1
|
Liu Z, Xu L, Wang J, Duan C, Sun Y, Kong Q, He F. Research progress of protein haze in white wines. FOOD SCIENCE AND HUMAN WELLNESS 2023. [DOI: 10.1016/j.fshw.2023.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/28/2023]
|
2
|
Albuquerque W, Ghezellou P, Seidel L, Burkert J, Will F, Schweiggert R, Spengler B, Zorn H, Gand M. Mass Spectrometry-Based Proteomic Profiling of a Silvaner White Wine. Biomolecules 2023; 13:650. [PMID: 37189397 PMCID: PMC10136162 DOI: 10.3390/biom13040650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/16/2023] [Accepted: 03/28/2023] [Indexed: 04/08/2023] Open
Abstract
The comprehensive identification of the proteome content from a white wine (cv. Silvaner) is described here for the first time. The wine protein composition isolated from a representative wine sample (250 L) was identified via mass spectrometry (MS)-based proteomics following in-solution and in-gel digestion methods after being submitted to size exclusion chromatographic (SEC) fractionation to gain a comprehensive insight into proteins that survive the vinification processes. In total, we identified 154 characterized (with described functional information) or so far uncharacterized proteins, mainly from Vitis vinifera L. and Saccharomyces cerevisiae. With the complementarity of the two-step purification, the digestion techniques and the high-resolution (HR)-MS analyses provided a high-score identification of proteins from low to high abundance. These proteins can be valuable for future authentication of wines by tracing proteins derived from a specific cultivar or winemaking process. The proteomics approach presented herein may also be generally helpful to understand which proteins are important for the organoleptic properties and stability of wines.
Collapse
Affiliation(s)
- Wendell Albuquerque
- Institute of Food Chemistry and Food Biotechnology, Justus Liebig University Giessen, Heinrich-Buff-Ring 17, 35392 Giessen, Germany
| | - Parviz Ghezellou
- Institute of Inorganic and Analytical Chemistry, Justus Liebig University Giessen, Heinrich-Buff-Ring 17, 35392 Giessen, Germany
| | - Leif Seidel
- Department of Beverage Research, Geisenheim University, Von-Lade-Strasse 1, 65366 Geisenheim, Germany
| | - Johannes Burkert
- Institute for Viticulture and Oenology, Bavarian State Institute for Viticulture and Horticulture (LWG), An der Steige 15, 97209 Veitshöchheim, Germany
| | - Frank Will
- Department of Beverage Research, Geisenheim University, Von-Lade-Strasse 1, 65366 Geisenheim, Germany
| | - Ralf Schweiggert
- Department of Beverage Research, Geisenheim University, Von-Lade-Strasse 1, 65366 Geisenheim, Germany
| | - Bernhard Spengler
- Institute of Inorganic and Analytical Chemistry, Justus Liebig University Giessen, Heinrich-Buff-Ring 17, 35392 Giessen, Germany
| | - Holger Zorn
- Institute of Food Chemistry and Food Biotechnology, Justus Liebig University Giessen, Heinrich-Buff-Ring 17, 35392 Giessen, Germany
- Fraunhofer Institute for Molecular Biology and Applied Ecology, Ohlebergsweg 12, 35392 Giessen, Germany
| | - Martin Gand
- Institute of Food Chemistry and Food Biotechnology, Justus Liebig University Giessen, Heinrich-Buff-Ring 17, 35392 Giessen, Germany
| |
Collapse
|
3
|
Garde-Cerdán T, Souza-da Costa B, Rubio-Bretón P, Pérez-Álvarez EP. Nanotechnology: recent advances in viticulture and enology. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:6156-6166. [PMID: 34184284 DOI: 10.1002/jsfa.11406] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 05/12/2021] [Accepted: 06/28/2021] [Indexed: 06/13/2023]
Abstract
Nowadays, nanoscience is a leading modern science that has a major impact on the food, pharmaceutical, and agriculture sectors. Several nanomaterials show a great potential for use during vine growing and winemaking processes. In viticulture, nanotechnology can be applied to protect vines against phytopathogens and to improve grape yield and quality. Thus, nanotechnology may allow the use of lesser amounts of phytochemical compounds, reducing environmental impact and promoting a more sustainable agriculture. And in winemaking, nanomaterials and nanodevices can be used to control the growth of spoilage microorganisms and to reduce or remove undesirable compounds, such as ethyl phenols (4-ethylphenol and 4-ethylguaiacol), biogenic amines, and tartaric acid, and so on, as well as to facilitate some technological processes (i.e. in wine filtration to eliminate microorganisms). This review summarizes recent studies with applications of nanotechnology in viticulture in order to facilitate agronomic management and optimize grape production and in enology to improve wine quality and safety. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Teresa Garde-Cerdán
- Grupo VIENAP, Instituto de Ciencias de la Vid y del Vino (CSIC, Universidad de La Rioja, Gobierno de La Rioja), Logroño, Spain
| | - Bianca Souza-da Costa
- Grupo VIENAP, Instituto de Ciencias de la Vid y del Vino (CSIC, Universidad de La Rioja, Gobierno de La Rioja), Logroño, Spain
| | - Pilar Rubio-Bretón
- Grupo VIENAP, Instituto de Ciencias de la Vid y del Vino (CSIC, Universidad de La Rioja, Gobierno de La Rioja), Logroño, Spain
| | - Eva P Pérez-Álvarez
- Grupo VIENAP, Instituto de Ciencias de la Vid y del Vino (CSIC, Universidad de La Rioja, Gobierno de La Rioja), Logroño, Spain
- Centro de Edafología y Biología Aplicada del Segura (CEBAS-CSIC), Murcia, Spain
| |
Collapse
|
4
|
Perutka Z, Šebela M. Mass spectrometry of peptides and proteins using digestion by a grape cysteine protease at pH 3. JOURNAL OF MASS SPECTROMETRY : JMS 2020; 55:e4444. [PMID: 31603573 DOI: 10.1002/jms.4444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 09/06/2019] [Accepted: 09/09/2019] [Indexed: 06/10/2023]
Abstract
Cysteine protease from grapevine (Vitis vinifera) belongs to those resistant proteins, which survive the process of vinification and can therefore be detected as wine components. Its amino acid sequence shows a homology to other members of the papain family, but the enzyme has only partially been explored so far. In order to get more biochemical information with the help of mass spectrometry (MS), wine proteins were collected by ultrafiltration and separated by gel permeation chromatography. The purified enzyme surprisingly displayed a high molecular mass value of around 200 kDa, indicating a possible oligomeric status and aggregation, as it entered only negligibly the separating 10% gel during polyacrylamide gel electrophoresis. The isoelectric point (pI) value of 3.6 was determined by chromatofocusing. Matrix-assisted laser desorption/ionization (MALDI)-MS was employed to evaluate the cleavage specificity and usefulness of the isolated cysteine protease in protein and peptide research. A potential applicability could be anticipated from the efficient digestion performance in volatile ammonium formate buffers at pH 3. Common peptides were digested and the resulting products analyzed by MS/MS sequencing. Then, mixtures of protein standards and extracted barley nuclear proteins were processed in the same way. Grape cysteine protease is nonspecific but shows a certain preference for Arg, Lys, and also Leu residues. Compared with papain, it seems not to require fully the presence of a large hydrophobic residue adjacent to that at the cleavage site. The enzyme is suitable for protein research as it produces peptides of a reasonable length in acidic pH.
