1
|
Qian X, Qin Y, Sarasiya S, Chen J. Transcriptomic profiling of adding cobalt chloride to improve dendrobine-type total alkaloid production. Appl Microbiol Biotechnol 2024; 108:26. [PMID: 38170314 DOI: 10.1007/s00253-023-12869-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 11/09/2023] [Accepted: 11/19/2023] [Indexed: 01/05/2024]
Abstract
Trichoderma longibrachiatum UN32 is known for its efficient production of dendrobine-type total alkaloids (DTTAs). This study aimed to determine the optimal medium composition for the UN32 strain using response surface methodology. Key factors, including glucose, beef extract, and CoCl2, were selected through the Plackett-Burman design. Subsequently, a factorial optimization approach was employed using the steepest ascent design, and 17 trial sets were completed via the Box-Behnken design. The optimal medium composition was found to consist of 29.4 g/L of glucose, 17.3 g/L of beef extract, and 0.28 mmol/L of CoCl2. This optimized medium resulted in an impressive 80.8% increase in mycelial dry weight (reaching 12.303 g/L) and a substantial 76.4% boost in DTTA production (reaching 541.63 ± 46.95 μg). Furthermore, the fermentation process was scaled up to a 5-L bioreactor, leading to a DTTA production approximately 1.95 times than the control. Transcriptome analysis of strain UN32 in response to CoCl2 supplementation revealed significant changes in the expression of critical genes associated with the TCA cycle and L-valine, L-leucine, and L-isoleucine biosynthesis changed. These alterations resulted in a heightened influx of acetyl-CoA into DTTA production. Additionally, the expression of genes related to antioxidant enzymes was modified to maintain homeostasis of reactive oxygen species (ROS). A potential mechanism for the accumulation of DTTAs based on ROS as a signal transduction was proposed. These findings provide valuable insights into the regulatory mechanisms of DTTA biosynthesis, potentially offering a method to enhance the production of secondary metabolites in the UN32 strain. KEY POINTS: • After the RSM optimization, there is a substantial increase of 80.8% in biomass production and a significant 76.4% rise in DTTA production. • Transcriptome analysis revealed that the inclusion of CoCl2 supplements resulted in an enhanced influx of acetyl-CoA. • Proposed a mechanism for the accumulation of DTTAs for the role of ROS as a signal transduction pathway.
Collapse
Affiliation(s)
- Xu Qian
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211800, Jiangsu, China
| | - Yitong Qin
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211800, Jiangsu, China
| | - Surendra Sarasiya
- Bioresource Institute of Healthy Utilization, Zunyi Medical University, Zunyi, 563000, Guizhou, China
| | - Jishuang Chen
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211800, Jiangsu, China.
- Bioresource Institute of Healthy Utilization, Zunyi Medical University, Zunyi, 563000, Guizhou, China.
| |
Collapse
|
2
|
Maeda K, Ichikawa H, Nakajima Y, Motoyama T, Ohsato S, Kanamaru K, Kobayashi T, Nishiuchi T, Osada H, Kimura M. Identification and Characterization of Small Molecule Compounds That Modulate Trichothecene Production by Fusarium graminearum. ACS Chem Biol 2018; 13:1260-1269. [PMID: 29565558 DOI: 10.1021/acschembio.8b00044] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
From the RIKEN Natural Products Depository (NPDepo) chemical library, we identified small molecules that alter trichothecene 15-acetyldeoxynivalenol (15-ADON) production by Fusarium graminearum. Among trichothecene production activators, a furanocoumarin NPD12671 showed the strongest stimulatory activity on 15-ADON production by the fungus cultured in a 24-well plate. NPD12671 significantly increased the transcription of Tri6, a transcription factor gene necessary for trichothecene biosynthesis, in both trichothecene-inducing and noninducing culture conditions. Dihydroartemisinin (DHA) was identified as the most effective inhibitor of trichothecene production in 24-well plate culture; DHA inhibited trichothecene production (>50% inhibition at 1 μM) without affecting fungal mass by suppressing Tri6 expression. To determine the effect of DHA on trichothecene pathway Tri gene expression, we generated a constitutively Tri6-overexpressing strain that produced 15-ADON in YG_60 medium in Erlenmeyer flasks, conditions under which no trichothecenes are produced by the wild-type. While 5 μM DHA failed to inhibit trichothecene biosynthesis by the overexpressor in trichothecene-inducing YS_60 culture, trichothecene production was suppressed in the YG_60 culture. Regardless of a high Tri6 transcript level in the constitutive overexpressor, the YG_60 culture showed reduced accumulation of Tri5 and Tri4 mRNA upon treatment with 5 μM DHA. Deletion mutants of FgOs2 were also generated and examined; both NPD12671 and DHA modulated trichothecene production as they did in the wild-type strain. These results are discussed in light of the mode of actions of these chemicals on trichothecene biosynthesis.
