1
|
Nollet M, Laurichesse E, Schmitt V. Double Emulsions Stabilized by PGPR and Arabic Gum as Capsules: The Surprising Stabilizing Role of Inner Droplets. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:1646-1657. [PMID: 38206825 DOI: 10.1021/acs.langmuir.3c02554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
The encapsulation efficiency and stability over time of either vitamin B12, a model hydrophilic drug, or an aqueous suspension of Cydia pomonella granulovirus (CpGV), which is a biopesticide, using a water-in-sunflower oil-in-water (W1/O/W2) double emulsion, are studied. Two antagonistic stabilizers are used to prepare the double emulsion: the mainly lipophilic polyglycerol polyricinoleate (PGPR) and the mainly hydrophilic polysaccharide Arabic gum (AG). Combining ultraviolet-visible (UV-visible) titration, rheology, and oil globule size measurement allows assessing drug release, emulsion elasticity, and globule evolution as a function of time. A stability diagram is plotted as a function of two determining parameters: the nonadsorbed PGPR concentration in the oil and the inner water droplet fraction. To understand the presence of the nonstability domains, the influence of the two identified parameters on the outermost interfacial tension is examined. Surprisingly, the inner water drop volume fraction exhibits a stabilizing phenomenon that is discussed in terms of interfacial shielding to PGPR adsorption.
Collapse
Affiliation(s)
- Maxime Nollet
- Université de Bordeaux, Centre de Recherche Paul Pascal, CNRS UMR 5031, 115 Av. A. Schweitzer, 33600 Pessac, France
| | - Eric Laurichesse
- Université de Bordeaux, Centre de Recherche Paul Pascal, CNRS UMR 5031, 115 Av. A. Schweitzer, 33600 Pessac, France
| | - Véronique Schmitt
- Université de Bordeaux, Centre de Recherche Paul Pascal, CNRS UMR 5031, 115 Av. A. Schweitzer, 33600 Pessac, France
| |
Collapse
|
2
|
Ghiasi F, Golmakani MT, Eskandari MH, Hosseini SMH. Effect of sol-gel transition of oil phase (O) and inner aqueous phase (W 1) on the physical and chemical stability of a model PUFA rich-W 1/O/W 2 double emulsion. Food Chem 2021; 376:131929. [PMID: 34971889 DOI: 10.1016/j.foodchem.2021.131929] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 11/22/2021] [Accepted: 12/19/2021] [Indexed: 02/07/2023]
Abstract
In this study, the effect of sol-gel transition of oil phase (O) and inner aqueous phase (W1) on the physical and chemical stability of a model PUFA rich-W1/O/W2 double emulsion (DE) was investigated. Thermal-driven gelation of O and W1 was performed using monoglyceride and κ-carrageenan, respectively. To accelerate lipid oxidation, ferrous sulfate was encapsulated in W1. Using this approach, O gelation reduced the volume-weighted size (d4,3) of DEs droplets and provided good physical stability. However, non-gelled DEs and those containing gelled W1 exhibited extensive flocculation and coalescence. Moreover, oleogelation resulted in a predominant elastic behavior with weak frequency dependence of viscoelastic properties. Oxidation was significantly reduced by W1 gelation; however, the O gelation led to a higheroxidation rate. Oxidation kinetic parameters induced by a hydrophilic (gallic acid) and a lipophilic (α-tocopherol) antioxidant showed that DEs containing gelled O droplets presented high physical and oxidative stability when α-tocopherol was present.
Collapse
Affiliation(s)
- Fatemeh Ghiasi
- Department of Food Science and Technology, School of Agriculture, Shiraz University, Shiraz, Iran
| | - Mohammad-Taghi Golmakani
- Department of Food Science and Technology, School of Agriculture, Shiraz University, Shiraz, Iran.
