1
|
Wang X, Cui S, Liu J, Ye Z, Xu Y, Wang Z, Tang M, Zhang Z, Zhang Y, Huang W. The same species, different nutrients: Lipidomics analysis of muscle in mud crabs (Scylla paramamosain) fed with lard oil and fish oil. Food Chem 2024; 440:138174. [PMID: 38160593 DOI: 10.1016/j.foodchem.2023.138174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 11/17/2023] [Accepted: 12/06/2023] [Indexed: 01/03/2024]
Abstract
Aiming to assess the effects of lard oil (LO) and fish oil (FO) on the nutritional value of mud crabs (Scylla paramamosain), non-targeted lipidomics analysis was performed on the muscle of crabs after eight weeks of feeding trail. Compared to FO, dietary LO reduced the content of phosphatidylethanolamine (PE) and phosphatidylserine (PS) with 18:0 bound at sn-1/3 site, the content of ether phospholipids containing 20:5n-3 (EPA) and 22:6n-3 (DHA) combined at sn-2 site, and increased the content of ether PE containing 18:0 and 18:1n-9. Furthermore, the deposition of 16:0, 16:1n-7, 18:2n-6, 18:3n-3, 20:4n-6, EPA and DHA at each site of PE, PS, phosphatidylcholine and/or triacylglycerols were reduced by dietary LO, while the DHA content at the sn-2 position of PE was increased. In conclusion, the nutritional value of mud crabs was reduced by dietary LO with the manifestation of variation in FA composition and positional distribution on phospholipids.
Collapse
Affiliation(s)
- Xuexi Wang
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Key Laboratory of Special Aquatic Formula Feed of Fujian Province, Fujian Tianma Science and Technology Group Co., Ltd., Fuzhou 350002, China; Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs (Jimei University), P.R.China; Key Laboratory of Aquaculture Biotechnology (Ningbo University), Ministry of Education, P.R.China.
| | - Shihui Cui
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jinjin Liu
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zihao Ye
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yifang Xu
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Ziyi Wang
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Mengyao Tang
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Ziping Zhang
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yi Zhang
- Engineering Research Center of Mindong Aquatic Product Deep-Processing, Ningde 352100, China
| | - Weiqing Huang
- Engineering Research Center of Mindong Aquatic Product Deep-Processing, Ningde 352100, China
| |
Collapse
|
2
|
Chetoui I, Ghribi F, Bejaoui S, Hachana S, El Cafsi M, Azaza MS. Incorporation of ω3 fatty acids in the diets of Nile tilapia juvenile (Oreochromis niloticus L.): effects on growth performance, fatty acid composition, and tolerance to low temperature. Trop Anim Health Prod 2022; 54:401. [DOI: 10.1007/s11250-022-03394-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 11/09/2022] [Indexed: 11/26/2022]
|
3
|
Yu H, Li L, Yu L, Xu C, Zhang J, Qiu X, Zhang Y, Shan L. Effect of Dietary Linoleic Acid (18:2n-6) Supplementation on the Growth Performance, Fatty Acid Profile, and Lipid Metabolism Enzyme Activities of Coho Salmon ( Oncorhynchus kisutch) Alevins. Animals (Basel) 2022; 12:ani12192631. [PMID: 36230371 PMCID: PMC9559461 DOI: 10.3390/ani12192631] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/24/2022] [Accepted: 09/27/2022] [Indexed: 11/16/2022] Open
Abstract
A 12-week feeding trial aimed to evaluate the effects of dietary linoleic acid (LA, 18:2n-6) on the growth performance, fatty acid profile, and lipid metabolism enzyme activities of coho salmon (Oncorhynchus kisutch) alevins. Six experimental diets (47% crude protein and 15% crude lipid) were formulated to contain graded LA levels of 0.11%, 0.74%, 1.37%, 2.00%, 2.63%, and 3.26%. Each diet was fed to triplicate groups of 50 alevins with an initial body weight of 0.364 ± 0.002 g, which were randomly assigned to 18 white plastic tanks (0.8 × 0.6 × 0.6 m, 240 L/tank). Fish were reared in a freshwater flow-through rearing system and fed to apparent satiation four times daily. The survival rate was not significantly different among the treatments (p > 0.05). However, the 1.37% LA group significantly improved the final body weight and specific growth rate (SGR) (p < 0.05) of alevins. The feed conversion ratio (FCR) in the 1.37% LA group was significantly lower than those in other groups (p < 0.05). The whole-body lipid content significantly decreased (p < 0.05) with dietary LA levels increasing from 0.74% to 2.00%. The fatty acid composition of the total lipid in muscle was closely correlated with those in the diets. The dietary LA level of 1.37% led to significantly higher activities of liver lipoprotein lipase (LPL) and hepatic lipase (HL) than those of other groups (p < 0.05). Hepatic malate dehydrogenase (MDH) and fatty acid synthase (FAS) decreased with the increase in the dietary LA levels from 0.11% to 1.37%. The lowest MDH and FAS activities were obtained in the 1.37% LA group (p < 0.05). This study indicated that an appropriate amount of dietary LA was beneficial for the growth and lipid metabolism of coho salmon alevins, and the results of the quadratic regression analysis of the SGR and FCR indicated that the optimal dietary LA requirements were 1.25% and 1.23% for coho salmon alevins, respectively.
