and Chemical Biology, Indian Institute of Technology (ISM) Dhanbad, Jharkhand 826004, India
| | - Sagar Pal
- Department of Chemistry and Chemical Biology, Indian Institute of Technology (ISM) Dhanbad, Jharkhand 826004, India.
| |
Collapse
|
6
|
Villalobos E, Marco JF, Yáñez C. Reduced Graphene Oxide as a Platform for the Immobilization of Amino-Cyclodextrins. MICROMACHINES 2023; 14:746. [PMID: 37420979 PMCID: PMC10143922 DOI: 10.3390/mi14040746] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 03/16/2023] [Accepted: 03/24/2023] [Indexed: 07/09/2023]
Abstract
In the present work, we reported on a method to combine amino β-cyclodextrins (CD1) with reduced graphene oxide (obtained by the electrochemical reduction of graphene oxide, erGO) to produce a glassy carbon electrode (GCE) modified with both CD1 and erGO (CD1-erGO/GCE). This procedure avoids the use of organic solvents such as hydrazine or long reaction times and high temperatures. The material combining both CD1 and erGO (CD1-erGO/GCE) was characterized by SEM, ATR-FTIR, Raman, XPS, and electrochemical techniques. As proof-of-concept, the determination of the pesticide carbendazim was carried out. The spectroscopic measurements, especially XPS, proved that CD1 was covalently attached to the surface of the erGO/GCE electrode. The attachment of cyclodextrin at the reduced graphene oxide produced an increase in the electrochemical behavior of the electrode. The cyclodextrin-functionalized reduced graphene oxide, CD1-erGO/GCE, showed a larger sensitivity (1.01 μA/μM) and a lower limit of detection for carbendazim (LOD = 0.50 μM) compared with the non-functionalized material, erGO/GCE, (sensitivity = 0.63 μA/μM and LOD = 4.32 μM, respectively). Overall, the results of the present work show that this simple method is suitable to attach cyclodextrins to graphene oxide, maintaining their inclusion abilities.
Collapse
Affiliation(s)
- Elias Villalobos
- Centro de Investigación de Procesos Redox, CIPRex, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Sergio Livingstone 1007, Independencia, Santiago P.O. Box 233, Chile
| | - José F. Marco
- Instituto de Química Física “Rocasolano”, CSIC, C/Serrano, 119, 28006 Madrid, Spain;
| | - Claudia Yáñez
- Centro de Investigación de Procesos Redox, CIPRex, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Sergio Livingstone 1007, Independencia, Santiago P.O. Box 233, Chile
- Departamento de Química Orgánica y Fisicoquímica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Sergio Livingstone 1007, Independencia, Santiago P.O. Box 233, Chile
| |
Collapse
|
7
|
Khan S, Iqbal S, Rehman W, Hussain N, Hussain R, Shah M, Ali F, Fouda AM, Khan Y, Dera AA, Issa Alahmdi M, Bahadur A, Al-ghulikah HA, Elkaeed EB. Synthesis, Molecular docking and ADMET studies of bis-benzimidazole-based thiadiazole derivatives as potent inhibitors, in vitro α-amylase and α-glucosidase. ARAB J CHEM 2023. [DOI: 10.1016/j.arabjc.2023.104847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023] Open
|
8
|
Conductometric Studies of Formation the Inclusion Complexes of Phenolic Acids with β-Cyclodextrin and 2-HP-β-Cyclodextrin in Aqueous Solutions. Molecules 2022; 28:molecules28010292. [PMID: 36615484 PMCID: PMC9822027 DOI: 10.3390/molecules28010292] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/27/2022] [Accepted: 12/28/2022] [Indexed: 12/31/2022] Open
Abstract
An attempt was made to evaluate the possibility of creating and assessing the stability of inclusion complexes of selected phenolic acids [trans-4-hydroxycinnamic acid (trans-p-coumaric acid), trans-3,4-dihydroxycinnamic acid (trans-caffeic acid), trans-4-hydroxy-3-methoxycinnamic acid, (trans-ferulic acid) and trans-3-phenylacrylic acid (trans-cinnamic acid)] with β-cyclodextrin and 2-HP-β-cyclodextrin in aqueous solutions in a wide temperature range 283.15 K-313.15 K. On the basis of the values of the limiting molar conductivity (ΛCDNaDod), calculated from the experimental data, the values of the formation constants and the thermodynamic functions of formation (standard enthalpy, entropy, and Gibs standard enthalpy) of the studied complexes were determined. It has been found that the stability of the studied complexes increases with lowering of the molar mass of cyclodextrin and lowering of the temperature.