| | - Mohammad Hadi Eskandari
- Department of Food Science and Technology, School of Agriculture, Shiraz University, Shiraz, Iran
| | | |
Collapse
|
3
|
Dhandhi Y, Chaudhari RK, Naiya TK. Development in separation of oilfield emulsion toward green technology – A comprehensive review. SEP SCI TECHNOL 2021. [DOI: 10.1080/01496395.2021.1995427] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Yogesh Dhandhi
- Department of Petroleum Engineering, Indian Institute of Technology (ISM), Dhanbad, India
| | - Ronak Kumar Chaudhari
- Department of Petroleum Engineering, Indian Institute of Technology (ISM), Dhanbad, India
| | - Tarun Kumar Naiya
- Department of Petroleum Engineering, Indian Institute of Technology (ISM), Dhanbad, India
| |
Collapse
|
4
|
Research progress on the utilisation of embedding technology and suitable delivery systems for improving the bioavailability of nattokinase: A review. FOOD STRUCTURE 2021. [DOI: 10.1016/j.foostr.2021.100219] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
5
|
Herzi S, Essafi W. Impact of the encapsulated salt characteristics on its release from multiple W/O/W emulsions. J FOOD PROCESS ENG 2021. [DOI: 10.1111/jfpe.13762] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Sameh Herzi
- Laboratoire Matériaux, Traitement et Analyse Institut National de Recherche et d'Analyse Physico‐Chimique, Pôle Technologique de Sidi Thabet Sidi Thabet Tunisia
- Institut National Agronomique de Tunisie Tunis Mahrajène Tunisia
| | - Wafa Essafi
- Laboratoire Matériaux, Traitement et Analyse Institut National de Recherche et d'Analyse Physico‐Chimique, Pôle Technologique de Sidi Thabet Sidi Thabet Tunisia
| |
Collapse
|
6
|
Li M, Bi D, Yao L, Yi J, Fang W, Wu Y, Xu H, Hu Z, Xu X. Optimization of preparation conditions and in vitro sustained-release evaluation of a novel nanoemulsion encapsulating unsaturated guluronate oligosaccharide. Carbohydr Polym 2021; 264:118047. [PMID: 33910749 DOI: 10.1016/j.carbpol.2021.118047] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 03/18/2021] [Accepted: 04/04/2021] [Indexed: 11/26/2022]
Abstract
Unsaturated guluronate oligosaccharide (GOS) was prepared from alginate-derived homopolymeric blocks of guluronic acid by alginate lyase-mediated depolymerization. In this study, a GOS-based water-in-oil-in-water (W1/O/W2) nanoemulsion was prepared, and different influencing factors were investigated. First, linseed oil was selected as the optimal carrier oil. Then, other optimal conditions of the GOS nanoemulsion were determined based on response surface methodology (RSM). Under the optimal conditions, the obtained GOS nanoemulsion showed a spherical structure with an average particle size of 273.93 ± 8.91 nm, and its centrifugal stability was 91.37 ± 0.45 %. Moreover, the GOS nanoemulsion could achieve the aim of sustained release in vitro and be stably stored at 4°C for at least 5 days. This work prepared a novel GOS-based W1/O/W2 nanoemulsion that may effectively address the storage difficulties of unsaturated GOS and provides a valuable contribution to the application of GOS in the food and medicine fields.
Collapse
Affiliation(s)
- Meiting Li
- Shenzhen Key Laboratory of Marine Bioresources and Ecology and Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, PR China
| | - Decheng Bi
- Shenzhen Key Laboratory of Marine Bioresources and Ecology and Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, PR China
| | - Lijun Yao
- Shenzhen Key Laboratory of Marine Bioresources and Ecology and Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, PR China
| | - Jiang Yi
- Department of Food Science and Technology, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Weishan Fang
- School of Medicine, Shenzhen University, Shenzhen 518055, PR China
| | - Yan Wu
- Instrumental Analysis Center, Shenzhen University, Shenzhen 518055, PR China
| | - Hong Xu
- Shenzhen Key Laboratory of Marine Bioresources and Ecology and Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, PR China
| | - Zhangli Hu
- Shenzhen Key Laboratory of Marine Bioresources and Ecology and Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, PR China
| | - Xu Xu
- Shenzhen Key Laboratory of Marine Bioresources and Ecology and Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, PR China.
