1
|
Faheem A, Qin Y, Nan W, Hu Y. Advances in the Immunoassays for Detection of Bacillus thuringiensis Crystalline Toxins. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:10407-10418. [PMID: 34319733 DOI: 10.1021/acs.jafc.1c02195] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Insect-resistant genetically modified organisms have been globally commercialized for the last 2 decades. Among them, transgenic crops based on Bacillus thuringiensis crystalline (Cry) toxins are extensively used for commercial agricultural applications. However, less emphasis is laid on quantifying Cry toxins because there might be unforeseen health and environmental concerns. Immunoassays, being the preferred method for detection of Cry toxins, are reviewed in this study. Owing to limitations of traditional colorimetric enzyme-linked immunosorbent assay, the trend of detection strategies shifts to modified immunoassays based on nanomaterials, which provide ultrasensitive detection capacity. This review assessed and compared the properties of the recent advances in immunoassays, including colorimetric, fluorescence, chemiluminescence, surface-enhanced Raman scattering, surface plasmon resonance, and electrochemical approaches. Thus, the ultimate aim of this study is to identify research gaps and infer future prospects of current approaches for the development of novel immunosensors to monitor Cry toxins in food and the environment.
Collapse
Affiliation(s)
- Aroosha Faheem
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China
| | - Yuqing Qin
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China
| | - Wenrui Nan
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China
| | - Yonggang Hu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, People's Republic of China
| |
Collapse
|
2
|
Kanagasubbulakshmi S, Kadirvelu K. Paper-Based Simplified Visual Detection of Cry2Ab Insecticide from Transgenic Cottonseed Samples Using Integrated Quantum Dots-IgY Antibodies. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:4074-4080. [PMID: 33789050 DOI: 10.1021/acs.jafc.0c07180] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
In the present study, an easy to use field-deployable methodology was developed for onsite detection of pesticidal crystal protein Cry2Ab from transgenic cotton crops to reduce seed adulteration. Anti Cry2Ab IgG and IgY antibodies were developed against recombinant Cry2Ab protein in New Zealand white rabbits and in white leg horn chickens, respectively. Carboxyl-functionalized CdTe quantum dots (QDs) were used as revealing probes, and nitrocellulose paper was used as an assay matrix. Recombinant Cry2Ab was generated in the lab and used for immunization of chicken and rabbits. After successful immunization and attaining the desired titer values (1:32 000 for IgY and 1:64 000 for IgG), eggs and hyperimmune sera were collected. Anti Cry2Ab IgY was purified as per the standardized protocols, and anti Cry2Ab IgG was purified using protein A affinity chromatography. Sensitivity of the generated antibodies was examined using indirect ELISA methods against recombinant Cr2Ab protein. Specificity evaluation was carried out against other Cry proteins including Cry2Ab, Cry4b, Cry4a, Cry1Ec, and Cry1Ac. Functionalized CdTe QDs were characterized for structure and shape as well as fluorescence properties using standard laboratory techniques. A field-deployable paper-based detection methodology was developed where IgG acted as the capturing antibody and IgY-linked CdTe QDs were used as revealing probes. The limit of detection (LOD) and quantification (LOQ) were found to be 2.91 ng/mL and 9.71 ng/mL, respectively. The effect of matrix interference was assessed on the different plant crude extracts of cottonseed materials.
Collapse
Affiliation(s)
- S Kanagasubbulakshmi
- DRDO-BU Center for Life Sciences, Bharathiar University Campus, Coimbatore-641046, Tamilnadu, India
| | - K Kadirvelu
- DRDO-BU Center for Life Sciences, Bharathiar University Campus, Coimbatore-641046, Tamilnadu, India
| |
Collapse
|
3
|
Swatkoski SJ, Croley TR. Screening of Processed Foods for Transgenic Proteins from Genetically Engineered Plants Using Targeted Mass Spectrometry. Anal Chem 2020; 92:3455-3462. [PMID: 31961133 DOI: 10.1021/acs.analchem.9b05577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Screening of food products for the presence of material from genetically engineered (GE) plants is typically done using deoxyribonucleic acid (DNA)-based methods to detect the presence of transgenic DNA. In this study, we have demonstrated the feasibility of using targeted mass spectrometry (MS) to detect a protein expressed by transgenic DNA to confirm the presence of GE plant material in processed foods. Scheduled parallel reaction monitoring (sPRM) was used to detect the enzyme, 5-enolpyruvulshikimate-3-phosphate synthase, from Agrobacterium sp. strain CP4 (CP4 EPSPS), which confers glyphosate tolerance in transgenic crops. Five CP4 EPSPS surrogate peptides and their corresponding retention times identified via data-dependent LC/MS/MS analysis of a glyphosate-tolerant soybean certified reference material, GTS 40-3-2, were used to develop the sPRM assay. The assay was used to screen four soy-based infant formulas, four corn-based cereals, corn tortilla chips, and cornmeal for the presence of CP4 EPSPS. At least four of the five selected surrogate peptides were detected in nine of the products analyzed, suggesting that targeted MS can serve as a complementary analytical method to DNA-based methods for the detection of material from GE plants in processed foods.