Collapse
|
9
|
Ullah H, Zada H, Khan F, Hayat S, Rahim F, Hussain A, Manzoor A, Wadood A, Ayub K, Rehman AU, Sarfaraz S. Benzimidazole bearing thiourea analogues: Synthesis, β-glucuronidase inhibitory potential and their molecular docking study. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
10
|
Khan S, Ullah H, Rahim F, Nawaz M, Hussain R, Rasheed L. Synthesis, in vitro α-amylase, α-glucosidase activities and molecular docking study of new benzimidazole bearing thiazolidinone derivatives. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133812] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
11
|
Tayade AP, Pawar RP. The Microwave Assisted and Efficient Synthesis of 2-Substituted Benzimidazole Mono-Condensation of O-Phenylenediamines and Aldehyde. Polycycl Aromat Compd 2022. [DOI: 10.1080/10406638.2020.1781204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Amit P. Tayade
- Department of Chemistry, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad, India
| | - Ramkrushna P. Pawar
- Department of Chemistry, Govt. Vidarbha Institute of Science and Humanities, Amravati, India
| |
Collapse
|
12
|
Samuelsen L, Larsen D, Schönbeck C, Beeren SR. pH-Responsive templates modulate the dynamic enzymatic synthesis of cyclodextrins. Chem Commun (Camb) 2022; 58:5152-5155. [PMID: 35383788 DOI: 10.1039/d1cc06554h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Product selection in the dynamic enzymatic synthesis of cyclodextrins can be controlled by changing the pH. Using cyclodextrin glucanotransferase to make labile the glycosidic linkages in cyclodextrins (CDs), we generate a dynamic combinatorial library of interconverting linear and cyclic α-1,4-glucans. Templates can be employed to favour the selective production of specific CDs and, herein, we show that by using ionisable templates, the synthesis of α-CD or β-CD can be favoured by simply changing the pH. Using 4-nitrophenol as the template, β-CD is the preferred product at low pH, while α-CD is the preferred product at high pH. Furthermore, a new methodology is described for the simulation of product distributions in dynamic combinatorial libraries with ionisable templates at any given pH.
Collapse
Affiliation(s)
- Lisa Samuelsen
- Department of Science and Environment, Roskilde University, Universitetsvej 1, DK-4000 Roskilde, Denmark.,Department of Chemistry, Technical University of Denmark, Kemitorvet building 207, DK-2800 Kongens Lyngby, Denmark.
| | - Dennis Larsen
- Department of Chemistry, Technical University of Denmark, Kemitorvet building 207, DK-2800 Kongens Lyngby, Denmark.
| | - Christian Schönbeck
- Department of Science and Environment, Roskilde University, Universitetsvej 1, DK-4000 Roskilde, Denmark
| | - Sophie R Beeren
- Department of Chemistry, Technical University of Denmark, Kemitorvet building 207, DK-2800 Kongens Lyngby, Denmark.
| |
Collapse
|
13
|
Omar J, Ponsford D, Dreiss CA, Lee TC, Loh XJ. Supramolecular Hydrogels: Design Strategies and Contemporary Biomedical Applications. Chem Asian J 2022; 17:e202200081. [PMID: 35304978 DOI: 10.1002/asia.202200081] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/08/2022] [Indexed: 12/19/2022]
Abstract
Self-assembly of supramolecular hydrogels is driven by dynamic, non-covalent interactions between molecules. Considerable research effort has been exerted to fabricate and optimise supramolecular hydrogels that display shear-thinning, self-healing, and reversibility, in order to develop materials for biomedical applications. This review provides a detailed overview of the chemistry behind the dynamic physicochemical interactions that sustain hydrogel formation (hydrogen bonding, hydrophobic interactions, ionic interactions, metal-ligand coordination, and host-guest interactions). Novel design strategies and methodologies to create supramolecular hydrogels are highlighted, which offer promise for a wide range of applications, specifically drug delivery, wound healing, tissue engineering and 3D bioprinting. To conclude, future prospects are briefly discussed, and consideration given to the steps required to ultimately bring these biomaterials into clinical settings.
Collapse
Affiliation(s)
- Jasmin Omar
- Institute of Pharmaceutical Science, King's College London, 150 Stamford Street, SE1 9NH, London, UK.,Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), Singapore
| | - Daniel Ponsford
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), Singapore.,Department of Chemistry, University College London, London, WC1H 0AJ, UK.,Institute for Materials Discovery, University College London, London, WC1E 7JE, UK
| | - Cécile A Dreiss
- Institute of Pharmaceutical Science, King's College London, 150 Stamford Street, SE1 9NH, London, UK
| | - Tung-Chun Lee
- Department of Chemistry, University College London, London, WC1H 0AJ, UK.,Institute for Materials Discovery, University College London, London, WC1E 7JE, UK
| | - Xian Jun Loh
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), Singapore.,Department of Materials Science and Engineering, National University of Singapore, Singapore
| |
Collapse
|
14
|
Thermodynamic insight in dissolution, distribution and permeation processes for some benzimidazoles in biologically relevant solvents. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.117525] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
15
|
Sett R, Paul BK, Guchhait N. Photophysics of a cyanine dye within cyclodextrin cavity. J INDIAN CHEM SOC 2021. [DOI: 10.1016/j.jics.2021.100070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
16
|
Zhao X, Chen X, Yuk H, Lin S, Liu X, Parada G. Soft Materials by Design: Unconventional Polymer Networks Give Extreme Properties. Chem Rev 2021; 121:4309-4372. [PMID: 33844906 DOI: 10.1021/acs.chemrev.0c01088] [Citation(s) in RCA: 334] [Impact Index Per Article: 111.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Hydrogels are polymer networks infiltrated with water. Many biological hydrogels in animal bodies such as muscles, heart valves, cartilages, and tendons possess extreme mechanical properties including being extremely tough, strong, resilient, adhesive, and fatigue-resistant. These mechanical properties are also critical for hydrogels' diverse applications ranging from drug delivery, tissue engineering, medical implants, wound dressings, and contact lenses to sensors, actuators, electronic devices, optical devices, batteries, water harvesters, and soft robots. Whereas numerous hydrogels have been developed over the last few decades, a set of general principles that can rationally guide the design of hydrogels using different materials and fabrication methods for various applications remain a central need in the field of soft materials. This review is aimed at synergistically reporting: (i) general design principles for hydrogels to achieve extreme mechanical and physical properties, (ii) implementation strategies for the design principles using unconventional polymer networks, and (iii) future directions for the orthogonal design of hydrogels to achieve multiple combined mechanical, physical, chemical, and biological properties. Because these design principles and implementation strategies are based on generic polymer networks, they are also applicable to other soft materials including elastomers and organogels. Overall, the review will not only provide comprehensive and systematic guidelines on the rational design of soft materials, but also provoke interdisciplinary discussions on a fundamental question: why does nature select soft materials with unconventional polymer networks to constitute the major parts of animal bodies?
