1
|
Wang Y, Xu W, Guo S, Xu S, Wang J, Zhang S, Kuang Y, Jin P. Enterococci for human health: A friend or foe? Microb Pathog 2025; 201:107381. [PMID: 39983880 DOI: 10.1016/j.micpath.2025.107381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 02/13/2025] [Accepted: 02/14/2025] [Indexed: 02/23/2025]
Abstract
Enterococci are widely distributed in nature and exhibit good temperature and pH tolerance, making them suitable for industrial fermentation. It can produce bacteriocins, natural antibacterial substances utilized in food preservation. Some Enterococci are employed as probiotics to regulate human immunity and maintain healthy intestinal environments. However, recent scientific studies have highlighted the pathogenicity and multidrug resistance of Enterococci, classifying it as an important pathogen in clinical infections. Moreover, increasing evidence has linked Enterococcus sp., particularly Enterococcus faecalis and Enterococcus faecium, to clinical diseases, raising concerns about their safety and posing the question, how should we approach the conflicting nature of the pathogenic and beneficial effects of Enterococci? This review provides the recent advancements in Enterococci research and incorporates the perspectives of international authoritative organizations and institutions to comprehensively analyze the beneficial and harmful characteristics of Enterococci in the fields of science, clinical and industrial applications, aiming to address three important questions: whether Enterococci are beneficial or harmful to humans, their potential use in medical treatments, and the criteria to evaluate their safety. The goal is to explore the feasibility of the standardized use of Enterococci and provide guidance on the scientific selection and utilization of probiotics.
Collapse
Affiliation(s)
- Yue Wang
- Department of Pharmacy, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Key Laboratory of Assessment of Clinical Drugs Risk and Individual Application (Beijing Hospital), Beijing, 100730, PR China
| | - Wenfeng Xu
- Department of Pharmacy, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Key Laboratory of Assessment of Clinical Drugs Risk and Individual Application (Beijing Hospital), Beijing, 100730, PR China
| | - Sirui Guo
- Department of Pharmacy, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Key Laboratory of Assessment of Clinical Drugs Risk and Individual Application (Beijing Hospital), Beijing, 100730, PR China
| | - Shuo Xu
- Department of Pharmacy, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Key Laboratory of Assessment of Clinical Drugs Risk and Individual Application (Beijing Hospital), Beijing, 100730, PR China
| | - Jing Wang
- Department of Pharmacy, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Key Laboratory of Assessment of Clinical Drugs Risk and Individual Application (Beijing Hospital), Beijing, 100730, PR China
| | - Shanshan Zhang
- Department of Pharmacy, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Key Laboratory of Assessment of Clinical Drugs Risk and Individual Application (Beijing Hospital), Beijing, 100730, PR China
| | - Yongmei Kuang
- Department of Pharmacy, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Key Laboratory of Assessment of Clinical Drugs Risk and Individual Application (Beijing Hospital), Beijing, 100730, PR China
| | - Pengfei Jin
- Department of Pharmacy, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Key Laboratory of Assessment of Clinical Drugs Risk and Individual Application (Beijing Hospital), Beijing, 100730, PR China.
| |
Collapse
|
2
|
Wang S, Wang Y, Cheng C, Zhang H, Jin J, Pang X, Song X, Xie Y. PotF Affects the Antibacterial Activity of Plantaricin BM-1 Against Escherichia coli K12 by Modulating Biofilm Formation and Cell Membrane Integrity. Probiotics Antimicrob Proteins 2025:10.1007/s12602-025-10518-1. [PMID: 40106189 DOI: 10.1007/s12602-025-10518-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/09/2025] [Indexed: 03/22/2025]
Abstract
Plantaricin BM-1 exhibits antibacterial activity against Escherichia coli; however, the underlying mechanism remains unclear. This study aimed to investigate the function of PotF, a putrescine-binding protein, in regulating the antibacterial activity of plantaricin BM-1 against E. coli K12. The antibacterial activity of plantaricin BM-1 against E. coli K12 and JW0838 cells was assessed using growth curves. The differences in biofilm formation between the two E. coli strains were evaluated by crystal violet staining and confocal laser scanning microscopy. The effects of plantaricin BM-1 on E. coli morphology and cell membrane integrity were investigated by electron microscopy and lactate dehydrogenase release assays. Proteomics was used to screen for differentially expressed proteins (DEPs) that are potentially involved in regulating the antibacterial mechanism. The null mutation of potF enhanced the antibacterial effects of plantaricin BM-1 on E. coli, and caused a significant decrease (p < 0.05) in the biofilms of E. coli JW0838. The plantaricin disrupted the cell membrane of E. coli JW0838. Proteomic analysis revealed that potF mutation significantly affected several DEPs involved in biofilm formation. Plantaricin BM-1 exhibited significantly enhanced antibacterial activity against biofilm-associated gene mutants compared to wild-type E. coli K12. These findings enhance our understanding of the bacteriostasis of class IIa bacteriocins against Gram-negative microorganisms.
Collapse
Affiliation(s)
- Shichun Wang
- Laboratory of Food Quality and Safety, Beijing Key Laboratory of Agricultural Product Detection and Control of Spoilage Organisms and Pesticide Residue, College of Food Science and Engineering, Beijing University of Agriculture, Beijing, China
| | - Yawen Wang
- Laboratory of Food Quality and Safety, Beijing Key Laboratory of Agricultural Product Detection and Control of Spoilage Organisms and Pesticide Residue, College of Food Science and Engineering, Beijing University of Agriculture, Beijing, China
| | - Congyang Cheng
- Key Laboratory of Dairy Quality Digital Intelligence Monitoring Technology, State Administration for Market Regulation, Inner Mongolia Mengniu Dairy (Group) Co., Ltd., Hohhot, China
| | - Hongxing Zhang
- Laboratory of Food Quality and Safety, Beijing Key Laboratory of Agricultural Product Detection and Control of Spoilage Organisms and Pesticide Residue, College of Food Science and Engineering, Beijing University of Agriculture, Beijing, China
| | - Junhua Jin
- Laboratory of Food Quality and Safety, Beijing Key Laboratory of Agricultural Product Detection and Control of Spoilage Organisms and Pesticide Residue, College of Food Science and Engineering, Beijing University of Agriculture, Beijing, China
| | - Xiaona Pang
- Laboratory of Food Quality and Safety, Beijing Key Laboratory of Agricultural Product Detection and Control of Spoilage Organisms and Pesticide Residue, College of Food Science and Engineering, Beijing University of Agriculture, Beijing, China
| | - Xiaodong Song
- Key Laboratory of Dairy Quality Digital Intelligence Monitoring Technology, State Administration for Market Regulation, Inner Mongolia Mengniu Dairy (Group) Co., Ltd., Hohhot, China.
| | - Yuanhong Xie
- Laboratory of Food Quality and Safety, Beijing Key Laboratory of Agricultural Product Detection and Control of Spoilage Organisms and Pesticide Residue, College of Food Science and Engineering, Beijing University of Agriculture, Beijing, China.
| |
Collapse
|
3
|
Liang Q, Liu Z, Liang Z, Fu X, Li D, Zhu C, Kong Q, Mou H. Current challenges and development strategies of bacteriocins produced by lactic acid bacteria applied in the food industry. Compr Rev Food Sci Food Saf 2025; 24:e70038. [PMID: 39674838 DOI: 10.1111/1541-4337.70038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 09/11/2024] [Accepted: 09/17/2024] [Indexed: 12/16/2024]
Abstract
Given the great importance of natural biopreservatives in the modern food industry, lactic acid bacteria (LAB)-producing bacteriocins have gained considerable attention due to their antimicrobial activity against foodborne pathogens and spoilage bacteria. Although numerous LAB-producing bacteriocins have demonstrated efficiency in preserving food quality in various applications, only a limited number of these compounds have been commercially approved to date. The currently unclear gastrointestinal metabolism of bacteriocins may pose safety risks, as well as cytotoxicity and immunogenicity, which need to be seriously considered before their application. A more noteworthy concern lies in whether bacteriocins induce an imbalance in the gut microbiota, thereby leading to alterations in the abundance of health-associated microorganisms and their metabolites in the gastrointestinal tract. Accordingly, this review presents unique insights into the challenges arising from metabolic interactions between LAB-producing bacteriocins and the gastrointestinal tract. Besides, the application of bacteriocins in the food industry faces challenges arising from the low production yield, weak stability, and insufficient antimicrobial activity. The corresponding development strategies are proposed for conducting the systematic and comprehensive evaluation of the potential safety risks of bacteriocins and their metabolites. The strategies also focus on the rational design to increase the activity and stability, the fermentation control to enhance the production yield, and the hurdle and embedding technology to improve the application effects. It definitively discloses the perspective of bacteriocins to become natural, sustainable, safe, and eco-friendly biological preservatives for the advancement of the food industry.
Collapse
Affiliation(s)
- Qingping Liang
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Zhemin Liu
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Ziyu Liang
- Section of Neurobiology, Department of Biological Sciences, University of Southern California, Los Angeles, California, USA
| | - Xiaodan Fu
- State Key Laboratory of Food Science and Resources, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, Nanchang, China
| | - Dongyu Li
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Changliang Zhu
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Qing Kong
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Haijin Mou
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| |
Collapse
|
4
|
Phrutpoom N, Khaokhiew T, Linn AK, Sakdee S, Imtong C, Jongruja N, Angsuthanasombat C. Efficient Production and Purification of Bioactive E50-52-Class IIa Peptidic Bacteriocin Is Achieved through Fusion with the Catalytic Domain of Lysostaphin-Class III Bacteriocin. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:1610-1618. [PMID: 39418519 DOI: 10.1134/s0006297924090074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/04/2024] [Accepted: 09/05/2024] [Indexed: 10/19/2024]
Abstract
E50-52, a class IIa-peptidic bacteriocin produced by a strain of Enterococcus faecium, has broad-spectrum antimicrobial activity against various foodborne pathogens. However, effective utilization of the E50-52 has been limited by low production yields and challenges associated with separation and purification of this 39-amino acid antimicrobial peptide. In this study, we have successfully produced a biologically active recombinant form of E50-52 by fusing it with the 16-kDa catalytic domain of lysostaphin-class III bacteriocin (LssCAT), which resulted in high-yield production. Initially, the LssCAT-E50-52 chimeric protein was insoluble upon over-expression in Escherichia coli, but it became soluble using phosphate buffer (pH 7.4) supplemented with 8 M urea. Purification using immobilized-Ni2+ affinity chromatography under urea denaturing conditions resulted in consistent production a homogenous products (LssCAT-E50-52) with >95% purity. The purified protein was refolded using an optimized stepwise dialysis process. The resulting refolded LssCAT-E50-52 protein exhibited dose-dependent inhibitory activity against Helicobacter pylori, a Gram-negative, flagellated, helical bacterium that is associated with gastric cancer. Overall, the optimized protocol described in this study effectively produced large quantities of high-purity recombinant LssCAT-E50-52 protein, yielding approximately 100 mg per liter of culture. To the best of our knowledge, this is the first report on the impact of LssCAT-E50-52 on H. pylori. This finding could pave the way for further research into bactericidal mechanism and potential applications of this bacteriocin in biomedical industry.
Collapse
Affiliation(s)
- Nichakarn Phrutpoom
- Department of Clinical Chemistry, Faculty of Medical Technology, Mahidol University, Nakornpathom, 73170, Thailand
| | - Tararat Khaokhiew
- Department of Clinical Chemistry, Faculty of Medical Technology, Mahidol University, Nakornpathom, 73170, Thailand.
| | - Aung Khine Linn
- Excellent Center for Drug Discovery, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | - Somsri Sakdee
- Center for Advanced Therapeutics, Institute of Molecular Biosciences, Mahidol University, Nakornpathom, 73170, Thailand
| | - Chompounoot Imtong
- Bacterial Toxin Research Innovation Cluster, Biophysics Institute for Research and Development (BIRD), Chiang Mai, 50230, Thailand
| | - Nujarin Jongruja
- Department of Microbiology, Faculty of Science, King Mongkut's University of Technology Thonburi (KMUTT), Bangkok, 10140, Thailand
| | - Chanan Angsuthanasombat
- Center for Advanced Therapeutics, Institute of Molecular Biosciences, Mahidol University, Nakornpathom, 73170, Thailand.