Collapse
Affiliation(s)
- Stephen J Swatkoski
- Center for Food Safety and Applied Nutrition , U.S. Food and Drug Administration , 5001 Campus Drive , College Park , Maryland 20740 , United States
| | - Timothy R Croley
- Center for Food Safety and Applied Nutrition , U.S. Food and Drug Administration , 5001 Campus Drive , College Park , Maryland 20740 , United States
| |
Collapse
|
4
|
Chen W, Wang P. Molecular Analysis for Characterizing Transgenic Events. Methods Mol Biol 2019; 1864:397-410. [PMID: 30415348 DOI: 10.1007/978-1-4939-8778-8_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
To develop a commercial trait product, a large number of transgenic events are often produced to obtain the event with desired level of expression. It is crucial to develop efficient and sensitive molecular characterization methods to advance events with stable transgene expression, free of vector backbone sequences and without major changes to the native genome caused by transgene insertion. Here, we discuss a variety of analytical tools, including quantitative PCR (qPCR), Southern blot analysis, and various sequencing technologies, which have been widely used to determine the insert copy number, presence/absence of vector backbone sequences, integrity of the T-DNA, and genomic location of the T-DNA insertion. Moreover, since the discovery of RNA interference in 1998 (Fire et al., Nature 391:806-811, 1998), RNAi has emerged as another powerful tool in in the development of a new transgenic trait for insect control. RNAi creates a double-stranded RNA duplex as the active molecule which forms a strong secondary structure, resulting in challenges for detection. In addition to molecular analysis at the DNA level, this chapter describes detection methods of the active molecules (i.e., double-stranded RNA) for RNAi-based traits.
Collapse
MESH Headings
- Biotechnology/instrumentation
- Biotechnology/methods
- Blotting, Southern
- Commerce
- Crops, Agricultural/genetics
- DNA, Bacterial/genetics
- DNA, Plant/analysis
- DNA, Plant/genetics
- Genome, Plant/genetics
- Plants, Genetically Modified/genetics
- Polymerase Chain Reaction
- Quantitative Trait Loci/genetics
- RNA Interference
- RNA, Double-Stranded/analysis
- RNA, Double-Stranded/genetics
- RNA, Plant/analysis
- RNA, Plant/genetics
- Transformation, Genetic
- Transgenes/genetics
Collapse
Affiliation(s)
- Wei Chen
- Corteva Agriscience™, Agriculture Division of DowDuPont™, Johnston, IA, USA.
| | - PoHao Wang
- Corteva Agriscience™, Agriculture Division of DowDuPont™, Johnston, IA, USA
| |
Collapse
|
5
|
Dong S, Zhang X, Liu Y, Zhang C, Xie Y, Zhong J, Xu C, Liu X. Establishment of a sandwich enzyme-linked immunosorbent assay for specific detection of Bacillus thuringiensis (Bt) Cry1Ab toxin utilizing a monoclonal antibody produced with a novel hapten designed with molecular model. Anal Bioanal Chem 2017; 409:1985-1994. [PMID: 28078413 DOI: 10.1007/s00216-016-0146-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Revised: 11/28/2016] [Accepted: 12/12/2016] [Indexed: 11/28/2022]
Abstract
Cry1Ab toxin is commonly expressed in genetically modified crops in order to control chewing pests. At present, the detection method with enzyme-linked immunosorbent assay (ELISA) based on monoclonal antibody cannot specifically detect Cry1Ab toxin for Cry1Ab's amino acid sequence and spatial structure are highly similar to Cry1Ac toxin. In this study, based on molecular design, a novel hapten polypeptide was synthesized and conjugated to keyhole limpet hemocyanin (KLH). Then, through animal immunization with this antigen, a monoclonal antibody named 2C12, showing high affinity to Cry1Ab and having no cross reaction with Cry1Ac, was produced. The equilibrium dissociation constant (K D) value of Cry1Ab toxin with MAb 2C12 was 1.947 × 10-8 M. Based on this specific monoclonal antibody, a sandwich enzyme-linked immunosorbent assay (DAS-ELISA) was developed for the specific determination of Cry1Ab toxin and the LOD and LOQ values were determined as 0.47 ± 0.11 and 2.43 ± 0.19 ng mL-1, respectively. The average recoveries of Cry1Ab from spiked rice leaf and rice flour samples ranged from 75 to 115%, with coefficient of variation (CV) less than 8.6% within the quantitation range (2.5-100 ng mL-1), showing good accuracy for the quantitative detection of Cry1Ab toxin in agricultural samples. In conclusion, this study provides a new approach for the production of high specific antibody and the newly developed DAS-ELISA is a useful method for Cry1Ab monitoring in agriculture products. Graphical Abstract Establishment of a DAS-ELISA for the specific detecting of Bacillus thuringiensis (Bt) Cry1Ab toxin.
