1
|
Chen A. Enhancing freeze-thaw tolerance in baker's yeast: strategies and perspectives. Food Sci Biotechnol 2024; 33:2953-2969. [PMID: 39220313 PMCID: PMC11364746 DOI: 10.1007/s10068-024-01637-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/21/2024] [Accepted: 06/07/2024] [Indexed: 09/04/2024] Open
Abstract
Frozen dough technology is important in modern bakery operations, facilitating the transportation of dough at low temperatures to downstream sales points. However, the freeze-thaw process imposes significant stress on baker's yeast, resulting in diminished viability and fermentation capacity. Understanding the mechanisms underlying freeze-thaw stress is essential for mitigating its adverse effects on yeast performance. This review delves into the intricate mechanisms underlying freeze-thaw stress, focusing specifically on Saccharomyces cerevisiae, the primary yeast used in baking, and presents a wide range of biotechnological approaches to enhance freeze-thaw resistance in S. cerevisiae. Strategies include manipulating intracellular metabolites, altering membrane composition, managing antioxidant defenses, mediating aquaporin expression, and employing adaptive evolutionary and breeding techniques. Addressing challenges and strategies associated with freeze-thaw stress, this review provides valuable insights for future research endeavors, aiming to enhance the freeze-thaw tolerance of baker's yeast and contribute to the advancement of bakery science.
Collapse
Affiliation(s)
- Anqi Chen
- Science Center for Future Foods, Jiangnan University, Wuxi, 214122 China
| |
Collapse
|
2
|
Ekpo MD, Xie J, Hu Y, Liu X, Liu F, Xiang J, Zhao R, Wang B, Tan S. Antifreeze Proteins: Novel Applications and Navigation towards Their Clinical Application in Cryobanking. Int J Mol Sci 2022; 23:2639. [PMID: 35269780 PMCID: PMC8910022 DOI: 10.3390/ijms23052639] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 02/16/2022] [Accepted: 02/25/2022] [Indexed: 12/04/2022] Open
Abstract
Antifreeze proteins (AFPs) or thermal hysteresis (TH) proteins are biomolecular gifts of nature to sustain life in extremely cold environments. This family of peptides, glycopeptides and proteins produced by diverse organisms including bacteria, yeast, insects and fish act by non-colligatively depressing the freezing temperature of the water below its melting point in a process termed thermal hysteresis which is then responsible for ice crystal equilibrium and inhibition of ice recrystallisation; the major cause of cell dehydration, membrane rupture and subsequent cryodamage. Scientists on the other hand have been exploring various substances as cryoprotectants. Some of the cryoprotectants in use include trehalose, dimethyl sulfoxide (DMSO), ethylene glycol (EG), sucrose, propylene glycol (PG) and glycerol but their extensive application is limited mostly by toxicity, thus fueling the quest for better cryoprotectants. Hence, extracting or synthesizing antifreeze protein and testing their cryoprotective activity has become a popular topic among researchers. Research concerning AFPs encompasses lots of effort ranging from understanding their sources and mechanism of action, extraction and purification/synthesis to structural elucidation with the aim of achieving better outcomes in cryopreservation. This review explores the potential clinical application of AFPs in the cryopreservation of different cells, tissues and organs. Here, we discuss novel approaches, identify research gaps and propose future research directions in the application of AFPs based on recent studies with the aim of achieving successful clinical and commercial use of AFPs in the future.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Songwen Tan
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China; (M.D.E.); (J.X.); (Y.H.); (X.L.); (F.L.); (J.X.); (R.Z.); (B.W.)
