1
|
Liang TX, Pan LY, Long P, Lin Y, Li LQ, Yu YH, Liu X, Yu X, Liu F, Li Y, Jin MY, Yan JK. Ultrasonic treatment affects the macromolecular, conformational, structural and rheological properties of curdlan in different solvents. ULTRASONICS SONOCHEMISTRY 2025; 115:107289. [PMID: 40020276 PMCID: PMC11910685 DOI: 10.1016/j.ultsonch.2025.107289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 02/15/2025] [Accepted: 02/23/2025] [Indexed: 03/03/2025]
Abstract
Curdlan is a microbial extracellular polysaccharide composed of β-(1 → 3)-glycosidic linkages, which exhibits poor water solubility at room temperature due to its formation of crystalline regions through intra- and inter-molecular hydrogen bonding interactions. The chain conformations of curdlan can be modified by different solvents. Thus, this study examined the effects of ultrasonication on the macromolecular, structural, and rheological characteristics of curdlan in three different solvents (0.1 M NaOH, DMSO, and 0.1 M alkali-neutralization (AN)). The results showed that the water solubility of curdlan treated with ultrasonic for 60 min in DMSO, NaOH and AN condition cexhibited 16.26 ± 0.46 %, 13.62 ± 0.23 %, and 15.37 ± 0.61 %, respectively, while their molecular weight values were 10.53 kDa, 19.27 kDa and 17.25 kDa, respectively. This phenomenon indicated that curdlan preferentially dissolved and was susceptible to ultrasonic degradation in DMSO than that in other two solvents, thus enhancing its water solubility. After ultrasonic treatment, the conformation of curdlan in DMSO transformed from flexible chain to irregular helices due to the breaking of both inter- and intra-molecular hydrogen bonds, while there was no significant change in three-helix conformation of curdlan in the other two solvents, implying that curdlan with a flexible chain is more susceptible to degrade by ultrasonic than in rigid rod. Additionally, ultrasonic treatment resulted in decreased rheological properties of curdlan. Overall, this study will offer a theoretical foundation for the ultrasonic modification of curdlan in different solvents, broadening its potential applications in the food industry and biomedicine.
Collapse
Affiliation(s)
- Tong-Xin Liang
- Dongguan Key Laboratory of Typical Food Precision Design, China National Light Industry Key Laboratory of Healthy Food Development and Nutrition Regulation, School of Life and Health Technology, Dongguan University of Technology, Dongguan 523808, China
| | - Le-Yi Pan
- Dongguan Key Laboratory of Typical Food Precision Design, China National Light Industry Key Laboratory of Healthy Food Development and Nutrition Regulation, School of Life and Health Technology, Dongguan University of Technology, Dongguan 523808, China
| | - Peiwen Long
- Dongguan Key Laboratory of Typical Food Precision Design, China National Light Industry Key Laboratory of Healthy Food Development and Nutrition Regulation, School of Life and Health Technology, Dongguan University of Technology, Dongguan 523808, China
| | - Yixin Lin
- Dongguan Key Laboratory of Typical Food Precision Design, China National Light Industry Key Laboratory of Healthy Food Development and Nutrition Regulation, School of Life and Health Technology, Dongguan University of Technology, Dongguan 523808, China
| | - Long-Qing Li
- Dongguan Key Laboratory of Typical Food Precision Design, China National Light Industry Key Laboratory of Healthy Food Development and Nutrition Regulation, School of Life and Health Technology, Dongguan University of Technology, Dongguan 523808, China
| | - Ya-Hui Yu
- Dongguan Key Laboratory of Typical Food Precision Design, China National Light Industry Key Laboratory of Healthy Food Development and Nutrition Regulation, School of Life and Health Technology, Dongguan University of Technology, Dongguan 523808, China
| | - Xiaozhen Liu
- Dongguan Key Laboratory of Typical Food Precision Design, China National Light Industry Key Laboratory of Healthy Food Development and Nutrition Regulation, School of Life and Health Technology, Dongguan University of Technology, Dongguan 523808, China
| | - Xiangying Yu
- Dongguan Key Laboratory of Typical Food Precision Design, China National Light Industry Key Laboratory of Healthy Food Development and Nutrition Regulation, School of Life and Health Technology, Dongguan University of Technology, Dongguan 523808, China
| | - Fengyuan Liu
- Dongguan Key Laboratory of Typical Food Precision Design, China National Light Industry Key Laboratory of Healthy Food Development and Nutrition Regulation, School of Life and Health Technology, Dongguan University of Technology, Dongguan 523808, China
| | - Yuting Li
- Dongguan Key Laboratory of Typical Food Precision Design, China National Light Industry Key Laboratory of Healthy Food Development and Nutrition Regulation, School of Life and Health Technology, Dongguan University of Technology, Dongguan 523808, China
| | - Ming-Yu Jin
- Dongguan Key Laboratory of Typical Food Precision Design, China National Light Industry Key Laboratory of Healthy Food Development and Nutrition Regulation, School of Life and Health Technology, Dongguan University of Technology, Dongguan 523808, China.
| | - Jing-Kun Yan
- Dongguan Key Laboratory of Typical Food Precision Design, China National Light Industry Key Laboratory of Healthy Food Development and Nutrition Regulation, School of Life and Health Technology, Dongguan University of Technology, Dongguan 523808, China.
| |
Collapse
|
2
|
Michna A, Lupa D, Płaziński W, Batys P, Adamczyk Z. Physicochemical characteristics of chitosan molecules: Modeling and experiments. Adv Colloid Interface Sci 2025; 337:103383. [PMID: 39733532 DOI: 10.1016/j.cis.2024.103383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 12/12/2024] [Accepted: 12/13/2024] [Indexed: 12/31/2024]
Abstract
Chitosan, a biocompatible polysaccharide, finds a wide range of applications, inter alia as an antimicrobial agent, stabilizer of food products, cosmetics, and in the targeted delivery of drugs and stem cells. This work represents a comprehensive review of the properties of chitosan molecule and its aqueous solutions uniquely combining theoretical modeling and experimental results. The emphasis is on physicochemical aspects which were sparsely considered in previous reviews. Accordingly, in the first part, the explicit solvent molecular dynamics (MD) modeling results characterizing the conformations of chitosan molecule, the contour length, the chain diameter and the density are discussed. These MD data are used to calculate several parameters for larger chitosan molecules using a hybrid approach based on continuous hydrodynamics. The dependencies of hydrodynamic diameter, frictional ratio, radius of gyration, and intrinsic viscosity on the molar mass of molecules are presented and discussed. These theoretical predictions, comprising useful analytical solutions, are used to interpret and rationalize the extensive experimental data acquired by advanced experimental techniques. In the final part, the molecule charge, acid-base, and electrokinetic properties, comprising the electrophoretic mobility and the zeta potential, are reviewed. Future research directions are defined and discussed.
Collapse
Affiliation(s)
- Aneta Michna
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, PL-30239 Krakow, Poland.
| | - Dawid Lupa
- Jagiellonian University, Faculty of Physics, Astronomy, and Applied Computer Science, M. Smoluchowski Institute of Physics, Łojasiewicza 11, 30-348 Kraków, Poland.
| | - Wojciech Płaziński
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, PL-30239 Krakow, Poland; Department of Biopharmacy, Faculty of Pharmacy, Medical University of Lublin, Chodźki 4A, 20-093 Lublin, Poland.
| | - Piotr Batys
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, PL-30239 Krakow, Poland.
| | - Zbigniew Adamczyk
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, PL-30239 Krakow, Poland.
| |
Collapse
|
3
|
Thapliyal D, Verros GD, Arya RK. Nanoparticle-Doped Antibacterial and Antifungal Coatings. Polymers (Basel) 2025; 17:247. [PMID: 39861318 PMCID: PMC11768809 DOI: 10.3390/polym17020247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 01/16/2025] [Accepted: 01/17/2025] [Indexed: 01/27/2025] Open
Abstract
Antimicrobial polymeric coatings rely not only on their surface functionalities but also on nanoparticles (NPs). Antimicrobial coatings gain their properties from the addition of NPs into a polymeric matrix. NPs that have been used include metal-based NPs, metal oxide NPs, carbon-based nanomaterials, and organic NPs. Copper NPs and silver NPs exhibit antibacterial and antifungal properties. So, when present in coatings, they will release metal ions with the combined effect of having bacteriostatic/bactericidal properties, preventing the growth of pathogens on surfaces covered by these nano-enhanced films. In addition, metal oxide NPs such as titanium dioxide NPs (TiO2 NPs) and zinc oxide NPs (ZnONPs) are used as NPs in antimicrobial polymeric coatings. Under UV irradiation, these NPs show photocatalytic properties that lead to the production of reactive oxygen species (ROS) when exposed to UV radiation. After various forms of nano-carbon materials were successfully developed over the past decade, they and their derivatives from graphite/nanotubes, and composite sheets have been receiving more attention because they share an extremely large surface area, excellent mechanical strength, etc. These NPs not only show the ability to cause oxidative stress but also have the ability to release antimicrobial chemicals under control, resulting in long-lasting antibacterial action. The effectiveness and life spans of the antifouling performance of a variety of polymeric materials have been improved by adding nano-sized particles to those coatings.