Collapse
Affiliation(s)
- Sa Dong
- Key Lab of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Key Laboratory of Control Technology and Standard for Agro-product Safety and Quality, Ministry of Agriculture, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, 210014, China.,College of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Xiao Zhang
- Key Lab of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Key Laboratory of Control Technology and Standard for Agro-product Safety and Quality, Ministry of Agriculture, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, 210014, China
| | - Yuan Liu
- Key Lab of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Key Laboratory of Control Technology and Standard for Agro-product Safety and Quality, Ministry of Agriculture, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, 210014, China
| | - Cunzheng Zhang
- Key Lab of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Key Laboratory of Control Technology and Standard for Agro-product Safety and Quality, Ministry of Agriculture, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, 210014, China
| | - Yajing Xie
- Key Lab of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Key Laboratory of Control Technology and Standard for Agro-product Safety and Quality, Ministry of Agriculture, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, 210014, China
| | - Jianfeng Zhong
- Key Lab of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Key Laboratory of Control Technology and Standard for Agro-product Safety and Quality, Ministry of Agriculture, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, 210014, China
| | - Chongxin Xu
- Key Lab of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Key Laboratory of Control Technology and Standard for Agro-product Safety and Quality, Ministry of Agriculture, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, 210014, China
| | - Xianjin Liu
- Key Lab of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Key Laboratory of Control Technology and Standard for Agro-product Safety and Quality, Ministry of Agriculture, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, 210014, China. .,College of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China.
| |
Collapse
|
6
|
Yeaman GR, Paul S, Nahirna I, Wang Y, Deffenbaugh AE, Liu ZL, Glenn KC. Development and Validation of a Fluorescent Multiplexed Immunoassay for Measurement of Transgenic Proteins in Cotton (Gossypium hirsutum). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:5117-5127. [PMID: 27177195 DOI: 10.1021/acs.jafc.6b01441] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
In order to provide farmers with better and more customized alternatives to improve yields, combining multiple genetically modified (GM) traits into a single product (called stacked trait crops) is becoming prevalent. Trait protein expression levels are used to characterize new GM products and establish exposure limits, two important components of safety assessment. Developing a multiplexed immunoassay capable of measuring all trait proteins in the same sample allows for higher sample throughput and savings in both time and expense. Fluorescent (bead-based) multiplexed immunoassays (FMI) have gained wide acceptance in mammalian research and in clinical applications. In order to facilitate the measurement of stacked GM traits, we have developed and validated an FMI assay that can measure five different proteins (β-glucuronidase, neomycin phosphotransferase II, Cry1Ac, Cry2Ab2, and CP4 5-enolpyruvyl-shikimate-3-phosphate synthase) present in cotton leaf from a stacked trait product. Expression levels of the five proteins determined by FMI in cotton leaf tissues have been evaluated relative to expression levels determined by enzyme-linked immunosorbent assays (ELISAs) of the individual proteins and shown to be comparable. The FMI met characterization requirements similar to those used for ELISA. Therefore, it is reasonable to conclude that FMI results are equivalent to those determined by conventional individual ELISAs to measure GM protein expression levels in stacked trait products but with significantly higher throughput, reduced time, and more efficient use of resources.
Collapse
Affiliation(s)
- Grant R Yeaman
- Monsanto Company , 800 North Lindbergh Boulevard, St. Louis, Missouri 63167, United States
| | - Sudakshina Paul
- Monsanto Company , 800 North Lindbergh Boulevard, St. Louis, Missouri 63167, United States
| | - Iryna Nahirna
- Monsanto Company , 800 North Lindbergh Boulevard, St. Louis, Missouri 63167, United States
| | - Yongcheng Wang
- Monsanto Company , 800 North Lindbergh Boulevard, St. Louis, Missouri 63167, United States
| | - Andrew E Deffenbaugh
- Monsanto Company , 800 North Lindbergh Boulevard, St. Louis, Missouri 63167, United States
| | - Zi Lucy Liu
- Monsanto Company , 800 North Lindbergh Boulevard, St. Louis, Missouri 63167, United States
| | - Kevin C Glenn
- Monsanto Company , 800 North Lindbergh Boulevard, St. Louis, Missouri 63167, United States
| |
Collapse
|
7
|
A high-throughput liquid bead array-based screening technology for Bt presence in GMO manipulation. Biosens Bioelectron 2016; 77:702-8. [DOI: 10.1016/j.bios.2015.10.043] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Revised: 10/11/2015] [Accepted: 10/13/2015] [Indexed: 01/01/2023]
|
8
|
Pi L, Li X, Cao Y, Wang C, Pan L, Yang L. Development and application of a multi-targeting reference plasmid as calibrator for analysis of five genetically modified soybean events. Anal Bioanal Chem 2015; 407:2877-86. [PMID: 25673245 DOI: 10.1007/s00216-015-8517-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 01/21/2015] [Accepted: 01/23/2015] [Indexed: 11/25/2022]
Abstract
Reference materials are important in accurate analysis of genetically modified organism (GMO) contents in food/feeds, and development of novel reference plasmid is a new trend in the research of GMO reference materials. Herein, we constructed a novel multi-targeting plasmid, pSOY, which contained seven event-specific sequences of five GM soybeans (MON89788-5', A2704-12-3', A5547-127-3', DP356043-5', DP305423-3', A2704-12-5', and A5547-127-5') and sequence of soybean endogenous reference gene Lectin. We evaluated the specificity, limit of detection and quantification, and applicability of pSOY in both qualitative and quantitative PCR analyses. The limit of detection (LOD) was as low as 20 copies in qualitative PCR, and the limit of quantification (LOQ) in quantitative PCR was 10 copies. In quantitative real-time PCR analysis, the PCR efficiencies of all event-specific and Lectin assays were higher than 90%, and the squared regression coefficients (R(2)) were more than 0.999. The quantification bias varied from 0.21% to 19.29%, and the relative standard deviations were from 1.08% to 9.84% in simulated samples analysis. All the results demonstrated that the developed multi-targeting plasmid, pSOY, was a credible substitute of matrix reference materials, and could be used as a reliable reference calibrator in the identification and quantification of multiple GM soybean events.