| |
Collapse
|
3
|
Cryoprotective effect of wheat gluten enzymatic hydrolysate on fermentation properties of frozen dough. J Cereal Sci 2022. [DOI: 10.1016/j.jcs.2022.103423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
4
|
Extraction of antifreeze proteins from cold acclimated leaves of Drimys angustifolia and their application to star fruit (Averrhoa carambola) freezing. Food Chem 2019; 289:65-73. [DOI: 10.1016/j.foodchem.2019.03.055] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 03/07/2019] [Accepted: 03/11/2019] [Indexed: 12/14/2022]
|
5
|
Huang Z, Zhao Y, Zhu K, Guo X, Peng W, Zhou H. Effect of barley β‐glucan on water redistribution and thermal properties of dough. Int J Food Sci Technol 2018. [DOI: 10.1111/ijfs.14033] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Ze‐Hua Huang
- State Key Laboratory of Food Science and Technology School of Food Science and Technology Jiangnan University 1800 Lihu Avenue Wuxi Jiangsu 214122 China
| | - Yang Zhao
- State Key Laboratory of Food Science and Technology School of Food Science and Technology Jiangnan University 1800 Lihu Avenue Wuxi Jiangsu 214122 China
| | - Ke‐Xue Zhu
- State Key Laboratory of Food Science and Technology School of Food Science and Technology Jiangnan University 1800 Lihu Avenue Wuxi Jiangsu 214122 China
| | - Xiao‐Na Guo
- State Key Laboratory of Food Science and Technology School of Food Science and Technology Jiangnan University 1800 Lihu Avenue Wuxi Jiangsu 214122 China
| | - Wei Peng
- State Key Laboratory of Food Science and Technology School of Food Science and Technology Jiangnan University 1800 Lihu Avenue Wuxi Jiangsu 214122 China
| | - Hui‐Ming Zhou
- State Key Laboratory of Food Science and Technology School of Food Science and Technology Jiangnan University 1800 Lihu Avenue Wuxi Jiangsu 214122 China
| |
Collapse
|
6
|
Liu M, Liang Y, Zhang H, Wu G, Wang L, Qian H, Qi X. Production of a recombinant carrot antifreeze protein by Pichia pastoris GS115 and its cryoprotective effects on frozen dough properties and bread quality. Lebensm Wiss Technol 2018. [DOI: 10.1016/j.lwt.2018.05.074] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
7
|
Affiliation(s)
- Khairunizah Hazila Khalid
- Cereal Science Graduate Program; Department of Plant Science; North Dakota State University; Fargo ND USA
| | - Frank Manthey
- Cereal Science Graduate Program; Department of Plant Science; North Dakota State University; Fargo ND USA
| | - Senay Simsek
- Cereal Science Graduate Program; Department of Plant Science; North Dakota State University; Fargo ND USA
| |
Collapse
|
8
|
Sitthiya K, Devkota L, Sadiq MB, Anal AK. Extraction and characterization of proteins from banana ( Musa Sapientum L) flower and evaluation of antimicrobial activities. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2018; 55:658-666. [PMID: 29391630 PMCID: PMC5785391 DOI: 10.1007/s13197-017-2975-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 11/18/2017] [Accepted: 11/22/2017] [Indexed: 12/20/2022]
Abstract
Ultrasonic assisted alkaline extraction of protein from banana flower was optimized using response surface methodology. The extracted proteins were characterized by Fourier transform infrared spectroscopy and molecular weight distribution was determined by gel electrophoresis. The maximum protein yield of 252.25 mg/g was obtained under optimized extraction conditions: temperature 50 °C, 30 min extraction time and 1 M NaOH concentration. The alkaline extraction produced a significantly high protein yield compared to enzymatic extraction of banana flower. Chemical finger printing of proteins showed the presence of tyrosine, tryptophan and amide bonds in extracted protein. Alkaline and pepsin assisted extracted banana flower proteins showed characteristic bands at 40 and 10 kDA, respectively. The extracted proteins showed antibacterial effects against both gram positive and gram negative bacteria. The high protein content and antimicrobial activity indicate the potential applications of banana flower in the food and feed industry.