- Graduate Program in Immunology, Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| |
Collapse
|
5
|
Shao Y, Wu X, Yu Z, Li M, Sheng T, Wang Z, Tu J, Song X, Qi K. Gut Microbiome Analysis and Screening of Lactic Acid Bacteria with Probiotic Potential in Anhui Swine. Animals (Basel) 2023; 13:3812. [PMID: 38136849 PMCID: PMC10741066 DOI: 10.3390/ani13243812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 11/09/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023] Open
Abstract
With the widespread promotion of the green feeding concept of "substitution and resistance", there is a pressing need for alternative products in feed and breeding industries. Employing lactic acid bacteria represents one of the most promising antimicrobial strategies to combat infections caused by pathogenic bacteria. As such, we analyzed the intestinal tract of Anhui local pig breeds, including LiuBai Pig, YueHei Pig, and HuoShou Pig, to determine the composition and diversity of intestinal microbiota using 16S rRNA. Further, the functionality of the pigs' intestinal microbiota was studied through metagenomic sequencing. This study revealed that lactic acid bacteria were the primary contributors to the functional composition, as determined through a species functional contribution analysis. More specifically, the functional contribution of lactic acid bacteria in the HuoShou Pig group was higher than that of the LiuBai Pig and YueHei Pig. Subsequently, the intestinal contents of the HuoShou Pig group were selected for the screening of the dominant lactic acid bacteria strains. Out of eight strains of lactic acid bacteria, the acid-production capacity, growth curve, and tolerance to a simulated intestinal environment were assessed. Additional assessments included surface hydrophobicity, the self-aggregation capability, co-agglutination of lactic acid bacteria with pathogenic bacteria, and an in vitro bacteriostatic activity assay. Lactobacillus johnsonii L5 and Lactobacillus reuteri L8 were identified as having a strong overall performance. These findings serve as a theoretical basis for the further development of pig-derived probiotics, thereby promoting the application of lactic acid bacteria to livestock production.
Collapse
Affiliation(s)
- Ying Shao
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; (Y.S.); (X.W.); (Z.Y.); (M.L.); (T.S.); (Z.W.); (J.T.)
- Anhui Province Engineering Laboratory for Animal Food Quality and Bio-Safety, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Xiaoyan Wu
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; (Y.S.); (X.W.); (Z.Y.); (M.L.); (T.S.); (Z.W.); (J.T.)
- Anhui Province Engineering Laboratory for Animal Food Quality and Bio-Safety, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Zhaorong Yu
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; (Y.S.); (X.W.); (Z.Y.); (M.L.); (T.S.); (Z.W.); (J.T.)
- Anhui Province Engineering Laboratory for Animal Food Quality and Bio-Safety, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Min Li
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; (Y.S.); (X.W.); (Z.Y.); (M.L.); (T.S.); (Z.W.); (J.T.)
- Anhui Province Engineering Laboratory for Animal Food Quality and Bio-Safety, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Tingting Sheng
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; (Y.S.); (X.W.); (Z.Y.); (M.L.); (T.S.); (Z.W.); (J.T.)
- Anhui Province Engineering Laboratory for Animal Food Quality and Bio-Safety, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Zhenyu Wang
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; (Y.S.); (X.W.); (Z.Y.); (M.L.); (T.S.); (Z.W.); (J.T.)
- Anhui Province Engineering Laboratory for Animal Food Quality and Bio-Safety, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Jian Tu
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; (Y.S.); (X.W.); (Z.Y.); (M.L.); (T.S.); (Z.W.); (J.T.)
- Anhui Province Engineering Laboratory for Animal Food Quality and Bio-Safety, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Xiangjun Song
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; (Y.S.); (X.W.); (Z.Y.); (M.L.); (T.S.); (Z.W.); (J.T.)
- Anhui Province Engineering Laboratory for Animal Food Quality and Bio-Safety, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Kezong Qi
- Anhui Province Key Laboratory of Veterinary Pathobiology and Disease Control, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; (Y.S.); (X.W.); (Z.Y.); (M.L.); (T.S.); (Z.W.); (J.T.)
- Anhui Province Engineering Laboratory for Animal Food Quality and Bio-Safety, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| |
Collapse
|
6
|
Postbiotics in Human Health: A Narrative Review. Nutrients 2023; 15:nu15020291. [PMID: 36678162 PMCID: PMC9863882 DOI: 10.3390/nu15020291] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/03/2023] [Accepted: 01/03/2023] [Indexed: 01/10/2023] Open
Abstract
In the 21st century, compressive health and functional foods are advocated by increasingly more people in order to eliminate sub-health conditions. Probiotics and postbiotics have gradually become the focus of scientific and nutrition communities. With the maturity and wide application of probiotics, the safety concerns and other disadvantages are non-negligible as we review here. As new-era products, postbiotics continue to have considerable potential as well as plentiful drawbacks to optimize. "Postbiotic" has been defined as a "preparation of inanimate microorganisms and/or their components that confers a health benefit on the host". Here, the evolution of the concept "postbiotics" is reviewed. The underlying mechanisms of postbiotic action are discussed. Current insight suggests that postbiotics exert efficacy through protective modulation, fortifying the epithelial barrier and modulation of immune responses. Finally, we provide an overview of the comparative advantages and the current application in the food industry at pharmaceutical and biomedical levels.
Collapse
|
7
|
Taha-Abdelaziz K, Singh M, Sharif S, Sharma S, Kulkarni RR, Alizadeh M, Yitbarek A, Helmy YA. Intervention Strategies to Control Campylobacter at Different Stages of the Food Chain. Microorganisms 2023; 11:113. [PMID: 36677405 PMCID: PMC9866650 DOI: 10.3390/microorganisms11010113] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 12/16/2022] [Accepted: 12/28/2022] [Indexed: 01/04/2023] Open
Abstract
Campylobacter is one of the most common bacterial pathogens of food safety concern. Campylobacter jejuni infects chickens by 2-3 weeks of age and colonized chickens carry a high C. jejuni load in their gut without developing clinical disease. Contamination of meat products by gut contents is difficult to prevent because of the high numbers of C. jejuni in the gut, and the large percentage of birds infected. Therefore, effective intervention strategies to limit human infections of C. jejuni should prioritize the control of pathogen transmission along the food supply chain. To this end, there have been ongoing efforts to develop innovative ways to control foodborne pathogens in poultry to meet the growing customers' demand for poultry meat that is free of foodborne pathogens. In this review, we discuss various approaches that are being undertaken to reduce Campylobacter load in live chickens (pre-harvest) and in carcasses (post-harvest). We also provide some insights into optimization of these approaches, which could potentially help improve the pre- and post-harvest practices for better control of Campylobacter.
Collapse
Affiliation(s)
- Khaled Taha-Abdelaziz
- Department of Animal and Veterinary Science, College of Agriculture, Forestry and Life Sciences, Clemson University, Clemson, SC 29634, USA
| | - Mankerat Singh
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Shayan Sharif
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Shreeya Sharma
- Department of Animal and Veterinary Science, College of Agriculture, Forestry and Life Sciences, Clemson University, Clemson, SC 29634, USA
| | - Raveendra R. Kulkarni
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27606, USA
| | - Mohammadali Alizadeh
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Alexander Yitbarek
- Department of Animal Science, McGill University, Montreal, QC H9X 3V9, Canada
| | - Yosra A. Helmy
- Department of Veterinary Science, College of Agriculture, Food, and Environment, University of Kentucky, Lexington, KY 40546, USA
| |
Collapse
|
8
|
Ahmad R, Yu YH, Hsiao FSH, Dybus A, Ali I, Hsu HC, Cheng YH. Probiotics as a Friendly Antibiotic Alternative: Assessment of Their Effects on the Health and Productive Performance of Poultry. FERMENTATION-BASEL 2022; 8:672. [DOI: 10.3390/fermentation8120672] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Abstract
Antibiotics have been used to maintain the overall health of poultry by increasing production efficiency, promoting growth, and improving intestinal function for more than 50 years. However, they have a number of side effects, such as antibiotic resistance, gut dysbiosis, destruction of beneficial bacteria, and the potential to spread diseases to humans. In order to address the aforementioned issues, a lot of effort is put into the development of antibiotic alternatives. One of them is the use of probiotics that can be added to the feed in order to increase poultry performance and avoid the aforementioned problems. Probiotics are live microorganisms consumed as feed additives or supplements. They function in the poultry gastrointestinal tract to benefit the host. Probiotics improve growth performance, bone health, meat and eggshell quality. The addition of probiotics to the diet also positively affects the immune response, intestinal microflora, and disease resistance. Careful selection of probiotic strains is of utmost importance. This review focuses on the significance of probiotics as a potential antibiotic-free alternative and the way in which they can be used as supplements in poultry feed for boosting production and safeguarding health.
Collapse
Affiliation(s)
- Rafiq Ahmad
- Department of Biotechnology and Animal Sciences, National Ilan University, Yilan 26047, Taiwan
| | - Yu-Hsiang Yu
- Department of Biotechnology and Animal Sciences, National Ilan University, Yilan 26047, Taiwan
| | - Felix Shih-Hsiang Hsiao
- Department of Biotechnology and Animal Sciences, National Ilan University, Yilan 26047, Taiwan
| | - Andrzej Dybus
- Department of Genetics, West Pomeranian University of Technology, 70-311 Szczecin, Poland
| | - Ilyas Ali
- Department of Medical Cell Biology and Genetics, Health Sciences Center, Shenzhen 518060, China
| | - Hui-Chen Hsu
- Department of Biotechnology and Animal Sciences, National Ilan University, Yilan 26047, Taiwan
| | - Yeong-Hsiang Cheng
- Department of Biotechnology and Animal Sciences, National Ilan University, Yilan 26047, Taiwan
| |
Collapse
|
9
|
Elgamoudi BA, Korolik V. Campylobacter Biofilms: Potential of Natural Compounds to Disrupt Campylobacter jejuni Transmission. Int J Mol Sci 2021; 22:12159. [PMID: 34830039 PMCID: PMC8617744 DOI: 10.3390/ijms222212159] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 11/08/2021] [Accepted: 11/08/2021] [Indexed: 12/19/2022] Open
Abstract
Microbial biofilms occur naturally in many environmental niches and can be a significant reservoir of infectious microbes in zoonotically transmitted diseases such as that caused by Campylobacter jejuni, the leading cause of acute human bacterial gastroenteritis world-wide. The greatest challenge in reducing the disease caused by this organism is reducing transmission of C. jejuni to humans from poultry via the food chain. Biofilms enhance the stress tolerance and antimicrobial resistance of the microorganisms they harbor and are considered to play a crucial role for Campylobacter spp. survival and transmission to humans. Unconventional approaches to control biofilms and to improve the efficacy of currently used antibiotics are urgently needed. This review summarizes the use plant- and microorganism-derived antimicrobial and antibiofilm compounds such as essential oils, antimicrobial peptides (AMPs), polyphenolic extracts, algae extracts, probiotic-derived factors, d-amino acids (DAs) and glycolipid biosurfactants with potential to control biofilms formed by Campylobacter, and the suggested mechanisms of their action. Further investigation and use of such natural compounds could improve preventative and remedial strategies aimed to limit the transmission of campylobacters and other human pathogens via the food chain.
Collapse
Affiliation(s)
- Bassam A. Elgamoudi
- Institute for Glycomics, Griffith University, Gold Coast, QLD 4222, Australia;
| | - Victoria Korolik
- Institute for Glycomics, Griffith University, Gold Coast, QLD 4222, Australia;
- School of Pharmacy and Medical Science, Griffith University, Gold Coast, QLD 4222, Australia
| |
Collapse
|
10
|
Fermentative production of alternative antimicrobial peptides and enzymes. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2021. [DOI: 10.1016/j.bcab.2021.102189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
11
|
Recombinant production of Trx-Ib-AMP4 and Trx-E50-52 antimicrobial peptides and antimicrobial synergistic assessment on the treatment of methicillin-resistant Staphylococcus aureus under in vitro and in vivo situations. Protein Expr Purif 2021; 188:105949. [PMID: 34324967 DOI: 10.1016/j.pep.2021.105949] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 07/06/2021] [Accepted: 07/25/2021] [Indexed: 11/24/2022]
Abstract
PURPOSE The production of alternative novel antimicrobial agents is considered an efficient way to cope with multidrug resistance among pathogenic bacteria. E50-52 and Ib-AMP4 antimicrobial peptides (AMPs) have illustrated great proven antibacterial effects. The aim of this study was recombinant production of these AMPs and investigation of their synergistic effects on methicillin-resistant Staphylococcus aureus (MRSA). METHOD At first, the codon optimized sequences of the Ib-AMP4 (UniProt: 024006 (PRO_0000020721), and E50-52 (UniProtKB: P85148) were individually ligated into the pET-32α vector and transformed into E. coli. After the optimization of production and purification steps, the MIC (Minimum inhibitory concentration), time kill and growth kinetic tests of recombinant proteins were determined against MRSA. Finally, the in vivo wound healing efficiency was tested. RESULTS AND CONCLUSION The recorded MIC of recombinant Trx-Ib-AMP4, Trx-E50-52 against MRSA bacterium were 0.375 and 0.0875 mg/mL respectively. The combination application of the produced AMPs by the checkerboard method confirmed their synergic activity. The results of the time-kill showed sharply decrease of the number of viable cells with over five time reductions in log10 CFU/mL by the combination of Trx-E50-52 and Trx-IbAMP4 at 2 × MIC within 240 min. The growth kinetic results confirmed the combination of Trx-E50-52 and Trx-IbAMP4 had much greater success in the reduction of over 50 % of MRSA suspensions' turbidity within the first hour. Wound healing assay and histological analysis of infected mice treated with Trx-Ib-AMP4 or Trx-E50-52 compared with those treated with a combination of Trx-Ib-AMP4 and Trx-E50-52 showed significant synergic effects.