Collapse
Affiliation(s)
- Liqun Pi
- Collaborative Innovation Center for Biosafety of GMOs, National Center for the Molecular Characterization of Genetically Modified Organisms, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | | | | | | | | | | |
Collapse
|
9
|
Moon GS, Shin WS. Establishment of quantitative analysis method for genetically modified maize using a reference plasmid and novel primers. Prev Nutr Food Sci 2014; 17:274-9. [PMID: 24471096 PMCID: PMC3866725 DOI: 10.3746/pnf.2012.17.4.274] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2012] [Accepted: 12/05/2012] [Indexed: 11/27/2022] Open
Abstract
For the quantitative analysis of genetically modified (GM) maize in processed foods, primer sets and probes based on the 35S promoter (p35S), nopaline synthase terminator (tNOS), p35S-hsp70 intron, and zSSIIb gene encoding starch synthase II for intrinsic control were designed. Polymerase chain reaction (PCR) products (80~101 bp) were specifically amplified and the primer sets targeting the smaller regions (80 or 81 bp) were more sensitive than those targeting the larger regions (94 or 101 bp). Particularly, the primer set 35F1-R1 for p35S targeting 81 bp of sequence was even more sensitive than that targeting 101 bp of sequence by a 3-log scale. The target DNA fragments were also specifically amplified from all GM labeled food samples except for one item we tested when 35F1-R1 primer set was applied. A reference plasmid pGMmaize (3 kb) including the smaller PCR products for p35S, tNOS, p35S-hsp70 intron, and the zSSIIb gene was constructed for real-time PCR (RT-PCR). The linearity of standard curves was confirmed by using diluents ranging from 2×101~105 copies of pGMmaize and the R2 values ranged from 0.999~1.000. In the RT-PCR, the detection limit using the novel primer/probe sets was 5 pg of genomic DNA from MON810 line indicating that the primer sets targeting the smaller regions (80 or 81 bp) could be used for highly sensitive detection of foreign DNA fragments from GM maize in processed foods.
Collapse
Affiliation(s)
- Gi-Seong Moon
- Department of Biotechnology, Korea National University of Transportation, Chungbuk 368-701, Korea
| | - Weon-Sun Shin
- Department of Food & Nutrition, Hanyang University, Seoul 133-791, Korea
| |
Collapse
|
10
|
Hernandez D, Rodriguez- L, Valdes R, Moran I, Tellez P, Riveron A, Ramos Y, Gomez L, Ayra-Pardo C. Bacillus thuringiensis Vip3Aa1 Expression and Purification from E.
coli to be Determined in Seeds and Leaves of Genetically-Modified Corn Plants. ACTA ACUST UNITED AC 2013. [DOI: 10.3923/ja.2013.153.167] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
11
|
Chen C, Wu J. A fast and sensitive quantitative lateral flow immunoassay for Cry1Ab based on a novel signal amplification conjugate. SENSORS 2012; 12:11684-96. [PMID: 23112677 PMCID: PMC3478804 DOI: 10.3390/s120911684] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2012] [Revised: 08/06/2012] [Accepted: 08/20/2012] [Indexed: 11/30/2022]
Abstract
A novel lateral flow immunoassay (LFIA) signal amplification strategy for the detection of Cry1Ab based on amplification via a polylysine (PL) chain and biotin-streptavidin system (BSAS) is described. In this system, multiple fluorescence dyes (FL) were directly coated on the surface of PL and conjugated with antibody via the BSAS for construction of novel signal amplification (FLPL-BSAS-mAb1) conjugates, in which FL, PL and BSAS were employed to improve the sensitivity of LFIA. Compared with conventional LFIA, the sensitivity of FLPL-BSAS-mAb1-based LFIA was increased by approximately 100-fold. Quantified linearity was achieved in the value range of 0–1,000 pg/mL. The limit of detection (LOD) was reached 10 pg/mL after optimization of reaction conditions. To our knowledge, this represents one of the most sensitive LFIA for Cry1Ab yet reported. Furthermore, the detection time for this method was about 10 min. Therefore, it should be an attractive alternative compared to conventional immunoassays in routine control for Cry1Ab.