Collapse
Affiliation(s)
- Zdeněk Perutka
- Department of Protein Biochemistry and Proteomics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů 27, Olomouc, CZ-783 71, Czech Republic
| | - Marek Šebela
- Department of Protein Biochemistry and Proteomics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů 27, Olomouc, CZ-783 71, Czech Republic
| |
Collapse
|
5
|
Loira I, Morata A, Escott C, Del Fresno JM, Tesfaye W, Palomero F, Suárez-Lepe JA. Applications of nanotechnology in the winemaking process. Eur Food Res Technol 2020. [DOI: 10.1007/s00217-020-03519-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
6
|
White Wine Protein Instability: Mechanism, Quality Control and Technological Alternatives for Wine Stabilisation—An Overview. BEVERAGES 2020. [DOI: 10.3390/beverages6010019] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Wine protein instability depends on several factors, but wine grape proteins are the main haze factors, being mainly caused by pathogenesis-related proteins (thaumatin-like proteins and chitinases) with a molecular weight between 10~40 kDa and an isoelectric point below six. Wine protein stability tests are needed for the routine control of this wine instability, and to select the best technological approach to remove the unstable proteins. The heat test is the most used, with good correlation with the natural proteins’ precipitations and because high temperatures are the main protein instability factor after wine bottling. Many products and technological solutions have been studied in recent years; however, sodium bentonite is still the most efficient and used treatment to remove unstable proteins from white wines. This overview resumes and discusses the different aspects involved in wine protein instability, from the wine protein instability mechanisms, the protein stability tests used, and technological alternatives available to stabilise wines with protein instability problems.
Collapse
|
7
|
Ndlovu T, Buica A, Bauer FF. Chitinases and thaumatin-like proteins in Sauvignon Blanc and Chardonnay musts during alcoholic fermentation. Food Microbiol 2018; 78:201-210. [PMID: 30497604 DOI: 10.1016/j.fm.2018.10.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 10/29/2018] [Accepted: 10/31/2018] [Indexed: 11/16/2022]
Abstract
Protein precipitation, also referred to as protein instability, may lead to haziness in bottled wines and result in significant commercial losses. To avoid problems of this nature, fining finished wines with clay (bentonite) is the most commonly applied methodology. However, bentonite fining reduces yield and may affect wine quality. Protein haze has been primarily linked to grape pathogenesis-related proteins, in particular chitinases and thaumatin-like proteins. To better understand the persistence of these proteins during fermentation, reverse phase chromatography was used to monitor the evolution of total grape proteins as well as of chitinases and thaumatin-like proteins during alcoholic fermentation. The data confirm a previously reported significant decrease in total protein content during fermentation. This reduction in total protein levels was observed throughout fermentation, and was affected by factors such as fermentation temperature, yeast strain or grape cultivar. However, significant changes in the concentration of free chitinases were observed in a yeast strain-dependent manner. The data thus confirm the correlation between the levels of yeast cell wall chitin and changes in chitinase concentration, and suggest that it is primarily the amount of lateral chitin, and not the chitin in bud scars, that is responsible for this activity.
Collapse
Affiliation(s)
- Thulile Ndlovu
- Institute for Wine Biotechnology, University of Stellenbosch, Matieland, South Africa; Post-harvest and Agro-Processing Technologies (PHATs), Agricultural Research Council (ARC), Infruitec-Nietvoorbij, Stellenbosch, South Africa
| | - Astrid Buica
- Department of Viticulture and Oenology, University of Stellenbosch, Matieland, South Africa
| | - Florian F Bauer
- Institute for Wine Biotechnology, University of Stellenbosch, Matieland, South Africa.
| |
Collapse
|
8
|
Riebel M, Fronk P, Distler U, Tenzer S, Decker H. Proteomic profiling of German Dornfelder grape berries using data-independent acquisition. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2017; 118:64-70. [PMID: 28618374 DOI: 10.1016/j.plaphy.2017.06.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Revised: 05/29/2017] [Accepted: 06/01/2017] [Indexed: 06/07/2023]
Abstract
Grapevine is one of the most important fruit plants throughout the world. Sequencing of the grape genome in 2007 enabled in-depth analyses of the grape proteome. Whereas many studies addressed changes in proteomic composition of grapes during ripening, we focused on the proteome of mature grape berries from Dornfelder, a characteristic red wine grape for Germany. Current data-independent acquisition proteomics technology enables the analysis of proteomic compositions in a degree of accuracy that was unreachable only a few years ago. Using a label-free proteomics approach, we quantified 712 proteins in mature Dornfelder grape berries, of which 650 could be annotated by the Blast2GO software. Besides identification of proteins, our analysis provides protein amounts using the TOP3 absolute quantification approach. Most of the proteins (200) in mature Dornfelder grape berries are involved in stress response. In addition, all glycolytic key enzymes were detected in mature grape berries suggesting that glycolysis is still active, whereas sugar accumulation through gluconeogenesis utilizing malate as substrate seems to play a minor role.