| |
Collapse
|
7
|
Shahidi F, Pan Y. Influence of food matrix and food processing on the chemical interaction and bioaccessibility of dietary phytochemicals: A review. Crit Rev Food Sci Nutr 2021; 62:6421-6445. [PMID: 33787422 DOI: 10.1080/10408398.2021.1901650] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Consumption of phytochemicals-rich foods shows the health effect on some chronic diseases. However, the bioaccessibility of these phytochemicals is extremely low, and they are often consumed in the diet along with the food matrix. The food matrix can be described as a complex assembly of various physical and chemical interactions that take place between the compounds present in the food. Some studies indicated that the physiological response and the health benefits of phytochemicals are resultant in these interactions. Some food substrates inhibit the absorption of phytochemicals via this interaction. Moreover, processing technologies have been developed to facilitate the release and/or to increase the accessibility of phytochemicals in plants or breakdown of the food matrix. Food processing processes may disrupt the activity of phytochemicals or reduce bioaccessibility. Enhancement of functional and sensorial attributes of phytochemicals in the daily diet may be achieved by modifying the food matrix and food processing in appropriate ways. Therefore, this review concisely elaborated on the mechanism and the influence of food matrix in different parts of the digestive tract in the human body, the chemical interaction between phytochemicals and other compounds in a food matrix, and the various food processing technologies on the bioaccessibility and chemical interaction of dietary phytochemicals. Moreover, the enhancing of phytochemical bioaccessibility through food matrix design and the positive/negative of food processing for dietary phytochemicals was also discussed in this study.
Collapse
Affiliation(s)
- Fereidoon Shahidi
- Department of Biochemistry, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada
| | - Yao Pan
- Department of Biochemistry, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada.,State Key Laboratory of Food Science and Technology, University of Nanchang, Nanchang, Jiangxi, China
| |
Collapse
|
8
|
Zhang M, Sun R, Xia Q. An ascorbic acid delivery system based on (W1/O/W2) double emulsions encapsulated by Ca-alginate hydrogel beads. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101929] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
9
|
Lin C, Debeli DK, Gan L, Deng J, Hu L, Shan G. Polyether-modified siloxane stabilized dispersion system on the physical stability and control release of double (W/O/W) emulsions. Food Chem 2020; 332:127381. [DOI: 10.1016/j.foodchem.2020.127381] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 06/16/2020] [Accepted: 06/16/2020] [Indexed: 11/24/2022]
|
10
|
Raviadaran R, Ng MH, Manickam S, Chandran D. Ultrasound-assisted production of palm oil-based isotonic W/O/W multiple nanoemulsion encapsulating both hydrophobic tocotrienols and hydrophilic caffeic acid with enhanced stability using oil-based Sucragel. ULTRASONICS SONOCHEMISTRY 2020; 64:104995. [PMID: 32106064 DOI: 10.1016/j.ultsonch.2020.104995] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 01/29/2020] [Accepted: 01/30/2020] [Indexed: 06/10/2023]
Abstract
In this work, the effects of thickeners and tonicity towards producing stable palm oil-based water-in-oil-in-water (W/O/W) multiple nanoemulsion using ultrasound and microfluidizer were investigated. Palm oil, Sucragel, polyglycerol polyricinoleate, Tween 80, Xanthan gum, and NaCl were used. W/O/W was formed under the optimized conditions of ultrasound at 40% amplitude and for 180 s of irradiation time, whereas for the microfluidizer, the optimized conditions were 350 bar and 8 cycles. This is the first work that successfully utilized Sucragel (oil-based thickener) in imparting enhanced stability in W/O/W. W/O/W with isotonic stabilization produced the lowest change in the mean droplet diameter (MDD), NaCl concentration, and water content by 1.5%, 2.6%, and 0.4%, respectively, due to reduced water movement. The final optimized W/O/W possessed MDD and dispersity index of 175.5 ± 9.8 and 0.232 ± 0.012, respectively. The future direction of formulating stable W/O/W would be by employing oil phase thickeners and isotonicity. The observed ~12 times lesser energy consumed by ultrasound than microfluidizer to generate a comparable droplet size of ~235 nm, further confirms its potential in generating the droplets energy-efficiently.