Collapse
Affiliation(s)
- Chunxiang Chen
- Department of Control Science and Engineering, Zhejiang University, Hangzhou 310058, China; E-Mail:
| | - Jian Wu
- Department of Biosytems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
- Author to whom correspondence should be addressed; E-Mail: ; Tel./Fax: +86-571-8898-2180
| |
Collapse
|
12
|
Koc A, Cañuelo A, Garcia-Reyes JF, Molina-Diaz A, Trojanowicz M. Low-molecular weight protein profiling of genetically modified maize using fast liquid chromatography electrospray ionization and time-of-flight mass spectrometry. J Sep Sci 2012; 35:1447-61. [DOI: 10.1002/jssc.201200109] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Anna Koc
- Department of Chemistry; University of Warsaw; Warsaw Poland
| | - Ana Cañuelo
- Department of Experimental Biology; University of Jaén; Jaén Spain
| | - Juan F. Garcia-Reyes
- Analytical Chemistry Research Group, Department of Physical and Analytical Chemistry; University of Jaén; Jaén Spain
| | - Antonio Molina-Diaz
- Analytical Chemistry Research Group, Department of Physical and Analytical Chemistry; University of Jaén; Jaén Spain
| | | |
Collapse
|
13
|
Detection of two exogenous genes in transgenic cattle by loop-mediated isothermal amplification. Transgenic Res 2012; 21:1367-73. [PMID: 22684613 DOI: 10.1007/s11248-012-9614-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2011] [Accepted: 03/28/2012] [Indexed: 10/28/2022]
Abstract
Nucleotide-based analytical approaches are indispensable and effective, targeting for the transgenic ingredients in biotechnical products in terms of safety assessment. In this study, a loop-mediated isothermal amplification method was developed for the specific detection of exogenous nucleic acids of hLTF/hLALBA-induced transgenic cattle. The detection limit of the LAMP method was proved to be as low as 10 copies of target molecules in optimized systems, and to be 10-100 times more sensitive than the conventional PCR. Furthermore, fluorescent dye SYBR Green I was used to visualize the color changes of LAMP products by naked eyes in daylight, which resulted in distinct colors between positive and negative reactions. For the detection of transgenes, all the transgenic samples collected from hLTF and hLALBA-induced cattle were amplified by LAMP in 1 h, followed by direct visual SYBR Green I dying or gel electrophoresis. Results showed that transgenic and non-transgenic samples exhibited distinct properties in colors or electrophoresis profiles. Thus, all the results indicated that the LAMP assay was a simple and convenient method for the test of transgenic animals.
Collapse
|
14
|
Székács A, Weiss G, Quist D, Takács E, Darvas B, Meier M, Swain T, Hilbeck A. Inter-laboratory comparison of Cry1Ab toxin quantification inMON 810maize by enzyme-immunoassay. FOOD AGR IMMUNOL 2012. [DOI: 10.1080/09540105.2011.604773] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022] Open
|
15
|
Zhang Y, Lai C, Su R, Zhang M, Xiong Y, Qing H, Deng Y. Quantification of Cry1Ab in genetically modified maize leaves by liquid chromatography multiple reaction monitoring tandem mass spectrometry using 18O stable isotope dilution. Analyst 2012; 137:2699-705. [PMID: 22543512 DOI: 10.1039/c2an35383k] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cry1Ab is one of the most common Bacillus thuringiensis (Bt) proteins in genetically modified crops, which exhibits strong resistance against insect pests. In the present study, a sensitive and precise liquid chromatography stable isotope dilution multiple reaction monitoring tandem mass spectrometry (LC-SID-MRM-MS) assay was developed and validated to quantify the amount of Cry1Ab expression in transgenic maize leaves. The measurement of protein was converted to measurement of unique peptides to Cry1Ab protein. Two peptides unique to Cry1Ab were synthesized and labeled in H(2)(18)O to generate (18)O stable isotope peptides as internal standards. The validated method obtained superior specificity and good linearity. And the inter- and intra-day precision and accuracy for all samples were satisfactory. The results demonstrated Cry1Ab protein was 31.7 ± 4.1 μg g(-1) dry weight in Bt-176 transgenic maize leaves. It proved that the novel LC-SID-MRM-MS method was sensitive and selective to quantify Cry1Ab in the crude extract without time-consuming pre-separation or purification procedures.