Collapse
Affiliation(s)
- Devyani Thapliyal
- Department of Chemical Engineering, Dr B R Ambedkar National Institute of Technology, Jalandhar 144011, Punjab, India;
| | - George D. Verros
- Department of Chemistry, Aristotle University of Thessaloniki, Plagiari Thes., P.O. Box 454, 57500 Epanomi, Greece;
| | - Raj Kumar Arya
- Department of Chemical Engineering, Dr B R Ambedkar National Institute of Technology, Jalandhar 144011, Punjab, India;
| |
Collapse
|
4
|
Inthorn J, Chomchalao P, Rithchumpon P, Juntrapirom S, Kanjanakawinkul W, Rades T, Chaiyana W. Potential of Cricket Chitosan for Nanoparticle Development Through Ionotropic Gelation: Novel Source for Cosmeceutical Delivery Systems. Pharmaceutics 2024; 16:1618. [PMID: 39771596 PMCID: PMC11676632 DOI: 10.3390/pharmaceutics16121618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 12/06/2024] [Accepted: 12/18/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND/OBJECTIVES Crickets are recognized as an alternative source of chitosan. This study aimed to assess the potential of cricket-derived chitosan as a natural source to develop chitosan nanoparticles (CNPs). METHODS Chitosan were isolated from different cricket species, including Gryllus bimaculatus, Teleogryllus mitratus, and Acheta domesticus. The isolated chitosan were characterized by their functional groups, crystallographic and thermal properties, molecular structure, morphology, water solubility, molecular weight, binding capacity, irritation potential, and cytotoxicity in comparison to commercial shrimp-based chitosan. CNPs were developed through an ionotropic gelation method, followed by the evaluation of particle size, polydispersity index (PDI), and zeta potential. RESULTS The findings of this study indicate that chitosan can be successfully isolated from the three cricket species, with yields ranging from 4.35% to 5.22% w/w of the dried material. The characteristics of cricket-based chitosan were similar to those of commercial chitosan, except that the cricket-based chitosan displayed a higher crystallinity and a lower molecular weight. Additionally, CPNs were successfully produced from cricket-based chitosan using sodium citrate as a crosslinking agent. All cricket-based chitosan exhibited no irritation or cytotoxicity. Chitosan derived from A. domesticus however was found to be the most suitable to develop CPNs, as it produced the smallest particle size (522.0 ± 12.1 nm) with a comparatively narrow PDI (0.388 ± 0.026) and an acceptable positive zeta potential (34.2 ± 4.4 mV). CONCLUSIONS Cricket-derived chitosan compares favorably with crustacean-derived chitosan and showed potential for a range of applications, including the use as a nanocosmeceutical delivery system in topical and cosmetic formulations.
Collapse
Affiliation(s)
- Jirasit Inthorn
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Pratthana Chomchalao
- College of Medicine and Public Health, Ubon Ratchathani University, Ubon Ratchathani 34190, Thailand;
| | - Puracheth Rithchumpon
- Department of Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand;
| | - Saranya Juntrapirom
- Chulabhorn Royal Pharmaceutical Manufacturing Facilities by Chulabhorn Royal Academy, Chon Buri 20180, Thailand; (S.J.); (W.K.)
| | - Watchara Kanjanakawinkul
- Chulabhorn Royal Pharmaceutical Manufacturing Facilities by Chulabhorn Royal Academy, Chon Buri 20180, Thailand; (S.J.); (W.K.)
| | - Thomas Rades
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark;
| | - Wantida Chaiyana
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand;
- Center of Excellence in Pharmaceutical Nanotechnology, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
- Multidisciplinary and Interdisciplinary School, Chiang Mai University, Chiang Mai 50200, Thailand
- Research Center of Deep Technology in Beekeeping and Bee Products for Sustainable Development Goals (SMART BEE SDGs), Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
5
|
Vo TS, Chit PP, Nguyen VH, Hoang T, Lwin KM, Vo TTBC, Jeon B, Han S, Lee J, Park Y, Kim K. A comprehensive review of chitosan-based functional materials: From history to specific applications. Int J Biol Macromol 2024; 281:136243. [PMID: 39393718 DOI: 10.1016/j.ijbiomac.2024.136243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/08/2024] [Accepted: 09/30/2024] [Indexed: 10/13/2024]
Abstract
Chitosan (CTS), a natural biopolymer derived from chitin, has garnered significant attention owing to its potential chemical, biological, and physical properties, such as biocompatibility, bioactivity, and biosafety. This comprehensive review traces the historical development of CTS-based materials and delves into their specific applications across various fields. The study highlights the evolution of CTS from its initial discovery to its current state, emphasizing key milestones and technological advancements that have expanded its utility. Despite the extensive research, the synthesis and functionalization of CTS to achieve desired properties for targeted applications remain a challenge. This review addresses current problems such as the scalability of production, consistency in quality, and the environmental impact of extraction and modification processes. Additionally, it explores the novel applications of CTS-based materials in biomedicine, agriculture, environmental protection, and food industry, showcasing innovative solutions and future potentials. By providing a detailed analysis of the current state of CTS research and identifying gaps in knowledge, this review offers a valuable resource for researchers and industry professionals. The novelty of this work lies in its holistic approach, combining historical context with a forward-looking perspective on emerging trends and potential breakthroughs in the field of CTS-based functional materials. Therefore, this review will be helpful for readers by summarizing recent advances and discussing prospects in CTS-based functional materials.
Collapse
Affiliation(s)
- Thi Sinh Vo
- School of Mechanical Engineering, Sungkyunkwan University, Suwon 16419, South Korea.
| | - Pyone Pyone Chit
- School of Mechanical Engineering, Sungkyunkwan University, Suwon 16419, South Korea.
| | - Vu Hoang Nguyen
- Department of Mechanical and Aerospace Engineering, Monash University, Clayton, VIC, 3800, Australia.
| | - Trung Hoang
- Department of Biophysics, Sungkyunkwan University, Suwon, 16419, South Korea; Institute of Quantum Biophysics, Sungkyunkwan University, Suwon, 16419, South Korea.
| | - Khin Moe Lwin
- School of Mechanical Engineering, Sungkyunkwan University, Suwon 16419, South Korea.
| | - Tran Thi Bich Chau Vo
- Faculty of Industrial Management, College of Engineering, Can Tho University, Can Tho 900000, Viet Nam.
| | - Byounghyun Jeon
- School of Mechanical Engineering, Sungkyunkwan University, Suwon 16419, South Korea.
| | - Soobean Han
- School of Mechanical Engineering, Sungkyunkwan University, Suwon 16419, South Korea.
| | - Jaehan Lee
- School of Mechanical Engineering, Sungkyunkwan University, Suwon 16419, South Korea.
| | - Yunjeong Park
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, Berkeley, California 94709, United States.
| | - Kyunghoon Kim
- School of Mechanical Engineering, Sungkyunkwan University, Suwon 16419, South Korea.
| |
Collapse
|
6
|
Wang J, Xu X, Zou X, Zhang R, Jia X, Dong L, Deng M, Zhang M, Huang F. Effect of ultrasound assisted H 2O 2 degradation on longan polysaccharide: degradation kinetics, physicochemical properties and prebiotic activity. Int J Biol Macromol 2024; 282:136902. [PMID: 39471915 DOI: 10.1016/j.ijbiomac.2024.136902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 09/23/2024] [Accepted: 10/23/2024] [Indexed: 11/01/2024]
Abstract
This study aimed to investigate the effect of ultrasound-assisted H2O2 (US/H2O2) reaction on degradation parameters and kinetics, physicochemical properties and prebiotic activity of longan polysaccharide (LP). Results showed that US/H2O2 had a synergistic effect on the degradation of LP, and its kinetic equation followed to the fist - order model. US/H2O2 degradation did not change the chemical and monosaccharide composition of LP but altered their ratio. Compared with LP, three degraded polysaccharides (DLPs) displayed lower molecular weight, particle size and viscosity, but higher solubility. SEM and AFM revealed that US/H2O2 degradation led to significant differences in the microstructure and solution conformation of LP. Moreover, LP and DLPs showed different proliferation effects on four lactobacilli and bifidobacteria strains, among which DLP-8 (degraded for 8 h) exhibited the strongest prebiotic activity. US/H2O2 could be effectively applied to the degradation of LP to improve its physicochemical properties and bioactivities.