Collapse
Affiliation(s)
- Xuanhe Zhao
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States.,Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Xiaoyu Chen
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Hyunwoo Yuk
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Shaoting Lin
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Xinyue Liu
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - German Parada
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
17
|
Murugan M, Anitha A, Sivakumar K, Rajamohan R. Effect of pH and structural orientation on supramolecular complexation of chloroquine in β-cyclodextrin medium. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2020.115157] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
18
|
Kaur G, Moudgil R, Shamim M, Gupta VK, Banerjee B. Camphor sulfonic acid catalyzed a simple, facile, and general method for the synthesis of 2-arylbenzothiazoles, 2-arylbenzimidazoles, and 3H-spiro[benzo[d]thiazole-2,3′-indolin]-2′-ones at room temperature. SYNTHETIC COMMUN 2021. [DOI: 10.1080/00397911.2020.1870043] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Gurpreet Kaur
- Department of Chemistry, Indus International University, Una, India
| | - Radha Moudgil
- Department of Chemistry, Indus International University, Una, India
| | - Mussarat Shamim
- Department of Chemistry, Indus International University, Una, India
| | - Vivek Kumar Gupta
- Post-Graduate Department of Physics, University of Jammu, Tawi, India
| | - Bubun Banerjee
- Department of Chemistry, Indus International University, Una, India
| |
Collapse
|
19
|
Kim JS. Synthesis and Characterization of Phenolic Acid/Hydroxypropyl-β-Cyclodextrin Inclusion Complexes. Prev Nutr Food Sci 2020; 25:440-448. [PMID: 33505938 PMCID: PMC7813596 DOI: 10.3746/pnf.2020.25.4.440] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 09/08/2020] [Indexed: 11/06/2022] Open
Abstract
The objective of this study was to synthesize and characterize inclusion complexes of phenolic acids with hydroxypropyl-β-cyclodextrin (HP-β-CD). The inclusion complexes were prepared by the freeze-drying method and characterized using a variety of analytical techniques, including ultraviolet-visible spectroscopy, Fourier transform infrared spectroscopy, differential scanning calorimetry, and X-ray diffractometry. The results of all these approaches indicated that phenolic acids were able to form an inclusion complex with HP-β-CD, and the phenolic acids/HP-β-CD inclusion compounds exhibited different spectroscopic features and properties based on the phenolic acids employed. The use of the HP-β-CD matrix allowed for higher encapsulation efficiency and afforded capsules with distinct shapes.