Collapse
Affiliation(s)
- Yongqian Zhang
- School of Life Science, Beijing Institute of Technology, Haidian District, PR China
| | | | | | | | | | | | | |
Collapse
|
16
|
|
17
|
|
18
|
Abstract
Recent advances in miniaturization of analytical systems and newly emerging technologies offer platforms with greater automation and multiplexing capabilities than traditional biological binding assays. Multiplexed bioanalytical techniques provide control agencies and food industries with new possibilities for improved, more efficient monitoring of food and environmental contaminants. This review deals with recent developments in planar-array and suspension-array technologies, and their applications in detecting pathogens, food allergens and adulterants, toxins, antibiotics and environmental contaminants.
Collapse
Affiliation(s)
- Sabina Rebe Raz
- RIKILT-Institute of Food Safety, Wageningen UR, P.O. Box 230, 6700 AE Wageningen, The Netherlands
| | - Willem Haasnoot
- RIKILT-Institute of Food Safety, Wageningen UR, P.O. Box 230, 6700 AE Wageningen, The Netherlands
| |
Collapse
|
19
|
Zhu X, Chen L, Shen P, Jia J, Zhang D, Yang L. High sensitive detection of Cry1Ab protein using a quantum dot-based fluorescence-linked immunosorbent assay. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2011; 59:2184-2189. [PMID: 21329353 DOI: 10.1021/jf104140t] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Protein-based detection methods, enzyme-linked immunosorbent assay (ELISA) and lateral flow strip, have been widely used for rapid, spot, and sensitive detection of genetically modified organisms (GMOs). Herein, one novel quantum dot-based fluorescence-linked immunosorbent assay (QD-FLISA) was developed employing quantum dots (QDs) as the fluorescent marker for the detection of the Cry1Ab protein in MON810 maize. The end-point fluorescent detection system was carried out using QDs conjugated with goat anti-rabbit secondary antibody. The newly developed Cry1Ab QD-FLISA assay was highly specific to the Cry1Ab protein and had no cross-reactivity with other target proteins, such as Cry2Ab, Cry1F, and Cry3Bb. The quantified linearity was achieved in the value range of 0.05-5% (w/w). The limits of detection (LOD) and quantification (LOQ) of the QD-FLISA were 2.956 and 9.854 pg/mL, respectively, which were more sensitive than the conventional sandwich ELISA method. All of the results indicated that QD-FLISA was a highly specific and sensitive method for the monitoring of Cry1Ab in GMOs.
Collapse
Affiliation(s)
- Xiaolei Zhu
- National Molecular Characterization Center for Genetically Modified Organisms, School of Life Science and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People's Republic of China
| | | | | | | | | | | |
Collapse
|
20
|
Rebe Raz S, Liu H, Norde W, Bremer MGEG. Food Allergens Profiling with an Imaging Surface Plasmon Resonance-Based Biosensor. Anal Chem 2010; 82:8485-91. [DOI: 10.1021/ac101819g] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Sabina Rebe Raz
- RIKILT−Institute of Food Safety, Wageningen UR, P.O. Box 230, 6700 AE Wageningen, The Netherlands, Laboratory of Physical Chemistry and Colloid Science, Wageningen University, P.O. Box 8038, 6700 EK Wageningen, The Netherlands, and University Medical Center Groningen and University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Hong Liu
- RIKILT−Institute of Food Safety, Wageningen UR, P.O. Box 230, 6700 AE Wageningen, The Netherlands, Laboratory of Physical Chemistry and Colloid Science, Wageningen University, P.O. Box 8038, 6700 EK Wageningen, The Netherlands, and University Medical Center Groningen and University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Willem Norde
- RIKILT−Institute of Food Safety, Wageningen UR, P.O. Box 230, 6700 AE Wageningen, The Netherlands, Laboratory of Physical Chemistry and Colloid Science, Wageningen University, P.O. Box 8038, 6700 EK Wageningen, The Netherlands, and University Medical Center Groningen and University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Maria G. E. G. Bremer
- RIKILT−Institute of Food Safety, Wageningen UR, P.O. Box 230, 6700 AE Wageningen, The Netherlands, Laboratory of Physical Chemistry and Colloid Science, Wageningen University, P.O. Box 8038, 6700 EK Wageningen, The Netherlands, and University Medical Center Groningen and University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| |
Collapse
|
21
|
Multiplexed magnetic microsphere immunoassays for detection of pathogens in foods. ACTA ACUST UNITED AC 2010; 4:73-81. [PMID: 20953301 DOI: 10.1007/s11694-010-9097-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Foodstuffs have traditionally been challenging matrices for conducting immunoassays. Proteins, carbohydrates, and other macromolecules present in food matrices may interfere with both immunoassays and PCR-based tests, and removal of particulate matter may also prove challenging prior to analyses. This has been found true when testing for bacterial contamination of foods using the standard polystyrene microspheres utilized with Luminex flow cytometers. Luminex MagPlex microspheres are encoded with the same dyes as standard xMAP microspheres, but have superparamagnetic properties to aid in preparation of samples in complex matrices. In this work, we present results demonstrating use of MagPlex for sample preparation and identification of bacteria and a toxin spiked into a variety of food samples. Fluorescence-coded MagPlex microsphere sets coated with antibodies for Salmonella, Campylobacter, Escherichia coli, Listeria, and staphylococcal enterotoxin B (SEB) were used to capture these bacteria and toxin from spiked foodstuffs and then evaluated by the Luminex system in a multiplex format; spiked foods included apple juice, green pepper, tomato, ground beef, alfalfa sprouts, milk, lettuce, spinach, and chicken washes. Although MagPlex microspheres facilitated recovery of the microspheres and targets from the complex matrices, assay sensitivity was sometimes inhibited by up to one to three orders of magnitude; for example the detection limits E. coli spiked into apple juice or milk increased 100-fold, from 1000 to 100,000 cfu/mL. Thus, while the magnetic and fluorescent properties of the Luminex MagPlex microspheres allow for rapid, multiplexed testing for bacterial contamination in typically problematic food matrices, our data demonstrate that achieving desired limits of detection is still a challenge.