Collapse
Affiliation(s)
- Revathi Raviadaran
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, 43500 Semenyih, Selangor Darul Ehsan, Malaysia; Malaysian Palm Oil Board, No. 6, Persiaran Institusi, Bandar Baru Bangi, 43000 Kajang, Selangor, Malaysia
| | - Mei Han Ng
- Malaysian Palm Oil Board, No. 6, Persiaran Institusi, Bandar Baru Bangi, 43000 Kajang, Selangor, Malaysia
| | - Sivakumar Manickam
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, 43500 Semenyih, Selangor Darul Ehsan, Malaysia.
| | - Davannendran Chandran
- Sunway University, No. 5, Jalan Universiti, Bandar Sunway, 47500 Subang Jaya, Selangor, Malaysia
| |
Collapse
|
11
|
Overview on petroleum emulsions, formation, influence and demulsification treatment techniques. ARAB J CHEM 2020. [DOI: 10.1016/j.arabjc.2018.11.014] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
12
|
Giroux HJ, Shea R, Sabik H, Fustier P, Robitaille G, Britten M. Effect of oil phase properties on peptide release from water-in-oil-in-water emulsions in gastrointestinal conditions. Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2019.04.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
13
|
Nollet M, Laurichesse E, Besse S, Soubabère O, Schmitt V. Determination of Formulation Conditions Allowing Double Emulsions Stabilized by PGPR and Sodium Caseinate to Be Used as Capsules. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:2823-2833. [PMID: 29406736 DOI: 10.1021/acs.langmuir.7b04085] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Water-in-oil-in-water (W1/O/W2) double emulsions stabilized by polyglycerol polyricinoleate (PGPR), a lipophilic food grade small polymer, and sodium caseinate, a hydrophilic milk protein, were developed to encapsulate vitamin B12, a model hydrophilic substance easy to titrate. Using rheology, sensitive to drop size evolution and water fluxes, static light scattering, and microscopy both giving the evolution of drops' size and vitamin B12 titration assessing the encapsulation, we were able to detect independently the double emulsion drop size, the encapsulation loss, and the flux of water as a function of time. By differentiating the PGPR required to cover the W1-droplets' surface from PGPR in excess in the oil phase, we built a PGPR-inner droplet volume fraction diagram highlighting the domains where the double emulsion is stable toward encapsulation and/or water fluxes. We demonstrated the key role played by nonadsorbed PGPR concentration in the intermediate sunflower oil phase on the emulsion stability while, surprisingly, the inner droplet volume fraction had no effect on the emulsion stability. At low PGPR concentration, a release of vitamin B12 was observed and the leakage mechanism of coalescence between droplets and oil-water interface of the oily drops (also called globules hereafter), was identified using confocal microscopy. For high enough PGPR content, the emulsions were stable and may therefore serve as efficient capsules without need of an additional gelling, thickening, complexion or interface rigidifying agent. We generalized these results with the encapsulation of an insecticide: Cydia pomonella granulovirus used in organic arboriculture.
Collapse
Affiliation(s)
- Maxime Nollet
- Université de Bordeaux, Centre de Recherche Paul Pascal, CNRS UMR 5031, 115 Av. A. Schweitzer, 33600 Pessac, France
| | - Eric Laurichesse
- Université de Bordeaux, Centre de Recherche Paul Pascal, CNRS UMR 5031, 115 Av. A. Schweitzer, 33600 Pessac, France
| | - Samantha Besse
- Natural Plant Protection, Arysta LifeScience's group, Parc d'activités Pau-Pyrénées, 35 avenue Léon Blum, 64000 Pau, France
| | - Olivier Soubabère
- Natural Plant Protection, Arysta LifeScience's group, Parc d'activités Pau-Pyrénées, 35 avenue Léon Blum, 64000 Pau, France
| | - Véronique Schmitt
- Université de Bordeaux, Centre de Recherche Paul Pascal, CNRS UMR 5031, 115 Av. A. Schweitzer, 33600 Pessac, France
| |
Collapse
|
14
|
Ma L, Wan Z, Yang X. Multiple Water-in-Oil-in-Water Emulsion Gels Based on Self-Assembled Saponin Fibrillar Network for Photosensitive Cargo Protection. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:9735-9743. [PMID: 29058905 DOI: 10.1021/acs.jafc.7b04042] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
A gelled multiple water-in-oil-in-water (W1/O/W2) emulsion was successfully developed by the unique combination of emulsifying and gelation properties of natural glycyrrhizic acid (GA) nanofibrils, assembling into a fibrillar hydrogel network in the continuous phase. The multiple emulsion gels had relatively homogeneous size distribution, high yield (85.6-92.5%), and superior storage stability. The multilayer interfacial fibril shell and the GA fibrillar hydrogel in bulk can effectively protect the double emulsion droplets against flocculation, creaming, and coalescence, thus contributing to the multiple emulsion stability. Particularly, the highly viscoelastic bulk hydrogel had a high storage modulus, which was found to be able to strongly prevent the osmotic-driven water diffusion from the internal water droplets to the external water phase. We show that these multicompartmentalized emulsion gels can be used to encapsulate and protect photosensitive water-soluble cargos by loading them into the internal water droplets. These stable multiple emulsion gels based on natural, sustainable saponin nanofibrils have potential applications in the food, pharmaceutical, and personal care industries.