Collapse
Affiliation(s)
- Ji-Sang Kim
- Department of Food and Nutrition, Kyungnam University, Gyeongnam 51767, Korea
| |
Collapse
|
20
|
PrVO4/SnD NPs as a Nanocatalyst for Carbon Dioxide Fixation to Synthesis Benzimidazoles and 2-Oxazolidinones. Catal Letters 2020. [DOI: 10.1007/s10562-020-03410-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
21
|
Khatun R, Biswas S, Biswas IH, Riyajuddin S, Haque N, Ghosh K, Islam SM. Cu-NPs@COF: A potential heterogeneous catalyst for CO2 fixation to produce 2-oxazolidinones as well as benzimidazoles under moderate reaction conditions. J CO2 UTIL 2020. [DOI: 10.1016/j.jcou.2020.101180] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
22
|
|
23
|
Malode SJ, Keerthi PK, Shetti NP, Kulkarni RM. Electroanalysis of Carbendazim using MWCNT/Ca‐ZnO Modified Electrode. ELECTROANAL 2020. [DOI: 10.1002/elan.201900776] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Shweta J. Malode
- Center for Electrochemical Science & Materials, Department of Chemistry, K.L.E. Institute of Technology, Hubballi-580030Affiliated to Visvesvaraya Technological University Karnataka India
| | - Prabhu K. Keerthi
- Center for Electrochemical Science & Materials, Department of Chemistry, K.L.E. Institute of Technology, Hubballi-580030Affiliated to Visvesvaraya Technological University Karnataka India
| | - Nagaraj P. Shetti
- Center for Electrochemical Science & Materials, Department of Chemistry, K.L.E. Institute of Technology, Hubballi-580030Affiliated to Visvesvaraya Technological University Karnataka India
| | - Raviraj M. Kulkarni
- Department of Chemistry and Centre for Nanoscience and Nanotechnology, K.L.S. Gogte Institute of Technology (Autonomous)Affiliated to Visvesvaraya Technological University Belagavi- 590008 Karnataka India
| |
Collapse
|
24
|
Singh A, Dhiman N, Kar AK, Singh D, Purohit MP, Ghosh D, Patnaik S. Advances in controlled release pesticide formulations: Prospects to safer integrated pest management and sustainable agriculture. JOURNAL OF HAZARDOUS MATERIALS 2020; 385:121525. [PMID: 31740313 DOI: 10.1016/j.jhazmat.2019.121525] [Citation(s) in RCA: 153] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 10/21/2019] [Accepted: 10/21/2019] [Indexed: 05/26/2023]
Abstract
As the world is striving hard towards sustainable agricultural practices for a better tomorrow, one of the primary focuses is on effective pest management for enhanced crop productivity. Despite newer and potent chemicals as pesticides, there are still substantial crop losses, and if by any means this loss can be tackled; it will alleviate unwanted excessive use of chemical pesticides. Scientific surveys have already established that pesticides are not being utilized by the crops completely rather a significant amount remains unused due to various limiting factors such as leaching and bioconversion, etc., resulting in an adverse effect on human health and ecosystems. Concerted efforts from scientific diaspora toward newer and innovative strategies are already showing promise, and one such viable approach is controlled release systems (CRS) of pesticides. Moreover, to bring these smart formulations within the domain of current pesticide regulatory framework is still under debate. It is thus, paramount to discuss the pros and cons of this new technology vis-à-vis the conventional agrarian methods. This review deliberates on the developmental updates in this innovative field from the past decades and also appraises the challenges encumbered. Additionally, critical information and the foreseeable research gaps in this emerging area are highlighted.
Collapse
Affiliation(s)
- Amrita Singh
- Water Analysis Laboratory, Nanomaterials Toxicology Group, CSIR-Indian Institute of Toxicology Research, (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-Indian Institute of Toxicology Research Campus, Lucknow 226001, Uttar Pradesh, India
| | - Nitesh Dhiman
- Water Analysis Laboratory, Nanomaterials Toxicology Group, CSIR-Indian Institute of Toxicology Research, (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-Indian Institute of Toxicology Research Campus, Lucknow 226001, Uttar Pradesh, India
| | - Aditya Kumar Kar
- Water Analysis Laboratory, Nanomaterials Toxicology Group, CSIR-Indian Institute of Toxicology Research, (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-Indian Institute of Toxicology Research Campus, Lucknow 226001, Uttar Pradesh, India
| | - Divya Singh
- Water Analysis Laboratory, Nanomaterials Toxicology Group, CSIR-Indian Institute of Toxicology Research, (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India
| | - Mahaveer Prasad Purohit
- Water Analysis Laboratory, Nanomaterials Toxicology Group, CSIR-Indian Institute of Toxicology Research, (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-Indian Institute of Toxicology Research Campus, Lucknow 226001, Uttar Pradesh, India
| | - Debabrata Ghosh
- Academy of Scientific and Innovative Research (AcSIR), CSIR-Indian Institute of Toxicology Research Campus, Lucknow 226001, Uttar Pradesh, India; Immunotoxicolgy Laboratory, Food Drug and Chemical Toxicology Group, CSIR-Indian Institute of Toxicology Research, Lucknow 226001, Uttar Pradesh, India
| | - Satyakam Patnaik
- Water Analysis Laboratory, Nanomaterials Toxicology Group, CSIR-Indian Institute of Toxicology Research, (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-Indian Institute of Toxicology Research Campus, Lucknow 226001, Uttar Pradesh, India.