Collapse
|
22
|
Detection of Cry1Ab toxin in the leaves of MON 810 transgenic maize. Anal Bioanal Chem 2010; 396:2203-11. [PMID: 20091160 DOI: 10.1007/s00216-009-3384-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2009] [Revised: 12/04/2009] [Accepted: 12/04/2009] [Indexed: 10/19/2022]
Abstract
The distribution of Cry1Ab toxin was detected in the leaves of genetically modified maize of genetic event MON 810 by enzyme-linked immunosorbent assay. Cry1Ab toxin contents in the leaves at reproductive (milk, R3) phenological stage were measured to be between 3,878 and 11,148 ng Cry1Ab toxin/g fresh weight. Toxin content was significantly lesser (significant difference (SD) = 1,823 ng Cry1Ab toxin/g fresh leaf weight, p < 0.01) in leaves at the lowest leaf level, than at higher leaf levels, probably due to partial leaf necrotisation. A substantial (up to 22%) plant-to-plant variation in Cry1Ab contents in leaves was observed. When studying toxin distribution within the cross and longitudinal sections of single leaves, lesser variability was detected diagonally, with approximately 20% higher toxin concentrations at or near the leaf vein. More significant variability (SD = 2,220 ng Cry1Ab toxin/g fresh leaf weight, p < 0.01) was seen lengthwise along the leaf, starting at 1,892 ng Cry1Ab toxin/g fresh weight at the sheath and rising to maximum concentration at the middle of the lamella. Cry1Ab toxin content may suffer significant (SD = 2,230 ng Cry1Ab toxin/g fresh leaf weight, p < 0.01) decreases in the leaf due to necrotisation. The results indicate that the longitudinal dimension of the leaf has more significance for sampling purposes than the diagonal position.
Collapse
|
23
|
TAKABATAKE R, FUTO S, MINEGISHI Y, WATAI M, SAWADA C, NAKAMURA K, AKIYAMA H, TESHIMA R, FURUI S, HINO A, KITTA K. Evaluation of Quantitative PCR Methods for Genetically Modified Maize (MON863, NK603, TC1507 and T25). FOOD SCIENCE AND TECHNOLOGY RESEARCH 2010. [DOI: 10.3136/fstr.16.421] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
24
|
Arvanitoyannis IS, Vlachos A. Maize authentication: quality control methods and multivariate analysis (chemometrics). Crit Rev Food Sci Nutr 2009; 49:501-37. [PMID: 19484633 DOI: 10.1080/10408390802068140] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Maize is one of the most important cereals because of its numerous applications in processed foods where it is the major or minor component. Apart from maize authenticity issues related to cultivar and geographical origin (national and/or international level), there is another important issue related to genetically modified maize. Various objective parameters such as fatty acids, phenolic compounds, pigments, heavy metals were determined in conjunction with subjective (sensory analysis) in order to identify the maize authenticity. However, the implementation of multivariate analysis (principal component analysis, cluster analysis, discriminant analysis, canonical analysis) is of great importance toward reaching valid conclusions on authenticity issues. This review summarized the most important finding of both objective and subjective evaluations of maize in five comprehensive tables in conjunction with the discussion.
Collapse
Affiliation(s)
- Ioannis S Arvanitoyannis
- School of Agricultural Sciences, Department of Agriculture Animal Production and Aquatic Environment, University of Thessaly, Hellas, Greece.
| | | |
Collapse
|
25
|
Holst-Jensen A. Testing for genetically modified organisms (GMOs): Past, present and future perspectives. Biotechnol Adv 2009; 27:1071-1082. [PMID: 19477261 DOI: 10.1016/j.biotechadv.2009.05.025] [Citation(s) in RCA: 120] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
This paper presents an overview of GMO testing methodologies and how these have evolved and may evolve in the next decade. Challenges and limitations for the application of the test methods as well as to the interpretation of results produced with the methods are highlighted and discussed, bearing in mind the various interests and competences of the involved stakeholders. To better understand the suitability and limitations of detection methodologies the evolution of transformation processes for creation of GMOs is briefly reviewed.