Collapse
Affiliation(s)
- Kazuyuki Maeda
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8601, Japan
- Graduate School of Agriculture, Meiji University, 1-1-1 Higashi-Mita, Kawasaki, Kanagawa 214-8571, Japan
| | - Hinayo Ichikawa
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8601, Japan
| | - Yuichi Nakajima
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8601, Japan
| | - Takayuki Motoyama
- Chemical Biology Research Group, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Shuichi Ohsato
- Graduate School of Agriculture, Meiji University, 1-1-1 Higashi-Mita, Kawasaki, Kanagawa 214-8571, Japan
| | - Kyoko Kanamaru
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8601, Japan
| | - Tetsuo Kobayashi
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8601, Japan
| | - Takumi Nishiuchi
- Advanced Science Research Centre, Kanazawa University, 13-1 Takaramachi, Kanazawa, Ishikawa 920-0934, Japan
| | - Hiroyuki Osada
- Chemical Biology Research Group, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Makoto Kimura
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8601, Japan
| |
Collapse
|
3
|
Blum A, Benfield AH, Stiller J, Kazan K, Batley J, Gardiner DM. High-throughput FACS-based mutant screen identifies a gain-of-function allele of the Fusarium graminearum adenylyl cyclase causing deoxynivalenol over-production. Fungal Genet Biol 2016; 90:1-11. [PMID: 26932301 DOI: 10.1016/j.fgb.2016.02.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Revised: 02/02/2016] [Accepted: 02/26/2016] [Indexed: 01/21/2023]
Abstract
Fusarium head blight and crown rot, caused by the fungal plant pathogen Fusarium graminearum, impose a major threat to global wheat production. During the infection, plants are contaminated with mycotoxins such as deoxynivalenol (DON), which can be toxic for humans and animals. In addition, DON is a major virulence factor during wheat infection. However, it is not fully understood how DON production is regulated in F. graminearum. In order to identify regulators of DON production, a high-throughput mutant screen using Fluorescence Activated Cell Sorting (FACS) of a mutagenised TRI5-GFP reporter strain was established and a mutant over-producing DON under repressive conditions identified. A gain-of-function mutation in the F. graminearum adenylyl cyclase (FAC1), which is a known positive regulator of DON production, was identified as the cause of this phenotype through genome sequencing and segregation analysis. Our results show that the high-throughput mutant screening procedure developed here can be applied for identification of fungal proteins involved in diverse processes.
Collapse
Affiliation(s)
- Ailisa Blum
- CSIRO Agriculture, Queensland Bioscience Precinct, 306 Carmody Road, St Lucia, Brisbane, Queensland 4067, Australia; School of Agriculture & Food Sciences, University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia.