Collapse
Affiliation(s)
- Jidongtian Wang
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China
| | - Xiang Xu
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China
| | - Xiaoqin Zou
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China
| | - Ruifen Zhang
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China
| | - Xuchao Jia
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China
| | - Lihong Dong
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China
| | - Mei Deng
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China
| | - Mingwei Zhang
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China; Food Laboratory of Zhongyuan, Luohe 462300, China
| | - Fei Huang
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China.
| |
Collapse
|
7
|
Dou Z, Zhang Y, Tang W, Deng Q, Hu B, Chen X, Niu H, Wang W, Li Z, Zhou H, Zeng N. Ultrasonic effects on the degradation kinetics, structural characteristics and protective effects on hepatocyte lipotoxicity induced by palmitic acid of Pueraria Lobata polysaccharides. ULTRASONICS SONOCHEMISTRY 2023; 101:106652. [PMID: 37865008 PMCID: PMC10597800 DOI: 10.1016/j.ultsonch.2023.106652] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 10/09/2023] [Accepted: 10/16/2023] [Indexed: 10/23/2023]
Abstract
In this study, a high-molecular-weight Pueraria lobata polysaccharide (PLP) with a molecular weight of 273.54 kDa was degraded by ultrasound, and the ultrasonic degradation kinetics, structural characteristics and hepatoprotective activity of ultrasonic degraded PLP fractions (PLPs) were evaluated. The results showed that the ultrasonic treatment significantly reduced the Mw and particle size of PLP, and the kinetic equation of ultrasonic degradation of PLP followed to the midpoint fracture model (the fist-order model). The monosaccharide composition analysis, FT-IR, triple helix structure and XRD analysis all indicated that the ultrasound degradation did not destroy the primary structure of PLP, but the thermal stability of degraded fractions improved. Additionally, the scanning electron microscopy analysis demonstrated that the surface morphology of PLP was altered from smooth, flat, compact large flaky structure to a sparse rod-like structure with sparse crosslinking (PLP-7). The degraded PLP fractions (0.5 mg/mL) with lower Mw exhibited better antioxidant activities and protective effects against palmitic acid-induced hepatic lipotoxicity, which may be due to the increased exposure of active groups such as hydroxyl groups of PLP after ultrasound. Further investigation showed that PLPs not only increased Nrf2 phosphorylation and its nuclear translocation, thereby activating Nrf2/Keap1 signaling pathway, but also enhanced HO-1, NQO-1, γ-GCL gene expressions and promoted superoxide dismutase and catalase activities, which protected hepatocytes against PA-induced oxidative stress and lipotoxicity. Overall, our research might provide an in-depth insight into P. Lobata polysaccharide in ameliorating lipid metabolic disorders, and the results revealed that ultrasonic irradiation could be a promising degradation method to produce value-added polysaccharide for use in functional food.
Collapse
Affiliation(s)
- Zuman Dou
- Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Yulong Zhang
- Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Waijiao Tang
- Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Qiong Deng
- School of Business Administration, Guangzhou Institute of Science and Technology, Guangzhou 510282, China
| | - Baishun Hu
- Enshi Tujia and Miao Autonomous Prefecture Academy of Agricultural Usnciciences, Enshi 445000, China
| | - Xianwei Chen
- School of Food Science and Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510640, China
| | - Hui Niu
- School of Food Science and Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510640, China
| | - Wenduo Wang
- School of Food Science and Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510640, China
| | - Zhuang Li
- Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China.
| | - Hongwei Zhou
- Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China.
| | - Nianyi Zeng
- Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China.
| |
Collapse
|
8
|
Liu Y, Li D, Chen M, Sun Q, Zhang Y, Zhou J, Wang T. Radical adducts formation mechanism of CH 3CO 2∙ and CH 3CO 3∙ realized decomposition of chitosan by plasma catalyzed peracetic acid. Carbohydr Polym 2023; 318:121121. [PMID: 37479454 DOI: 10.1016/j.carbpol.2023.121121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/01/2023] [Accepted: 06/11/2023] [Indexed: 07/23/2023]
Abstract
High-molecular-weight chitosan has limited applications due to unsatisfactory solubility and hydrophilicity. Discharge plasma coupled with peracetic acid (PAA) oxidation ("plasma+PAA") realized fast depolymerization of high-molecular-weight chitosan in this study. The molecular weight of chitosan rapidly declined to 81.1 kDa from initial 682.5 kDa within 60 s of "plasma+PAA" treatment, and its reaction rate constant was 12-fold higher than single plasma oxidation. Compared with 1O2, ∙CH3, CH3O2·, and O2∙-, CH3CO2∙ and CH3CO3∙ played decisive roles in the chitosan depolymerization in the plasma+PAA system through mechanisms of radical adduct formation. The attacks of CH3CO2∙ and CH3CO3∙ destroyed the β-(1,4) glycosidic bonds and hydrogen bonds of chitosan, leading to generation of low-molecular-weight chitosan; the main chain structure of chitosan was not changed during the depolymerization process. Furthermore, the generated low-molecular-weight chitosan exhibited greater antioxidant activities than original chitosan. Overall, this study revealed the radical adduct formation mechanisms of CH3CO2∙ and CH3CO3∙ for chitosan decomposition, providing an alternative for fast depolymerization of high-molecular-weight chitosan.
Collapse
Affiliation(s)
- Yue Liu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, PR China
| | - Dongrui Li
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, PR China
| | - Mengna Chen
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, PR China
| | - Qingyuan Sun
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, PR China
| | - Ying Zhang
- College of Information Science and Technology, Nanjing Forestry University, Nanjing 210037, PR China
| | - Jian Zhou
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, PR China
| | - Tiecheng Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, PR China.
| |
Collapse
|
9
|
Kian-Pour N, Yildirim-Yalcin M, Kurt A, Ozmen D, Toker OS. A review on latest innovations in physical modifications of galactomannans. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2023.108470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
10
|
Biswas S, Rashid TU. Effect of ultrasound on the physical properties and processing of major biopolymers-a review. SOFT MATTER 2022; 18:8367-8383. [PMID: 36321472 DOI: 10.1039/d2sm01339h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Designing and developing modern techniques to facilitate the extraction and modification of functional properties of biopolymers are key motivations among researchers. As a low-cost, sustainable, non-toxic, and fast process, ultrasound has been considered a method to improve the processing of carbohydrate and protein-based biopolymers such as cellulose, chitin, starch, alginate, carrageenan, gelatine, and guar gum. A better understanding of the complex physicochemical behavior of biopolymers under ultrasonication may fortify the eminence of this technology in advanced-level applications. This review summarizes the recent advances in biopolymer processing and the effect of ultrasound on the physical properties of the selected biopolymers. A major focus will be given to the mechanisms of action and their impact on the properties and extraction. At the end, some possible suggestions are highlighted which need future investigation for amending the physical properties of biopolymers using ultrasonication.
Collapse
Affiliation(s)
- Shanta Biswas
- Department of Chemistry, Louisiana State University, Baton Rouge, LA-70803, USA.
| | - Taslim Ur Rashid
- Fiber and Polymer Science, Department of Textile Engineering, Chemistry and Science, Wilson College of Textiles, North Carolina State University, 1020 Main Campus Drive, Raleigh, NC, 27695, USA
- Applied Chemistry and Chemical Engineering, Faculty of Engineering and Technology, University of Dhaka, Dhaka-1000, Bangladesh.
| |
Collapse
|
11
|
Shi Q, Zou MY, Wang JH, Song MM, Xiong SQ, Liu Y. Ultrasonic effects on molecular weight degradation, physicochemical and rheological properties of pectin extracted from Premna microphylla Turcz. Int J Biol Macromol 2022; 221:1065-1076. [PMID: 36108745 DOI: 10.1016/j.ijbiomac.2022.09.082] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 08/29/2022] [Accepted: 09/08/2022] [Indexed: 11/24/2022]
Abstract
The high molecular weight and poor solubility of pectin extracted from Premna microphylla Turcz (PEP) limits its application. Therefore, in this paper, the degradation effects of PEP under ultrasound irradiation and the influences of ultrasonic on the PEP processing characteristics were investigated. The results indicated that the Mw of PEP decreased significantly with a narrow distribution after ultrasonic treatment. The degradation kinetics of PEP at different ultrasound intensities were sufficiently described by the 2nd-order kinetics eq. X-ray diffraction (XRD) and scanning electron microscopy (SEM) analysis suggested that ultrasonic treatment destroyed the ordered structure inside the PEP, resulting in a looser microscopic morphology. Compared with the control, the thermal stability of PEP was significantly boosted after ultrasonic treatment. Rheological analysis illustrated that the sonicated PEP presented lower apparent viscosities than the original PEP. While the elasticity and thermal reversibility of the degraded products was enhanced. Ultrasonic treatment prominently weakened its shear thinning fluid behavior and thixotropy, thus improved its processing quality. Therefore, desirable PEP can be prepared by ultrasonic irradiation. The results can provide a reference for the development and application of PEP.
Collapse
Affiliation(s)
- Qiang Shi
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230601, China; School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China
| | - Ming-Yue Zou
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China
| | - Jun-Hui Wang
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230601, China; School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China.
| | - Miao-Miao Song
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China
| | - Shan-Qiang Xiong
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei 230601, China; School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China
| | - Yong Liu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China.
| |
Collapse
|
12
|
Anil S. Potential Medical Applications of Chitooligosaccharides. Polymers (Basel) 2022; 14:3558. [PMID: 36080631 PMCID: PMC9460531 DOI: 10.3390/polym14173558] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 08/22/2022] [Accepted: 08/23/2022] [Indexed: 11/16/2022] Open
Abstract
Chitooligosaccharides, also known as chitosan oligomers or chitooligomers, are made up of chitosan with a degree of polymerization (DP) that is less than 20 and an average molecular weight (MW) that is lower than 3.9 kDa. COS can be produced through enzymatic conversions using chitinases, physical and chemical applications, or a combination of these strategies. COS is of significant interest for pharmacological and medical applications due to its increased water solubility and non-toxicity, with a wide range of bioactivities, including antibacterial, anti-inflammatory, anti-obesity, neuroprotective, anticancer, and antioxidant effects. This review aims to outline the recent advances and potential applications of COS in various diseases and conditions based on the available literature, mainly from preclinical research. The prospects of further in vivo studies and translational research on COS in the medical field are highlighted.