Collapse
Affiliation(s)
- Hairui Yu
- Key Laboratory of Biochemistry and Molecular Biology in Universities of Shandong (Weifang University), Weifang Key Laboratory of Coho Salmon Culturing Facility Engineering, Institute of Modern Facility Fisheries, College of Biology and Oceanography, Weifang University, Weifang 261061, China
- Correspondence: (H.Y.); (L.Y.)
| | - Lingyao Li
- Key Laboratory of Biochemistry and Molecular Biology in Universities of Shandong (Weifang University), Weifang Key Laboratory of Coho Salmon Culturing Facility Engineering, Institute of Modern Facility Fisheries, College of Biology and Oceanography, Weifang University, Weifang 261061, China
- Shandong Collaborative Innovation Center of Coho Salmon Health Culture Engineering Technology, Shandong Conqueren Marine Technology Co., Ltd., Weifang 261108, China
| | - Leyong Yu
- Key Laboratory of Biochemistry and Molecular Biology in Universities of Shandong (Weifang University), Weifang Key Laboratory of Coho Salmon Culturing Facility Engineering, Institute of Modern Facility Fisheries, College of Biology and Oceanography, Weifang University, Weifang 261061, China
- Correspondence: (H.Y.); (L.Y.)
| | - Congmei Xu
- Key Laboratory of Biochemistry and Molecular Biology in Universities of Shandong (Weifang University), Weifang Key Laboratory of Coho Salmon Culturing Facility Engineering, Institute of Modern Facility Fisheries, College of Biology and Oceanography, Weifang University, Weifang 261061, China
| | - Jiayi Zhang
- Key Laboratory of Biochemistry and Molecular Biology in Universities of Shandong (Weifang University), Weifang Key Laboratory of Coho Salmon Culturing Facility Engineering, Institute of Modern Facility Fisheries, College of Biology and Oceanography, Weifang University, Weifang 261061, China
| | - Xiangyi Qiu
- Key Laboratory of Biochemistry and Molecular Biology in Universities of Shandong (Weifang University), Weifang Key Laboratory of Coho Salmon Culturing Facility Engineering, Institute of Modern Facility Fisheries, College of Biology and Oceanography, Weifang University, Weifang 261061, China
| | - Yijing Zhang
- Key Laboratory of Biochemistry and Molecular Biology in Universities of Shandong (Weifang University), Weifang Key Laboratory of Coho Salmon Culturing Facility Engineering, Institute of Modern Facility Fisheries, College of Biology and Oceanography, Weifang University, Weifang 261061, China
| | - Lingling Shan
- Shandong Collaborative Innovation Center of Coho Salmon Health Culture Engineering Technology, Shandong Conqueren Marine Technology Co., Ltd., Weifang 261108, China
| |
Collapse
|
4
|
Xu H, Turchini GM, Francis DS, Liang M, Mock TS, Rombenso A, Ai Q. Are fish what they eat? A fatty acid’s perspective. Prog Lipid Res 2020; 80:101064. [DOI: 10.1016/j.plipres.2020.101064] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 09/08/2020] [Accepted: 09/11/2020] [Indexed: 12/13/2022]
|
5
|
Zhu KC, Zhang N, Liu BS, Guo L, Guo HY, Jiang SG, Zhang DC. Transcription factor pparαb activates fads2s to promote LC-PUFA biosynthesis in the golden pompano Trachinotus ovatus (Linnaeus 1758). Int J Biol Macromol 2020; 161:605-616. [DOI: 10.1016/j.ijbiomac.2020.06.085] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 06/08/2020] [Accepted: 06/09/2020] [Indexed: 01/18/2023]
|
6
|
Qin G, Xu D, Lou B, Chen R, Wang L, Tan P. iTRAQ-based quantitative phosphoproteomics provides insights into the metabolic and physiological responses of a carnivorous marine fish (Nibea albiflora) fed a linseed oil-rich diet. J Proteomics 2020; 228:103917. [DOI: 10.1016/j.jprot.2020.103917] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 06/04/2020] [Accepted: 07/20/2020] [Indexed: 02/01/2023]
|
7
|