Collapse
Affiliation(s)
- Matthias Riebel
- Institute for Molecular Physiology, Molecular Biophysics, Johannes Gutenberg University Mainz, Jakob-Welder-Weg, 26, D-55128 Mainz, Germany.
| | - Petra Fronk
- Institute for Molecular Physiology, Molecular Biophysics, Johannes Gutenberg University Mainz, Jakob-Welder-Weg, 26, D-55128 Mainz, Germany.
| | - Ute Distler
- Institute for Immunology, University Medical Center of the Johannes Gutenberg University Mainz, Langenbeckstr. 1, D-55131 Mainz, Germany.
| | - Stefan Tenzer
- Institute for Immunology, University Medical Center of the Johannes Gutenberg University Mainz, Langenbeckstr. 1, D-55131 Mainz, Germany.
| | - Heinz Decker
- Institute for Molecular Physiology, Molecular Biophysics, Johannes Gutenberg University Mainz, Jakob-Welder-Weg, 26, D-55128 Mainz, Germany.
| |
Collapse
|
9
|
Coelho C, Aron A, Roullier-Gall C, Gonsior M, Schmitt-Kopplin P, Gougeon RD. Fluorescence fingerprinting of bottled white wines can reveal memories related to sulfur dioxide treatments of the must. Anal Chem 2015; 87:8132-7. [PMID: 26190639 DOI: 10.1021/acs.analchem.5b00388] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
For the first time, Excitation Emission Matrix (EEM) fluorescence spectroscopy was combined with parallel factor statistical analysis (PARAFAC) and applied to a set of 320 dry white wines of the Chardonnay grape variety. A four component PARAFAC model (C1, C2, C3 and C4) best explained the variability of fluorescence signatures of white wines. Subtle changes were observed in EEMs of white wines from two different vintages (2006 and 2007), where different concentrations of sulfur dioxide (0, 4, and 8 g·hL(-1)) were added to the grape must at pressing. PARAFAC results clearly indicated that sulfur dioxide added to the must subsequently influenced white wine chemistry into three distinct sulfur dioxide dose-dependent aging mechanisms. For both vintages, C1 and C2 were the dominant components affected by sulfur dioxide and likely reacting with phenolic compounds associated with some presumably proteinaceous material. Distinct component combinations revealed either SO2 dependent or vintage-dependent signatures, thus, showing the extent of the complex versatile significance underlying such fluorescence spectra, even after several years of bottle aging.
Collapse
Affiliation(s)
- Christian Coelho
- †UMR PAM Université de Bourgogne/AgroSupDijon, Institut Universitaire de la Vigne et du Vin, Jules Guyot, Dijon, France
| | - Alissa Aron
- †UMR PAM Université de Bourgogne/AgroSupDijon, Institut Universitaire de la Vigne et du Vin, Jules Guyot, Dijon, France
| | - Chloé Roullier-Gall
- †UMR PAM Université de Bourgogne/AgroSupDijon, Institut Universitaire de la Vigne et du Vin, Jules Guyot, Dijon, France.,‡Research Unit Analytical BioGeoChemistry, Department of Environmental Sciences, Helmholtz Zentrum München, Ingolstaedter Landstrasse 1, 85764 Neuherberg, Germany.,§Chair of Analytical Food Chemistry, Technische Universität München, Alte Akademie 10, 85354 Freising-Weihenstephan, Germany
| | - Michael Gonsior
- ∥University of Maryland Center for Environmental Science, Chesapeake Biological Laboratory, Solomons, Maryland 20688, United States
| | - Philippe Schmitt-Kopplin
- ‡Research Unit Analytical BioGeoChemistry, Department of Environmental Sciences, Helmholtz Zentrum München, Ingolstaedter Landstrasse 1, 85764 Neuherberg, Germany.,§Chair of Analytical Food Chemistry, Technische Universität München, Alte Akademie 10, 85354 Freising-Weihenstephan, Germany
| | - Régis D Gougeon
- †UMR PAM Université de Bourgogne/AgroSupDijon, Institut Universitaire de la Vigne et du Vin, Jules Guyot, Dijon, France
| |
Collapse
|
10
|
Van Sluyter SC, McRae JM, Falconer RJ, Smith PA, Bacic A, Waters EJ, Marangon M. Wine protein haze: mechanisms of formation and advances in prevention. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015; 63:4020-4030. [PMID: 25847216 DOI: 10.1021/acs.jafc.5b00047] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Protein haze is an aesthetic problem in white wines that can be prevented by removing the grape proteins that have survived the winemaking process. The haze-forming proteins are grape pathogenesis-related proteins that are highly stable during winemaking, but some of them precipitate over time and with elevated temperatures. Protein removal is currently achieved by bentonite addition, an inefficient process that can lead to higher costs and quality losses in winemaking. The development of more efficient processes for protein removal and haze prevention requires understanding the mechanisms such as the main drivers of protein instability and the impacts of various wine matrix components on haze formation. This review covers recent developments in wine protein instability and removal and proposes a revised mechanism of protein haze formation.