Collapse
|
12
|
Antibacterial mechanisms of bacteriocin BM1157 against Escherichia coli and Cronobacter sakazakii. Food Control 2021. [DOI: 10.1016/j.foodcont.2020.107730] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
13
|
Huang F, Teng K, Liu Y, Cao Y, Wang T, Ma C, Zhang J, Zhong J. Bacteriocins: Potential for Human Health. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:5518825. [PMID: 33936381 PMCID: PMC8055394 DOI: 10.1155/2021/5518825] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 03/25/2021] [Accepted: 03/30/2021] [Indexed: 11/17/2022]
Abstract
Due to the challenges of antibiotic resistance to global health, bacteriocins as antimicrobial compounds have received more and more attention. Bacteriocins are biosynthesized by various microbes and are predominantly used as food preservatives to control foodborne pathogens. Now, increasing researches have focused on bacteriocins as potential clinical antimicrobials or immune-modulating agents to fight against the global threat to human health. Given the broad- or narrow-spectrum antimicrobial activity, bacteriocins have been reported to inhibit a wide range of clinically pathogenic and multidrug-resistant bacteria, thus preventing the infections caused by these bacteria in the human body. Otherwise, some bacteriocins also show anticancer, anti-inflammatory, and immune-modulatory activities. Because of the safety and being not easy to cause drug resistance, some bacteriocins appear to have better efficacy and application prospects than existing therapeutic agents do. In this review, we highlight the potential therapeutic activities of bacteriocins and suggest opportunities for their application.
Collapse
Affiliation(s)
- Fuqing Huang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100008, China
| | - Kunling Teng
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yayong Liu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100008, China
| | - Yanhong Cao
- The Animal Husbandry Research Institute of Guangxi Zhuang Autonomous Region, Nanning 530000, China
| | - Tianwei Wang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Cui Ma
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jie Zhang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jin Zhong
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100008, China
| |
Collapse
|
14
|
Purification and characterization of bacteriocins-like inhibitory substances from food isolated Enterococcus faecalis OS13 with activity against nosocomial enterococci. Sci Rep 2021; 11:3795. [PMID: 33589735 PMCID: PMC7884432 DOI: 10.1038/s41598-021-83357-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 01/25/2021] [Indexed: 01/02/2023] Open
Abstract
Nosocomial infections caused by enterococci are an ongoing global threat. Thus, finding therapeutic agents for the treatment of such infections are crucial. Some Enterococcus faecalis strains are able to produce antimicrobial peptides called bacteriocins. We analyzed 65 E. faecalis isolates from 43 food samples and 22 clinical samples in Egypt for 17 common bacteriocin-encoding genes of Enterococcus spp. These genes were absent in 11 isolates that showed antimicrobial activity putatively due to bacteriocins (three from food, including isolate OS13, and eight from clinical isolates). The food-isolated E. faecalis OS13 produced bacteriocin-like inhibitory substances (BLIS) named enterocin OS13, which comprised two peptides (enterocin OS13α OS13β) that inhibited the growth of antibiotic-resistant nosocomial E. faecalis and E. faecium isolates. The molecular weights of enterocin OS13α and OS13β were determined as 8079 Da and 7859 Da, respectively, and both were heat-labile. Enterocin OS13α was sensitive to proteinase K, while enterocin OS13β was resistant. Characterization of E. faecalis OS13 isolate revealed that it belonged to sequence type 116. It was non-hemolytic, bile salt hydrolase-negative, gelatinase-positive, and sensitive to ampicillin, penicillin, vancomycin, erythromycin, kanamycin, and gentamicin. In conclusion, BLIS as enterocin OS13α and OS13β represent antimicrobial agents with activities against antibiotic-resistant enterococcal isolates.
Collapse
|
15
|
Soltani S, Hammami R, Cotter PD, Rebuffat S, Said LB, Gaudreau H, Bédard F, Biron E, Drider D, Fliss I. Bacteriocins as a new generation of antimicrobials: toxicity aspects and regulations. FEMS Microbiol Rev 2021; 45:fuaa039. [PMID: 32876664 PMCID: PMC7794045 DOI: 10.1093/femsre/fuaa039] [Citation(s) in RCA: 264] [Impact Index Per Article: 66.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 08/25/2020] [Indexed: 02/07/2023] Open
Abstract
In recent decades, bacteriocins have received substantial attention as antimicrobial compounds. Although bacteriocins have been predominantly exploited as food preservatives, they are now receiving increased attention as potential clinical antimicrobials and as possible immune-modulating agents. Infections caused by antibiotic-resistant bacteria have been declared as a global threat to public health. Bacteriocins represent a potential solution to this worldwide threat due to their broad- or narrow-spectrum activity against antibiotic-resistant bacteria. Notably, despite their role in food safety as natural alternatives to chemical preservatives, nisin remains the only bacteriocin legally approved by regulatory agencies as a food preservative. Moreover, insufficient data on the safety and toxicity of bacteriocins represent a barrier against the more widespread use of bacteriocins by the food and medical industry. Here, we focus on the most recent trends relating to the application of bacteriocins, their toxicity and impacts.
Collapse
Affiliation(s)
- Samira Soltani
- Food Science Department, Faculty of Agriculture and Food Sciences, Université Laval, G1V 0A6 Québec, Canada
| | - Riadh Hammami
- School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, 75 Laurier Ave. E, Ottawa, ON K1N 6N5, Canada
| | - Paul D Cotter
- Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, P61 C996 Ireland
- APC Microbiome Ireland, Institute and school of Microbiology, University College Cork, Western Road, Cork, T12 YN60, Ireland
| | - Sylvie Rebuffat
- Muséum National d'Histoire Naturelle, Centre National de la Recherche Scientifique, Laboratory Molecules of Communication and Adaptation of Microorganisms (MCAM), UMR 7245 CNRS-MNHN, CP 54, 57 rue Cuvier, 75005 Paris, France
| | - Laila Ben Said
- Food Science Department, Faculty of Agriculture and Food Sciences, Université Laval, G1V 0A6 Québec, Canada
| | - Hélène Gaudreau
- Food Science Department, Faculty of Agriculture and Food Sciences, Université Laval, G1V 0A6 Québec, Canada
| | - François Bédard
- Faculty of Pharmacy and Centre de Recherche en Endocrinologie Moléculaire et Oncologique et Génomique Humaine, Université Laval, 2705 Boulevard Laurier, Quebec G1V 4G2, Canada
| | - Eric Biron
- Faculty of Pharmacy and Centre de Recherche en Endocrinologie Moléculaire et Oncologique et Génomique Humaine, Université Laval, 2705 Boulevard Laurier, Quebec G1V 4G2, Canada
| | - Djamel Drider
- Institut Charles Viollette, Université de Lille, EA 7394, 53955 Villeneuve d'Ascq, France
| | - Ismail Fliss
- Food Science Department, Faculty of Agriculture and Food Sciences, Université Laval, G1V 0A6 Québec, Canada
- Institute of Nutrition and Functional Foods, Université Laval, 2440 Boulevard Hochelaga, Québec G1V 0A6, Canada
| |
Collapse
|
16
|
New Bacteriocins from Lacticaseibacillus paracasei CNCM I-5369 Adsorbed on Alginate Nanoparticles Are Very Active against Escherichia coli. Int J Mol Sci 2020; 21:ijms21228654. [PMID: 33212803 PMCID: PMC7697949 DOI: 10.3390/ijms21228654] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 11/06/2020] [Accepted: 11/15/2020] [Indexed: 12/23/2022] Open
Abstract
Lacticaseibacillus paracasei CNCM I-5369, formerly Lactobacillus paracasei CNCM I-5369, produces bacteriocins that are remarkably active against Gram-negative bacteria, among which is the Escherichia coli-carrying mcr-1 gene that is involved in resistance to colistin. These bacteriocins present in the culture supernatant of the producing strain were extracted and semi-purified. The fraction containing these active bacteriocins was designated as E20. Further, E20 was loaded onto alginate nanoparticles (Alg NPs), leading to a highly active nano-antibiotics formulation named hereafter Alg NPs/E20. The amount of E20 adsorbed on the alginate nanoparticles was 12 wt.%, according to high-performance liquid chromatography (HPLC) analysis. The minimal inhibitory concentration (MIC) values obtained with E20 ranged from 250 to 2000 μg/mL, whilst those recorded for Alg NPs/E20 were comprised between 2 and 4 μg/mL, which allowed them to gain up to 500-fold in the anti-E. coli activity. The damages caused by E20 and/or Alg NPs/E20 on the cytology of the target bacteria were characterized by transmission electron microscopy (TEM) imaging and the quantification of intracellular proteins released following treatment of the target bacteria with these antimicrobials. Thus, loading these bacteriocins on Alg NPs appeared to improve their activity, and the resulting nano-antibiotics stand as a promising drug delivery system.
Collapse
|
17
|
Leite EL, Oliveira AFDE, Carmo FLRDO, Berkova N, Barh D, Ghosh P, Azevedo V. Bacteriocins as an alternative in the treatment of infections by Staphylococcus aureus. AN ACAD BRAS CIENC 2020; 92:e20201216. [PMID: 33084762 DOI: 10.1590/0001-3765202020201216] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 08/18/2020] [Indexed: 01/19/2023] Open
Abstract
Staphylococcus aureus (S. aureus) is a highly versatile Gram-positive bacterium that is carried asymptomatically by up to 30% of healthy people, while being a major cause of healthcare-associated infections, making it a worldwide problem in clinical medicine. The adaptive evolution of S. aureus strains is demonstrated by its remarkable capacity to promptly develop high resistance to multiple antibiotics, thus limiting treatment choice. Nowadays, there is a continuous demand for an alternative to the use of antibiotics for S. aureus infections and a strategy to control the spread or to kill phylogenetically related strains. In this scenario, bacteriocins fit as with a promising and interesting alternative. These molecules are produced by a range of bacteria, defined as ribosomally synthesized peptides with bacteriostatic or bactericidal activity against a wide range of pathogens. This work reviews ascertained the main antibiotic-resistance mechanisms of S. aureus strains and the current, informative content concerning the applicability of the use of bacteriocins overlapping the use of conventional antibiotics in the context of S. aureus infections. Besides, we highlight the possible application of these biomolecules on an industrial scale in future work.
Collapse
Affiliation(s)
- Elma L Leite
- Institut National de la Recherche Agronomique (INRA), 65 Rue de Saint-Brieuc, 35000 Rennes, France.,Departamento de Genética, Ecologia e Evolução, ICB/UFMG, Av. Antonio Carlos, 6627, Pampulha, Caixa Postal 486, 31270-901 Belo Horizonte, MG, Brazil
| | - Alberto F DE Oliveira
- Institut National de la Recherche Agronomique (INRA), 65 Rue de Saint-Brieuc, 35000 Rennes, France
| | - Fillipe L R DO Carmo
- Departamento de Genética, Ecologia e Evolução, ICB/UFMG, Av. Antonio Carlos, 6627, Pampulha, Caixa Postal 486, 31270-901 Belo Horizonte, MG, Brazil
| | - Nadia Berkova
- Institut National de la Recherche Agronomique (INRA), 65 Rue de Saint-Brieuc, 35000 Rennes, France
| | - Debmalya Barh
- Centre for Genomics and Applied Gene Technology, Institute of Integrative Omics and Applied Biotechnology (IIOAB), Nonakuri, Purba Medinipur, 721172 West Bengal, India
| | - Preetam Ghosh
- Department of Computer Science, Virginia Commonwealth University, Richmond, VA-23284, USA
| | - Vasco Azevedo
- Departamento de Genética, Ecologia e Evolução, ICB/UFMG, Av. Antonio Carlos, 6627, Pampulha, Caixa Postal 486, 31270-901 Belo Horizonte, MG, Brazil
| |
Collapse
|
18
|
van Zyl WF, Deane SM, Dicks LM. Molecular insights into probiotic mechanisms of action employed against intestinal pathogenic bacteria. Gut Microbes 2020; 12:1831339. [PMID: 33112695 PMCID: PMC7595611 DOI: 10.1080/19490976.2020.1831339] [Citation(s) in RCA: 135] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Gastrointestinal (GI) diseases, and in particular those caused by bacterial infections, are a major cause of morbidity and mortality worldwide. Treatment is becoming increasingly difficult due to the increase in number of species that have developed resistance to antibiotics. Probiotic lactic acid bacteria (LAB) have considerable potential as alternatives to antibiotics, both in prophylactic and therapeutic applications. Several studies have documented a reduction, or prevention, of GI diseases by probiotic bacteria. Since the activities of probiotic bacteria are closely linked with conditions in the host's GI-tract (GIT) and changes in the population of enteric microorganisms, a deeper understanding of gut-microbial interactions is required in the selection of the most suitable probiotic. This necessitates a deeper understanding of the molecular capabilities of probiotic bacteria. In this review, we explore how probiotic microorganisms interact with enteric pathogens in the GIT. The significance of probiotic colonization and persistence in the GIT is also addressed.