| |
Collapse
|
25
|
Chagas JO, Gomes JM, Cunha ICDM, de Melo NFS, Fraceto LF, da Silva GA, Lobo FA. Polymeric microparticles for modified release of NPK in agricultural applications. ARAB J CHEM 2020. [DOI: 10.1016/j.arabjc.2018.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
|
26
|
Bhalekar SB, Shelke SN. Synthesis, Biological and Molecular Docking Study of Benzimidazole‐Clubbed Tetrahydrothieno [3, 2‐
c
] Pyridine as Platelet Inhibitors. ChemistrySelect 2019. [DOI: 10.1002/slct.201902916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Sujit B. Bhalekar
- Department of ChemistryS.S.G.M. Collegeaffilated to Savitribai Phule Pune University, Kopargaon Dist-Ahmednagar (MH) 423601 India
| | - Sharad N. Shelke
- Department of ChemistryR. B. Narayanrao Borawake Collegeaffilated to Savitribai Phule Pune University, Shrirampur Ahmednagar- 413709 India
| |
Collapse
|
27
|
Kim Y, Kang SK. Crystal structure of bis-[2-(1 H-benzimidazol-2-yl-κ N 3)aniline-κ N]bis-(nitrato-κ O)cadmium(II). Acta Crystallogr E Crystallogr Commun 2019; 75:1463-1466. [PMID: 31636976 PMCID: PMC6775742 DOI: 10.1107/s2056989019012416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 09/06/2019] [Indexed: 11/29/2022]
Abstract
In the title compound, [Cd(NO3)2(C13H11N3)2], the CdII atom lies on a twofold rotation axis and is coordinated by four N atoms and two O atoms, provided by two bidentate 2-(1H-benzimidazol-2-yl)aniline ligands, and two nitrato O atoms, forming a distorted octa-hedral geometry [range of bond angles around the Cd atom = 73.82 (2)-106.95 (8)°]. In the ligand, the dihedral angle between the aniline ring and the benzimidazole ring system is 30.43 (7)°. The discrete complex mol-ecule is stabilized by an intra-molecular N-H⋯O hydrogen bond. In the crystal, inter-molecular N-H⋯O hydrogen bonds link the mol-ecules, forming a three-dimensional network.
Collapse
Affiliation(s)
- Yongtae Kim
- Department of Chemistry, Chungnam National University, Daejeon 305-764, Republic of Korea
| | - Sung Kwon Kang
- Department of Chemistry, Chungnam National University, Daejeon 305-764, Republic of Korea
| |
Collapse
|
28
|
Vurro M, Miguel-Rojas C, Pérez-de-Luque A. Safe nanotechnologies for increasing the effectiveness of environmentally friendly natural agrochemicals. PEST MANAGEMENT SCIENCE 2019; 75:2403-2412. [PMID: 30672106 DOI: 10.1002/ps.5348] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 01/17/2019] [Accepted: 01/17/2019] [Indexed: 05/05/2023]
Abstract
Natural compounds and living organisms continue to play a limited role in crop protection, and few of them have reached the market, despite their attractiveness and the efforts made in research. Very often these products have negative characteristics compared to synthetic compounds, e.g., higher costs of production, lower effectiveness, lack of persistence, and inability to reach and penetrate the target plant. Conversely, nanotechnologies are having an enormous impact on all human activities, including agriculture, even if the production of some nanomaterials is not environmentally friendly or could have adverse effects on agriculture and the environment. Thus, certain nanomaterials could facilitate the development of formulated natural pesticides, making them more effective and more environmentally friendly. Nanoformulations can improve efficacy, reduce effective doses, and increase shelf-life and persistence. Such controlled-release products can improve delivery to the target pest. This review considers certain available nanomaterials and nanotechnologies for use in agriculture, discussing their properties and the feasibility of their use in sustainable crop protection, in particular, in improving the effectiveness of natural bio-based agrochemicals. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Maurizio Vurro
- Institute of Sciences of Food Production, National Research Council (CNR), Bari, Italy
| | - Cristina Miguel-Rojas
- Department of Science and High Technology, University of Insubria and Total Scattering Laboratory, Como, Italy
| | - Alejandro Pérez-de-Luque
- Genomic and Biotechnology, Centre Alameda del Obispo, Andalusian Institute of Agricultural and Fisheries Research and Training (IFAPA), Cordoba, Spain
| |
Collapse
|
29
|
Binuclear copper(II) complex with 2-imidazolylbenzothiazole and bridged chloride ligands. MENDELEEV COMMUNICATIONS 2019. [DOI: 10.1016/j.mencom.2019.07.030] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
30
|
Synthesis and characterization of a new cyclodextrin derivative with improved properties to design oral dosage forms. Drug Deliv Transl Res 2019; 9:273-283. [PMID: 30264285 DOI: 10.1007/s13346-018-0591-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
This work aimed to synthesize a novel β-cyclodextrin derivative, itaconyl-β-cyclodextrin to evaluate whether albendazole inclusion complexes with the new β-cyclodextrin derivative-improved albendazole dissolution efficiency and its anthelminthic activity. The new derivative was thoroughly evaluated and characterized, and an average degree of substitution of 1.4 per cyclodextrin molecule was observed. Albendazole:itaconyl-β-cyclodextrin complexes were prepared by spray drying procedures and investigated using phase solubility diagrams, dissolution efficiency, X-ray diffraction, differential scanning calorimetry, Fourier transform infrared, scanning electronic microscopy, mass spectrometry, and nuclear magnetic resonance spectroscopy. Phase solubility diagrams and mass spectrometry studies showed that the inclusion complex was formed in an equimolar ratio. Stability constant values were 602 M-1 in water, and 149 M-1 in HCl 0.1 N. Nuclear magnetic resonance experiments of the inclusion complex showed correlation signals between the aromatic and propyl protons of albendazole and the itaconyl-β-cyclodextrin inner protons. The studies indicated solid structure changes of albendazole included in itaconyl-β-cyclodextrin. The maximum drug release was reached at 15 min, and the inclusion complex solubility was 88-fold higher than that of the pure drug. The in vitro anthelmintic activity assay showed that the complex was significantly more effective than pure albendazole.