Collapse
Affiliation(s)
- Lulu Ma
- Research and Development Center of Food Proteins, School of Food Science and Engineering, South China University of Technology , Guangzhou 510640, China
| | - Zhili Wan
- Research and Development Center of Food Proteins, School of Food Science and Engineering, South China University of Technology , Guangzhou 510640, China
| | - Xiaoquan Yang
- Research and Development Center of Food Proteins, School of Food Science and Engineering, South China University of Technology , Guangzhou 510640, China
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology , Guangzhou 510640, China
| |
Collapse
|
15
|
Wang Q, Hu C, Zoghbi A, Huang J, Xia Q. Oil-in-oil-in-water pre-double emulsions stabilized by nonionic surfactants and silica particles: A new approach for topical application of rutin. Colloids Surf A Physicochem Eng Asp 2017. [DOI: 10.1016/j.colsurfa.2017.02.067] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
16
|
Muschiolik G, Dickinson E. Double Emulsions Relevant to Food Systems: Preparation, Stability, and Applications. Compr Rev Food Sci Food Saf 2017; 16:532-555. [DOI: 10.1111/1541-4337.12261] [Citation(s) in RCA: 210] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 02/20/2017] [Accepted: 02/21/2017] [Indexed: 12/27/2022]
Affiliation(s)
| | - Eric Dickinson
- School of Food Science and Nutrition; Univ. of Leeds; LS2 9JT Leeds United Kingdom
| |
Collapse
|
17
|
Li J, Zhu Y, Teng C, Xiong K, Yang R, Li X. The effects of biomacromolecules on the physical stability of W/O/W emulsions. Journal of Food Science and Technology 2017; 54:469-480. [PMID: 28242946 DOI: 10.1007/s13197-017-2488-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 07/21/2016] [Accepted: 01/05/2017] [Indexed: 10/20/2022]
Abstract
The effect of bovine serum albumin (BSA), whey protein isolate (WPI), whey protein hydrolysate (WPH), sodium caseinate (SC), carboxymethylcellulose sodium (CMC), fish gelatin (FG), high methoxyl apple pectin (HMAP), low methoxyl apple pectin (LMAP), gum Arabic (GA), ι-carrageenan (CGN), and hydroxypropyl chitosan (HPCTS) on physical stability of internal or external aqueous phase of water-in-oil-in-water (W/O/W) emulsions was evaluated. WPI and CGN in the internal aqueous phase, and GA, HPCTS, and CMC in the external phase reduced the size of emulsion droplets. BSA, WPI, SC, FG, CGN, and HPCTS improved the dilution stability of W/O/W emulsions, but HMAP had a negative effect. BSA, WPI, SC, FG, LMAP, GA, CGN, HPCTS, or CMC significantly improved the thermal stability of W/O/W emulsions. Results also indicated that the addition of CGN (1.0%), HMAP (1.0%), WPH (1.0%), or HPCTS (1.0%) in internal aqueous phase significantly increased the viscosity of emulsions, however, addition to the external aqueous phase had insignificant effects. A protein-knockout experiment confirmed that proteins as biomacromolecules, were the key factor in improving physical stability of emulsions.