Collapse
Affiliation(s)
- Steven C Van Sluyter
- †The Australian Wine Research Institute, P.O Box 197, Glen Osmond, South Australia 5064, Australia
- §School of BioSciences and the Bio21 Molecular Sciences and Biotechnology Institute, University of Melbourne, Melbourne, Victoria 3010, Australia
- #Department of Biological Sciences, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Jacqui M McRae
- †The Australian Wine Research Institute, P.O Box 197, Glen Osmond, South Australia 5064, Australia
| | - Robert J Falconer
- ΔDepartment of Chemical and Biological Engineering, ChELSI Institute, University of Sheffield, Sheffield S1 3JD, England
| | - Paul A Smith
- †The Australian Wine Research Institute, P.O Box 197, Glen Osmond, South Australia 5064, Australia
| | - Antony Bacic
- §School of BioSciences and the Bio21 Molecular Sciences and Biotechnology Institute, University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Elizabeth J Waters
- †The Australian Wine Research Institute, P.O Box 197, Glen Osmond, South Australia 5064, Australia
- ⊥Australian Grape and Wine Authority, P.O. Box 2733, Adelaide, South Australia 5000, Australia
| | - Matteo Marangon
- †The Australian Wine Research Institute, P.O Box 197, Glen Osmond, South Australia 5064, Australia
- ΠPlumpton College, Ditchling Road, Nr Lewes, East Sussex BN7 3AE, England
| |
Collapse
|
11
|
Kemp B, Alexandre H, Robillard B, Marchal R. Effect of production phase on bottle-fermented sparkling wine quality. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015; 63:19-38. [PMID: 25494838 DOI: 10.1021/jf504268u] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
This review analyzes bottle-fermented sparkling wine research at each stage of production by evaluating existing knowledge to identify areas that require future investigation. With the growing importance of enological investigation being focused on the needs of the wine production industry, this review examines current research at each stage of bottle-fermented sparkling wine production. Production phases analyzed in this review include pressing, juice adjustments, malolactic fermentation (MLF), stabilization, clarification, tirage, lees aging, disgorging, and dosage. The aim of this review is to identify enological factors that affect bottle-fermented sparkling wine quality, predominantly aroma, flavor, and foaming quality. Future research topics identified include regional specific varieties, plant-based products from vines, grapes, and yeast that can be used in sparkling wine production, gushing at disgorging, and methods to increase the rate of yeast autolysis. An internationally accepted sensory analysis method specifically designed for sparkling wine is required.
Collapse
|
12
|
Ishida K, Kishi Y, Oishi K, Hirooka H, Kumagai H. Effects of feeding polyphenol-rich winery wastes on digestibility, nitrogen utilization, ruminal fermentation, antioxidant status and oxidative stress in wethers. Anim Sci J 2014; 86:260-9. [PMID: 25377644 DOI: 10.1111/asj.12280] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Accepted: 06/09/2014] [Indexed: 12/27/2022]
Abstract
Four wethers were used in a 4 × 4 Latin square design experiment to evaluate the availability of two types of winery wastes, winery sediment and grape pomace, as ruminant feeds possessing antioxidant activities. Each wether was assigned to one of the following four treatments: (i) 75 g/kg winery sediment (WS) on a dry matter (DM) basis; (ii) 166 g/kg DM winery grape pomace (WP); (iii) control diet (CD; 17 g/kg DM soybean meal);and (iv) only tall fescue hay (TFH; no additive). Winery sediment and grape pomace had high levels of polyphenols and of radical scavenging activities. Feeding with winery sediment and grape pomace did not negatively affect the intake, but it depressed crude protein (CP) digestibility compared with CD (P = 0.052 and P < 0.01 for WS and WP, respectively). Polyphenols in winery wastes decreased ruminal ammonia production (P = 0.089 and P < 0.05), likely due to their inhibitive effect on microbial activities in the rumen. The addition of winery sediment and grape pomace decreased urinary 8-hydroxy-2'-deoxyguanosine (8-OHdG; an index of oxidative damages) excretion per day (P < 0.05 and P = 0.059). The results indicated that winery sediment and grape pomace could alter nitrogen metabolism and/or act as new antioxidants for ruminants.
Collapse
Affiliation(s)
- Kyohei Ishida
- Laboratory of Animal Husbandry Resources, Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | | | | | | | | |
Collapse
|
13
|
Cilindre C, Fasoli E, D'Amato A, Liger-Belair G, Righetti PG. It's time to pop a cork on champagne's proteome! J Proteomics 2014; 105:351-62. [PMID: 24594285 DOI: 10.1016/j.jprot.2014.02.023] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Revised: 02/18/2014] [Accepted: 02/20/2014] [Indexed: 11/16/2022]
Abstract
UNLABELLED Champagne is a world-renowned French sparkling wine, which undergoes many steps (fermentation, aging …) for its elaboration. Various compounds might evolve during this winemaking process and thus modify its final quality. Here, we report the first proteome analysis of two standard commercial Champagne wines, using the powerful Combinatorial Peptide Ligand Library (CPLL) technique. Indeed, wine proteins are present in small amounts but they are key compounds, likely to impact on both foam quality and aroma behavior. Forty-three unique gene products were retrieved in a single-varietal champagne and a blended champagne. Several proteins from Vitis vinifera together with seven yeast proteins were undoubtedly identified in these Champagne wines. BIOLOGICAL SIGNIFICANCE The main advantage of CPLLs was the detection of low abundance proteins despite the absence of purification or pre-concentration step. It is an important fact to take into account, since Champagne wines generally contain a low amount of proteins (5-10mg/L) that implies to usually concentrate wine proteins before 1D or 2D electrophoresis. Most Champagne proteins are grape and yeast glycoproteins which are considered as good foam "promoters". Some of these proteins might also interact with wine aromas, and thus contribute to the overall quality of Champagne wines. This article is part of a Special Issue entitled: Proteomics of non-model organisms.
Collapse
Affiliation(s)
- Clara Cilindre
- Equipe Effervescence, Champagne et Applications, GSMA UMR CNRS 7331, Université de Reims Champagne Ardenne, Moulin de la Housse, BP 1039, 51687 Reims Cedex 2, France; Laboratoire d'oenologie et chimie appliquée, URVVC EA 4707, Université de Reims Champagne Ardenne, Moulin de la Housse, BP 1039, 51687 Reims Cedex 2, France.
| | - Elisa Fasoli
- Politecnico di Milano, Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Via Mancinelli 7, 20131 Milano, Italy
| | - Alfonsina D'Amato
- Politecnico di Milano, Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Via Mancinelli 7, 20131 Milano, Italy
| | - Gérard Liger-Belair
- Equipe Effervescence, Champagne et Applications, GSMA UMR CNRS 7331, Université de Reims Champagne Ardenne, Moulin de la Housse, BP 1039, 51687 Reims Cedex 2, France; Laboratoire d'oenologie et chimie appliquée, URVVC EA 4707, Université de Reims Champagne Ardenne, Moulin de la Housse, BP 1039, 51687 Reims Cedex 2, France
| | - Pier Giorgio Righetti
- Politecnico di Milano, Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Via Mancinelli 7, 20131 Milano, Italy.