Collapse
Affiliation(s)
- Sukumaran Anil
- Oral Health Institute, Department of Dentistry, Hamad Medical Corporation, Qatar University, Doha 3050, Qatar; ; Tel.: +974-50406670
- Pushpagiri Research Centre, Pushpagiri Institute of Medical Sciences and Research Centre (PIMS&RC), Thiruvalla, Pathanamthitta 689101, Kerala, India
| |
Collapse
|
13
|
Buecker S, Grossmann L, Loeffler M, Leeb E, Weiss J. High Molecular Weight λ-Carrageenan Improves the Color Stability of Phycocyanin by Associative Interactions. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2022. [DOI: 10.3389/fsufs.2022.915194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Phycocyanin is a protein-chromophore structure present in Arthrospira platensis commonly used as a blue-colorant in food. Color losses of phycocyanin can be reduced by electrostatic complexation with λ-carrageenan. The aim of this study was to investigate the effect of molecular weight (MW) of λ-carrageenan on the color stabilization of electrostatic complexes formed with phycocyanin and λ-carrageenan. Samples were heated to 70 or 90°C at pH 3.0 and stored at 25°C for 14 days. The MW of λ-carrageenan was reduced by ultrasound treatments for 15, 30, 60, and 90 min. Prolonged ultrasonication had a pronounced effect on the Mw, which decreased from 2,341 to 228 kDa (0–90 min). Complexes prepared with low MW λ-carrageenan showed greater color changes compared to complexes prepared with high MW λ-carrageenan. The MW had no visible effect on color stability on day 0, but green/yellow shifts were observed during storage and after heating to 70°C. Medium MW showed less color stabilization effects compared to low MW when heated to 70°C. Moreover, for solutions prepared with ultrasonicated λ-carrageenan, significant hue shifts toward green/yellow, and precipitation were observed after a heat treatment at 90°C. In addition, the sizes of the complexes were significantly reduced (646–102 nm) by using ultrasonicated λ-carrageenan, except for the lowest MW λ-carrageenan when heated to 90°C. Overall, these findings demonstrated that decreasing the MW of λC had adverse effects on the color stability of PC:λC complexes heated to 70 and 90°C.
Collapse
|
14
|
Lunkov A, Shagdarova B, Lyalina T, Dubinnyi MA, Karpova N, Lopatin S, Il'ina A, Varlamov V. Simple method for ultrasound assisted «click» modification of azido-chitosan derivatives by CuAAC. Carbohydr Polym 2022; 282:119109. [DOI: 10.1016/j.carbpol.2022.119109] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/25/2021] [Accepted: 01/05/2022] [Indexed: 01/01/2023]
|
15
|
Liu X, Du M, Lu Q, He D, Song K, Yang Q, Duan A, Wang D. How Does Chitosan Affect Methane Production in Anaerobic Digestion? ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:15843-15852. [PMID: 34788010 DOI: 10.1021/acs.est.1c04693] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The expanding use of chitosan in sewage and sludge treatment processes raises concerns about its potential environmental impacts. However, investigations of the impacts of chitosan on sewage sludge anaerobic digestion where chitosan is present at substantial levels are sparse. This study therefore aims to fill this knowledge gap through both long-term and batch tests. The results showed that 4 g/kg total suspended solid (TSS) chitosan had no acute effects on methane production, but chitosan at 8-32 g/kg TSS inhibited methane production by 7.2-30.3%. Mass balance and metabolism of organic analyses indicated that chitosan restrained the transfer of organic substrates from solid phase to liquid phase, macromolecules to micromolecules, and finally to methane. Further exploration revealed that chitosan suppressed the secretion of extracellular polymeric substances of anaerobes by occupying the connection sites of indigenous carbohydrates and increased the mass transfer resistance between anaerobes and substrates, which thereby lowered the metabolic activities of anaerobes. Although chitosan could be partly degraded by anaerobes, it is much more persistent to be degraded compared with indigenous organics in sludge. Microbial community and key enzyme encoding gene analyses further revealed that the inhibition of chitosan to CO2-dependent methanogenesis was much severer than that to acetate-dependent methanogenesis.
Collapse
Affiliation(s)
- Xuran Liu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, P.R. China
- Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, P.R. China
| | - Mingting Du
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, P.R. China
- Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, P.R. China
| | - Qi Lu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, P.R. China
- Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, P.R. China
| | - Dandan He
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, P.R. China
- Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, P.R. China
| | - Kang Song
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, P.R. China
| | - Qi Yang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, P.R. China
- Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, P.R. China
| | - Abing Duan
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, P.R. China
- Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, P.R. China
| | - Dongbo Wang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, P.R. China
- Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, P.R. China
| |
Collapse
|
16
|
Pandit A, Indurkar A, Deshpande C, Jain R, Dandekar P. A systematic review of physical techniques for chitosan degradation. CARBOHYDRATE POLYMER TECHNOLOGIES AND APPLICATIONS 2021. [DOI: 10.1016/j.carpta.2021.100033] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
17
|
Chew SC, Ali MA. Recent advances in ultrasound technology applications of vegetable oil refining. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.08.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
18
|
Hu T, Cai W, Cai W, Zheng Z, Xiao Y, Huang Q. Structure, size and aggregated morphology of a β-D-glucan from Lignosus rhinocerotis as affected by ultrasound. Carbohydr Polym 2021; 269:118344. [PMID: 34294351 DOI: 10.1016/j.carbpol.2021.118344] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/25/2021] [Accepted: 06/11/2021] [Indexed: 01/12/2023]
Abstract
The effect of ultrasonic treatment on the structure, size and aggregated morphology of Lignosus rhinocerotis polysaccharide (LRP) was investigated. Ultrasonic treatment for 10 min has demonstrated to improve the aqueous solubility of LRP, leading to a uniform and narrow LRP particle size distribution. Meanwhile, short-time ultrasound was found to obviously decrease the molecular size parameters (Mw, Mn, <S2>z1/2, [η] and Rh) of LRP, and transform the hyperbranched LRP molecules into flexible and extended chains, which would reaggregate to form spherical aggregates under long-time ultrasonication. Additionally, Congo red experiment combined with CD analysis indicated the existence of triple helix structure in LRP, which was still retained after ultrasonic treatment. Furthermore, under short-time ultrasonication, the spherical aggregates with some branched chains in the native LRP solution could disaggregate and form triple helixes that could be further arranged to a dense network structure, but the untangled LRP chains would reaggregate after long-time ultrasonication. CHEMICAL COMPOUNDS STUDIED IN THIS ARTICLE: Congo red (PubChem CID: 11313); Sodium hydroxide (PubChem CID: 14798); Potassium bromide (PubChem CID: 253877).
Collapse
Affiliation(s)
- Ting Hu
- Hubei Key Laboratory of Economic Forest Germplasm Improvement and Resources Comprehensive Utilization, Huanggang Normal University, Huanggang 438000, China
| | - Wudan Cai
- College of Food Science and Technology and MOE Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Wuhan 430070, China
| | - Wenfei Cai
- College of Food Science and Technology and MOE Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhaomin Zheng
- College of Food Science and Technology and MOE Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yidong Xiao
- College of Food Science and Technology and MOE Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Wuhan 430070, China
| | - Qilin Huang
- College of Food Science and Technology and MOE Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
19
|
Chitosan: An Overview of Its Properties and Applications. Polymers (Basel) 2021; 13:polym13193256. [PMID: 34641071 PMCID: PMC8512059 DOI: 10.3390/polym13193256] [Citation(s) in RCA: 461] [Impact Index Per Article: 115.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/16/2021] [Accepted: 09/22/2021] [Indexed: 12/13/2022] Open
Abstract
Chitosan has garnered much interest due to its properties and possible applications. Every year the number of publications and patents based on this polymer increase. Chitosan exhibits poor solubility in neutral and basic media, limiting its use in such conditions. Another serious obstacle is directly related to its natural origin. Chitosan is not a single polymer with a defined structure but a family of molecules with differences in their composition, size, and monomer distribution. These properties have a fundamental effect on the biological and technological performance of the polymer. Moreover, some of the biological properties claimed are discrete. In this review, we discuss how chitosan chemistry can solve the problems related to its poor solubility and can boost the polymer properties. We focus on some of the main biological properties of chitosan and the relationship with the physicochemical properties of the polymer. Then, we review two polymer applications related to green processes: the use of chitosan in the green synthesis of metallic nanoparticles and its use as support for biocatalysts. Finally, we briefly describe how making use of the technological properties of chitosan makes it possible to develop a variety of systems for drug delivery.