Collapse
Affiliation(s)
- Jinlong Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), Beijing, 100048 People's Republic of China.,Beijing Higher Institution Engineering Research Center of Food Additives and Ingredients, Beijing, 100048 People's Republic of China
| | - Yunping Zhu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), Beijing, 100048 People's Republic of China.,Beijing Higher Institution Engineering Research Center of Food Additives and Ingredients, Beijing, 100048 People's Republic of China
| | - Chao Teng
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), Beijing, 100048 People's Republic of China.,Beijing Key Laboratory of Flavor Chemistry, Beijing, 100048 People's Republic of China
| | - Ke Xiong
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), Beijing, 100048 People's Republic of China.,Beijing Key Laboratory of Flavor Chemistry, Beijing, 100048 People's Republic of China
| | - Ran Yang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), Beijing, 100048 People's Republic of China.,Beijing Key Laboratory of Flavor Chemistry, Beijing, 100048 People's Republic of China
| | - Xiuting Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), Beijing, 100048 People's Republic of China.,Beijing Higher Institution Engineering Research Center of Food Additives and Ingredients, Beijing, 100048 People's Republic of China
| |
Collapse
|
18
|
Noviendri D, Jaswir I, Taher M, Mohamed F, Salleh HM, Noorbatcha IA, Octavianti F, Lestari W, Hendri R, Ahmad H, Miyashita K, Abdullah A. Fabrication of Fucoxanthin-Loaded Microsphere(F-LM) By Two Steps Double-Emulsion Solvent Evaporation Method and Characterization of Fucoxanthin before and after Microencapsulation. J Oleo Sci 2016; 65:641-53. [PMID: 27430384 DOI: 10.5650/jos.ess16018] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Microencapsulation is a promising approach in drug delivery to protect the drug from degradation and allow controlled release of the drug in the body. Fucoxanthin-loaded microsphere (F-LM) was fabricated by two step w/o/w double emulsion solvent evaporation method with poly (L-lactic-coglycolic acid) (PLGA) as carrier. The effect of four types of surfactants (PVA, Tween-20, Span-20 and SDS), homogenization speed, and concentration of PLGA polymer and surfactant (PVA), respectively, on particle size and morphology of F-LM were investigated. Among the surfactants tested, PVA showed the best results with smallest particle size (9.18 µm) and a smooth spherical surface. Increasing the homogenization speed resulted in a smaller mean F-LM particle size [d(0.50)] from 17.12 to 9.18 µm. Best particle size results and good morphology were attained at homogenization speed of 20 500 rpm. Meanwhile, increased PLGA concentration from 1.5 to 11.0 (% w/v) resulted in increased F-LM particle size. The mean particle size [d(0.5)] of F-LM increased from 3.93 to 11.88 µm. At 6.0 (% w/v) PLGA, F-LM showed the best structure and external morphology. Finally, increasing PVA concentration from 0.5 to 3.5 (% w/v) resulted in decreased particle size from 9.18 to 4.86 µm. Fucoxanthin characterization before and after microencapsulation was carried out to assess the success of the microencapsulation procedure. Thermo gravimetry analysis (TGA), glass transition (Tg) temperature of F-LM and fucoxanthin measured using DSC, ATR-FTIR and XRD indicated that fucoxanthin was successfully encapsulated into the PLGA matrix, while maintaining the structural and chemical integrity of fucoxanthin.
Collapse
Affiliation(s)
- Dedi Noviendri
- Bioprocess and Molecular Engineering Research Unit (BPMERU), Department of Biotechnology Engineering, Faculty of Engineering, International Islamic University Malaysia (IIUM)
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Li J, Shi Y, Zhu Y, Teng C, Li X. Effects of Several Natural Macromolecules on the Stability and Controlled Release Properties of Water-in-Oil-in-Water Emulsions. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:3873-3880. [PMID: 27137850 DOI: 10.1021/acs.jafc.6b00956] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Water-in-oil-in-water (W/O/W) emulsions are effective vehicles for embedding application of active compounds but limited by their thermodynamic instability and rapid release properties. The present study added bovine serum albumin, whey protein isolate, whey protein hydrolysate, sodium caseinate, carboxymethylcellulose sodium, fish gelatin, apple pectin, gum arabic, ι-carrageenan, and hydroxypropyl chitosan separately to the internal or external aqueous phase to investigate their effects on the physical stabilities and controlled release properties of W/O/W emulsions. The effects of the natural macromolecules in the internal and external aqueous phases were different and depended upon the macromolecule structure and its mass fraction. The addition of the natural macromolecule strengthened the interfaces of emulsions, which improved the physical stability. The natural macromolecules that improved the stability often did not improve controlled release. Therefore, the balance between these properties needs to be considered when adding natural macromolecules to a W/O/W emulsion.