Collapse
Affiliation(s)
- Kewalee Sitthiya
- Food Engineering and Bioprocess Technology, Department of Food, Agriculture and Bioresources, Asian Institute of Technology, Khlong Luang, Pathum Thani 12120 Thailand
| | - Lavaraj Devkota
- Food Engineering and Bioprocess Technology, Department of Food, Agriculture and Bioresources, Asian Institute of Technology, Khlong Luang, Pathum Thani 12120 Thailand
| | - Muhammad Bilal Sadiq
- Food Engineering and Bioprocess Technology, Department of Food, Agriculture and Bioresources, Asian Institute of Technology, Khlong Luang, Pathum Thani 12120 Thailand
| | - Anil Kumar Anal
- Food Engineering and Bioprocess Technology, Department of Food, Agriculture and Bioresources, Asian Institute of Technology, Khlong Luang, Pathum Thani 12120 Thailand
| |
Collapse
|
9
|
Bredow M, Vanderbeld B, Walker VK. Knockdown of Ice-Binding Proteins in Brachypodium distachyon Demonstrates Their Role in Freeze Protection. PLoS One 2016; 11:e0167941. [PMID: 27959937 PMCID: PMC5154533 DOI: 10.1371/journal.pone.0167941] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 11/22/2016] [Indexed: 11/18/2022] Open
Abstract
Sub-zero temperatures pose a major threat to the survival of cold-climate perennials. Some of these freeze-tolerant plants produce ice-binding proteins (IBPs) that offer frost protection by restricting ice crystal growth and preventing expansion-induced lysis of the plasma membranes. Despite the extensive in vitro characterization of such proteins, the importance of IBPs in the freezing stress response has not been investigated. Using the freeze-tolerant grass and model crop, Brachypodium distachyon, we characterized putative IBPs (BdIRIs) and generated the first 'IBP-knockdowns'. Seven IBP sequences were identified and expressed in Escherichia coli, with all of the recombinant proteins demonstrating moderate to high levels of ice-recrystallization inhibition (IRI) activity, low levels of thermal hysteresis (TH) activity (0.03-0.09°C at 1 mg/mL) and apparent adsorption to ice primary prism planes. Following plant cold acclimation, IBPs purified from wild-type B. distachyon cell lysates similarly showed high levels of IRI activity, hexagonal ice-shaping, and low levels of TH activity (0.15°C at 0.5 mg/mL total protein). The transfer of a microRNA construct to wild-type plants resulted in the attenuation of IBP activity. The resulting knockdown mutant plants had reduced ability to restrict ice-crystal growth and a 63% reduction in TH activity. Additionally, all transgenic lines were significantly more vulnerable to electrolyte leakage after freezing to -10°C, showing a 13-22% increase in released ions compared to wild-type. IBP-knockdown lines also demonstrated a significant decrease in viability following freezing to -8°C, with some lines showing only two-thirds the survival seen in control lines. These results underscore the vital role IBPs play in the development of a freeze-tolerant phenotype and suggests that expression of these proteins in frost-susceptible plants could be valuable for the production of more winter-hardy crops.
Collapse
Affiliation(s)
- Melissa Bredow
- Department of Biology, Queen’s University, Kingston, ON, Canada
| | | | - Virginia K. Walker
- Department of Biology, Queen’s University, Kingston, ON, Canada
- Department of Biomedical and Molecular Sciences, and School of Environmental Studies, Queen’s University, Kingston, ON, Canada
| |
Collapse
|
10
|
Purification and Identification of Antifreeze Protein From Cold-Acclimated Oat (Avena sativa L.) and the Cryoprotective Activities in Ice Cream. FOOD BIOPROCESS TECH 2016. [DOI: 10.1007/s11947-016-1750-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
11
|
Wu J, Rong Y, Wang Z, Zhou Y, Wang S, Zhao B. Isolation and characterisation of sericin antifreeze peptides and molecular dynamics modelling of their ice-binding interaction. Food Chem 2015; 174:621-9. [DOI: 10.1016/j.foodchem.2014.11.100] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Revised: 10/21/2014] [Accepted: 11/17/2014] [Indexed: 02/03/2023]
|
12
|
PROVESI JG, AMANTE ER. Revisão: Proteínas anticongelantes – uma tecnologia emergente para o congelamento de alimentos. BRAZILIAN JOURNAL OF FOOD TECHNOLOGY 2015. [DOI: 10.1590/1981-6723.7714] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Um dos métodos mais tradicionais na conservação de alimentos, o congelamento também pode alterar de forma significativa as características do produto. Grandes cristais de gelo provocam alteração na textura e/ou danos a membranas e componentes celulares. As técnicas de congelamento rápido formam cristais de gelo menores do que o processo lento, porém as flutuações de temperatura durante a distribuição e transporte podem promover o crescimento dos cristais. Esse processo é conhecido como recristalização e é uma barreira na utilização do congelamento como método de conservação em muitos casos. O uso de crioprotetores tradicionais, como a sacarose, é uma alternativa limitada, uma vez que concentrações elevadas são requeridas. Na década de 1970, foi descrita em peixes de águas frias uma classe de proteínas que, em baixa concentração, pode interagir e influenciar o crescimento do cristal de gelo. Elas foram chamadas de proteínas anticongelantes (PACs), sendo encontradas também em plantas, animais e micro-organismos ambientados a baixas temperaturas. Essas proteínas podem intervir no processo de formação do núcleo inicial do gelo, reduzir o ponto de congelamento da água, ou, ainda, inibir a recristalização, principalmente para PACs de vegetais. Há diversos trabalhos publicados e algumas patentes registradas para o uso de PACs em diversos alimentos, como lácteos, carnes, massas, frutas e hortaliças, conservando de melhor forma as características originais do alimento. Atualmente, o custo ainda é uma barreira para utilização comercial das PACs. Contudo, a descoberta de novas fontes pode reduzir seu custo e tornar essas proteínas uma ferramenta efetiva na manutenção da textura de alimentos congelados. Baseada em trabalhos que avaliaram aspectos químicos das PACs e exemplos de sua aplicação, esta revisão tem como objetivo principal apresentar as características gerais das PACs e discutir sobre sua utilização.