| | - Aurélie H Benfield
- CSIRO Agriculture, Queensland Bioscience Precinct, 306 Carmody Road, St Lucia, Brisbane, Queensland 4067, Australia
| | - Jiri Stiller
- CSIRO Agriculture, Queensland Bioscience Precinct, 306 Carmody Road, St Lucia, Brisbane, Queensland 4067, Australia
| | - Kemal Kazan
- CSIRO Agriculture, Queensland Bioscience Precinct, 306 Carmody Road, St Lucia, Brisbane, Queensland 4067, Australia; Queensland Alliance for Agriculture & Food Innovation (QAAFI), University of Queensland, St Lucia, Brisbane, Queensland 4067, Australia
| | - Jacqueline Batley
- School of Agriculture & Food Sciences, University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia; School of Plant Biology, University of Western Australia, Crawley, Western Australia 6009, Australia
| | - Donald M Gardiner
- CSIRO Agriculture, Queensland Bioscience Precinct, 306 Carmody Road, St Lucia, Brisbane, Queensland 4067, Australia
| |
Collapse
|
4
|
Pasquali M, Cocco E, Guignard C, Hoffmann L. The effect of agmatine on trichothecene type B and zearalenone production in Fusarium graminearum, F. culmorum and F. poae. PeerJ 2016; 4:e1672. [PMID: 26893962 PMCID: PMC4756729 DOI: 10.7717/peerj.1672] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 01/19/2016] [Indexed: 11/20/2022] Open
Abstract
Agmatine and other putrescines are known for being strong inducers of deoxynivalenol (DON) production in Fusarium graminearum. Other important species produce DON and/or other trichothecene type B toxins (3 acetylated DON, 15 acetylated DON, Fusarenon-X, Nivalenol), such as F. culmorum and F. poae. In order to verify whether the mechanism of the regulation of trichothecene type B induction by agmatine is shared by different species of Fusarium, we tested the hypothesis on 19 strains belonging to 3 Fusarium species (F. graminearum, F. culmorum, F. poae) with diverse genetic chemotypes (3ADON, 15ADON, NIV) by measuring trichothecene B toxins such as DON, NIV, Fusarenon-X, 3ADON and 15ADON. Moreover, we tested whether other toxins like zearalenone were also boosted by agmatine. The trichothecene type B boosting effect was observed in the majority of strains (13 out of 19) in all the three species. Representative strains from all three genetic chemotypes were able to boost toxin production after agmatine treatment. We identified the non-responding strains to the agmatine stimulus, which may contribute to deciphering the regulatory mechanisms that link toxin production to agmatine (and, more generally, polyamines).
Collapse
Affiliation(s)
- Matias Pasquali
- Department of Environmental Research and Innovation, Luxembourg Institute of Science and Technology (LIST) , Belvaux , Luxembourg
| | - Emmanuelle Cocco
- Department of Environmental Research and Innovation, Luxembourg Institute of Science and Technology (LIST) , Belvaux , Luxembourg
| | - Cédric Guignard
- Department of Environmental Research and Innovation, Luxembourg Institute of Science and Technology (LIST) , Belvaux , Luxembourg
| | - Lucien Hoffmann
- Department of Environmental Research and Innovation, Luxembourg Institute of Science and Technology (LIST) , Belvaux , Luxembourg
| |
Collapse
|
5
|
Sakuda S, Yoshinari T, Furukawa T, Jermnak U, Takagi K, Iimura K, Yamamoto T, Suzuki M, Nagasawa H. Search for aflatoxin and trichothecene production inhibitors and analysis of their modes of action. Biosci Biotechnol Biochem 2016; 80:43-54. [DOI: 10.1080/09168451.2015.1086261] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Abstract
Mycotoxin contamination of crops is a serious problem throughout the world because of its impact on human and animal health as well as economy. Inhibitors of mycotoxin production are useful not only for developing effective methods to prevent mycotoxin contamination, but also for investigating the molecular mechanisms of secondary metabolite production by fungi. We have been searching for mycotoxin production inhibitors among natural products and investigating their modes of action. In this article, we review aflatoxin and trichothecene production inhibitors, including our works on blasticidin S, methyl syringate, cyclo(l-Ala-l-Pro), respiration inhibitors, and precocene II.
Collapse
Affiliation(s)
- Shohei Sakuda
- Department of Applied Biological Chemistry, The University of Tokyo, Tokyo, Japan
| | - Tomoya Yoshinari
- Division of Microbiology, National Institute of Health Sciences, Tokyo, Japan
| | - Tomohiro Furukawa
- Department of Applied Biological Chemistry, The University of Tokyo, Tokyo, Japan
| | - Usuma Jermnak
- Faculty of Veterinary Medicine, Department of Pharmacology, Kasetsart University, Bangkok, Thailand
| | - Keiko Takagi
- Department of Applied Biological Chemistry, The University of Tokyo, Tokyo, Japan
| | - Kurin Iimura
- Department of Applied Biological Chemistry, The University of Tokyo, Tokyo, Japan
| | - Toshiyoshi Yamamoto
- Department of Applied Biological Chemistry, The University of Tokyo, Tokyo, Japan
| | - Michio Suzuki
- Department of Applied Biological Chemistry, The University of Tokyo, Tokyo, Japan
| | - Hiromichi Nagasawa
- Department of Applied Biological Chemistry, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
6
|
Furukawa T, Sakamoto N, Suzuki M, Kimura M, Nagasawa H, Sakuda S. Precocene II, a Trichothecene Production Inhibitor, Binds to Voltage-Dependent Anion Channel and Increases the Superoxide Level in Mitochondria of Fusarium graminearum. PLoS One 2015; 10:e0135031. [PMID: 26248339 PMCID: PMC4527739 DOI: 10.1371/journal.pone.0135031] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Accepted: 07/16/2015] [Indexed: 02/07/2023] Open
Abstract
Precocene II, a constituent of essential oils, shows antijuvenile hormone activity in insects and inhibits trichothecene production in fungi. We investigated the molecular mechanism by which precocene II inhibits trichothecene production in Fusarium graminearum, the main causal agent of Fusarium head blight and trichothecene contamination in grains. Voltage-dependent anion channel (VDAC), a mitochondrial outer membrane protein, was identified as the precocene II-binding protein by an affinity magnetic bead method. Precocene II increased the superoxide level in mitochondria as well as the amount of oxidized mitochondrial proteins. Ascorbic acid, glutathione, and α-tocopherol promoted trichothecene production by the fungus. These antioxidants compensated for the inhibitory activity of precocene II on trichothecene production. These results suggest that the binding of precocene II to VDAC may cause high superoxide levels in mitochondria, which leads to stopping of trichothecene production.