Collapse
|
31
|
Liang G, Guo X, Tan X, Mai S, Chen Z, Zhai H. Molecularly imprinted monolithic column based on functionalized β-cyclodextrin and multi-walled carbon nanotubes for selective recognition of benzimidazole residues in citrus samples. Microchem J 2019. [DOI: 10.1016/j.microc.2019.02.064] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
32
|
Junthip J. Water-insoluble cyclodextrin polymer crosslinked with citric acid for paraquat removal from water. JOURNAL OF MACROMOLECULAR SCIENCE PART A-PURE AND APPLIED CHEMISTRY 2019. [DOI: 10.1080/10601325.2019.1586444] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Jatupol Junthip
- Faculty of Science and Technology, Nakhon Ratchasima Rajabhat University, Nakhon Ratchasima, Thailand
| |
Collapse
|
33
|
Murugan M, Anitha A, Sivakumar K, Rajamohan R. Supramolecular Interaction of Primaquine with Native β-Cyclodextrin. J SOLUTION CHEM 2018. [DOI: 10.1007/s10953-018-0768-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
34
|
Synthesis, Characterization, and Antifungal Activity of Novel Benzo[4,5]imidazo[1,2-d][1,2,4]triazine Derivatives. Molecules 2018; 23:molecules23040746. [PMID: 29570685 PMCID: PMC6017302 DOI: 10.3390/molecules23040746] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 03/19/2018] [Accepted: 03/21/2018] [Indexed: 11/17/2022] Open
Abstract
A series of novel fused heterocyclic compounds bearing benzo[4,5]imidazo[1,2-d][1,2,4]triazine 4a–4w were designed and conveniently synthesized via the intermediates 2-(halogenated alkyl)-1H-benzo[d]imidazoles 2a, 2b, and 2-((1-(substituted phenyl)hydrazinyl)alkyl)-1H-benzo[d]imidazoles 3a–3g. The structures of all target compounds were characterized by FT-IR, 1H NMR, 13C NMR, and EI-MS, of which, the structure of compound 4n was further determined by the single crystal X-ray diffraction. The crystal structure of 4n was crystallized in the triclinic crystal system, space group P1¯ with a = 9.033 (6) Å, b = 10.136 (7) Å, c = 10.396 (7) Å, α = 118.323 (7)°, β = 91.750 (8)°, γ = 104.198 (7)°, Z = 2, V = 800.2 (9) Å3; total R indices: R1 = 0.0475, wR2 = 0.1284. The antifungal activity of title compounds 4a–4w in vitro against the phytopathogenic fungi Botrytis cinerea (B. cinerea), Rhizoctonia solani (R. solani) and Colletotrichum capsici (C. capsici) were evaluated, the bioassay results demonstrated that most of the title compounds exhibited obvious fungicidal activities at 50 μg/mL. This work indicated that benzo[4,5]imidazo[1,2-d][1,2,4]triazine derivatives could be considered as a new leading structure in searching for novel agricultural fungicides.
Collapse
|
35
|
β-Cyclodextrin nanosponge polymer: a basic and eco-friendly heterogeneous catalyst for the one-pot four-component synthesis of pyranopyrazole derivatives under solvent-free conditions. REACTION KINETICS MECHANISMS AND CATALYSIS 2018. [DOI: 10.1007/s11144-018-1373-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
36
|
Liu G, Yuan Q, Hollett G, Zhao W, Kang Y, Wu J. Cyclodextrin-based host–guest supramolecular hydrogel and its application in biomedical fields. Polym Chem 2018. [DOI: 10.1039/c8py00730f] [Citation(s) in RCA: 119] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
CD-based host–guest supramolecular hydrogels and their potential biomedical application.