| |
Collapse
|
14
|
Cilindre C. Precipitation of champagne base wine proteins prior to 2D electrophoresis. Methods Mol Biol 2014; 1072:755-64. [PMID: 24136561 DOI: 10.1007/978-1-62703-631-3_52] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Numerous methods have been employed to depict the protein content of wines. Among them, two-dimensional electrophoresis (2D-E) presents a powerful resolution, but has been poorly applied to wine. Furthermore, 2D-E was coupled with various extraction methods of proteins without any reference method for wine. Here, we describe a rapid method to extract proteins from a champagne base wine through ultrafiltration followed by precipitation with ethanol and trichloroacetic acid. More than 50 spots were visualized on 2D-gels (7 cm, pH 3-6) by colloidal Coomassie Brilliant Blue staining.
Collapse
Affiliation(s)
- Clara Cilindre
- Laboratoire d'Oenologie et Chimie Appliquée, Université de Reims Champagne-Ardenne, URVVC UPRES EA 4707, Reims, France
| |
Collapse
|
15
|
Fanali C, Dugo L, Dugo P, Mondello L. Capillary-liquid chromatography (CLC) and nano-LC in food analysis. Trends Analyt Chem 2013. [DOI: 10.1016/j.trac.2013.05.021] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
16
|
Nunes-Miranda JD, Igrejas G, Araujo E, Reboiro-Jato M, Capelo JL. Mass Spectrometry-Based Fingerprinting of Proteins & Peptides in Wine Quality Control: A Critical Overview. Crit Rev Food Sci Nutr 2013; 53:751-9. [DOI: 10.1080/10408398.2011.557514] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
17
|
Rodríguez-Nogales JM, Vila-Crespo J, Fernández-Fernández E. Analysis of Grape Proteins from Wines by Perfusion Reversed-Phase High-Performance Liquid Chromatography. FOOD ANAL METHOD 2012. [DOI: 10.1007/s12161-012-9532-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
18
|
Boschetti E, Righetti PG. Breakfast at Tiffany's? Only with a low-abundance proteomic signature! Electrophoresis 2012; 33:2228-39. [DOI: 10.1002/elps.201200003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
19
|
Wigand P, Blettner M, Saloga J, Decker H. Prevalence of wine intolerance: results of a survey from Mainz, Germany. DEUTSCHES ARZTEBLATT INTERNATIONAL 2012; 109:437-44. [PMID: 22787508 PMCID: PMC3391999 DOI: 10.3238/arztebl.2012.0437] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2012] [Accepted: 04/23/2012] [Indexed: 01/25/2023]
Abstract
BACKGROUND Wine is an ancient food product, ubiquitous across cultures all over the world. Its effects on health have been extensively studied, yet there have been only a few case reports of wine intolerance or wine allergy. We studied the prevalence of self-reported wine intolerance in the adult population of Mainz, Germany. METHODS In 2010, a questionnaire-based cross-sectional study was conducted to assess the prevalence of wine intolerance among adults in Mainz, a city in the wine-cultivating area of Rhine-Hesse. 4000 persons randomly chosen from population lists were asked to fill out a questionnaire about their alcohol intake and the occurrence of various intolerance reactions and allergy-like symptoms after drinking wine. RESULTS Of the 4000 who received the questionnaire, 948 (23.7%) filled it out and returned it to us. 68 (7.2% of respondents) reported intolerance to wine and/or allergy-like symptoms after drinking wine. Self-reported wine intolerance was more prevalent in women than in men (8.9% vs. 5.2%, p = 0.026). Wine-intolerant persons also more commonly reported intolerance to beer and alcohol in general. Allergy-like symptoms were more common after the consumption of red wine. The most commonly reported reactions to wine were cutaneous flushing, itch, and nasal congestion. CONCLUSION Wine intolerance was found to be more common than expected. The data reported here are less suggestive of an immunologically mediated allergy than of intolerance to alcohol, biogenic amines, or other ingredients of wine.
Collapse
Affiliation(s)
- Petra Wigand
- Institute of Molecular Biophysics of the Johannes Gutenberg University Mainz
| | - Maria Blettner
- Institute of Medical Biostatistics, Epidemiology and Informatics (IMBEI) at the University Medical Center of the Johannes Gutenberg University Mainz
| | - Joachim Saloga
- Department of Dermatology of the Johannes Gutenberg University Mainz
| | - Heinz Decker
- Institute of Molecular Biophysics of the Johannes Gutenberg University Mainz
| |
Collapse
|
20
|
Quirós M, Gonzalez R, Morales P. A simple method for total quantification of mannoprotein content in real wine samples. Food Chem 2012; 134:1205-10. [PMID: 23107749 DOI: 10.1016/j.foodchem.2012.02.168] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2011] [Revised: 11/21/2011] [Accepted: 02/26/2012] [Indexed: 10/28/2022]
Abstract
Mannoproteins released by yeast cells throughout the winemaking process contribute in several ways to improve wine quality. For this reason, some winemaking practices have been developed in order to increase the mannoprotein content of wine. However, monitoring of mannoprotein content of wine during these processes, or even mannoprotein quantification in the final wines, is an analytical problem not easily solved so far. Here, we report a simple and accurate method for mannoprotein quantification in wines. The method involves isolation of wine polysaccharides by size exclusion chromatography, acid hydrolysis, elimination of acid by weak anionic exchange solid phase extraction, and analysis of monosaccharides by ion exclusion HPLC. Advantages over previously existing methods include low sample volumes, possibility of parallel processing for multiple samples, absence of precipitation steps, and clear distinction between mannoproteins and other wine polysaccharides.