Collapse
|
13
|
Middleton AJ, Vanderbeld B, Bredow M, Tomalty H, Davies PL, Walker VK. Isolation and characterization of ice-binding proteins from higher plants. Methods Mol Biol 2015; 1166:255-77. [PMID: 24852641 DOI: 10.1007/978-1-4939-0844-8_19] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
The characterization of ice-binding proteins from plants can involve many techniques, only a few of which are presented here. Chief among these methods are tests for ice recrystallization inhibition activity. Two distinct procedures are described; neither is normally used for precise quantitative assays. Thermal hysteresis assays are used for quantitative studies but are also useful for ice crystal morphologies, which are important for the understanding of ice-plane binding. Once the sequence of interest is cloned, recombinant expression, necessary to verify ice-binding protein identity can present challenges, and a strategy for recovery of soluble, active protein is described. Lastly, verification of function in planta borrows from standard protocols, but with an additional screen applicable to ice-binding proteins. Here we have attempted to assist researchers wishing to isolate and characterize ice-binding proteins from plants with a few methods critical to success.
Collapse
Affiliation(s)
- Adam J Middleton
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada, K7L 3N6
| | | | | | | | | | | |
Collapse
|
14
|
Ding X, Zhang H, Chen H, Wang L, Qian H, Qi X. Extraction, purification and identification of antifreeze proteins from cold acclimated malting barley (Hordeum vulgare L.). Food Chem 2014; 175:74-81. [PMID: 25577053 DOI: 10.1016/j.foodchem.2014.11.027] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2014] [Revised: 10/08/2014] [Accepted: 11/03/2014] [Indexed: 11/26/2022]
Abstract
Antifreeze proteins from cold-acclimated malting barley were extracted by infiltration-centrifugation. The infiltration time was optimised, and its extraction effect was evaluated. The effect of cold acclimation on the accumulation of barley antifreeze proteins (BaAFPs) was assessed by comparing the thermal hysteresis activities (THA) of proteins extracted from both cold acclimated and non-cold acclimated barley grain. Ultra-filtration, ammonium precipitation and column chromatography were used successively to purify the BaAFPs, and MALDI-TOF-MS/MS was used for protein identification. The results showed that infiltration-centrifugation was more targeted than the traditional method, and 10h was the optimal infiltration time. THA was observed only after cold acclimation implied that AFPs only began to accumulate after cold acclimation. After purification, BaAFP-I was obtained at an electrophoresis level and its THA was 1.04°C (18.0 mg ml(-1)). The mass fingerprinting and sequencing results indicated the homology of the BaAFP-I to alpha-amylase inhibitor BDAI-1 (Hordeum vulgare).