Collapse
Affiliation(s)
- Guiting Liu
- School of Biomedical Engineering
- Sun Yat-sen University
- Guangzhou
- P. R. China
| | - Qijuan Yuan
- School of Biomedical Engineering
- Sun Yat-sen University
- Guangzhou
- P. R. China
| | - Geoffrey Hollett
- Materials Science and Engineering Program
- University of California San Diego
- La Jolla
- USA
| | - Wei Zhao
- Laboratory for Stem Cells and Tissue Engineering
- Ministry of Education
- Sun Yat-sen University
- Guangzhou 510080
- China
| | - Yang Kang
- Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization
- Chengdu Institute of Biology
- Chinese Academy of Sciences
- Chengdu
- China
| | - Jun Wu
- School of Biomedical Engineering
- Sun Yat-sen University
- Guangzhou
- P. R. China
| |
Collapse
|
37
|
Zhou X, Liang JF. A fluorescence spectroscopy approach for fast determination of β-cyclodextrin-guest binding constants. J Photochem Photobiol A Chem 2017. [DOI: 10.1016/j.jphotochem.2017.09.032] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
38
|
Wadhwa G, Kumar S, Chhabra L, Mahant S, Rao R. Essential oil–cyclodextrin complexes: an updated review. J INCL PHENOM MACRO 2017. [DOI: 10.1007/s10847-017-0744-2] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
39
|
Kashapov RR, Mamedov VA, Zhukova NA, Kadirov MK, Nizameev IR, Zakharova LY, Sinyashin OG. Controlling the binding of hydrophobic drugs with supramolecular assemblies of β-cyclodextrin. Colloids Surf A Physicochem Eng Asp 2017. [DOI: 10.1016/j.colsurfa.2017.05.026] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
40
|
Cui R, Xu D, Xie X, Yi Y, Quan Y, Zhou M, Gong J, Han Z, Zhang G. Phosphorus-doped helical carbon nanofibers as enhanced sensing platform for electrochemical detection of carbendazim. Food Chem 2017; 221:457-463. [DOI: 10.1016/j.foodchem.2016.10.094] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Revised: 10/10/2016] [Accepted: 10/21/2016] [Indexed: 10/20/2022]
|
41
|
Eissa S, Zourob M. Selection and Characterization of DNA Aptamers for Electrochemical Biosensing of Carbendazim. Anal Chem 2017; 89:3138-3145. [PMID: 28264568 DOI: 10.1021/acs.analchem.6b04914] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
This article reports a novel aptamer-based impedimetric detection of carbendazim, a commonly used benzimidazole fungicide in agriculture. High affinity and specificity DNA aptamers against carbendazim were successfully selected using systematic evolution of ligand by exponential enrichment (SELEX). The dissociation constants (Kds) of the selected DNA aptamers after 10 in vitro selection cycles were characterized using fluorescence-based assays showing values in the nanomolar range. The aptamer which showed the highest degree of affinity and conformation change was used to fabricate an electrochemical aptasensor via self-assembly of thiol-modified aptamer on gold electrodes. The aptasensor exploits the specific recognition of carbendazim by the aptamer immobilized on the gold surface which leads to conformational changes in the aptamer structure. This conformational change alters the access of a ferrocyanide/ferricyanide redox couple to the aptasensor surface. The aptasensor response is thus measured by following the increase in the electron transfer resistance of the redox couple using Faradaic electrochemical impedance spectroscopy. This method allowed a selective and sensitive label-free detection of carbendazim within a range of 10 pg/mL-10 ng/mL with a limit of detection of 8.2 pg/mL. The aptasensor did not show cross reactivity with other commonly used pesticides such as fenamiphos, isoproturon, atrazine, linuron, thiamethoxam, trifluralin, carbaryl, and methyl parathion. Moreover, the aptasensor has been applied in different spiked food matrixes showing high recovery percentages. We believe that the proposed aptasensor is a promising alternative to the currently used methods for carbendazim monitoring.
Collapse
Affiliation(s)
- Shimaa Eissa
- Department of Chemistry, Alfaisal University , Al Zahrawi Street, Al Maather, Al Takhassusi Road, Riyadh 11533, Saudi Arabia
| | - Mohammed Zourob
- Department of Chemistry, Alfaisal University , Al Zahrawi Street, Al Maather, Al Takhassusi Road, Riyadh 11533, Saudi Arabia.,King Faisal Specialist Hospital and Research Center , Zahrawi Street, Al Maather, Riyadh 12713, Saudi Arabia
| |
Collapse
|
42
|
Alaqeel SI. Synthetic approaches to benzimidazoles from o-phenylenediamine: A literature review. JOURNAL OF SAUDI CHEMICAL SOCIETY 2017. [DOI: 10.1016/j.jscs.2016.08.001] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
43
|
Sivakumar K, Ragi T, Prema D, Stalin T. Experimental and theoretical investigation on the structural characterization and orientation preferences of 2-hydroxy-1-naphthoic acid/β-cyclodextrin host-guest inclusion complex. J Mol Liq 2016. [DOI: 10.1016/j.molliq.2016.03.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
44
|
Shewale MN, Lande DN, Gejji SP. Encapsulation of benzimidazole derivatives within cucurbit[7]uril: Density functional investigations. J Mol Liq 2016. [DOI: 10.1016/j.molliq.2015.12.076] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
45
|
Furini L, Constantino C, Sanchez-Cortes S, Otero J, López-Tocón I. Adsorption of carbendazim pesticide on plasmonic nanoparticles studied by surface-enhanced Raman scattering. J Colloid Interface Sci 2016; 465:183-9. [DOI: 10.1016/j.jcis.2015.11.045] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Revised: 11/18/2015] [Accepted: 11/20/2015] [Indexed: 12/01/2022]
|
46
|
Cayuela A, Laura Soriano M, Valcárcel M. β-Cyclodextrin functionalized carbon quantum dots as sensors for determination of water-soluble C60 fullerenes in water. Analyst 2016; 141:2682-7. [DOI: 10.1039/c5an01910a] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
A selective photoluminescence method based on Carbon Quantum Dots (CQDs) functionalized with carboxymethyl-β-cyclodextrin for the direct determination of water-soluble C60 fullerene has been developed.