Collapse
Affiliation(s)
- Winschau F. van Zyl
- Department of Microbiology, Stellenbosch University, Stellenbosch, South Africa
| | - Shelly M. Deane
- Department of Microbiology, Stellenbosch University, Stellenbosch, South Africa
| | - Leon M.T. Dicks
- Department of Microbiology, Stellenbosch University, Stellenbosch, South Africa,CONTACT Leon M.T. Dicks; Department of Microbiology; Stellenbosch University, Stellenbosch7602, South Africa
| |
Collapse
|
19
|
Lu T, Marmion M, Ferone M, Wall P, Scannell AGM. On farm interventions to minimise Campylobacter spp. contamination in chicken. Br Poult Sci 2020; 62:53-67. [PMID: 32835499 DOI: 10.1080/00071668.2020.1813253] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
1. This review explores current and proposed on-farm interventions and assess the potential of these interventions against Campylobacter spp. 2. Interventions such as vaccination, feed/water-additives and, most importantly, consistent biosecurity, exhibit potential for the effective control of this pathogen and its dissemination within the food chain. 3. Due to the extensive diversity in the Campylobacter spp. genome and surface-expressed proteins, vaccination of poultry is not yet regarded as a completely effective strategy. 4. The acidification of drinking water through the addition of organic acids has been reported to decrease the risk of Campylobacter spp. colonisation in broiler flocks. Whilst this treatment alone will not completely protect birds, use of water acidification in combination with in-feed measures to further reduce the level of Campylobacter spp. colonisation in poultry may be an option meriting further exploration. 5. The use of varied types of feed supplements to reduce the intestinal population and shedding rate of Campylobacter spp. in poultry is an area of growing interest in the poultry industry. Such supplements include pro - and pre-biotics, organic acids, bacteriocins and bacteriophage, which may be added to feed and water. 6. From the literature, it is clear that a distinct, albeit not unexpected, difference between the performance of in-feed interventions exists when examined in vitro compared to those determined in in vivo studies. It is much more likely that pooling some of the discussed approaches in the in-feed tool kit will provide an answer. 7. Whilst on-farm biosecurity is essential to maintain a healthy flock and reduce disease transmission, even the most stringent biosecurity measures may not have sufficient, consistent and predictable effects in controlling Campylobacter spp. Furthermore, the combination of varied dietary approaches and improved biosecurity measures may synergistically improve control.
Collapse
Affiliation(s)
- T Lu
- UCD School of Public Health, Physiotherapy and Sports Science, University College Dublin, National University of Ireland , Dublin, Ireland.,UCD Centre for Food Safety, University College Dublin, National University of Ireland , Dublin, Ireland
| | - M Marmion
- UCD School of Agriculture and Food Science, Agricultural & Food Science Centre, University College Dublin, National University of Ireland , Dublin, Ireland
| | - M Ferone
- UCD School of Agriculture and Food Science, Agricultural & Food Science Centre, University College Dublin, National University of Ireland , Dublin, Ireland
| | - P Wall
- UCD School of Public Health, Physiotherapy and Sports Science, University College Dublin, National University of Ireland , Dublin, Ireland.,UCD Centre for Food Safety, University College Dublin, National University of Ireland , Dublin, Ireland.,UCD Institute of Food and Health O'Brien Science Centre South, University College Dublin, National University of Ireland , Dublin, Ireland
| | - A G M Scannell
- UCD Centre for Food Safety, University College Dublin, National University of Ireland , Dublin, Ireland.,UCD School of Agriculture and Food Science, Agricultural & Food Science Centre, University College Dublin, National University of Ireland , Dublin, Ireland.,UCD Institute of Food and Health O'Brien Science Centre South, University College Dublin, National University of Ireland , Dublin, Ireland
| |
Collapse
|
20
|
Dai L, Sahin O, Grover M, Zhang Q. New and alternative strategies for the prevention, control, and treatment of antibiotic-resistant Campylobacter. Transl Res 2020; 223:76-88. [PMID: 32438073 PMCID: PMC7423705 DOI: 10.1016/j.trsl.2020.04.009] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 04/10/2020] [Accepted: 04/11/2020] [Indexed: 12/24/2022]
Abstract
Campylobacter is an enteric pathogen and a leading bacterial cause of diarrhea worldwide. It is widely distributed in food animal species and is transmitted to humans primarily through the foodborne route. While generally causing self-limited diarrhea in humans, Campylobacter may induce severe or systemic infections in immunocompromised or young/elderly patients, which often requires antibiotic therapy with the first-line antibiotics including fluoroquinolones and macrolides. Over the past decades, Campylobacter has acquired resistance to these clinically significant antibiotics, compromising the effectiveness of antibiotic treatments. To address this concern, many studies have been conducted to advance novel and alternative measures to control antibiotic-resistant Campylobacter in animal reservoirs and in the human host. Although some of these undertakings have yielded promising results, efficacious and reliable alternative approaches are yet to be developed. In this review article, we will describe Campylobacter-associated disease spectrums and current treatment options, discuss the state of antibiotic resistance and alternative therapies, and provide an evaluation of various approaches that are being developed to control Campylobacter infections in animal reservoirs and the human host.
Collapse
Affiliation(s)
- Lei Dai
- Departments of Veterinary Microbiology and Preventive Medicine
| | - Orhan Sahin
- Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa, United States 50011
| | - Madhusudan Grover
- Division of Gastroenterology and Hepatology, Enteric NeuroScience Program, Mayo Clinic, Rochester, Minnesota, United States 55902
| | - Qijing Zhang
- Departments of Veterinary Microbiology and Preventive Medicine.
| |
Collapse
|
21
|
Soro AB, Whyte P, Bolton DJ, Tiwari BK. Strategies and novel technologies to control Campylobacter in the poultry chain: A review. Compr Rev Food Sci Food Saf 2020; 19:1353-1377. [PMID: 33337085 DOI: 10.1111/1541-4337.12544] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 01/06/2020] [Accepted: 01/15/2020] [Indexed: 12/15/2022]
Abstract
Campylobacteriosis is one of the most common bacterial infections worldwide causing economic costs. The high prevalence of Campylobacter spp. in poultry meat is a result of several contamination and cross-contamination sources through the production chain. Moreover, survival mechanisms, such as biofilm formation, viable but nonculturable state, and antimicrobial resistance, enable its persistence during food processing. Therefore, mitigation strategies are necessary in order to avoid and/or inactivate Campylobacter at farm, abattoir, industry, and retail level. In this review, a number of potential strategies and novel technologies that could reduce the prevalence of Campylobacter in poultry meat have been identified and evaluated to provide a useful overview. At farm level for instance, biosecurity, bacteriocins, probiotics, feed and water additives, bacteriophages, and vaccination could potentially reduce colonization in chicken flocks. However, current technologies used in the chicken slaughter and processing industry may be less effective against this foodborne pathogen. Novel technologies and strategies such as cold plasma, ultraviolet light, high-intensity light pulses, pulsed electric fields, antimicrobials, and modified atmosphere packaging are discussed in this review for reducing Campylobacter contamination. Although these measures have achieved promising results, most have not been integrated within processing operations due to a lack of knowledge or an unwillingness to implement these into existing processing systems. Furthermore, a combination of existing and novel strategies might be required to decrease the prevalence of this pathogen in poultry meat and enhance food safety. Therefore, further research will be essential to assess the effectiveness of all these strategies.
Collapse
Affiliation(s)
- Arturo B Soro
- Department of Food Chemistry and Technology, Teagasc Food Research Centre, Ashtown, Ireland.,UCD School of Veterinary Medicine, University College Dublin, Belfield, Ireland
| | - Paul Whyte
- UCD School of Veterinary Medicine, University College Dublin, Belfield, Ireland
| | - Declan J Bolton
- Department of Food Safety, Teagasc Food Research Centre, Ashtown, Ireland
| | - Brijesh K Tiwari
- Department of Food Chemistry and Technology, Teagasc Food Research Centre, Ashtown, Ireland
| |
Collapse
|
22
|
Simons A, Alhanout K, Duval RE. Bacteriocins, Antimicrobial Peptides from Bacterial Origin: Overview of Their Biology and Their Impact against Multidrug-Resistant Bacteria. Microorganisms 2020; 8:E639. [PMID: 32349409 PMCID: PMC7285073 DOI: 10.3390/microorganisms8050639] [Citation(s) in RCA: 230] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 04/16/2020] [Accepted: 04/22/2020] [Indexed: 12/18/2022] Open
Abstract
Currently, the emergence and ongoing dissemination of antimicrobial resistance among bacteria are critical health and economic issue, leading to increased rates of morbidity and mortality related to bacterial infections. Research and development for new antimicrobial agents is currently needed to overcome this problem. Among the different approaches studied, bacteriocins seem to be a promising possibility. These molecules are peptides naturally synthesized by ribosomes, produced by both Gram-positive bacteria (GPB) and Gram-negative bacteria (GNB), which will allow these bacteriocin producers to survive in highly competitive polymicrobial environment. Bacteriocins exhibit antimicrobial activity with variable spectrum depending on the peptide, which may target several bacteria. Already used in some areas such as agro-food, bacteriocins may be considered as interesting candidates for further development as antimicrobial agents used in health contexts, particularly considering the issue of antimicrobial resistance. The aim of this review is to present an updated global report on the biology of bacteriocins produced by GPB and GNB, as well as their antibacterial activity against relevant bacterial pathogens, and especially against multidrug-resistant bacteria.
Collapse
Affiliation(s)
- Alexis Simons
- Université de Lorraine, CNRS, L2CM, F-54000 Nancy, France
- Institut Micalis, équipe Bactéries Pathogènes et Santé, Faculté de Pharmacie, Université Paris-Saclay—INRAE—AgroParisTech, 92296 Châtenay-Malabry, France
| | - Kamel Alhanout
- Université de Lorraine, CNRS, L2CM, F-54000 Nancy, France
| | - Raphaël E. Duval
- Université de Lorraine, CNRS, L2CM, F-54000 Nancy, France
- ABC Platform, Faculté de Pharmacie, F-54505 Vandœuvre-lès-Nancy, France
| |
Collapse
|
23
|
Kiu R, Brown J, Bedwell H, Leclaire C, Caim S, Pickard D, Dougan G, Dixon RA, Hall LJ. Genomic analysis on broiler-associated Clostridium perfringens strains and exploratory caecal microbiome investigation reveals key factors linked to poultry necrotic enteritis. Anim Microbiome 2019; 1:12. [PMID: 32021965 PMCID: PMC7000242 DOI: 10.1186/s42523-019-0015-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Background Clostridium perfringens is a key pathogen in poultry-associated necrotic enteritis (NE). To date there are limited Whole Genome Sequencing based studies describing broiler-associated C. perfringens in healthy and diseased birds. Moreover, changes in the caecal microbiome during NE is currently not well characterised. Thus, the aim of this present study was to investigate C. perfringens virulence factors linked to health and diseased chickens, including identifying putative caecal microbiota signatures associated with NE. Results We analysed 88 broiler chicken C. perfringens genomes (representing 66 publicly available genomes and 22 newly sequenced genomes) using different phylogenomics approaches and identified a potential hypervirulent and globally-distributed clone spanning 20-year time-frame (1993-2013). These isolates harbored a greater number of virulence genes (including toxin and collagen adhesin genes) when compared to other isolates. Further genomic analysis indicated exclusive and overabundant presence of important NE-linked toxin genes including netB and tpeL in NE-associated broiler isolates. Secondary virulence genes including pfoA, cpb2, and collagen adhesin genes cna, cnaA and cnaD were also enriched in the NE-linked C. perfringens genomes. Moreover, an environmental isolate obtained from farm animal feeds was found to encode netB, suggesting potential reservoirs of NetB-positive C. perfringens strains (toxinotype G). We also analysed caecal samples from a small sub-set of 11 diseased and healthy broilers for exploratory microbiome investigation using 16S rRNA amplicon sequencing, which indicated a significant and positive correlation in genus Clostridium within the wider microbiota of those broilers diagnosed with NE, alongside reductions in beneficial microbiota members. Conclusions These data indicate a positive association of virulence genes including netB, pfoA, cpb2, tpeL and cna variants linked to NE-linked isolates. Potential global dissemination of specific hypervirulent lineage, coupled with distinctive microbiome profiles, highlights the need for further investigations, which will require a large worldwide sample collection from healthy and NE-associated birds.