Collapse
Affiliation(s)
- Tomohiro Furukawa
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Naoko Sakamoto
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Michio Suzuki
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Makoto Kimura
- Department of Biological Mechanisms and Functions, Graduate School of Bioagricultural Sciences, Nagoya University, Aichi, Japan
| | - Hiromichi Nagasawa
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Shohei Sakuda
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
- * E-mail:
| |
Collapse
|
7
|
Pasquali M, Migheli Q. Genetic approaches to chemotype determination in type B-trichothecene producing Fusaria. Int J Food Microbiol 2014; 189:164-82. [DOI: 10.1016/j.ijfoodmicro.2014.08.011] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Revised: 07/30/2014] [Accepted: 08/05/2014] [Indexed: 01/19/2023]
|
8
|
The adenylyl cyclase plays a regulatory role in the morphogenetic switch from vegetative to pathogenic lifestyle of Fusarium graminearum on wheat. PLoS One 2014; 9:e91135. [PMID: 24603887 PMCID: PMC3946419 DOI: 10.1371/journal.pone.0091135] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Accepted: 02/11/2014] [Indexed: 11/19/2022] Open
Abstract
Cyclic 3′,5′-adenosine monophosphate (cAMP) is a nucleotide derived from adenosine triphosphate that acts as a second messenger throughout all kingdoms. Intracellular cAMP levels are synthesized by a membrane-bound protein, the adenylyl cyclase. In order to analyze the function of this gene and the importance of cAMP in the life cycle of the cereal pathogen Fusarium graminearum, the adenylyl cyclase gene (FGSG_01234) was deleted by gene replacement (ΔFgac1). The ΔFgac1 mutant displayed a drastically reduced growth on agar medium which could be rescued by a cAMP analogon. Furthermore, the ΔFgac1 mutant was unable to produce perithecia on detached wheat nodes. However, artificial conditions like carrot agar allowed perithecia development. Pathogenicity towards wheat was drastically reduced in ΔFgac1 compared to the wild type. Point-inoculated spikelets showed only small lesions but no typical head blight disease symptoms. Fluorescence microscopy using dsRed-expressing strains revealed that the ΔFgac1 strain was unable to develop any complex infection structures like lobate appressoria and infection cushions. Instead, hyphal anastomosis occurs frequently. Scanning electron microscopy demonstrated the lack of fungal penetration. Hence, the formation of compound appressoria seems to be essential for infection of wheat. Hyphae on flower leaves produced huge amounts of new conidia, thereby circumventing the infection cycle. This abundant sporulation on wheat epidermis was not observed in wild type. Intriguingly, the Fgac1 deletion mutant was able to infect maize cobs as wild type, indicating that cAMP signaling is not important for maize infection. The ΔFgac1 mutant was unable to produce the mycotoxin deoxynivalenol both in vitro and during wheat infection. In this study, we show that cAMP signaling controls important cellular processes such as development of infection structures, pathogenicity, secondary metabolite production and sexual reproduction. For the first time, we show that cAMP regulates the switch from vegetative to pathogenic lifestyle of F. graminearum on wheat.