Collapse
Affiliation(s)
- Manuel Quirós
- Instituto de Ciencias de la Vid y del Vino (CSIC-UR-CAR), C/ Madre de Dios 51, 26006 Logroño, La Rioja, Spain
| | | | | |
Collapse
|
21
|
Direct matrix assisted laser desorption ionization mass spectrometry-based analysis of wine as a powerful tool for classification purposes. Talanta 2012; 91:72-6. [PMID: 22365682 DOI: 10.1016/j.talanta.2012.01.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2011] [Revised: 01/07/2012] [Accepted: 01/09/2012] [Indexed: 11/23/2022]
Abstract
The variables affecting the direct matrix assisted laser desorption ionization mass spectrometry-based analysis of wine for classification purposes have been studied. The type of matrix, the number of bottles of wine, the number of technical replicates and the number of spots used for the sample analysis have been carefully assessed to obtain the best classification possible. Ten different algorithms have been assessed as classification tools using the experimental data collected after the analysis of fourteen types of wine. The best matrix was found to be α-Cyano with a sample to matrix ratio of 1:0.75. To correctly classify the wines, profiling a minimum of five bottles per type of wine is suggested, with a minimum of three MALDI spot replicates for each bottle. The best algorithm to classify the wines was found to be Bayes Net.
Collapse
|
22
|
Herrero M, Simó C, García-Cañas V, Ibáñez E, Cifuentes A. Foodomics: MS-based strategies in modern food science and nutrition. MASS SPECTROMETRY REVIEWS 2012; 31:49-69. [PMID: 21374694 DOI: 10.1002/mas.20335] [Citation(s) in RCA: 205] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2010] [Revised: 02/02/2011] [Accepted: 02/02/2011] [Indexed: 05/23/2023]
Abstract
Modern research in food science and nutrition is moving from classical methodologies to advanced analytical strategies in which MS-based techniques play a crucial role. In this context, Foodomics has been recently defined as a new discipline that studies food and nutrition domains through the application of advanced omics technologies in which MS techniques are considered indispensable. Applications of Foodomics include the genomic, transcriptomic, proteomic, and/or metabolomic study of foods for compound profiling, authenticity, and/or biomarker-detection related to food quality or safety; the development of new transgenic foods, food contaminants, and whole toxicity studies; new investigations on food bioactivity, food effects on human health, etc. This review work does not intend to provide an exhaustive revision of the many works published so far on food analysis using MS techniques. The aim of the present work is to provide an overview of the different MS-based strategies that have been (or can be) applied in the new field of Foodomics, discussing their advantages and drawbacks. Besides, some ideas about the foreseen development and applications of MS-techniques in this new discipline are also provided.
Collapse
Affiliation(s)
- Miguel Herrero
- Institute of Food Science Research (CIAL), CSIC, Nicolas Cabrera 9, Campus de Cantoblanco, 28049 Madrid, Spain
| | | | | | | | | |
Collapse
|
23
|
D'Amato A, Kravchuk AV, Bachi A, Righetti PG. Noah's nectar: the proteome content of a glass of red wine. J Proteomics 2010; 73:2370-7. [PMID: 20813213 DOI: 10.1016/j.jprot.2010.08.010] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2010] [Revised: 08/24/2010] [Accepted: 08/25/2010] [Indexed: 10/19/2022]
Abstract
Combinatorial peptide ligand libraries (CPLLs) have been adopted for harvesting and identifying traces of proteins present in red wines. Surprisingly, although it is stated that red wines are in general fined with egg albumin, for all Italian wines investigated (in the areas around Chiari and Verona as well as in the Chianti area) we find that the only fining agent used is bovine casein, just like in white wines. Although the typical levels of casein found range between 45 to 85μg/L, in one case as little as 3.8μg/L of casein could be detected, an extremely high level of sensitivity, close to our lower detection limit of 1μg/L reported for white wines. As a result of such treatments, very small amounts of residual proteins in red wines could be identified: essentially no residual grape proteins (except for thaumatin), but only traces of proteins from Saccharomyces cerevisiae and a few proteins from plant pathogens and fungi (e.g., Botryotinia fuckeliana, Sclerotinia sclerotiorum, Aspergillus aculeatus). Contrary to what has been found in white wines, the best capture efficiency with CPLLs has occurred at pH 7.2 and pH 9.3, with minimal capture at pH 3.3. The fact that such very low levels of fining agents can still be detected in treated red wines should be taken into consideration by winemakers in labelling their products and by EC rulers in issuing proper regulations.
Collapse
Affiliation(s)
- Alfonsina D'Amato
- Department of Chemistry, Materials and Chemical Engineering Giulio Natta, Politecnico di Milano, Via Mancinelli 7, 20131 Milano, Italy
| | | | | | | |
Collapse
|
24
|
Pedreschi R, Hertog M, Lilley KS, Nicolaï B. Proteomics for the Food Industry: Opportunities and Challenges. Crit Rev Food Sci Nutr 2010; 50:680-92. [DOI: 10.1080/10408390903044214] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
25
|
Le Bourse D, Jégou S, Conreux A, Villaume S, Jeandet P. Review of preparative and analytical procedures for the study of proteins in grape juice and wine. Anal Chim Acta 2010; 667:33-42. [DOI: 10.1016/j.aca.2010.03.062] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2010] [Revised: 03/29/2010] [Accepted: 03/30/2010] [Indexed: 01/16/2023]
|
26
|
Asensio-Ramos M, Hernández-Borges J, Rocco A, Fanali S. Food analysis: A continuous challenge for miniaturized separation techniques. J Sep Sci 2009; 32:3764-800. [DOI: 10.1002/jssc.200900321] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
27
|
Wigand P, Tenzer S, Schild H, Decker H. Analysis of protein composition of red wine in comparison with rosé and white wines by electrophoresis and high-pressure liquid chromatography-mass spectrometry (HPLC-MS). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2009; 57:4328-4333. [PMID: 19385597 DOI: 10.1021/jf8034836] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Wine proteins not only influence wine stability but are also being discussed as potential allergens. Proteins from red, rosé, and white wines were enriched by dialysis and lyophilization followed by separation by SDS-PAGE. Significant differences were detected in the protein compositions of the analyzed wine varieties, and the major protein bands were identified by mass spectrometry after in-gel digestion with trypsin. In German Portugieser red wine, a total of 121 tryptic peptides were identified, which were attributed to 12 grape proteins and 6 proteins derived from yeast. Among the identified constituents are several proteins considered to influence wine stability and previously described potential grape allergens. The pathogenesis-related proteins represent the main proteins in all of the wines, but only some red wines show a band with a molecular mass of 12 kDa, identified as a lipid transfer protein (LTP). The occurrence and distribution of LTP depend on the wine variety.