Collapse
Affiliation(s)
- Raymond Kiu
- Gut Microbes and Health, Quadram Institute Bioscience, Norwich, UK
| | | | - Harley Bedwell
- Gut Microbes and Health, Quadram Institute Bioscience, Norwich, UK
| | | | - Shabhonam Caim
- Gut Microbes and Health, Quadram Institute Bioscience, Norwich, UK
| | - Derek Pickard
- Department of Medicine, University of Cambridge, Cambridge, UK
| | - Gordon Dougan
- Department of Medicine, University of Cambridge, Cambridge, UK
| | | | - Lindsay J Hall
- Gut Microbes and Health, Quadram Institute Bioscience, Norwich, UK.
| |
Collapse
|
24
|
Balandin SV, Sheremeteva EV, Ovchinnikova TV. Pediocin-Like Antimicrobial Peptides of Bacteria. BIOCHEMISTRY (MOSCOW) 2019; 84:464-478. [PMID: 31234762 DOI: 10.1134/s000629791905002x] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Bacteriocins are bacterial antimicrobial peptides that, unlike classical peptide antibiotics, are products of ribosomal synthesis and usually have a narrow spectrum of antibacterial activity against species closely related to the producers. Pediocin-like bacteriocins (PLBs) belong to the class IIa of the bacteriocins of Gram-positive bacteria. PLBs possess high activity against pathogenic bacteria from Listeria and Enterococcus genera. Molecular target for PLBs is a membrane protein complex - bacterial mannose-phosphotransferase. PLBs can be synthesized by components of symbiotic microflora and participate in the maintenance of homeostasis in various compartments of the digestive tract and on the surface of epithelial tissues contacting the external environment. PLBs could give a rise to a new group of antibiotics of narrow spectrum of activity.
Collapse
Affiliation(s)
- S V Balandin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
| | - E V Sheremeteva
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
| | - T V Ovchinnikova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia.
| |
Collapse
|
25
|
Wales AD, Vidal AB, Davies RH, Rodgers JD. Field Interventions Against Colonization of Broilers by Campylobacter. Compr Rev Food Sci Food Saf 2018; 18:167-188. [PMID: 33337018 DOI: 10.1111/1541-4337.12397] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 09/11/2018] [Accepted: 09/12/2018] [Indexed: 11/28/2022]
Abstract
Poultry accounts for a high proportion of human campylobacteriosis cases, and the problem of Campylobacter colonization of broiler flocks has proven to be intractable. Owing to their broad host range and genetic instability, Campylobacter organisms are ubiquitous and adaptable in the broiler farm environment, colonizing birds heavily and spreading rapidly after introduction into a flock. This review examines strategies to prevent or suppress such colonization, with a heavy emphasis on field investigations. Attempts to exclude Campylobacter via enhanced biosecurity and hygiene measures have met with mixed success. Reasons for this are becoming better understood as investigations focus on houses, ventilation, biosecurity practices, external operators, and compliance, among other factors. It is evident that piecemeal approaches are likely to fail. Complementary measures include feed and drinking water treatments applied in either preventive or suppressive modes using agents including organic acids and their derivatives, also litter treatments, probiotics, prebiotics, and alterations to diet. Some treatments aim to reduce the number of Campylobacter organisms entering abattoirs by suppressing intestinal colonization just before slaughter; these include acid water treatment or administration of bacteriophages or bacteriocins. Experimental vaccines historically have had little success, but some recent subunit vaccines show promise. Overall, there is wide variation in the control achieved, and consistency and harmonization of trials is needed to enable robust evaluation. There is also some potential to breed for resistance to Campylobacter. Good and consistent control of flock colonization by Campylobacter may require an as-yet undetermined combination of excellent biosecurity plus complementary measures.
Collapse
Affiliation(s)
- Andrew D Wales
- Dept. of Pathology and Infectious Diseases, School of Veterinary Medicine, Faculty of Health and Medical Sciences, Univ. of Surrey, Vet School Main Building, Daphne Jackson Road, Guildford, GU2 7AL, U.K
| | - Ana B Vidal
- Veterinary Medicines Directorate, Antimicrobial Resistance Policy and Surveillance Team, Woodham Lane, New Haw, Addlestone, KT15 3LS, U.K
| | - Robert H Davies
- Dept. of Bacteriology and Food Safety, Animal and Plant Health Agency (APHA - Weybridge), Woodham Lane, New Haw, Addlestone, KT15 3NB, U.K
| | - John D Rodgers
- Dept. of Bacteriology and Food Safety, Animal and Plant Health Agency (APHA-Weybridge), Woodham Lane, New Haw, Addlestone, KT15 3NB, Surrey, U.K
| |
Collapse
|
26
|
Hanchi H, Mottawea W, Sebei K, Hammami R. The Genus Enterococcus: Between Probiotic Potential and Safety Concerns-An Update. Front Microbiol 2018; 9:1791. [PMID: 30123208 PMCID: PMC6085487 DOI: 10.3389/fmicb.2018.01791] [Citation(s) in RCA: 292] [Impact Index Per Article: 41.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 07/17/2018] [Indexed: 02/05/2023] Open
Abstract
A considerable number of strains belonging to different species of Enterococcus are highly competitive due to their resistance to wide range of pH and temperature. Their competitiveness is also owed to their ability to produce bacteriocins recognized for their wide-range effectiveness on pathogenic and spoilage bacteria. Enterococcal bacteriocins have attracted great research interest as natural antimicrobial agents in the food industry, and as a potential drug candidate for replacing antibiotics in order to treat multiple drugs resistance pathogens. However, the prevalence of virulence factors and antibiotic-resistance genes and the ability to cause disease could compromise their application in food, human and animal health. From the current regulatory point of view, the genus Enterococcus is neither recommended for the QPS list nor have GRAS status. Although recent advances in molecular biology and the recommended methods for the safety evaluation of Enterococcus strains allowed the distinction between commensal and clinical clades, development of highly adapted methods and legislations are still required. In the present review, we evaluate some aspects of Enterococcus spp. related to their probiotic properties and safety concerns as well as the current and potential application in food systems and treatment of infections. The regulatory status of commensal Enterococcus candidates for food, feed, probiotic use, and recommended methods to assess and ensure their safety are also discussed.
Collapse
Affiliation(s)
- Hasna Hanchi
- Nutraceuticals and Functional Proteomics Potential of Biodiversity in Tunisia, Higher Institute of Applied Biological Sciences of Tunis (ISSBAT), University of Tunis El Manar, Tunis, Tunisia
| | - Walid Mottawea
- Faculty of Health Sciences, School of Nutrition Sciences, University of Ottawa, Ottawa, ON, Canada
- Department of Microbiology and Immunology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Khaled Sebei
- Nutraceuticals and Functional Proteomics Potential of Biodiversity in Tunisia, Higher Institute of Applied Biological Sciences of Tunis (ISSBAT), University of Tunis El Manar, Tunis, Tunisia
| | - Riadh Hammami
- Faculty of Health Sciences, School of Nutrition Sciences, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
27
|
Screening of the Enterocin-Encoding Genes and Their Genetic Determinism in the Bacteriocinogenic Enterococcus faecium GHB21. Probiotics Antimicrob Proteins 2018; 11:325-331. [PMID: 30027472 DOI: 10.1007/s12602-018-9448-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Enterococci are well-known for their ability to produce a variety of antimicrobial peptides called enterocins. Most of these enterocins withstand extreme conditions and are very effective against a broad spectrum of undesirable bacteria including some Gram-negative bacteria. The same enterococci strain can produce multiple enterocins simultaneously. The genetic determinants of these bacteriocins can either be located on plasmids or on bacterial chromosome. Digestion of Enterococcus faecium GHB21 plasmids with various restriction endonucleases suggests the presence of two plasmids named pGHB-21.1 and pGHB-21.2 whose respective sizes are ~ 10.0 kb and ~ 3.3 kb. The screening of enterocin-encoding genes among E. faecium GHB21 genome by PCR followed by amplicon sequencing indicated the presence of three different enterocin structural genes similar to entA, entB, and entP genes previously detected in other E. faecium strains. These enterocin genes were, subsequently, localized on the bacterial chromosome based on PCR-targeted screening using total DNA and plasmids of E. faecium GHB21 as separate templates.
Collapse
|
28
|
Zommiti M, Almohammed H, Ferchichi M. Purification and Characterization of a Novel Anti-Campylobacter Bacteriocin Produced by Lactobacillus curvatus DN317. Probiotics Antimicrob Proteins 2018; 8:191-201. [PMID: 27812926 DOI: 10.1007/s12602-016-9237-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The lactic acid bacteria (LAB) microbiota of Saudi chicken ceca was determined. From 60 samples, 204 isolates of lactic acid bacteria were obtained. Three isolates produced antimicrobial activities against Campylobacter jejuni, Listeria monocytogenes, and Bacillus subtilis. The isolate DN317, which had the highest activity against Campylobacter jejuni ATCC 33560, was identified as Lactobacillus curvatus (GenBank accession numbers: KX353849 and KX353850). Full inhibitory activity was observed after a 2-h incubation with the supernatant at pH values between 4 and 8. Only 16% of the activity was conserved after a treatment at 121 °C for 15 min. The use of proteinase K, pepsin, chymotrypsin, trypsin, papain, and lysozyme drastically reduced the antimicrobial activity. However, lipase, catalase, and lysozyme had no effect on this activity. The active peptide produced by Lactobacillus curvatus DN317 was purified by precipitation with an 80% saturated ammonium sulfate solution, and two steps of reversed phase HPLC on a C18 column. The molecular weight of this peptide was 4448 Da as determined by MALDI-ToF. N-terminal sequence analysis using Edman degradation revealed 47 amino acid residues (UniProt Knowledgebase accession number C0HK82) revealing homology with the amino acid sequences of sakacin P and curvaticin L442. The antimicrobial activity of the bacteriocin, namely curvaticin DN317, was found to be bacteriostatic against Campylobacter jejuni ATCC 33560. The use of microbial antagonism by LAB is one of the best ways to control microorganisms safely in foods. This result constitutes a reasonable advance in the antimicrobial field because of its potential applications in food technology.
Collapse
Affiliation(s)
- Mohamed Zommiti
- Unité de Protéomique Fonctionnelle et Potentiel Nutraceutique de la Biodiversité de Tunisie, Institut Supérieur des Sciences Biologiques Appliquées de Tunis, Rue Z. Essafi, 1006, Tunis, Tunisia
| | - Hamdan Almohammed
- Department of Medical Microbiology and Parasitology, College of Medicine, King Faisal University, P.O. Box: 400, Al-Ahsa, 31982, Saudi Arabia
| | - Mounir Ferchichi
- Unité de Protéomique Fonctionnelle et Potentiel Nutraceutique de la Biodiversité de Tunisie, Institut Supérieur des Sciences Biologiques Appliquées de Tunis, Rue Z. Essafi, 1006, Tunis, Tunisia.
- College of Applied Medical Sciences, Clinical Laboratory Department, King Faisal University, P.O. Box: 401, Al-Ahsa, 31982, Saudi Arabia.
| |
Collapse
|
29
|
Premarathne JMKJK, Satharasinghe DA, Huat JTY, Basri DF, Rukayadi Y, Nakaguchi Y, Nishibuchi M, Radu S. Impact of human Campylobacter infections in Southeast Asia: The contribution of the poultry sector. Crit Rev Food Sci Nutr 2018; 57:3971-3986. [PMID: 28001082 DOI: 10.1080/10408398.2016.1266297] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Campylobacter is globally recognized as a major cause of foodborne infection in humans, whilst the development of antimicrobial resistance and the possibility of repelling therapy increase the threat to public health. Poultry is the most frequent source of Campylobacter infection in humans, and southeast Asia is a global leader in poultry production, consumption, and exports. Though three of the world's top 20 most populated countries are located in southeast Asia, the true burden of Campylobacter infection in the region has not been fully elucidated. Based on published data, Campylobacter has been reported in humans, animals, and food commodities in the region. To our knowledge, this study is the first to review the status of human Campylobacter infection in southeast Asia and to discuss future perspectives. Gaining insight into the true burden of the infection and prevalence levels of Campylobacter spp. in the southeast Asian region is essential to ensuring global and regional food safety through facilitating improvements in surveillance systems, food safety regulations, and mitigation strategies.