Collapse
|
9
|
Van Nguyen T, Kröger C, Bönnighausen J, Schäfer W, Bormann J. The ATF/CREB transcription factor Atf1 is essential for full virulence, deoxynivalenol production, and stress tolerance in the cereal pathogen Fusarium graminearum. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2013; 26:1378-1394. [PMID: 23945004 DOI: 10.1094/mpmi-04-13-0125-r] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Fusarium graminearum is a necrotrophic plant pathogen of cereals that produces mycotoxins such as deoxynivalenol (DON) and zearalenone (ZEA) in grains. The stress-activated mitogen-activated protein kinase FgOS-2 is a central regulator in F. graminearum and controls, among others, virulence and DON and ZEA production. Here, we characterized the ATF/CREB-activating transcription factor FgAtf1, a regulator that functions downstream of FgOS-2. We created deletion and overexpression mutants of Fgatf1, the latter being also in an FgOS-2 deletion mutant. FgAtf1 localizes to the nucleus and appears to interact with FgOS-2 under osmotic stress conditions. Deletion mutants in Fgatf1 (ΔFgatf1) are more sensitive to osmotic stress and less sensitive to oxidative stress compared with the wild type. Furthermore, sexual reproduction is delayed. ΔFgatf1 strains produced higher amounts of DON under in vitro induction conditions than that of the wild type. However, during wheat infection, DON production by ΔFgatf1 is strongly reduced. The ΔFgatf1 strains displayed strongly reduced virulence to wheat and maize. Interestingly, constitutive expression of Fgatf1 in the wild type led to hypervirulence on wheat, maize, and Brachypodium distachyon. Moreover, constitutive expression of Fgatf1 in the ΔFgOS-2 mutant background almost complements ΔFgOS-2-phenotypes. These data suggest that FgAtf1 may be the most important transcription factor regulated by FgOS-2.
Collapse
|
10
|
Sakamoto N, Tsuyuki R, Yoshinari T, Usuma J, Furukawa T, Nagasawa H, Sakuda S. Correlation of ATP citrate lyase and acetyl CoA levels with trichothecene production in Fusarium graminearum. Toxins (Basel) 2013; 5:2258-69. [PMID: 24284828 PMCID: PMC3847725 DOI: 10.3390/toxins5112258] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Revised: 11/18/2013] [Accepted: 11/18/2013] [Indexed: 11/16/2022] Open
Abstract
The correlation of ATP citrate lyase (ACL) and acetyl CoA levels with trichothecene production in Fusarium graminearum was investigated using an inhibitor (precocene II) and an enhancer (cobalt chloride) of trichothecene production by changing carbon sources in liquid medium. When precocene II (30 µM) was added to inhibit trichothecene production in a trichothecene high-production medium containing sucrose, ACL expression was reduced and ACL mRNA level as well as acetyl CoA amount in the fungal cells were reduced to the levels observed in a trichothecene trace-production medium containing glucose or fructose. The ACL mRNA level was greatly increased by addition of cobalt chloride in the trichothecene high-production medium, but not in the trichothecene trace-production medium. Levels were reduced to those level in the trichothecene trace-production medium by addition of precocene II (300 µM) together with cobalt chloride. These results suggest that ACL expression is activated in the presence of sucrose and that acetyl CoA produced by the increased ALC level may be used for trichothecene production in the fungus. These findings also suggest that sucrose is important for the action of cobalt chloride in activating trichothecene production and that precocene II may affect a step down-stream of the target of cobalt chloride.
Collapse
Affiliation(s)
- Naoko Sakamoto
- Department of Applied Biological Chemistry, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan; E-Mails: (N.S.); (R.T.); (J.U.); (T.F.); (H.N.)
| | - Rie Tsuyuki
- Department of Applied Biological Chemistry, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan; E-Mails: (N.S.); (R.T.); (J.U.); (T.F.); (H.N.)
| | - Tomoya Yoshinari
- National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya-ku, Tokyo 158-8501, Japan; E-Mail:
| | - Jermnak Usuma
- Department of Applied Biological Chemistry, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan; E-Mails: (N.S.); (R.T.); (J.U.); (T.F.); (H.N.)
| | - Tomohiro Furukawa
- Department of Applied Biological Chemistry, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan; E-Mails: (N.S.); (R.T.); (J.U.); (T.F.); (H.N.)
| | - Hiromichi Nagasawa
- Department of Applied Biological Chemistry, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan; E-Mails: (N.S.); (R.T.); (J.U.); (T.F.); (H.N.)
| | - Shohei Sakuda
- Department of Applied Biological Chemistry, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan; E-Mails: (N.S.); (R.T.); (J.U.); (T.F.); (H.N.)