Collapse
|
20
|
Kabiriyel J, Mohan CR. "Size or mass" which plays a role? An investigation on the optical and ultrasonic properties of chitosan-lanthanide composites. Int J Biol Macromol 2021; 188:609-619. [PMID: 34389396 DOI: 10.1016/j.ijbiomac.2021.08.050] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 08/02/2021] [Accepted: 08/06/2021] [Indexed: 11/29/2022]
Abstract
In this present exploration, chitosan doped with different lanthanide oxides such as CeO2, Nd2O3, Sm2O3, Eu2O3, Gd2O3, Dy2O3 and Ho2O3 has been prepared and its optical and thermodynamical properties were studied as a function of the ion size of the lanthanide element and its atomic masses. From the refractive index measurement, the space-filling factor and polarizability have been obtained. The propagation of ultrasonic waves like ultrasonic velocity and its derived quantities such as relaxation strength (rs), adiabatic bulk modulus (Ks), acoustic impedance (Z) and adiabatic compressibility (β) have been obtained for different Chitosan-Lanthanide oxides (Ch-LnO). FTIR studies confirm the formation of different Ch-LnO. The variation of all the said properties with ion size is opposite to that of atomic mass due to lanthanide contraction. The results are presented and discussed in a detailed manner.
Collapse
Affiliation(s)
- J Kabiriyel
- Nanostructured lab, Department of Physics, The Gandhigram Rural Institute-Deemed to be University, Gandhigram 624302, Tamil Nadu, India
| | - C Raja Mohan
- Nanostructured lab, Department of Physics, The Gandhigram Rural Institute-Deemed to be University, Gandhigram 624302, Tamil Nadu, India.
| |
Collapse
|
21
|
Sánchez LF, Cánepa J, Kim S, Nakamatsu J. A Simple Approach to Produce Tailor-Made Chitosans with Specific Degrees of Acetylation and Molecular Weights. Polymers (Basel) 2021; 13:polym13152415. [PMID: 34372018 PMCID: PMC8347713 DOI: 10.3390/polym13152415] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 07/15/2021] [Accepted: 07/15/2021] [Indexed: 11/16/2022] Open
Abstract
Chitin is a structural polysaccharide that is found in crustaceans, insects, fungi and some yeasts. Chitin deacetylation produces chitosan, a well-studied biopolymer with reported chemical and biological properties for diverse potential applications for drug delivery, metal ion absorption, scaffolds and tissue engineering. Most known properties of chitosan have been determined from samples obtained from a variety of sources and in different conditions, this is, from chitosans with a wide range of degrees of N-acetylation (DA) and molecular weight (MW). However, as for any copolymer, the physicochemical and mechanical characteristics of chitosan highly depend on their monomer composition (DA) and chain size (MW). This work presents a simple methodology to produce chitosans with specific and predictive DA and MW. Reaction with acetic anhydride proved to be an efficient method to control the acetylation of chitosan, DAs between 10.6% and 50.6% were reproducibly obtained. In addition to this, MWs of chitosan chains were reduced in a controlled manner in two ways, by ultrasound and by acidic hydrolysis at different temperatures, samples with MWs between 130 kDa and 1300 kDa were obtained. DAs were determined by 1H-NMR and MWs by gel permeation chromatography.
Collapse
Affiliation(s)
- Luis-Felipe Sánchez
- Science Department, Pontificia Universidad Catolica del Peru—PUCP, Av. Universitaria 1801, Lima 32, Peru; (L.-F.S.); (J.C.)
| | - Jimmy Cánepa
- Science Department, Pontificia Universidad Catolica del Peru—PUCP, Av. Universitaria 1801, Lima 32, Peru; (L.-F.S.); (J.C.)
| | - Suyeon Kim
- Engineering Department, Pontificia Universidad Catolica del Peru—PUCP, Av. Universitaria 1801, Lima 32, Peru;
| | - Javier Nakamatsu
- Science Department, Pontificia Universidad Catolica del Peru—PUCP, Av. Universitaria 1801, Lima 32, Peru; (L.-F.S.); (J.C.)
- Correspondence:
| |
Collapse
|
22
|
Singh A, Mittal A, Benjakul S. Chitosan, Chitooligosaccharides and Their Polyphenol Conjugates: Preparation, Bioactivities, Functionalities and Applications in Food Systems. FOOD REVIEWS INTERNATIONAL 2021. [DOI: 10.1080/87559129.2021.1950176] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Avtar Singh
- International Center of Excellence in Seafood Science and Innovation (ICE-SSI), Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Ajay Mittal
- International Center of Excellence in Seafood Science and Innovation (ICE-SSI), Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Soottawat Benjakul
- International Center of Excellence in Seafood Science and Innovation (ICE-SSI), Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| |
Collapse
|
23
|
Tabassum N, Ahmed S, Ali MA. Chitooligosaccharides and their structural-functional effect on hydrogels: A review. Carbohydr Polym 2021; 261:117882. [DOI: 10.1016/j.carbpol.2021.117882] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 02/16/2021] [Accepted: 02/26/2021] [Indexed: 02/08/2023]
|
24
|
Chen TT, Zhang ZH, Wang ZW, Chen ZL, Ma H, Yan JK. Effects of ultrasound modification at different frequency modes on physicochemical, structural, functional, and biological properties of citrus pectin. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2020.106484] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
25
|
Nachtigall C, Rohm H, Jaros D. Degradation of Exopolysaccharides from Lactic Acid Bacteria by Thermal, Chemical, Enzymatic and Ultrasound Stresses. Foods 2021; 10:396. [PMID: 33670305 PMCID: PMC7917928 DOI: 10.3390/foods10020396] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 02/04/2021] [Accepted: 02/08/2021] [Indexed: 12/02/2022] Open
Abstract
During isolation, exopolysaccharides (EPS) from lactic acid bacteria are subject of thermal, chemical, enzymatic or ultrasound stress of different intensity that may affect macromolecular properties, for instance molecular mass or (intrinsic) viscosity. These parameters are, however, crucial, as they are associated with the technofunctional potential of EPS replacing commercial thickeners in nonfermented products. The aim of this study was to systematically examine treatments EPS are usually exposed to during isolation and to investigate the underlying degradation mechanisms. Solutions (1.0 g/L) of EPS from Streptococcus thermophilus, isolated as gently as possible, and commercial dextran were analyzed for molecular mass distributions as representative measure of molecule alterations. Generally, acid, excessive heat and ultrasonication, intensified by simultaneous application, showed EPS degradation effects. Thus, recommendations are given for isolation protocols. Ultrasonic degradation at 114 W/cm² fitted into the random chain scission model and followed third- (S. thermophilus EPS) or second-order kinetics (dextran). The degradation rate constant reflects the sensitivity to external stresses and was DGCC7710 EPS > DGCC7919 EPS > dextran > ST143 EPS. Due to their exceptional structural heterogeneity, the differences could not be linked to individual features. The resulting molecular mass showed good correlation (r² = 0.99) with dynamic viscosity.
Collapse
Affiliation(s)
- Carsten Nachtigall
- Chair of Food Engineering, Institute of Natural Materials Technology, Technische Universität Dresden, 01062 Dresden, Germany
| | - Harald Rohm
- Chair of Food Engineering, Institute of Natural Materials Technology, Technische Universität Dresden, 01062 Dresden, Germany
| | - Doris Jaros
- Chair of Food Engineering, Institute of Natural Materials Technology, Technische Universität Dresden, 01062 Dresden, Germany
| |
Collapse
|
26
|
Nidheesh PV, Couras C, Karim AV, Nadais H. A review of integrated advanced oxidation processes and biological processes for organic pollutant removal. CHEM ENG COMMUN 2021. [DOI: 10.1080/00986445.2020.1864626] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
| | - Catia Couras
- Department of Environment and Planning & CESAM-Centre for Environmental and Marine Studies, University of Aveiro, Aveiro, Portugal
| | - Ansaf V. Karim
- Environmental Science and Engineering Department, Indian Institute of Technology, Bombay, India
| | - Helena Nadais
- Department of Environment and Planning & CESAM-Centre for Environmental and Marine Studies, University of Aveiro, Aveiro, Portugal
| |
Collapse
|
27
|
Yang H, Bai J, Ma C, Wang L, Li X, Zhang Y, Xu Y, Yang Y. Degradation models, structure, rheological properties and protective effects on erythrocyte hemolysis of the polysaccharides from Ribes nigrum L. Int J Biol Macromol 2020; 165:738-746. [PMID: 32971173 DOI: 10.1016/j.ijbiomac.2020.09.093] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 09/05/2020] [Accepted: 09/14/2020] [Indexed: 02/06/2023]
Abstract
The polysaccharides from blackcurrant (Ribes nigrum L.) fruits were degraded by ultrasonic irradiation. Results showed that viscosity-average molecular weight decreased with increasing ultrasonic time or power. The degradation was fitted to the second-order kinetics model and midpoint chain scission model. Gas chromatographic analysis demonstrated that the native polysaccharide and three degraded polysaccharides were composed of the same monosaccharides but in different ratios. Fourier transform infrared and nuclear magnetic resonance spectroscopic analyses revealed the presence of α-, β-pyranose rings and the same six sugar residues in the four blackcurrant polysaccharides. Compared to the native polysaccharide, three degraded polysaccharides displayed better rheological properties and stronger protective effects against erythrocyte hemolysis. Collectively, the results support the potential utility of blackcurrant polysaccharides as natural antioxidants.