Collapse
Affiliation(s)
- Jayasekara Mudiyanselage Krishanthi Jayarukshi Kumari Premarathne
- a Food Safety Research Centre (FOSREC), Faculty of Food Science and Technology , University Putra Malaysia, UPM , Serdang , Malaysia.,b Department of Livestock and Avian Science , Wayamba University of Sri Lanka, Faculty of Livestock, Fisheries and Nutrition , Makandura , Gonawila , Sri Lanka
| | - Dilan Amila Satharasinghe
- c Institute of Bioscience , University Putra Malaysia , UPM , Serdang , Malaysia.,d Department of Basic Veterinary Science , University of Peradeniya, Faculty of Veterinary Medicine and Animal Science , Peradeniya , Sri Lanka
| | - John Tang Yew Huat
- e Faculty of Food Technology , Universiti Sultan Zainal Abidin , Kuala Terengganu , Terengganu , Malaysia
| | - Dayang Fredalina Basri
- f School of Diagnostic and Applied Health Sciences, Faculty of Health Sciences , Universiti Kebangsaan Malaysia , Jalan Raja Muda Abdul Aziz, Kuala Lumpur , Malaysia
| | - Yaya Rukayadi
- a Food Safety Research Centre (FOSREC), Faculty of Food Science and Technology , University Putra Malaysia, UPM , Serdang , Malaysia
| | - Yoshitsugu Nakaguchi
- g Center for Southeast Asian Studies , Kyoto University, Yoshida , Sakyo-ku , Kyoto , Japan
| | - Mitsuaki Nishibuchi
- g Center for Southeast Asian Studies , Kyoto University, Yoshida , Sakyo-ku , Kyoto , Japan
| | - Son Radu
- a Food Safety Research Centre (FOSREC), Faculty of Food Science and Technology , University Putra Malaysia, UPM , Serdang , Malaysia
| |
Collapse
|
30
|
Suresh G, Das RK, Kaur Brar S, Rouissi T, Avalos Ramirez A, Chorfi Y, Godbout S. Alternatives to antibiotics in poultry feed: molecular perspectives. Crit Rev Microbiol 2017; 44:318-335. [DOI: 10.1080/1040841x.2017.1373062] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
| | - Ratul Kumar Das
- INRS-ETE, Université du Québec, Québec, QC, Canada
- TERI Deakin Nanobiotechnology Centre, TERI Gram, The Energy and Resources Institute, Gurgaon, India
| | | | | | - Antonio Avalos Ramirez
- Centre National en Électrochimie et en Technologie Environnementales Inc, Shawinigan, Canada
| | - Younes Chorfi
- Département de biomédecine vétérinaire, Université de Montréal, St-Hyacinthe, Canada
| | - Stephane Godbout
- Institut de recherche et de développement en agroenvironnement, Québec, Canada
| |
Collapse
|
31
|
Vasilchenko AS, Rogozhin EA, Valyshev AV. Purification of a Novel Bacteriocin-Like Inhibitory Substance Produced byEnterococcus faeciumICIS 8 and Characterization of Its Mode of Action. Microb Drug Resist 2017; 23:447-456. [DOI: 10.1089/mdr.2016.0069] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Affiliation(s)
- Alexey S. Vasilchenko
- Institute of Cellular and Intracellular Symbiosis, Russian Academy of Sciences, Orenburg, Russian Federation
- Orenburg State University, Orenburg, Russian Federation
| | - Eugene A. Rogozhin
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russian Federation
- Gause Institute of New Antibiotics, Moscow, Russian Federation
| | - Alexander V. Valyshev
- Institute of Cellular and Intracellular Symbiosis, Russian Academy of Sciences, Orenburg, Russian Federation
| |
Collapse
|
32
|
Fahimirad S, Abtahi H, Razavi SH, Alizadeh H, Ghorbanpour M. Production of Recombinant Antimicrobial Polymeric Protein Beta Casein-E 50-52 and Its Antimicrobial Synergistic Effects Assessment with Thymol. Molecules 2017; 22:molecules22060822. [PMID: 28561787 PMCID: PMC6152712 DOI: 10.3390/molecules22060822] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 05/08/2017] [Accepted: 05/11/2017] [Indexed: 01/18/2023] Open
Abstract
Accelerating emergence of antimicrobial resistance among food pathogens and consumers’ increasing demands for preservative-free foods are two contemporary challenging aspects within the food industry. Antimicrobial packaging and the use of natural preservatives are promising solutions. In the present study, we used beta-casein—one of the primary self-assembly proteins in milk with a high polymeric film production capability—as a fusion partner for the recombinant expression of E 50-52 antimicrobial peptide in Escherichia coli. The pET21a-BCN-E 50-52 construct was transformed to E. coli BL21 (DE3), and protein expression was induced under optimized conditions. Purified protein obtained from nickel affinity chromatography was refolded under optimized dialysis circumstances and concentrated to 1600 µg/mL fusion protein by ultrafiltration. Antimicrobial activities of recombinant BCN-E 50-52 performed against Escherichia coli, Salmonella typhimurium, Listeria monocytogenes, Staphylococcus aureus, Aspergillus flavus, and Candida albicans. Subsequently, the synergistic effects of BCN-E 50-52 and thymol were assayed. Results of checkerboard tests showed strong synergistic activity between two compounds. Time–kill and growth kinetic studies indicated a sharp reduction of cell viability during the first period of exposure, and SEM (scanning electron microscope) results validated the severe destructive effects of BCN E 50-52 and thymol in combination on bacterial cells.
Collapse
Affiliation(s)
- Shohreh Fahimirad
- Agriculture and Natural Resources Biotechnology Department, University of Tehran, Karaj 31587-11167, Iran; (S.F.); (S.H.R.); (H.A.)
| | - Hamid Abtahi
- Molecular and Medicine Research Center, Arak University of Medical Sciences, Arak, Molecular and Medicine Research Center, Arak University of Medical Sciences, Arak 38181-76941, Iran
- Correspondence: ; Tel.: +98-913-114-6154
| | - Seyed Hadi Razavi
- Agriculture and Natural Resources Biotechnology Department, University of Tehran, Karaj 31587-11167, Iran; (S.F.); (S.H.R.); (H.A.)
| | - Houshang Alizadeh
- Agriculture and Natural Resources Biotechnology Department, University of Tehran, Karaj 31587-11167, Iran; (S.F.); (S.H.R.); (H.A.)
| | - Mansour Ghorbanpour
- Department of Medicinal Plants, Faculty of Agriculture and Natural Resources, Arak University, Arak 3815688349, Iran;
| |
Collapse
|
33
|
Ben Lagha A, Haas B, Gottschalk M, Grenier D. Antimicrobial potential of bacteriocins in poultry and swine production. Vet Res 2017; 48:22. [PMID: 28399941 PMCID: PMC5387282 DOI: 10.1186/s13567-017-0425-6] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 03/21/2017] [Indexed: 12/17/2022] Open
Abstract
The routine use of antibiotics in agriculture has contributed to an increase in drug-resistant bacterial pathogens in animals that can potentially be transmitted to humans. In 2000, the World Health Organization identified resistance to antibiotics as one of the most significant global threats to public health and recommended that the use of antibiotics as additives in animal feed be phased out or terminated, particularly those used to treat human infections. Research is currently being carried out to identify alternative antimicrobial compounds for use in animal production. A number of studies, mostly in vitro, have provided evidence indicating that bacteriocins, which are antimicrobial peptides of bacterial origin, may be promising alternatives to conventional antibiotics in poultry and swine production. This review provides an update on bacteriocins and their potential for use in the poultry and swine industries.
Collapse
Affiliation(s)
- Amel Ben Lagha
- Groupe de Recherche en Écologie Buccale (GREB), Faculté de médecine dentaire, Université Laval, Quebec City, QC, Canada
| | - Bruno Haas
- Groupe de Recherche en Écologie Buccale (GREB), Faculté de médecine dentaire, Université Laval, Quebec City, QC, Canada
| | - Marcelo Gottschalk
- Groupe de Recherche sur les Maladies Infectieuses du Porc (GREMIP), Faculté de médecine vétérinaire, Université de Montréal, Saint-Hyacinthe, QC, Canada.,Centre de Recherche en Infectiologie Porcine et Avicole (CRIPA), Fonds de Recherche du Québec-Nature et Technologies (FQRNT), Saint-Hyacinthe, QC, Canada
| | - Daniel Grenier
- Groupe de Recherche en Écologie Buccale (GREB), Faculté de médecine dentaire, Université Laval, Quebec City, QC, Canada. .,Centre de Recherche en Infectiologie Porcine et Avicole (CRIPA), Fonds de Recherche du Québec-Nature et Technologies (FQRNT), Saint-Hyacinthe, QC, Canada.
| |
Collapse
|
34
|
Current state of purification, isolation and analysis of bacteriocins produced by lactic acid bacteria. Appl Microbiol Biotechnol 2017; 101:1323-1335. [DOI: 10.1007/s00253-017-8088-9] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Revised: 12/21/2016] [Accepted: 12/23/2016] [Indexed: 12/30/2022]
|
35
|
Kaktcham PM, Temgoua JB, Ngoufack Zambou F, Diaz-Ruiz G, Wacher C, Pérez-Chabela MDL. Quantitative analyses of the bacterial microbiota of rearing environment, tilapia and common carp cultured in earthen ponds and inhibitory activity of its lactic acid bacteria on fish spoilage and pathogenic bacteria. World J Microbiol Biotechnol 2017; 33:32. [PMID: 28063102 DOI: 10.1007/s11274-016-2197-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Accepted: 12/20/2016] [Indexed: 10/20/2022]
Abstract
The present study aimed to evaluate the bacterial load of water, Nile Tilapia and common Carp intestines from earthen ponds, isolate lactic acid bacteria (LAB) and assess their antimicrobial activity against fish spoilage and pathogenic bacteria. Following enumeration and isolation of microorganisms the antimicrobial activity of the LAB isolates was evaluated. Taxonomic identification of selected antagonistic LAB strains was assessed, followed by partial characterisation of their antimicrobial metabolites. Results showed that high counts (>4 log c.f.u ml-1 or 8 log c.f.u g-1) of total aerobic bacteria were recorded in pond waters and fish intestines. The microbiota were also found to be dominated by Salmonella spp., Vibrio spp., Staphylococcus spp. and Escherichia coli. LAB isolates (5.60%) exhibited potent direct and extracellular antimicrobial activity against the host-derived and non host-derived spoilage and pathogenic bacteria. These antagonistic isolates were identified and Lactococcus lactis subsp. lactis was found as the predominant (42.85%) specie. The strains displayed the ability to produce lactic, acetic, butyric, propionic and valeric acids. Bacteriocin-like inhibitory substances with activity against Gram-positive and Gram-negative (Vibrio spp. and Pseudomonas aeruginosa) bacteria were produced by three L. lactis subsp. lactis strains. In this study, the LAB from the microbiota of fish and pond water showed potent antimicrobial activity against fish spoilage or pathogenic bacteria from the same host or ecological niche. The studied Cameroonian aquatic niche is an ideal source of antagonistic LAB that could be appropriate as new fish biopreservatives or disease control agents in aquaculture under tropical conditions in particular or worldwide in general.
Collapse
Affiliation(s)
- Pierre Marie Kaktcham
- Laboratory of Biochemistry, Food Science and Nutrition (LABPMAN), Department of Biochemistry, Faculty of Science, University of Dschang, Cameroon, P.O Box 67, Dschang, Cameroon. .,Departamento de Biotecnología, Universidad Autónoma Metropolitana-Iztapalapa (UAM-I), Av. San Rafael Atlixco 186, 09340, Mexico, Distrito Federal, Mexico.