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +81-3-5841-5133; Fax: +81-3-5841-8022
| |
Collapse
|
11
|
Van Thuat N, Schäfer W, Bormann J. The stress-activated protein kinase FgOS-2 is a key regulator in the life cycle of the cereal pathogen Fusarium graminearum. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2012; 25:1142-1156. [PMID: 22591226 DOI: 10.1094/mpmi-02-12-0047-r] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Fusarium graminearum is one of the most destructive pathogens of cereals and a threat to food and feed production worldwide. It is an ascomycetous plant pathogen and the causal agent of Fusarium head blight disease in small grain cereals and of cob rot disease in maize. Infection with F. graminearum leads to yield losses and mycotoxin contamination. Zearalenone (ZEA) and deoxynivalenol (DON) are hazardous mycotoxins; the latter is necessary for virulence toward wheat. Deletion mutants of the F. graminearum orthologue of the Saccharomyces cerevisiae Hog1 stress-activated protein kinase, FgOS-2 (ΔFgOS-2), showed drastically reduced in planta DON and ZEA production. However, ΔFgOS-2 produced even more DON than the wild type under in vitro conditions, whereas ZEA production was similar to that of the wild type. These deletion strains are dramatically reduced in pathogenicity toward maize and wheat. We constitutively expressed the fluorescent protein dsRed in the deletion strains and the wild type. Microscopic analysis revealed that ΔFgOS-2 is unable to reach the rachis node at the base of wheat spikelets. During vegetative growth, ΔFgOS-2 strains exhibit increased resistance against the phenylpyrrole fludioxonil. Growth of mutant colonies on agar plates supplemented with NaCl is reduced but conidia formation remained unchanged. However, germination of mutant conidia on osmotic media is severely impaired. Germ tubes are swollen and contain multiple nuclei. The deletion mutants completely fail to produce perithecia and ascospores. Furthermore, FgOS-2 also plays a role in reactive oxygen species (ROS)-related signaling. The transcription and activity of fungal catalases is modulated by FgOS-2. Among the genes regulated by FgOS-2, we found a putative calcium-dependent NADPH-oxidase (noxC) and the transcriptional regulator of ROS metabolism, atf1. The present study describes new aspects of stress-activated protein kinase signaling in F. graminearum.
Collapse
Affiliation(s)
- Nguyen Van Thuat
- Department of Molecular Phytopathology and Genetics, University of Hamburg, Hamburg, Germany
| | | | | |
Collapse
|
12
|
Kazan K, Gardiner DM, Manners JM. On the trail of a cereal killer: recent advances in Fusarium graminearum pathogenomics and host resistance. MOLECULAR PLANT PATHOLOGY 2012; 13:399-413. [PMID: 22098555 PMCID: PMC6638652 DOI: 10.1111/j.1364-3703.2011.00762.x] [Citation(s) in RCA: 160] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
The ascomycete fungal pathogen Fusarium graminearum (sexual stage: Gibberella zeae) causes the devastating head blight or scab disease on wheat and barley, and cob or ear rot disease on maize. Fusarium graminearum infection causes significant crop and quality losses. In addition to roles as virulence factors during pathogenesis, trichothecene mycotoxins (e.g. deoxynivalenol) produced by this pathogen constitute a significant threat to human and animal health if consumed in respective food or feed products. In the last few years, significant progress has been made towards a better understanding of the processes involved in F. graminearum pathogenesis, toxin biosynthesis and host resistance mechanisms through the use of high-throughput genomic and phenomic technologies. In this article, we briefly review these new advances and also discuss how future research can contribute to the development of sustainable plant protection strategies against this important plant pathogen.
Collapse
Affiliation(s)
- Kemal Kazan
- CSIRO Plant Industry, Queensland Bioscience Precinct, St Lucia, Brisbane, Qld 4067, Australia.
| | | | | |
Collapse
|
13
|
Scientific Opinion on the maintenance of the list of QPS biological agents intentionally added to food and feed (2011 update). EFSA J 2011. [DOI: 10.2903/j.efsa.2011.2497] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
|