Collapse
Affiliation(s)
- Angelina Cayuela
- Department of Analytical Chemistry
- Campus de Rabanales
- University of Córdoba
- E-14071 Córdoba
- Spain
| | - M. Laura Soriano
- Department of Analytical Chemistry
- Campus de Rabanales
- University of Córdoba
- E-14071 Córdoba
- Spain
| | - Miguel Valcárcel
- Department of Analytical Chemistry
- Campus de Rabanales
- University of Córdoba
- E-14071 Córdoba
- Spain
| |
Collapse
|
47
|
Stepniak A, Belica-Pacha S, Rozalska S, Dlugonski J, Urbaniak P, Palecz B. Study on a host–guest interaction of β-cyclodextrin with tebuconazole in water. J Mol Liq 2015. [DOI: 10.1016/j.molliq.2015.07.023] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
48
|
Prabu S, Swaminathan M, Sivakumar K, Rajamohan R. Preparation, characterization and molecular modeling studies of the inclusion complex of Caffeine with Beta-cyclodextrin. J Mol Struct 2015. [DOI: 10.1016/j.molstruc.2015.07.018] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
49
|
Li YF, Jin J, Guo Q, Ha YM, Li QP. Complexation of synthetic CDM-AM copolymer with natamycin and carbendazim to improve solubility and fungicidal activity. Carbohydr Polym 2015; 125:288-300. [PMID: 25857986 DOI: 10.1016/j.carbpol.2015.02.055] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Revised: 02/22/2015] [Accepted: 02/23/2015] [Indexed: 11/20/2022]
Abstract
The β-cyclodextrin-acrylamide (CDM-AM) copolymer was prepared from acrylamide and β-CD maleate (CDM) using K2S2O8 as initiator. The effects of the CDM-AM copolymer on the solubility and fungicidal activity of natamycin (NM) and carbendazim (MBC) were investigated. The stability constant of NM·CDM-AM and MBC·CDM-AM complexes at 303 K were of 10,725.45 M(-1) and 3000.89 M(-1), respectively. The complexes were characterized using phase solubility diagrams, NMR spectra and FT-IR spectra. The analysis of the biological activities of these two complexes indicated that they possessed enhancing fungicidal activities compared to NM and MBC alone.
Collapse
Affiliation(s)
- Yong-Fu Li
- Institute of Agro-Products Processing Science and Technology, Chinese Academy of Agricultural Sciences, 100193 Beijing, China; Key Opening Laboratory of Agricultural Products Processing and Quality Control, Ministry of Agriculture, 100193 Beijing, China
| | - Jing Jin
- Institute of Agro-Products Processing Science and Technology, Chinese Academy of Agricultural Sciences, 100193 Beijing, China; Key Opening Laboratory of Agricultural Products Processing and Quality Control, Ministry of Agriculture, 100193 Beijing, China
| | - Qin Guo
- Institute of Agro-Products Processing Science and Technology, Chinese Academy of Agricultural Sciences, 100193 Beijing, China; Key Opening Laboratory of Agricultural Products Processing and Quality Control, Ministry of Agriculture, 100193 Beijing, China
| | - Yi-Ming Ha
- Institute of Agro-Products Processing Science and Technology, Chinese Academy of Agricultural Sciences, 100193 Beijing, China; Key Opening Laboratory of Agricultural Products Processing and Quality Control, Ministry of Agriculture, 100193 Beijing, China.
| | - Qing-Peng Li
- Institute of Agro-Products Processing Science and Technology, Chinese Academy of Agricultural Sciences, 100193 Beijing, China; Key Opening Laboratory of Agricultural Products Processing and Quality Control, Ministry of Agriculture, 100193 Beijing, China
| |
Collapse
|
50
|
Nardello-Rataj V, Leclercq L. Encapsulation of biocides by cyclodextrins: toward synergistic effects against pathogens. Beilstein J Org Chem 2014; 10:2603-22. [PMID: 25550722 PMCID: PMC4273244 DOI: 10.3762/bjoc.10.273] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Accepted: 10/24/2014] [Indexed: 11/23/2022] Open
Abstract
Host-guest chemistry is useful for the construction of nanosized objects. Some of the widely used hosts are probably the cyclodextrins (CDs). CDs can form water-soluble complexes with numerous hydrophobic compounds. They have been widespread used in medicine, drug delivery and are of interest for the biocides encapsulation. Indeed, this enables the development of more or less complex systems that release antimicrobial agents with time. In this paper, the general features of CDs and their applications in the field of biocides have been reviewed. As the key point is the formation of biocide-CD inclusion complexes, this review deals with this in depth and the advantages of biocide encapsulation are highlighted throughout several examples from the literature. Finally, some future directions of investigation have been proposed. We hope that scientists studying biocide applications receive inspiration from this review to exploit the opportunities offered by CDs in their respective research areas.
Collapse
Affiliation(s)
- Véronique Nardello-Rataj
- Université de Lille, Sciences et Technologies, EA 4478, Chimie Moléculaire et Formulation, F-59655 Villeneuve d'Ascq Cedex, France
| | - Loïc Leclercq
- Université de Lille, Sciences et Technologies, EA 4478, Chimie Moléculaire et Formulation, F-59655 Villeneuve d'Ascq Cedex, France
| |
Collapse
|