| | - Jules-Bocamdé Temgoua
- Laboratory of Biochemistry, Food Science and Nutrition (LABPMAN), Department of Biochemistry, Faculty of Science, University of Dschang, Cameroon, P.O Box 67, Dschang, Cameroon
| | - François Ngoufack Zambou
- Laboratory of Biochemistry, Food Science and Nutrition (LABPMAN), Department of Biochemistry, Faculty of Science, University of Dschang, Cameroon, P.O Box 67, Dschang, Cameroon
| | - Gloria Diaz-Ruiz
- Departamento de Alimentos y Biotecnología, Facultad de Química, Universidad Nacional Autónoma de México (UNAM), Ciudad Universitaria Coyoacán, 04510, Mexico, Distrito Federal, Mexico
| | - Carmen Wacher
- Departamento de Alimentos y Biotecnología, Facultad de Química, Universidad Nacional Autónoma de México (UNAM), Ciudad Universitaria Coyoacán, 04510, Mexico, Distrito Federal, Mexico
| | - María de Lourdes Pérez-Chabela
- Departamento de Biotecnología, Universidad Autónoma Metropolitana-Iztapalapa (UAM-I), Av. San Rafael Atlixco 186, 09340, Mexico, Distrito Federal, Mexico
| |
Collapse
|
36
|
Jiang H, Li P, Gu Q. Heterologous expression and purification of plantaricin NC8, a two-peptide bacteriocin against Salmonella spp. from Lactobacillus plantarum ZJ316. Protein Expr Purif 2016; 127:28-34. [DOI: 10.1016/j.pep.2016.06.013] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2016] [Revised: 06/20/2016] [Accepted: 06/28/2016] [Indexed: 01/24/2023]
|
37
|
Meunier M, Guyard-Nicodème M, Dory D, Chemaly M. Control strategies against Campylobacter
at the poultry production level: biosecurity measures, feed additives and vaccination. J Appl Microbiol 2016; 120:1139-73. [DOI: 10.1111/jam.12986] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Revised: 09/25/2015] [Accepted: 10/09/2015] [Indexed: 11/28/2022]
Affiliation(s)
- M. Meunier
- HQPAP - Unit of Hygiene and Quality of Poultry and Pork Products; French Agency for Food, Environmental and Occupational Health & Safety (ANSES); Ploufragan France
- GVB - Viral Genetics and Biosafety Unit; French Agency for Food, Environmental and Occupational Health & Safety (ANSES); Ploufragan France
- UEB - European University of Brittany; Rennes France
| | - M. Guyard-Nicodème
- HQPAP - Unit of Hygiene and Quality of Poultry and Pork Products; French Agency for Food, Environmental and Occupational Health & Safety (ANSES); Ploufragan France
- UEB - European University of Brittany; Rennes France
| | - D. Dory
- GVB - Viral Genetics and Biosafety Unit; French Agency for Food, Environmental and Occupational Health & Safety (ANSES); Ploufragan France
- UEB - European University of Brittany; Rennes France
| | - M. Chemaly
- HQPAP - Unit of Hygiene and Quality of Poultry and Pork Products; French Agency for Food, Environmental and Occupational Health & Safety (ANSES); Ploufragan France
- UEB - European University of Brittany; Rennes France
| |
Collapse
|
38
|
Svetoch EA, Eruslanov BV, Kovalev YN, Mitsevich EV, Mitsevich IP, Levchuk VP, Fursova NK, Perelygin VV, Stepanshin YG, Teymurasov MG, Seal BS, Stern NJ. Antimicrobial Activities of Bacteriocins E 50-52 and B 602 Against Antibiotic-Resistant Strains Involved in Nosocomial Infections. Probiotics Antimicrob Proteins 2016; 1:136. [PMID: 26783168 DOI: 10.1007/s12602-009-9027-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The antimicrobial spectra of previously published bacteriocin E 50-52 (39 a.a.; 3,932 Da; pI = 8.5) and bacteriocin B 602 (29 a.a.; 3,864 Da; pI = 7.2) were determined. Named peptides were related to class IIa (pediocin-like) bacteriocins. Minimal inhibitory concentrations (MICs) of bacteriocins have been determined for bacterial isolates that were causative agents of nosocomial infections collected from Russian hospitals in 2003-2007, namely methicillin-resistant Staphylococcus aureus (MRSA) (n = 10); Acinetobacter baumannii (n = 11); Citrobacter freundii (n = 8); Escherichia coli (n = 9); Klebsiella pneumoniae (n = 10); Proteus spp. (n = 6); and Pseudomonas aeruginosa (n = 10). The majority of these tested isolates have been shown to be multidrug resistant and carry genetic determinants of antimicrobial resistance that were detected using polymerase chain reaction (PCR). The MICs of bacteriocin B 602 ranged from ≤0.025-1.56 μg/ml, and for bacteriocin E 50-52 from 0.05 to 6.25 μg/ml for all of 64 bacterial clinical isolates tested. Interestingly, the bacteriocins studied demonstrate activity on both Gram-positive and Gram-negative bacteria. Bacteriocins E 50-52 and B 602 show good activity against nosocomial bacterial agents resistant to many classes of modern antibacterials used in clinical practice. These bacteriocins should be examined as an alternative in treating infections caused by such agents.
Collapse
Affiliation(s)
- E A Svetoch
- State Research Center for Applied Microbiology and Biotechnology (SRCAMB), Obolensk, Russia
| | - B V Eruslanov
- State Research Center for Applied Microbiology and Biotechnology (SRCAMB), Obolensk, Russia
| | - Y N Kovalev
- State Research Center for Applied Microbiology and Biotechnology (SRCAMB), Obolensk, Russia
| | - E V Mitsevich
- State Research Center for Applied Microbiology and Biotechnology (SRCAMB), Obolensk, Russia
| | - I P Mitsevich
- State Research Center for Applied Microbiology and Biotechnology (SRCAMB), Obolensk, Russia
| | - V P Levchuk
- State Research Center for Applied Microbiology and Biotechnology (SRCAMB), Obolensk, Russia
| | - N K Fursova
- State Research Center for Applied Microbiology and Biotechnology (SRCAMB), Obolensk, Russia
| | - V V Perelygin
- State Research Center for Applied Microbiology and Biotechnology (SRCAMB), Obolensk, Russia
| | - Y G Stepanshin
- State Research Center for Applied Microbiology and Biotechnology (SRCAMB), Obolensk, Russia
| | - M G Teymurasov
- State Research Center for Applied Microbiology and Biotechnology (SRCAMB), Obolensk, Russia
| | - B S Seal
- Agricultural Research Service, US Department of Agriculture, Athens, GA, USA
| | - N J Stern
- Agricultural Research Service, US Department of Agriculture, Athens, GA, USA.
| |
Collapse
|
39
|
Liu H, Zhang L, Yi H, Han X, Gao W, Chi C, Song W, Li H, Liu C. A novel enterocin T1 with anti-Pseudomonas activity produced by Enterococcus faecium T1 from Chinese Tibet cheese. World J Microbiol Biotechnol 2016; 32:21. [PMID: 26745981 DOI: 10.1007/s11274-015-1973-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 10/28/2015] [Indexed: 11/26/2022]
Abstract
An enterocin-producing Enterococcus faecium T1 was isolated from Chinese Tibet cheese. The enterocin was purified by SP-Sepharose and reversed phase HPLC. It was identified as unique from other reported bacteriocins based on molecular weight (4629 Da) and amino acid compositions; therefore it was subsequently named enterocin T1. Enterocin T1 was stable at 80-100 °C and over a wide pH range, pH 3.0-10.0. Protease sensitivity was observed to trypsin, pepsin, papain, proteinase K, and pronase E. Importantly, enterocin T1 was observed to inhibit the growth of numerous Gram-negative and Gram-positive bacteria including Pseudomonas putida, Pseudomonas aeruginosa, Pseudomonas fluorescens, Escherichia coli, Salmonella typhimurium, Shigella flexneri, Shigella sonnei, Staphylococcus aureus, Listeria monocytogenes. Take together, these results suggest that enterocin T1 is a novel bacteriocin with the potential to be used as a bio-preservative to control Pseudomonas spp. in food.
Collapse
Affiliation(s)
- Hui Liu
- School of Chemical Engineering and Technology, Harbin Institute of Technology, Harbin, 150090, Heilongjiang, China
| | - Lanwei Zhang
- School of Chemical Engineering and Technology, Harbin Institute of Technology, Harbin, 150090, Heilongjiang, China.
| | - Huaxi Yi
- School of Chemical Engineering and Technology, Harbin Institute of Technology, Harbin, 150090, Heilongjiang, China.
| | - Xue Han
- School of Chemical Engineering and Technology, Harbin Institute of Technology, Harbin, 150090, Heilongjiang, China
| | - Wei Gao
- School of Chemical Engineering and Technology, Harbin Institute of Technology, Harbin, 150090, Heilongjiang, China
| | - Chunliang Chi
- School of Chemical Engineering and Technology, Harbin Institute of Technology, Harbin, 150090, Heilongjiang, China
| | - Wei Song
- School of Chemical Engineering and Technology, Harbin Institute of Technology, Harbin, 150090, Heilongjiang, China
| | - Haiying Li
- College of Life Sciences, Heilongjiang University, Harbin, 150070, Heilongjiang, China
| | - Chunguang Liu
- College of Life Sciences, Heilongjiang University, Harbin, 150070, Heilongjiang, China
| |
Collapse
|
40
|
Umaraw P, Prajapati A, Verma AK, Pathak V, Singh VP. Control ofcampylobacterin poultry industry from farm to poultry processing unit: A review. Crit Rev Food Sci Nutr 2015; 57:659-665. [DOI: 10.1080/10408398.2014.935847] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
41
|
Lohans CT, van Belkum MJ, Li J, Vederas JC. Characterization of bacterial antimicrobial peptides active against Campylobacter jejuni. CAN J CHEM 2015. [DOI: 10.1139/cjc-2014-0411] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Campylobacter jejuni is one of the major causes of food poisoning, often resulting from the consumption of improperly cooked poultry products. The emergence of C. jejuni strains resistant to conventional antibiotics necessitates the evaluation of other possible treatments or preventative measures to minimize the impact and prevalence of infections. Antimicrobial peptides produced by bacteria have begun to emerge as a potential means of decreasing the levels of C. jejuni in poultry, thereby limiting Campylobacter contamination in associated food products. A number of bacteriocins produced by Gram-positive bacteria have unexpectedly been described as having antimicrobial activity against the Gram-negative C. jejuni. Additionally, some nonribosomal lipopeptides produced by Bacillus and Paenibacillus spp. show efficacy against this pathogen. This review will describe the bacterial antimicrobial peptides reported to be active against C. jejuni, with an emphasis on the characterization of their primary structures. However, for many of these peptides, little is known about their amino acid sequences and structures. Furthermore, there are unusual inconsistencies associated with the reported amino acid sequences for several of the more well-studied bacteriocins. Clarifying the chemical nature of these promising antimicrobial peptides is necessary before their potential utility for livestock protection from C. jejuni can be fully explored. Once these peptides are better characterized, they may prove to be strong candidates for minimizing the impact of Campylobacter on human health.
Collapse
Affiliation(s)
- Christopher T. Lohans
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Drive, Edmonton, AB T6G 2G2, Canada
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Drive, Edmonton, AB T6G 2G2, Canada
| | - Marco J. van Belkum
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Drive, Edmonton, AB T6G 2G2, Canada
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Drive, Edmonton, AB T6G 2G2, Canada
| | - Jing Li
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Drive, Edmonton, AB T6G 2G2, Canada
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Drive, Edmonton, AB T6G 2G2, Canada
| | - John C. Vederas
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Drive, Edmonton, AB T6G 2G2, Canada
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Drive, Edmonton, AB T6G 2G2, Canada
| |
Collapse
|
42
|
Cloning and expression of synthetic genes encoding the broad antimicrobial spectrum bacteriocins SRCAM 602, OR-7, E-760, and L-1077, by recombinant Pichia pastoris. BIOMED RESEARCH INTERNATIONAL 2015; 2015:767183. [PMID: 25821820 PMCID: PMC4363639 DOI: 10.1155/2015/767183] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Accepted: 11/02/2014] [Indexed: 02/07/2023]
Abstract
We have evaluated the cloning and functional expression of previously described broad antimicrobial spectrum bacteriocins SRCAM 602, OR-7, E-760, and L-1077, by recombinant Pichia pastoris. Synthetic genes, matching the codon usage of P. pastoris, were designed from the known mature amino acid sequence of these bacteriocins and cloned into the protein expression vector pPICZαA. The recombinant derived plasmids were linearized and transformed into competent P. pastoris X-33, and the presence of integrated plasmids into the transformed cells was confirmed by PCR and sequencing of the inserts. The antimicrobial activity, expected in supernatants of the recombinant P. pastoris producers, was purified using a multistep chromatographic procedure including ammonium sulfate precipitation, desalting by gel filtration, cation exchange-, hydrophobic interaction-, and reverse phase-chromatography (RP-FPLC). However, a measurable antimicrobial activity was only detected after the hydrophobic interaction and RP-FPLC steps of the purified supernatants. MALDI-TOF MS analysis of the antimicrobial fractions eluted from RP-FPLC revealed the existence of peptide fragments of lower and higher molecular mass than expected. MALDI-TOF/TOF MS analysis of selected peptides from eluted RP-FPLC samples with antimicrobial activity indicated the presence of peptide fragments not related to the amino acid sequence of the cloned bacteriocins.
Collapse
|
43
|
Suicin 3908, a new lantibiotic produced by a strain of Streptococcus suis serotype 2 isolated from a healthy carrier pig. PLoS One 2015; 10:e0117245. [PMID: 25659110 PMCID: PMC4320106 DOI: 10.1371/journal.pone.0117245] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 12/22/2014] [Indexed: 11/24/2022] Open
Abstract
While Streptococcus suis serotype 2 is known to cause severe infections in pigs, it can also be isolated from the tonsils of healthy animals that do not develop infections. We hypothesized that S. suis strains in healthy carrier pigs may have the ability to produce bacteriocins, which may contribute to preventing infections by pathogenic S. suis strains. Two of ten S. suis serotype 2 strains isolated from healthy carrier pigs exhibited antibacterial activity against pathogenic S. suis isolates. The bacteriocin produced by S. suis 3908 was purified to homogeneity using a three-step procedure: ammonium sulfate precipitation, cationic exchange HPLC, and reversed-phase HPLC. The bacteriocin, called suicin 3908, had a low molecular mass; was resistant to heat, pH, and protease treatments; and possessed membrane permeabilization activity. Additive effects were obtained when suicin 3908 was used in combination with penicillin G or amoxicillin. The amino acid sequence of suicin 3908 suggested that it is lantibiotic-related and made it possible to identify a bacteriocin locus in the genome of S. suis D12. The putative gene cluster involved in suicin production by S. suis 3908 was amplified by PCR, and the sequence analysis revealed the presence of nine open reading frames (ORFs), including the structural gene and those required for the modification of amino acids, export, regulation, and immunity. Suicin 3908, which is encoded by the suiA gene, exhibited approximately 50% identity with bovicin HJ50 (Streptococcus bovis), thermophilin 1277 (Streptococcus thermophilus), and macedovicin (Streptococcus macedonicus). Given that S. suis 3908 cannot cause infections in animal models, that it is susceptible to conventional antibiotics, and that it produces a bacteriocin with antibacterial activity against all pathogenic S. suis strains tested, it could potentially be used to prevent infections and to reduce antibiotic use by the swine industry.