Collapse
Affiliation(s)
- Jinlong Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University , Beijing 100048, People's Republic of China
- Beijing Higher Institution Engineering Research Center of Food Additives and Ingredients , Beijing 100048, People's Republic of China
| | - Yiheng Shi
- College of Food Science and Engineering, Northwest Agricultural and Forestry University , Yangling, Shanxi 712100, People's Republic of China
| | - Yunping Zhu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University , Beijing 100048, People's Republic of China
- Beijing Key Laboratory of Flavor Chemistry , Beijing 100048, People's Republic of China
| | - Chao Teng
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University , Beijing 100048, People's Republic of China
- Beijing Higher Institution Engineering Research Center of Food Additives and Ingredients , Beijing 100048, People's Republic of China
| | - Xiuting Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University , Beijing 100048, People's Republic of China
- Beijing Key Laboratory of Flavor Chemistry , Beijing 100048, People's Republic of China
| |
Collapse
|
20
|
Ilić JD, Nikolovski BG, Lončarević IS, Petrović JS, Bajac BM, Vučinić-Vasić M. Release Properties and Stability of Double W1/O/W2Emulsions Containing Pumpkin Seed Oil. J FOOD PROCESS ENG 2016. [DOI: 10.1111/jfpe.12349] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jelena D. Ilić
- Faculty of Technology , University of Novi Sad, Novi Sad, R. Serbia
| | | | | | | | | | | |
Collapse
|
21
|
Hattrem MN, Kristiansen KA, Aachmann FL, Dille MJ, Draget KI. Ibuprofen-in-cyclodextrin-in-W/O/W emulsion – Improving the initial and long-term encapsulation efficiency of a model active ingredient. Int J Pharm 2015; 487:1-7. [DOI: 10.1016/j.ijpharm.2015.03.059] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Revised: 03/26/2015] [Accepted: 03/27/2015] [Indexed: 11/24/2022]
|
22
|
Encapsulation, protection, and release of hydrophilic active components: potential and limitations of colloidal delivery systems. Adv Colloid Interface Sci 2015; 219:27-53. [PMID: 25747522 DOI: 10.1016/j.cis.2015.02.002] [Citation(s) in RCA: 281] [Impact Index Per Article: 28.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Revised: 02/16/2015] [Accepted: 02/16/2015] [Indexed: 02/07/2023]
Abstract
There have been major advances in the development of edible colloidal delivery systems for hydrophobic bioactives in recent years. However, there are still many challenges associated with the development of effective delivery systems for hydrophilic bioactives. This review highlights the major challenges associated with developing colloidal delivery systems for hydrophilic bioactive components that can be utilized in foods, pharmaceuticals, and other products intended for oral ingestion. Special emphasis is given to the fundamental physicochemical phenomena associated with encapsulation, stabilization, and release of these bioactive components, such as solubility, partitioning, barriers, and mass transport processes. Delivery systems suitable for encapsulating hydrophilic bioactive components are then reviewed, including liposomes, multiple emulsions, solid fat particles, multiple emulsions, biopolymer particles, cubosomes, and biologically-derived systems. The advantages and limitations of each of these delivery systems are highlighted. This information should facilitate the rational selection of the most appropriate colloidal delivery systems for particular applications in the food and other industries.
Collapse
|
23
|
Sahin S, Sawalha H, Schroën K. High throughput production of double emulsions using packed bed premix emulsification. Food Res Int 2014. [DOI: 10.1016/j.foodres.2014.08.025] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
24
|
Bae J, Russell TP, Hayward RC. Osmotically Driven Formation of Double Emulsions Stabilized by Amphiphilic Block Copolymers. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201405229] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
25
|
Bae J, Russell TP, Hayward RC. Osmotically Driven Formation of Double Emulsions Stabilized by Amphiphilic Block Copolymers. Angew Chem Int Ed Engl 2014; 53:8240-5. [DOI: 10.1002/anie.201405229] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Indexed: 11/10/2022]
|
26
|
Jiménez-Colmenero F. Potential applications of multiple emulsions in the development of healthy and functional foods. Food Res Int 2013. [DOI: 10.1016/j.foodres.2013.02.040] [Citation(s) in RCA: 160] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
27
|
Giroux HJ, Constantineau S, Fustier P, Champagne CP, St-Gelais D, Lacroix M, Britten M. Cheese fortification using water-in-oil-in-water double emulsions as carrier for water soluble nutrients. Int Dairy J 2013. [DOI: 10.1016/j.idairyj.2012.10.009] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
28
|
|