Collapse
Affiliation(s)
- Xiangli Ding
- State Key Laboratory of Food Science and Technology & School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, PR China
| | - Hui Zhang
- State Key Laboratory of Food Science and Technology & School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, PR China.
| | - Haiying Chen
- Jiangsu Key Laboratory of Advanced Food Manufacturing Equipment & Technology & School of Mechanical Engineering, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, PR China
| | - Li Wang
- State Key Laboratory of Food Science and Technology & School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, PR China
| | - Haifeng Qian
- State Key Laboratory of Food Science and Technology & School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, PR China
| | - Xiguang Qi
- State Key Laboratory of Food Science and Technology & School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, PR China
| |
Collapse
|
15
|
Wilson SL, Voordouw G, Walker VK. Towards the selection of a produced water enrichment for biological gas hydrate inhibitors. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2014; 21:10254-10261. [PMID: 24819435 DOI: 10.1007/s11356-014-2912-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2013] [Accepted: 04/14/2014] [Indexed: 06/03/2023]
Abstract
Economic concerns associated with the recovery of non-conventional hydrocarbon reserves include unexpected ice as well as ice-like gas hydrate formation. Antifreeze proteins (AFPs) inhibit ice growth, and experiments with fish, plant, and insect AFPs have shown promise of effective gas hydrate inhibition in lab-scale experiments. If produced on an industrial scale, AFPs could provide a more environmentally friendly alternative to kinetic inhibitors, but a large-scale production of these AFPs is not currently feasible. We believe that these difficulties could be surmounted by the production of microbial AFPs, but to date, only a few such proteins have been identified and purified, and none of these are associated with hydrocarbon reserves. Here, we have used ice-affinity and freeze-thaw stress to select microbes derived from oil and gas formation water, or produced water, as a source of anaerobic microbial communities. Ice-affinity successfully incorporated anaerobic bacteria under aerobic conditions, and the mixed culture had ice-associating properties. Under these conditions, ice-affinity selection does not result in cultivatable isolates, but similar, cultivable microbes were obtained following freeze-thaw selection under anaerobic conditions. Since these mixed cultures inhibited the growth of ice crystals, they also have the potential to inhibit hydrate growth. Overall, freeze-thaw selection provides a promising first step towards the isolation of microbes capable of the inhibition of ice and gas hydrate growth, for possible application for energy exploration and recovery at high-latitudes and in-deep, cold waters.
Collapse
Affiliation(s)
- Sandra L Wilson
- Department of Biology, Queen's University, Kingston, Ontario, K7L 3N6, Canada,
| | | | | |
Collapse
|
16
|
Deng LQ, Yu HQ, Liu YP, Jiao PP, Zhou SF, Zhang SZ, Li WC, Fu FL. Heterologous expression of antifreeze protein gene AnAFP from Ammopiptanthus nanus enhances cold tolerance in Escherichia coli and tobacco. Gene 2014; 539:132-40. [PMID: 24502990 DOI: 10.1016/j.gene.2014.01.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2013] [Revised: 01/02/2014] [Accepted: 01/03/2014] [Indexed: 11/23/2022]
Abstract
Antifreeze proteins are a class of polypeptides produced by certain animals, plants, fungi and bacteria that permit their survival under the subzero environments. Ammopiptanthus nanus is the unique evergreen broadleaf bush endemic to the Mid-Asia deserts. It survives at the west edge of the Tarim Basin from the disappearance of the ancient Mediterranean in the Tertiary Period. Its distribution region is characterized by the arid climate and extreme temperatures, where the extreme temperatures range from -30 °C to 40 °C. In the present study, the antifreeze protein gene AnAFP of A. nanus was used to transform Escherichia coli and tobacco, after bioinformatics analysis for its possible function. The transformed E. coli strain expressed the heterologous AnAFP gene under the induction of isopropyl β-D-thiogalactopyranoside, and demonstrated significant enhancement of cold tolerance. The transformed tobacco lines expressed the heterologous AnAFP gene in response to cold stress, and showed a less change of relative electrical conductivity under cold stress, and a less wilting phenotype after 16 h of -3 °C cold stress and thawing for 1h than the untransformed wild-type plants. All these results imply the potential value of the AnAFP gene to be used in genetic modification of commercially important crops for improvement of cold tolerance.