Collapse
Affiliation(s)
- Haihong Yang
- College of Art and Science, Northeast Agricultural University, Harbin 150030, China
| | - Jingwen Bai
- College of Art and Science, Northeast Agricultural University, Harbin 150030, China
| | - Conglei Ma
- College of Art and Science, Northeast Agricultural University, Harbin 150030, China
| | - Libo Wang
- College of Art and Science, Northeast Agricultural University, Harbin 150030, China
| | - Xiaoqing Li
- College of Art and Science, Northeast Agricultural University, Harbin 150030, China
| | - Yu Zhang
- College of Art and Science, Northeast Agricultural University, Harbin 150030, China
| | - Yaqin Xu
- College of Art and Science, Northeast Agricultural University, Harbin 150030, China.
| | - Yu Yang
- College of Art and Science, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
28
|
Nachtigall C, Vogel C, Rohm H, Jaros D. How Capsular Exopolysaccharides Affect Cell Surface Properties of Lactic Acid Bacteria. Microorganisms 2020; 8:E1904. [PMID: 33266168 PMCID: PMC7759885 DOI: 10.3390/microorganisms8121904] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 11/26/2020] [Accepted: 11/27/2020] [Indexed: 12/11/2022] Open
Abstract
Some lactic acid bacteria are able to produce exopolysaccharides that, based on localization, can be distinguished in free and capsular or cell-bound exopolysaccharides (CPS). Up to now, the former were the focus of current research, mainly because of the technofunctional benefits they exhibit on fermented dairy products. On the other hand, CPS affect the surface properties of bacteria cells and thus also the textural properties of fermented foods, but data are very scarce. As the cell surface properties are strongly strain dependent, we present a new approach to investigate the impact of CPS on cell surface hydrophobicity and moisture load. CPS positive and negative Streptococcus thermophilus and Weissella cibaria were subjected to ultrasonication suitable to detach CPS without cell damage. The success of the method was verified by scanning electron and light microscopy as well as by cultivation experiments. Before applying ultrasonication cells with CPS exhibiting an increased hydrophilic character, enhanced moisture load, and faster water adsorption compared to the cells after CPS removal, emphasizing the importance of CPS on the textural properties of fermented products. The ultrasonic treatment did not alter the cell surface properties of the CPS negative strains.
Collapse
Affiliation(s)
- Carsten Nachtigall
- Institute of Natural Materials Technology, Technische Universität Dresden, 01062 Dresden, Germany; (H.R.); (D.J.)
| | - Cordula Vogel
- Institute of Soil Science and Site Ecology, Technische Universität Dresden, 01062 Dresden, Germany;
| | - Harald Rohm
- Institute of Natural Materials Technology, Technische Universität Dresden, 01062 Dresden, Germany; (H.R.); (D.J.)
| | - Doris Jaros
- Institute of Natural Materials Technology, Technische Universität Dresden, 01062 Dresden, Germany; (H.R.); (D.J.)
| |
Collapse
|
29
|
Yuan D, Li C, Huang Q, Fu X. Ultrasonic degradation effects on the physicochemical, rheological and antioxidant properties of polysaccharide from Sargassum pallidum. Carbohydr Polym 2020; 239:116230. [PMID: 32414439 DOI: 10.1016/j.carbpol.2020.116230] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 03/25/2020] [Accepted: 03/27/2020] [Indexed: 12/20/2022]
Abstract
The aim of this study was to investigate the effects of ultrasound degradation on the physicochemical, rheological and antioxidant properties of Sargassum pallidum polysaccharides (SpPS). The results indicated that the ultrasound irradiation could significantly decrease the average molecule weight (MW), and particle size (Zavg) of native SpPS. The degradation pattern of SpPS was closely fitted to the first-order polymer degradation (random chain scission). The primary structure of SpPS before and after ultrasound degradation was not changed, and scanning electron microscopy (SEM) analysis showed that the morphology of SpPS was different from those of the degraded SpPS fractions. Rheological analysis indicated that the degraded SpPS solutions exhibited lower apparent viscosities than native SpPS solution at the same concentration, while the elasticity of the degraded fractions at a certain extent was enhanced. Furthermore, appropriately degraded SpPS fractions exhibited stronger DPPH and ABTS scavenging activity.
Collapse
Affiliation(s)
- Dan Yuan
- School of Food Science and Engineering, National Joint Research Center for Tropical Health Foods, South China University of Technology, Guangzhou 510640, China
| | - Chao Li
- School of Food Science and Engineering, National Joint Research Center for Tropical Health Foods, South China University of Technology, Guangzhou 510640, China; Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Guangzhou 510640, China; Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou 510640, China.
| | - Qiang Huang
- School of Food Science and Engineering, National Joint Research Center for Tropical Health Foods, South China University of Technology, Guangzhou 510640, China; Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Guangzhou 510640, China; Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou 510640, China
| | - Xiong Fu
- School of Food Science and Engineering, National Joint Research Center for Tropical Health Foods, South China University of Technology, Guangzhou 510640, China; Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Guangzhou 510640, China; Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou 510640, China.
| |
Collapse
|
30
|
Ascorbic acid induced degradation of polysaccharide from natural products: a review. Int J Biol Macromol 2020; 151:483-491. [DOI: 10.1016/j.ijbiomac.2020.02.193] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Revised: 02/09/2020] [Accepted: 02/17/2020] [Indexed: 02/06/2023]
|
31
|
Characterization and toxicology evaluation of low molecular weight chitosan on zebrafish. Carbohydr Polym 2020; 240:116164. [PMID: 32475540 DOI: 10.1016/j.carbpol.2020.116164] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 03/05/2020] [Accepted: 03/11/2020] [Indexed: 02/01/2023]
Abstract
Chitosan is suggested as no or low toxicity and biocompatible biomaterial. Digestion of chitosan to reduce molecular weight and formulate nanoparticle was generally used to improve efficiency for DNA or protein delivery. However, the toxicity of low-molecular-weight chitosan (LMWCS) towards freshwater fishes has not been well evaluated. Here, we reported the toxic mechanism of LMWCS using zebrafish (Danio rerio) liver (ZFL) cell line, zebrafish larvae, and adult fish. LMWCS rapidly induced cytotoxicity of ZFL cells and death of zebrafish. Cell membrane damaged by LMWCS reduced cell viability. Damaged membrane of epithelial cell in zebrafish larvae induced breakage of the yolk. Adult fish exhibited hypoxia before death due to multiple damages induced by LMWCS. Although the toxicity of LMWCS was revealed in zebrafish model, the toxicity was only present in pH < 7 and easy be neutralized by other negative ions. Collectively, these data improved a new understanding of LMWCS properties.
Collapse
|
32
|
Natural polysaccharides experience physiochemical and functional changes during preparation: A review. Carbohydr Polym 2020; 234:115896. [DOI: 10.1016/j.carbpol.2020.115896] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 01/19/2020] [Accepted: 01/19/2020] [Indexed: 02/07/2023]
|
33
|
Li DD, Yang N, Tao Y, Xu EB, Jin ZY, Han YB, Xu XM. Induced electric field intensification of acid hydrolysis of polysaccharides: Roles of thermal and non-thermal effects. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2019.105484] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
34
|
Li DD, Tao Y, Shi YN, Han YB, Yang N, Xu XM. Effect of re-acetylation on the acid hydrolysis of chitosan under an induced electric field. Food Chem 2020; 309:125767. [DOI: 10.1016/j.foodchem.2019.125767] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 09/20/2019] [Accepted: 10/21/2019] [Indexed: 01/28/2023]
|
35
|
Chen JY, Sun XY, Ouyang JM. Modulation of Calcium Oxalate Crystal Growth and Protection from Oxidatively Damaged Renal Epithelial Cells of Corn Silk Polysaccharides with Different Molecular Weights. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:6982948. [PMID: 32089775 PMCID: PMC7008244 DOI: 10.1155/2020/6982948] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 01/06/2020] [Indexed: 12/12/2022]
Abstract
Corn silk polysaccharide (CSP0; molecular weight = 124 kDa) was degraded by ultrasonication to obtain five degraded polysaccharides, namely, CSP1, CSP2, CSP3, CSP4, and CSP5, with molecular weights of 26.1, 12.2, 6.0, 3.5, and 2.0 kDa, respectively. The structures of these polysaccharides were characterized by FT-IR, 1H NMR, and 13C NMR analyses. The antioxidant activities, including scavenging ability for hydroxyl radicals and DPPH free radicals, chelation ability for Fe2+ ions, and reducing ability of CSP increased with decreased molecular weight of CSPs within 6.0 to 124 kDa. However, antioxidant activity weakened when the molecular weight of CSPs reached 3.5 and 2 kDa. CSP3 with a molecular weight of 6.0 kDa exhibited the strongest antioxidant activity. After protection with 60 μg/mL CSPs, the viability of human renal proximal tubular epithelial cells (HK-2) damaged by nano-COM crystals increased, the level of reactive oxygen species decreased, and the amount of COM crystal adhered onto the cell surface decreased. The ability of CSPs to protect cells from CaOx crystal damage was consistent with their antioxidant activity. CSPs can specifically combine with CaOx crystal to inhibit the conversion of calcium oxalate dihydrate crystal to calcium oxalate monohydrate crystal. All these results showed that the activity of CSPs was closely correlated with molecular weight. A very high or low molecular weight of CSPs was not conducive to their activity. CSPs, especially CSP3 with a molecular weight of 6.0 kDa, can be used as a potential antistone drug.