Collapse
Affiliation(s)
- Arne Holst-Jensen
- Department of Feed and Food Safety, National Veterinary Institute, Ullevaalsveien 68, P.O. Box 750 Sentrum, 0106 Oslo, Norway.
| |
Collapse
|
26
|
New trends in bioanalytical tools for the detection of genetically modified organisms: an update. Anal Bioanal Chem 2008; 392:355-67. [DOI: 10.1007/s00216-008-2193-7] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2008] [Revised: 05/15/2008] [Accepted: 05/16/2008] [Indexed: 10/22/2022]
|
27
|
Xue CY, Yang KL. Dark-to-bright optical responses of liquid crystals supported on solid surfaces decorated with proteins. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2008; 24:563-7. [PMID: 18095723 DOI: 10.1021/la7026626] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Protein assays are critical analytical tools performed in various biochemical laboratories to quantify the concentration of proteins. In this study, we report the optical responses of a thin layer of liquid crystals supported on glass slides decorated with proteins and the utility of this phenomenon as a new "all-or-nothing" type of protein assay. It was found that the orientations of liquid crystals are very sensitive to the concentration of protein solution applied to the surface. When the protein concentration exceeds a critical value (IgG 5.0 microg/mL, BSA 6.0 microg/mL, FTIC-anti-biotin 0.40 microg/mL, and FITC-anti-IgG 0.37 microg/mL), the thin layer of liquid crystals gives a very sharp dark-to-bright optical response within a small concentration range. This characteristic is not observed in any traditional protein assays, which are based on the adsorption of UV or visible light. The optical response is also very precise and reproducible. It is not affected by the thickness of the liquid crystal cell or the amount of organosilanes coated on the glass slides. The liquid crystal-based protein assay may be very useful for screening purposes, especially when a simple positive or negative answer is desired.
Collapse
Affiliation(s)
- Chang-Ying Xue
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117576
| | | |
Collapse
|
28
|
Giovannoli C, Anfossi L, Baggiani C, Giraudi G. Binding properties of a monoclonal antibody against the Cry1Ab from Bacillus Thuringensis for the development of a capillary electrophoresis competitive immunoassay. Anal Bioanal Chem 2008; 392:385-93. [DOI: 10.1007/s00216-007-1811-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2007] [Revised: 12/11/2007] [Accepted: 12/12/2007] [Indexed: 11/28/2022]
|
29
|
Paul V, Steinke K, Meyer HHD. Development and validation of a sensitive enzyme immunoassay for surveillance of Cry1Ab toxin in bovine blood plasma of cows fed Bt-maize (MON810). Anal Chim Acta 2007; 607:106-13. [PMID: 18155416 DOI: 10.1016/j.aca.2007.11.022] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2007] [Revised: 11/12/2007] [Accepted: 11/12/2007] [Indexed: 10/22/2022]
Abstract
The increasing global adoption of genetically modified (GM) plant derivatives in animal feed has provoked a strong demand for an appropriate detection method to evaluate the existence of transgenic protein in animal tissues and animal by-products derived from GM plant fed animals. A highly specific and sensitive sandwich enzyme immunoassay for the surveillance of transgenic Cry1Ab protein from Bt-maize in the blood plasma of cows fed on Bt-maize was developed and validated according to the criteria of EU-Decision 2002/657/EC. The sandwich assay is based on immuno-affinity purified polyclonal antibody raised against Cry1Ab protein in rabbits. Native and biotinylated forms of this antibody served as capture antibody and detection antibody for the ELISA, respectively. Streptavidin-horseradish peroxidase conjugate and TMB substrate provided the means for enzymatic colour development. The immunoassay allowed Cry1Ab protein determination in bovine blood plasma in an analytical range of 0.4-100 ng mL(-1) with a decision limit (CCalpha) of 1.5 ng mL(-1) and detection capability (CCbeta) of 2.3 ng mL(-1). Recoveries ranged from 89 to 106% (mean value of 98%) in spiked plasma. In total, 20 plasma samples from cows (n=7) fed non-transgenic maize and 24 samples from cows (n=8) fed transgenic maize (collected before and, after 1 and 2 months of feeding) were investigated for the presence of the Cry1Ab protein. There was no difference amongst both groups (all the samples were below 1.5 ng mL(-1); CCalpha). No plasma sample was positive for the presence of the Cry1Ab protein at CCalpha and CCbeta of the assay.
Collapse
Affiliation(s)
- Vijay Paul
- Physiology Weihenstephan, Technical University Munich, Weihenstephaner Berg 3, 85350 Freising, Germany.
| | | | | |
Collapse
|