Collapse
Affiliation(s)
- Petra Wigand
- Institute of Molecular Biophysics of the Johannes Gutenberg University Mainz, Germany
| | | | | | | |
Collapse
|
28
|
Marangon M, Van Sluyter SC, Haynes PA, Waters EJ. Grape and wine proteins: their fractionation by hydrophobic interaction chromatography and identification by chromatographic and proteomic analysis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2009; 57:4415-4425. [PMID: 19354294 DOI: 10.1021/jf9000742] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
A method to fractionate grape and wine proteins by hydrophobic interaction chromatography (HIC) was developed. This method allowed the isolation of a thaumatin-like protein in a single step with high yield and >90% purity and has potential to purify several other proteins. In addition, by separating HIC fractions by reverse phase HPLC and by collecting the obtained peaks, the grape juice proteins were further separated, by SDS-PAGE, into 24 bands. The bands were subjected to nanoLC-MS/MS analysis, and the results were matched against a database and characterized as various Vitis vinifera proteins. Moreover, either directly or by homology searching, identity or function was attributed to all of the gel bands identified, which mainly consisted of grape chitinases and thaumatin-like proteins but also included vacuolar invertase, PR-4 type proteins, and a lipid transfer protein from grapes.
Collapse
Affiliation(s)
- Matteo Marangon
- Dipartimento di Biotecnologie agrarie and Centro Interdipartimentale per la Ricerca in Viticoltura ed Enologia, Università di Padova, via dell'Università 16, I-35020 Legnaro, PD, Italy
| | | | | | | |
Collapse
|
29
|
Chambery A, del Monaco G, Di Maro A, Parente A. Peptide fingerprint of high quality Campania white wines by MALDI-TOF mass spectrometry. Food Chem 2009. [DOI: 10.1016/j.foodchem.2008.08.031] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
30
|
Esteruelas M, Poinsaut P, Sieczkowski N, Manteau S, Fort M, Canals J, Zamora F. Characterization of natural haze protein in sauvignon white wine. Food Chem 2009. [DOI: 10.1016/j.foodchem.2008.07.031] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
31
|
Cilindre C, Jégou S, Hovasse A, Schaeffer C, Castro AJ, Clément C, Van Dorsselaer A, Jeandet P, Marchal R. Proteomic Approach To Identify Champagne Wine Proteins as Modified by Botrytis cinerea Infection. J Proteome Res 2008; 7:1199-208. [DOI: 10.1021/pr070419p] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Clara Cilindre
- Laboratoire d’Oenologie et Chimie Appliquée, Université de Reims, URVVC UPRES EA 2069, BP 1039, 51687 Reims Cedex 2, France, Laboratoire de Spectrométrie de Masse Bioorganique, Université de Strasbourg, UMR CNRS-ULP 7178, F-67087 Strasbourg, France, and Laboratoire Stress, Défenses et Reproduction des Plantes, Université de Reims, URVVC UPRES EA 2069, BP 1039, 51687 Reims Cedex 2, France
| | - Sandrine Jégou
- Laboratoire d’Oenologie et Chimie Appliquée, Université de Reims, URVVC UPRES EA 2069, BP 1039, 51687 Reims Cedex 2, France, Laboratoire de Spectrométrie de Masse Bioorganique, Université de Strasbourg, UMR CNRS-ULP 7178, F-67087 Strasbourg, France, and Laboratoire Stress, Défenses et Reproduction des Plantes, Université de Reims, URVVC UPRES EA 2069, BP 1039, 51687 Reims Cedex 2, France
| | - Agnès Hovasse
- Laboratoire d’Oenologie et Chimie Appliquée, Université de Reims, URVVC UPRES EA 2069, BP 1039, 51687 Reims Cedex 2, France, Laboratoire de Spectrométrie de Masse Bioorganique, Université de Strasbourg, UMR CNRS-ULP 7178, F-67087 Strasbourg, France, and Laboratoire Stress, Défenses et Reproduction des Plantes, Université de Reims, URVVC UPRES EA 2069, BP 1039, 51687 Reims Cedex 2, France
| | - Christine Schaeffer
- Laboratoire d’Oenologie et Chimie Appliquée, Université de Reims, URVVC UPRES EA 2069, BP 1039, 51687 Reims Cedex 2, France, Laboratoire de Spectrométrie de Masse Bioorganique, Université de Strasbourg, UMR CNRS-ULP 7178, F-67087 Strasbourg, France, and Laboratoire Stress, Défenses et Reproduction des Plantes, Université de Reims, URVVC UPRES EA 2069, BP 1039, 51687 Reims Cedex 2, France
| | - Antonio J. Castro
- Laboratoire d’Oenologie et Chimie Appliquée, Université de Reims, URVVC UPRES EA 2069, BP 1039, 51687 Reims Cedex 2, France, Laboratoire de Spectrométrie de Masse Bioorganique, Université de Strasbourg, UMR CNRS-ULP 7178, F-67087 Strasbourg, France, and Laboratoire Stress, Défenses et Reproduction des Plantes, Université de Reims, URVVC UPRES EA 2069, BP 1039, 51687 Reims Cedex 2, France
| | - Christophe Clément
- Laboratoire d’Oenologie et Chimie Appliquée, Université de Reims, URVVC UPRES EA 2069, BP 1039, 51687 Reims Cedex 2, France, Laboratoire de Spectrométrie de Masse Bioorganique, Université de Strasbourg, UMR CNRS-ULP 7178, F-67087 Strasbourg, France, and Laboratoire Stress, Défenses et Reproduction des Plantes, Université de Reims, URVVC UPRES EA 2069, BP 1039, 51687 Reims Cedex 2, France
| | - Alain Van Dorsselaer
- Laboratoire d’Oenologie et Chimie Appliquée, Université de Reims, URVVC UPRES EA 2069, BP 1039, 51687 Reims Cedex 2, France, Laboratoire de Spectrométrie de Masse Bioorganique, Université de Strasbourg, UMR CNRS-ULP 7178, F-67087 Strasbourg, France, and Laboratoire Stress, Défenses et Reproduction des Plantes, Université de Reims, URVVC UPRES EA 2069, BP 1039, 51687 Reims Cedex 2, France
| | - Philippe Jeandet