Collapse
Affiliation(s)
- Jia-Yun Chen
- Department of Chemistry, Jinan University, Guangzhou 510632, China
- Institute of Biomineralization and Lithiasis Research, Jinan University, Guangzhou 510632, China
| | - Xin-Yuan Sun
- Department of Urology, Minimally Invasive Surgery Center, The First Affiliated Hospital of Guangzhou Medical University, Guangdong Key Laboratory of Urology, Guangzhou Institute of Urology, China
| | - Jian-Ming Ouyang
- Department of Chemistry, Jinan University, Guangzhou 510632, China
- Institute of Biomineralization and Lithiasis Research, Jinan University, Guangzhou 510632, China
| |
Collapse
|
36
|
Rizeq BR, Younes NN, Rasool K, Nasrallah GK. Synthesis, Bioapplications, and Toxicity Evaluation of Chitosan-Based Nanoparticles. Int J Mol Sci 2019; 20:E5776. [PMID: 31744157 PMCID: PMC6888098 DOI: 10.3390/ijms20225776] [Citation(s) in RCA: 171] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 09/23/2019] [Accepted: 10/02/2019] [Indexed: 01/06/2023] Open
Abstract
The development of advanced nanomaterials and technologies is essential in biomedical engineering to improve the quality of life. Chitosan-based nanomaterials are on the forefront and attract wide interest due to their versatile physicochemical characteristics such as biodegradability, biocompatibility, and non-toxicity, which play a promising role in biological applications. Chitosan and its derivatives are employed in several applications including pharmaceuticals and biomedical engineering. This article presents a comprehensive overview of recent advances in chitosan derivatives and nanoparticle synthesis, as well as emerging applications in medicine, tissue engineering, drug delivery, gene therapy, and cancer therapy. In addition to the applications, we critically review the main concerns and mitigation strategies related to chitosan bactericidal properties, toxicity/safety using tissue cultures and animal models, and also their potential environmental impact. At the end of this review, we also provide some of future directions and conclusions that are important for expanding the field of biomedical applications of the chitosan nanoparticles.
Collapse
Affiliation(s)
- Balsam R. Rizeq
- Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, P.O. Box 2713, Doha, Qatar;
- Biomedical Research Center, QU Health, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Nadin N. Younes
- Department of Biomedical Science, College of Health Sciences, QU Health, Qatar University, P.O. Box 2713, Doha, Qatar;
| | - Kashif Rasool
- Qatar Environment and Energy Research Institute (QEERI), Hamad Bin Khalifa University (HBKU), P.O. Box 5825, Doha, Qatar
| | - Gheyath K. Nasrallah
- Biomedical Research Center, QU Health, Qatar University, P.O. Box 2713, Doha, Qatar
- Department of Biomedical Science, College of Health Sciences, QU Health, Qatar University, P.O. Box 2713, Doha, Qatar;
| |
Collapse
|
37
|
Koshani R, Jafari SM. Ultrasound-assisted preparation of different nanocarriers loaded with food bioactive ingredients. Adv Colloid Interface Sci 2019; 270:123-146. [PMID: 31226521 DOI: 10.1016/j.cis.2019.06.005] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 05/09/2019] [Accepted: 06/09/2019] [Indexed: 12/30/2022]
Abstract
Developing green and facile approaches to produce nanostructures suitable for bioactives, nanoencapsulation faces some challenges in the nutraceutical and food bioactive industries due to potential risks arising from nanomaterials fabrication and consumption. High-intensity ultrasound is an effective technology to generate different bio-based structures in sub-micron or nanometer scale. This technique owing to some intrinsic advantages such as safety, straightforward operation, energy efficiency, and scale-up potential, as well as, ability to control over size and morpHology has stood out among various nanosynthetic routes. Ultrasonically-provided energy is mainly transferred to the droplets and particles via acoustic cavitation (which is formation, growth, and implosive collapse of bubbles in solvent). This review provides an outlook on the fundamentals of ultrasonication and some applicable setups in nanoencapsulation. Different kinds of nanostructures based on surfactants, lipids, proteins and carbohydrates formed by sonication, along with their advantages and disadvantages are assessed from the viewpoint of stability, particle size, and process impacts on some functionalities. The gastrointestinal fate and safety issues of ultrasonically prepared nanostructures are also discussed. Sonication, itself or in combination with other encapsulation approaches, alongside biopolymers generate nano-engineered carriers with enough stability, small particle sizes, and a low polydispersity. The nano-sized systems improve techno-functional activities of encapsulated bioactive agents including stability, solubility, dissolution, availability, controlled and targeted release profile in vitro and in vivo plus other bioactive properties such as antioxidant and antimicrobial capacities. Ultrasonically prepared nanocarriers show a great potential in fortifying food products with desired bioactive components, especially for the industrial applications.
Collapse
Affiliation(s)
- Roya Koshani
- Department of Chemistry, Quebec Centre for Advanced Materials, Pulp and Paper Research Centre, McGill University, Montreìal, Queìbec H3A 0B8, Canada; Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Science and Natural Resources, Gorgan, Iran
| | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Science and Natural Resources, Gorgan, Iran.
| |
Collapse
|
38
|
Effect of ultrasonic intensity on the conformational changes in citrus pectin under ultrasonic processing. Food Chem 2019; 297:125021. [PMID: 31253338 DOI: 10.1016/j.foodchem.2019.125021] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 06/13/2019] [Accepted: 06/15/2019] [Indexed: 11/22/2022]
Abstract
In this study, the effects of ultrasonic intensity on conformational changes in aqueous citrus pectin solution under ultrasonic processing and its possible transition mechanism were investigated. The results demonstrated that higher ultrasonic intensity (104.7 W/cm2) caused larger alterations in the molecular and conformational parameters of the semiflexible pectin (Mark-Houwink relation exponent a: 0.820, conformational parameter α: 0.607, structural parameter ρ: 2.22) in aqueous solution. Meanwhile, the semiflexible chain of pectin became more flexible (a: 0.804, α: 0.601, ρ: 1.75) at higher ultrasonic intensity in aqueous solution, as was verified by atomic force microscopy. Moreover, conformational changes in pectin from semiflexible chains to flexible chains or even flexible coils (a: 0.791, α: 0.597, ρ: 1.70) could be attributed to the decreased degree of methoxylation and neutral sugars in side chains and the destruction of inter- and intramolecular hydrogen bonds under ultrasonic processing. Therefore, these results have important implications for understanding the ultrasonic modification of pectin.
Collapse
|
39
|
Chen CH, Yin HB, Upadhayay A, Brown S, Venkitanarayanan K. Efficacy of plant-derived antimicrobials for controlling Salmonella Schwarzengrund on dry pet food. Int J Food Microbiol 2019; 296:1-7. [PMID: 30818250 DOI: 10.1016/j.ijfoodmicro.2019.02.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Revised: 02/04/2019] [Accepted: 02/08/2019] [Indexed: 01/30/2023]
Abstract
Salmonella enterica is a major human pathogen that is responsible for 23,000 hospitalizations annually in the United States. Contact with contaminated pet food and infected companion animals can transmit salmonellosis to humans. Recent multistate human outbreaks of salmonellosis linked to commercial contaminated dry dog foods underscore the need for controlling the pathogen in pet foods for protecting pet and public health. In this study, the efficacy of five Generally Recognized as Safe (GRAS) status, plant-derived antimicrobials (PDAs), namely trans-cinnamaldehyde (TC), carvacrol (CR), thymol (TY), eugenol (EG), and caprylic acid (CA) applied as a vegetable oil or chitosan based antimicrobial spray on dry pet food for reducing Salmonella Schwarzengrund was investigated. Three hundred gram portions of a commercial dry dog food were inoculated with a two-strain mixture of nalidixic acid (NA) resistant S. Schwarzengrund (~6 log CFU/g), followed by a spray treatment with 0%, 0.5%, 1% or 2% of TC, CR, TY, EG or CA in combination with 5% vegetable oil or 1% chitosan as a carrier. The control and treated dog food samples were stored at 25 °C for 28 days. On days 0, 1, 3, 5, 7, 14, 21, and 28, Salmonella on pet food was enumerated by serial dilution and plating on xylose lysine desoxycholate (XLD) agar. All PDAs at 1% and 2% applied in vegetable oil or chitosan reduced S. Schwarzengrund by at least ~2 log CFU/g on day 3 of storage when compared to control (P < 0.05). No significant reductions in Salmonella were observed on feed sprayed with only vegetable oil or chitosan (P > 0.05). Overall, 2% TC in vegetable oil or chitosan was the most effective treatment, where at least 3 to 3.5 log CFU/g reduction in bacterial populations was observed during storage (P < 0.05). Results suggest that the aforementioned PDAs could potentially be used as an antimicrobial spray to reduce S. Schwarzengrund on dry dog food. However, further studies on the acceptance of PDA-treated dry food by dogs are needed.