Collapse
Affiliation(s)
- Long-Qun Deng
- Maize Research Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Hao-Qiang Yu
- Maize Research Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Yan-Ping Liu
- Faculty of Plant Science, Tarim University, Alar, Xinjiang 843300, PR China
| | - Pei-Pei Jiao
- Faculty of Plant Science, Tarim University, Alar, Xinjiang 843300, PR China
| | - Shu-Feng Zhou
- Maize Research Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Su-Zhi Zhang
- Maize Research Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Wan-Chen Li
- Maize Research Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China.
| | - Feng-Ling Fu
- Maize Research Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China.
| |
Collapse
|
17
|
Extraction of Carrot (Daucus carota) Antifreeze Proteins and Evaluation of Their Effects on Frozen White Salted Noodles. FOOD BIOPROCESS TECH 2013. [DOI: 10.1007/s11947-013-1101-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
18
|
A novel function – Thermal protective properties of an antifreeze protein from the summer desert beetle Microdera punctipennis. Cryobiology 2013. [DOI: 10.1016/j.cryobiol.2012.11.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
19
|
|
20
|
Zhang C, Ma Y, Guo K, Zhao X. High-pressure homogenization lowers water vapor permeability of soybean protein isolate-beeswax films. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2012; 60:2219-2223. [PMID: 22324505 DOI: 10.1021/jf2035109] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Soybean-protein isolate (SPI) has excellent film-forming capacity. However, the water vapor permeability of SPI film is high, which will cause the moisture lose of packaged products. The effect of high-pressure homogenization (HPH) on the water vapor permeability of SPI-beeswax films was evaluated. The HPH was effective at lowering the water vapor permeability of SPI-beeswax films to about 50% of the control. The HPH reduced the particle size of films and made their matrix more compact. The HPH improved the hydrophobicity of SPI-beeswax films. For the first time, we proved that the HPH improved the bound-beeswax content in SPI-beeswax films. The bound beeswax was effective at lowering the water vapor permeability of films rather than the free beeswax in the film matrix. In summary, the HPH lowered water vapor permeability of SPI-beeswax films by reducing their particle size and raising their hydrophobicity and bound-beeswax content.
Collapse
Affiliation(s)
- Chao Zhang
- Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, People's Republic of China.
| | | | | | | |
Collapse
|
21
|
Xu HN. An aqueous anonic/nonionic surfactant two-phase system in the presence of salt. 2. Partitioning of ice structuring proteins. RSC Adv 2012. [DOI: 10.1039/c2ra21797j] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
|
22
|
Lin FH, Davies PL, Graham LA. The Thr- and Ala-rich hyperactive antifreeze protein from inchworm folds as a flat silk-like β-helix. Biochemistry 2011; 50:4467-78. [PMID: 21486083 DOI: 10.1021/bi2003108] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Inchworm larvae of the pale beauty geometer moth, Campaea perlata, exhibit strong (6.4 °C) freezing point depression activity, indicating the presence of hyperactive antifreeze proteins (AFPs). We have purified two novel Thr- and Ala-rich AFPs from the larvae as small (∼3.5 kDa) and large (∼8.3 kDa) variants and have cloned the cDNA sequences encoding both. They have no homology to known sequences in current BLAST databases. However, these proteins and the newly characterized AFP from the Rhagium inquisitor beetle both contain stretches rich in alternating Thr and Ala residues. On the basis of these repeats, as well as the discontinuities between them, a detailed structural model is proposed for the 8.3 kDa variant. This 88-residue protein is organized into an extended parallel-stranded β-helix with seven strands connected by classic β-turns. The alternating β-strands form two β-sheets with a thin core composed of interdigitating Ala and Ser residues, similar to the thin hydrophobic core proposed for some silks. The putative ice-binding face of the protein has a 4 × 5 regular array of Thr residues and is remarkably flat. In this regard, it resembles the nonhomologous Thr-rich AFPs from other moths and some beetles, which contain two longer rows of Thr in contrast to the five shorter rows in the inchworm protein. Like that of some other hyperactive AFPs, the spacing between these ice-binding Thr residues is a close match to the spacing of oxygen atoms on several planes of ice.
Collapse
Affiliation(s)
- Feng-Hsu Lin
- Department of Biochemistry, Queen's University, Kingston, Ontario, Canada
| | | | | |
Collapse
|
23
|
Responses of Living Organisms to Freezing and Drying: Potential Applications in Food Technology. ACTA ACUST UNITED AC 2010. [DOI: 10.1007/978-1-4419-7475-4_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|