Collapse
|
44
|
Robyn J, Rasschaert G, Pasmans F, Heyndrickx M. Thermotolerant Campylobacter during Broiler Rearing: Risk Factors and Intervention. Compr Rev Food Sci Food Saf 2015; 14:81-105. [PMID: 33401809 DOI: 10.1111/1541-4337.12124] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Accepted: 10/07/2014] [Indexed: 01/01/2023]
Abstract
Thermotolerant Campylobacters are one of the most important bacterial causative agents of human gastrointestinal illness worldwide. In most European Union (EU) member states human campylobacteriosis is mainly caused by infection with Campylobacter jejuni or Campylobacter coli following consumption or inadequate handling of Campylobacter-contaminated poultry meat. To date, no effective strategy to control Campylobacter colonization of broilers during rearing is available. In this review, we describe the public health problem posed by Campylobacter presence in broilers and list and critically review all currently known measures that have been researched to lower the numbers of Campylobacter bacteria in broilers during rearing. We also discuss the most promising measures and which measures should be investigated further. We end this review by elaborating on readily usable measures to lower Campylobacter introduction and Campylobacter numbers in a broiler flock.
Collapse
Affiliation(s)
- Joris Robyn
- the Inst. for Agricultural and Fisheries Research (ILVO), Technology and Food Science Unit, Brusselsesteenweg 370, Melle, Belgium
| | - Geertrui Rasschaert
- the Inst. for Agricultural and Fisheries Research (ILVO), Technology and Food Science Unit, Brusselsesteenweg 370, Melle, Belgium
| | - Frank Pasmans
- the Dept. of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent Univ, Salisburylaan 133, Merelbeke, Belgium
| | - Marc Heyndrickx
- the Inst. for Agricultural and Fisheries Research (ILVO), Technology and Food Science Unit, Brusselsesteenweg 370, Melle, Belgium.,the Dept. of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent Univ, Salisburylaan 133, Merelbeke, Belgium
| |
Collapse
|
45
|
Jiménez JJ, Borrero J, Gútiez L, Arbulu S, Herranz C, Cintas LM, Hernández PE. Use of synthetic genes for cloning, production and functional expression of the bacteriocins enterocin A and bacteriocin E 50-52 by Pichia pastoris and Kluyveromyces lactis. Mol Biotechnol 2014; 56:571-83. [PMID: 24510220 DOI: 10.1007/s12033-014-9731-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The use of synthetic genes may constitute a successful approach for the heterologous production and functional expression of bacterial antimicrobial peptides (bacteriocins) by recombinant yeasts. In this work, synthetic genes with adapted codon usage designed from the mature amino acid sequence of the bacteriocin enterocin A (EntA), produced by Enterococcus faecium T136, and the mature bacteriocin E 50-52 (BacE50-52), produced by E. faecium NRRL B-32746, were synthesized. The synthetic entA and bacE50-52 were cloned into the protein expression vectors pPICZαA and pKLAC2 for transformation of derived vectors into Pichia pastoris X-33 and Kluyveromyces lactis GG799, respectively. The recombinant vectors were linearized and transformed into competent cells selecting for P. pastoris X-33EAS (entA), P. pastoris X-33BE50-52S (bacE50-52), K. lactis GG799EAS (entA), and K. lactis GG799BE50-52S (bacE50-52). P. pastoris X-33EAS and K. lactis GG799EAS, but not P. pastoris X-33BE50-52S and K. lactis GG799BE50-52S, showed antimicrobial activity in their supernatants. However, purification of the supernatants of the producer yeasts permitted recovery of the bacteriocins EntA and BacE50-52. Both purified bacteriocins were active against Gram-positive bacteria such as Listeria monocytogenes but not against Gram-negative bacteria, including Campylobacter jejuni.
Collapse
Affiliation(s)
- Juan J Jiménez
- Departamento de Nutrición, Bromatología y Tecnología de los Alimentos, Facultad de Veterinaria, Universidad Complutense de Madrid (UCM), Avenida Puerta de Hierro, s/n, 28040, Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
46
|
Osipovitch DC, Griswold KE. Fusion with a cell wall binding domain renders autolysin LytM a potent anti-Staphylococcus aureus agent. FEMS Microbiol Lett 2014; 362:1-7. [PMID: 25670705 DOI: 10.1093/femsle/fnu035] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Despite intense efforts by the medical and pharmaceutical communities, Staphylococcus aureus continues to be a pervasive pathogen that causes a myriad of diseases and a high level of morbidity and mortality among infected patients. Thus, discovering or designing novel therapeutics able to kill both drug-resistant and drug-sensitive S. aureus remains a top priority. Bacteriolytic enzymes, mostly from phage, have shown great promise in preclinical studies, but little consideration has been given to cis-acting autolytic enzymes derived from the pathogen itself. Here, we use the S. aureus autolysin LytM as a proof of principal to demonstrate the antibacterial potential of endogenous peptidoglycan-degrading enzymes. While native LytM is only marginally bactericidal, fusion of LytM to the lysostaphin cell wall binding domain enhances its anti-staphylococcal activity approximately 540-fold, placing it on par with many phage lysins currently in preclinical development. The potential to therapeutically co-opt a pathogen's endogenous peptidoglycan recycling machinery opens the door to a previously untapped reservoir of antibacterial drug candidates.
Collapse
Affiliation(s)
- Daniel C Osipovitch
- Program in Experimental and Molecular Medicine, Dartmouth, Hanover, NH 03755, USA
| | - Karl E Griswold
- Thayer School of Engineering, Dartmouth, Hanover, NH 03755, USA Program in Molecular and Cellular Biology, Dartmouth, Hanover, NH 03755, USA
| |
Collapse
|
47
|
LeBel G, Vaillancourt K, Frenette M, Gottschalk M, Grenier D. Suicin 90-1330 from a nonvirulent strain of Streptococcus suis: a nisin-related lantibiotic active on gram-positive swine pathogens. Appl Environ Microbiol 2014; 80:5484-92. [PMID: 24973067 PMCID: PMC4136082 DOI: 10.1128/aem.01055-14] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Accepted: 06/20/2014] [Indexed: 01/20/2023] Open
Abstract
Streptococcus suis serotype 2 is known to cause severe infections (meningitis, endocarditis, and septicemia) in pigs and is considered an emerging zoonotic agent. Antibiotics have long been used in the swine industry for disease treatment/prevention and growth promoters. This pattern of utilization resulted in the spread of antibiotic resistance in S. suis worldwide. Interestingly, pigs may harbor S. suis in their tonsils without developing diseases, while North American strains belonging to the sequence type 28 (ST28) are nonvirulent in animal models. Consequently, the aim of this study was to purify and characterize a bacteriocin produced by a nonvirulent strain of S. suis serotype 2, with a view to a potential therapeutic and preventive application. S. suis 90-1330 belonging to ST28 and previously shown to be nonvirulent in an animal model exhibited antibacterial activity toward all S. suis pathogenic isolates tested. The bacteriocin produced by this strain was purified to homogeneity by cationic exchange and reversed-phase fast protein liquid chromatography. Given its properties (molecular mass of <4 kDa, heat, pH and protease stability, and the presence of modified amino acids), the bacteriocin, named suicin 90-1330, belongs to the lantibiotic class. Using a DNA-binding fluorophore, the bacteriocin was found to possess a membrane permeabilization activity. When tested on other swine pathogens, the suicin showed activity against Staphylococcus hyicus and Staphylococcus aureus, whereas it was inactive against all Gram-negative bacteria tested. Amino acid sequencing of the purified bacteriocin showed homology (90.9% identity) with nisin U produced by Streptococcus uberis. The putative gene cluster involved in suicin production was amplified by PCR and sequence analysis revealed the presence of 11 open reading frames, including the structural gene and those required for the modification of amino acids, export, regulation, and immunity. Further studies will evaluate the ability of suicin 90-1330 or the producing strain to prevent experimental S. suis infections in pigs.
Collapse
Affiliation(s)
- Geneviève LeBel
- Groupe de Recherche en Écologie Buccale, Faculté de Médecine Dentaire, Université Laval, Quebec City, Quebec, Canada
| | - Katy Vaillancourt
- Groupe de Recherche en Écologie Buccale, Faculté de Médecine Dentaire, Université Laval, Quebec City, Quebec, Canada
| | - Michel Frenette
- Groupe de Recherche en Écologie Buccale, Faculté de Médecine Dentaire, Université Laval, Quebec City, Quebec, Canada Centre de Recherche en Infectiologie Porcine et Avicole, Fonds de Recherche du Québec-Nature et Technologies, Quebec City, Quebec, Canada
| | - Marcelo Gottschalk
- Centre de Recherche en Infectiologie Porcine et Avicole, Fonds de Recherche du Québec-Nature et Technologies, Quebec City, Quebec, Canada Groupe de Recherche sur les Maladies Infectieuses du Porc, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, Quebec, Canada
| | - Daniel Grenier
- Groupe de Recherche en Écologie Buccale, Faculté de Médecine Dentaire, Université Laval, Quebec City, Quebec, Canada Centre de Recherche en Infectiologie Porcine et Avicole, Fonds de Recherche du Québec-Nature et Technologies, Quebec City, Quebec, Canada
| |
Collapse
|
48
|
Hammami R, Fernandez B, Lacroix C, Fliss I. Anti-infective properties of bacteriocins: an update. Cell Mol Life Sci 2013; 70:2947-67. [PMID: 23109101 PMCID: PMC11113238 DOI: 10.1007/s00018-012-1202-3] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Revised: 09/05/2012] [Accepted: 10/18/2012] [Indexed: 02/01/2023]
Abstract
Bacteriocin production is a widespread phenomenon among bacteria. Bacteriocins hold great promise for the treatment of diseases caused by pathogenic bacteria and could be used in the future as alternatives to existing antibiotics. The anti-infective potential of bacteriocins for inhibiting pathogens has been shown in various food matrices including cheese, meat, and vegetables. However, their inhibition of pathogens in vivo remains unclear and needs more investigation, due mainly to difficulties associated with demonstrating their health benefits. Many bacteriocins produced by established or potential probiotic organisms have been evaluated as potential therapeutic agents and interesting findings have been documented in vitro as well as in a few in vivo studies. Some recent in vivo studies point to the efficacy of bacteriocin-based treatments of human and animal infections. While further investigation remains necessary before the possibilities for bacteriocins in clinical practice can be described more fully, this review provides an overview of their potential applications to human and veterinary health.
Collapse
Affiliation(s)
- Riadh Hammami
- STELA Dairy Research Centre, Nutraceuticals and Functional Foods Institute, Université Laval, Quebec, QC, Canada.
| | | | | | | |
Collapse
|
49
|
Galiş AM, Marcq C, Marlier D, Portetelle D, Van I, Beckers Y, Théwis A. Control ofSalmonellaContamination of Shell Eggs-Preharvest and Postharvest Methods: A Review. Compr Rev Food Sci Food Saf 2013. [DOI: 10.1111/1541-4337.12007] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Anca M. Galiş
- Univ. of Agronomical Sciences and Veterinary Medicine of Bucharest; Animal Science Unit; Bd. Mărăşti, no. 59, sector 1; Bucharest; 011464; Romania
| | - Christopher Marcq
- Univ. of Liege, Gembloux Agro-Bio Tech; Animal Science Unit. Passage des Déportés; 2, B-5030; Gembloux; Belgium
| | - Didier Marlier
- Univ. of Liege, Faculty of Veterinary Medicine; Dept. of Clinical Science, Clinic for Birds, Rabbits and Rodents; Boulevard de Colonster 20, B42; Sart-Tilman; B4000; Liege; Belgium
| | - Daniel Portetelle
- Univ. of Liege, Gembloux Agro-Bio Tech; Animal and Microbial Biology Unit.; Passage des Déportés, 2; B-5030; Gembloux; Belgium
| | - Ilie Van
- Univ. of Agronomical Sciences and Veterinary Medicine of Bucharest; Animal Science Unit; Bd. Mărăşti, no. 59, sector 1; Bucharest; 011464; Romania
| | - Yves Beckers
- Univ. of Liege, Gembloux Agro-Bio Tech; Animal Science Unit. Passage des Déportés; 2, B-5030; Gembloux; Belgium
| | - André Théwis
- Univ. of Liege, Gembloux Agro-Bio Tech; Animal Science Unit. Passage des Déportés; 2, B-5030; Gembloux; Belgium
| |
Collapse
|
50
|
Robyn J, Rasschaert G, Hermans D, Pasmans F, Heyndrickx M. In vivo broiler experiments to assess anti-Campylobacter jejuni activity of a live Enterococcus faecalis strain. Poult Sci 2013; 92:265-71. [DOI: 10.3382/ps.2012-02712] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|