Collapse
Affiliation(s)
- Chi-Hung Chen
- Department of Animal Science, University of Connecticut, 3636 Horsebarn Hill Road Ext. Unit 4040, 06269 Storrs, CT, USA
| | - Hsin-Bai Yin
- United States Department of Agriculture, ARS, Environmental Microbial and Food Safety Laboratory, 10300 Baltimore Avenue, Building 201 BARC-East, 20705 Beltsville, MD, USA
| | - Abhinav Upadhayay
- Department of Poultry Science, University of Arkansas, 1260 W. Maple, POSC 0-114, 72701-3100 Fayetteville, AR, USA
| | - Stephanie Brown
- Department of Animal Science, University of Connecticut, 3636 Horsebarn Hill Road Ext. Unit 4040, 06269 Storrs, CT, USA
| | - Kumar Venkitanarayanan
- Department of Animal Science, University of Connecticut, 3636 Horsebarn Hill Road Ext. Unit 4040, 06269 Storrs, CT, USA.
| |
Collapse
|
40
|
Silva KCG, Sato ACK. Sonication technique to produce emulsions: The impact of ultrasonic power and gelatin concentration. ULTRASONICS SONOCHEMISTRY 2019; 52:286-293. [PMID: 30559074 DOI: 10.1016/j.ultsonch.2018.12.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 11/30/2018] [Accepted: 12/01/2018] [Indexed: 05/28/2023]
Abstract
The production of food emulsions has increased the demand for processes, natural emulsifiers and stabilizers that provide reasonable stability. This study approaches the influence of parameters that affect the stability of emulsions produced by sonication, such as ultrasonic power (150, 225 and 375 W) and gelatin concentration, when producing alginate, potato starch and gelatin stabilized emulsions. The results showed that sonication reduced viscosity, surface charge and improved the interfacial properties of biopolymeric solutions. Emulsions presented visual kinetic stabilization after 7 days of storage. The increase of sonication power reduced particle size but increased flocculation. The use of ultrasonic power at 225 and 375 W and gelatin in a concentration above 0.5% resulted in stable emulsions with smaller particle size, which is desirable for its application in food systems.
Collapse
Affiliation(s)
- Karen Cristina Guedes Silva
- Department of Food Engineering, School of Food Engineering (FEA), University of Campinas, 13083-862 Campinas, SP, Brazil.
| | - Ana Carla Kawazoe Sato
- Department of Food Engineering, School of Food Engineering (FEA), University of Campinas, 13083-862 Campinas, SP, Brazil.
| |
Collapse
|
41
|
Effects of Ultrasonication on the Conformational, Microstructural, and Antioxidant Properties of Konjac Glucomannan. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9030461] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
This study aims to evaluate the effects of ultrasonication (US) on the conformational, microstructural, and antioxidant properties of konjac glucomannan (KGM). US treatment with a 20-kHz and 750-W ultrasonic processor at 60% amplitude was applied for partial degradation of KGM with an average molecular weight (MW) of 823.4 kDa. Results indicated that the US treatment caused dramatic reduction in the MW, apparent viscosity, hydrodynamic radius, and z-average mean radius of gyration. The flexibility of chain conformation of native KGM was slightly increased during the US treatment. According to electronic microscopic imaging, the compact, smooth, and orderly fibrous strings formed by KGM were changed to amorphous, porous flakes and globular particles after US treatment. KGM and its US-treated fractions showed moderate radical-scavenging and ferric-reducing antioxidant activity. US degradation of KGM affected these activities either positively or negatively, depending on the US treatment period. In summary, ultrasonic degradation of KGM caused changes in its conformation characteristics, microstructure, and antioxidant activities.
Collapse
|
42
|
Wu D, Wan J, Lu J, Wang X, Zhong S, Schwarz P, Chen B, Rao J. Chitosan coatings on lecithin stabilized emulsions inhibit mycotoxin production by Fusarium pathogens. Food Control 2018. [DOI: 10.1016/j.foodcont.2018.05.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
43
|
Sullivan DJ, Cruz-Romero M, Collins T, Cummins E, Kerry JP, Morris MA. Synthesis of monodisperse chitosan nanoparticles. Food Hydrocoll 2018. [DOI: 10.1016/j.foodhyd.2018.05.010] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
44
|
Marine Waste Utilization as a Source of Functional and Health Compounds. ADVANCES IN FOOD AND NUTRITION RESEARCH 2018; 87:187-254. [PMID: 30678815 DOI: 10.1016/bs.afnr.2018.08.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Consumer demand for convenience has led to large quantities of seafood being value-added processed before marketing, resulting in large amounts of marine by-products being generated by processing industries. Several bioconversion processes have been proposed to transform some of these by-products. In addition to their relatively low value conventional use as animal feed and fertilizers, several investigations have been reported that have demonstrated the potential to add value to viscera, heads, skins, fins, trimmings, and crab and shrimp shells by extraction of lipids, bioactive peptides, enzymes, and other functional proteins and chitin that can be used in food and pharmaceutical applications. This chapter is focused on reviewing the opportunities for utilization of these marine by-products. The chapter discusses the various products and bioactive compounds that can be obtained from seafood waste and describes various methods that can be used to produce these products with the aim of highlighting opportunities to add value to these marine waste streams.
Collapse
|
45
|
Shao Y, Wu C, Wu T, Li Y, Chen S, Yuan C, Hu Y. Eugenol-chitosan nanoemulsions by ultrasound-mediated emulsification: Formulation, characterization and antimicrobial activity. Carbohydr Polym 2018; 193:144-152. [DOI: 10.1016/j.carbpol.2018.03.101] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Revised: 03/27/2018] [Accepted: 03/30/2018] [Indexed: 01/18/2023]
|
46
|
A systematic approach of chitosan nanoparticle preparation via emulsion crosslinking as potential adsorbent in wastewater treatment. Carbohydr Polym 2018; 180:46-54. [DOI: 10.1016/j.carbpol.2017.10.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 09/25/2017] [Accepted: 10/01/2017] [Indexed: 11/24/2022]
|
47
|
Ultrasonic velocimetry studies on different salts of chitosan: Effect of ion size. Int J Biol Macromol 2017; 104:1596-1603. [DOI: 10.1016/j.ijbiomac.2017.02.049] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 01/30/2017] [Accepted: 02/10/2017] [Indexed: 11/17/2022]
|
48
|
Saleh HM, Annuar MSM, Simarani K. Ultrasound degradation of xanthan polymer in aqueous solution: Its scission mechanism and the effect of NaCl incorporation. ULTRASONICS SONOCHEMISTRY 2017; 39:250-261. [PMID: 28732944 DOI: 10.1016/j.ultsonch.2017.04.038] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 04/23/2017] [Accepted: 04/24/2017] [Indexed: 06/07/2023]
Abstract
Degradation of xanthan polymer in aqueous solution by ultrasonic irradiation was investigated. The effects of selected variables i.e. sonication intensity, irradiation time, concentration of xanthan gum and molar concentration of NaCl in solution were studied. Combined approach of full factorial design and conventional one-factor-at-a-time was applied to obtain optimum degradation at sonication power intensity of 11.5Wcm-2, irradiation time 120min and 0.1gL-1 xanthan in a salt-free solution. Molecular weight reduction of xanthan gum under sonication was described by an exponential decay function with higher rate constant for polymer degradation in the salt free solution. The limiting molecular weight where fragments no longer undergo scission was determined from the function. The incorporation of NaCl in xanthan solution resulted in a lower limiting molecular weight. The ultrasound-mediated degradation of aqueous xanthan polymer chain agreed with a random scission model. Side chain of xanthan polymer is proposed to be the primary site of scission action.
Collapse
Affiliation(s)
- H M Saleh
- Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - M S M Annuar
- Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia; Centre for Research in Biotechnology for Agriculture (CEBAR), University of Malaya, 50603 Kuala Lumpur, Malaysia.
| | - K Simarani
- Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
| |
Collapse
|
49
|
Li J, Li B, Geng P, Song AX, Wu JY. Ultrasonic degradation kinetics and rheological profiles of a food polysaccharide (konjac glucomannan) in water. Food Hydrocoll 2017. [DOI: 10.1016/j.foodhyd.2017.03.022] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
50
|
An accurate coarse-grained model for chitosan polysaccharides in aqueous solution. PLoS One 2017; 12:e0180938. [PMID: 28732036 PMCID: PMC5521771 DOI: 10.1371/journal.pone.0180938] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 06/24/2017] [Indexed: 01/25/2023] Open
Abstract
Computational models can provide detailed information about molecular conformations and interactions in solution, which is currently inaccessible by other means in many cases. Here we describe an efficient and precise coarse-grained model for long polysaccharides in aqueous solution at different physico-chemical conditions such as pH and ionic strength. The Model is carefully constructed based on all-atom simulations of small saccharides and metadynamics sampling of the dihedral angles in the glycosidic links, which represent the most flexible degrees of freedom of the polysaccharides. The model is validated against experimental data for Chitosan molecules in solution with various degree of deacetylation, and is shown to closely reproduce the available experimental data. For long polymers, subtle differences of the free energy maps of the glycosidic links are found to significantly affect the measurable polymer properties. Therefore, for titratable monomers the free energy maps of the corresponding links are updated according to the current charge of the monomers. We then characterize the microscopic and mesoscopic structural properties of large chitosan polysaccharides in solution for a wide range of solvent pH and ionic strength, and investigate the effect of polymer length and degree and pattern of deacetylation on the polymer properties.
Collapse
|