- Laboratoire d’Oenologie et Chimie Appliquée, Université de Reims, URVVC UPRES EA 2069, BP 1039, 51687 Reims Cedex 2, France, Laboratoire de Spectrométrie de Masse Bioorganique, Université de Strasbourg, UMR CNRS-ULP 7178, F-67087 Strasbourg, France, and Laboratoire Stress, Défenses et Reproduction des Plantes, Université de Reims, URVVC UPRES EA 2069, BP 1039, 51687 Reims Cedex 2, France
| | - Richard Marchal
- Laboratoire d’Oenologie et Chimie Appliquée, Université de Reims, URVVC UPRES EA 2069, BP 1039, 51687 Reims Cedex 2, France, Laboratoire de Spectrométrie de Masse Bioorganique, Université de Strasbourg, UMR CNRS-ULP 7178, F-67087 Strasbourg, France, and Laboratoire Stress, Défenses et Reproduction des Plantes, Université de Reims, URVVC UPRES EA 2069, BP 1039, 51687 Reims Cedex 2, France
| |
Collapse
|
32
|
Hernández-Borges J, Aturki Z, Rocco A, Fanali S. Recent applications in nanoliquid chromatography. J Sep Sci 2007; 30:1589-610. [PMID: 17623443 DOI: 10.1002/jssc.200700061] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Since its first introduction by Karlsson and Novotny in 1988 nano-LC has emerged as a complementary and/or competitive separation method to conventional HPLC, offering several advantages such as higher efficiency, ability to work with minute sample sizes and lower consumption of mobile phases, and better compatibility with MS, etc. Although its use was not so extended initially, in the last years new and interesting applications have appeared which deserve to be carefully considered. The aim of this review is therefore to provide an updated and critical survey of different nano-LC applications in analytical chemistry.
Collapse
Affiliation(s)
- Javier Hernández-Borges
- Istituto di Metodologie Chimiche, Consiglio Nazionale delle Ricerche, Area della Ricerca di Roma I, Rome, Italy
| | | | | | | |
Collapse
|
33
|
|
34
|
Vanrell G, Canals R, Esteruelas M, Fort F, Canals JM, Zamora F. Influence of the use of bentonite as a riddling agent on foam quality and protein fraction of sparkling wines (Cava). Food Chem 2007. [DOI: 10.1016/j.foodchem.2006.11.014] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
35
|
Abstract
Wine proteins play an important role in the quality of wine, because they affect taste, clarity and stability of product. The majority of wine proteins are in the range of 20-30 kDa. Different mass spectrometry (MS) techniques have been successfully applied to study the grape and wine proteins. By liquid chromatography (LC) electrospray ionization (ESI) MS and nano-LC/MS, nine dipeptides and 80 peptides were unambiguously identified in Champagne and Sauvignon Blanc wines, respectively. Using matrix-assisted laser desorption/ionization (MALDI) time-of-flight (TOF) and surface-enhanced laser desorption/ionization TOF, the protein and peptide fingerprints in Chardonnay, Sauvignon Blanc and Muscat of Alexandria wines were determined. MALDI-TOF identified the mesocarp proteome of six Vitis grape varieties. Proteins in different grape tissue extracts were also studied. The major grape pathogenic-related proteins are chitinases and thaumatin-like proteins, which both persist through the vinification process and cause hazes and sediments in bottled wines. ESI-MS, LC/ESI-MS and MALDI-TOF analysis of these proteins in grape and wine were also used to characterize different grape varieties.
Collapse
Affiliation(s)
- Riccardo Flamini
- Quality Control of Wine at the Agricultural Faculty of Padua University, Italy.
| | | |
Collapse
|
36
|
Vincent D, Wheatley MD, Cramer GR. Optimization of protein extraction and solubilization for mature grape berry clusters. Electrophoresis 2006; 27:1853-65. [PMID: 16586412 DOI: 10.1002/elps.200500698] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Protein extraction from grape berries has been challenging, particularly in mature berries, which can have sugar concentrations as high as 26%. Grape skins and seeds contain large amounts of polyphenols, which can also interfere with efficient protein extraction. In plants, two extraction protocols, TCA/acetone-based and phenol-based methods, have been mainly used to extract proteins from different organs or tissues on many species. However, few results have been reported for grape berry clusters. We wanted to determine which of these protocols was optimal for berry clusters in order to achieve both efficient protein extraction and high spot resolution on 2-D gels. Four protocols, derived from either TCA/acetone or phenol procedures, were tested on mature Cabernet Sauvignon whole berry clusters. The phenol-based protocols were superior to the TCA/acetone methods, showing larger protein yields and greater spot resolution on 2-D gels. One method was clearly superior to the rest, a phenol-based extraction method combined with resuspension in the presence of both urea and thiourea as chaotropes. A total of 81 spots were excised and identified following MALDI-TOF/TOF MS analyses. Their identification helped further characterize the specificity of each extraction procedure.
Collapse
Affiliation(s)
- Delphine Vincent
- Department of Biochemistry, University of Nevada, Reno, NV 89557, USA
| | | | | |
Collapse
|
37
|
OKUDA T, FUKUI M, TAKAYANAGI T, YOKOTSUKA K. Characterization of Major Stable Proteins in Chardonnay Wine. FOOD SCIENCE AND TECHNOLOGY RESEARCH 2006. [DOI: 10.3136/fstr.12.131] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
38
|
Current awareness in phytochemical analysis. PHYTOCHEMICAL ANALYSIS : PCA 2005; 16:287-94. [PMID: 16042157 DOI: 10.1002/pca.796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
|