Nayak M, Giri SS, Pradhan A, Samanta M, Saha A. Effects of dietary α-linolenic acid/linoleic acid ratio on growth performance, tissue fatty acid profile, serum metabolites and Δ6 fad and elovl5 gene expression in silver barb (Puntius gonionotus). JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2020; 100:1643-1652. [PMID: 31802501 DOI: 10.1002/jsfa.10177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 11/26/2019] [Accepted: 11/28/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Silver barb (Puntius gonionotus) is a medium-sized carp that is promising for freshwater aquaculture in Asia. This study's aim was to investigate the ideal dietary α-linolenic acid (ALA): linoleic acid (LA) ratio for maximizing long-chain polyunsaturated fatty acid (LC-PUFA) synthesis and their deposition in the muscle of silver barb, as that of fish oil based control diet. RESULT Fish (with an initial body weight of 11.07 ± 0.12 g) were fed for 60 days with five experimental iso-proteinous, iso-lipidic, and iso-caloric diets, supplemented with linseed oil and peanut oil at varying levels to obtain ALA:LA ratios of 0.35, 0.51, 0.91, 2.04, 2.66. A control diet was prepared by supplementing fish oil. The dietary ALA:LA ratio did not influence the growth performance of fish. With increased dietary ALA:LA ratios, LA content decreased and ALA content increased in the muscle and liver of silver barb. The n-3 LC-PUFA level in muscle and liver was not influenced by feeding different ratios of ALA:LA, whereas n-6 LC-PUFA was decreased in the muscle and increased in the liver with increased dietary ALA:LA ratios. Increasing dietary ALA:LA ratio increased the Δ6fad and elovl5mRNA expression in the liver, muscle, brain, and intestinal tissues of silver barbs. CONCLUSION Silver barb possess the ability to elongate and desaturate ALA and LA to their end products EPA and DHA. The highest level expression of Δ6 fad and elovl5 mRNA at the dietary ALA:LA ratio of 2.66 suggests greater affinity of these enzymes towards ALA than LA in silver barb. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Madhusmita Nayak
- Nutrigenomics Laboratory, Fish Nutrition and Physiology Division, ICAR- Central Institute of Freshwater Aquaculture, Kausalyaganga, Bhubaneswar, India
| | - Shiba Shankar Giri
- Nutrigenomics Laboratory, Fish Nutrition and Physiology Division, ICAR- Central Institute of Freshwater Aquaculture, Kausalyaganga, Bhubaneswar, India
| | - Avinash Pradhan
- Nutrigenomics Laboratory, Fish Nutrition and Physiology Division, ICAR- Central Institute of Freshwater Aquaculture, Kausalyaganga, Bhubaneswar, India
| | - Mrinal Samanta
- Nutrigenomics Laboratory, Fish Nutrition and Physiology Division, ICAR- Central Institute of Freshwater Aquaculture, Kausalyaganga, Bhubaneswar, India
| | - Ashis Saha
- Nutrigenomics Laboratory, Fish Nutrition and Physiology Division, ICAR- Central Institute of Freshwater Aquaculture, Kausalyaganga, Bhubaneswar, India
| |
Collapse
|
8
|
Endogenous production of n-3 long-chain PUFA from first feeding and the influence of dietary linoleic acid and the α-linolenic:linoleic ratio in Atlantic salmon ( Salmo salar). Br J Nutr 2019; 122:1091-1102. [PMID: 31409428 DOI: 10.1017/s0007114519001946] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Atlantic salmon (Salmo salar) possess enzymes required for the endogenous biosynthesis of n-3 long-chain PUFA (LC-PUFA), EPA and DHA, from α-linolenic acid (ALA). Linoleic acid (LA) competes with ALA for LC-PUFA biosynthesis enzymes leading to the production of n-6 LC-PUFA, including arachidonic acid (ARA). We aimed to quantify the endogenous production of EPA and DHA from ALA in salmon fed from first feeding on diets that contain no EPA and DHA and to determine the influence of dietary LA and ALA:LA ratio on LC-PUFA production. Salmon were fed from first feeding for 22 weeks with three diets formulated with linseed and sunflower oils to provide ALA:LA ratios of approximately 3:1, 1:1 and 1:3. Endogenous production of n-3 LC-PUFA was 5·9, 4·4 and 2·8 mg per g fish and that of n-6 LC-PUFA was 0·2, 0·5 and 1·4 mg per g fish in salmon fed diets with ALA:LA ratios of 3:1, 1:1 and 1:3, respectively. The ratio of n-3:n-6 LC-PUFA production decreased from 27·4 to 2·0, and DHA:EPA ratio increased and EPA:ARA and DHA:ARA ratios decreased, as dietary ALA:LA ratio decreased. In conclusion, with a dietary ALA:LA ratio of 1, salmon fry/parr produced about 28 μg n-3 LC-PUFA per g fish per d, with a DHA:EPA ratio of 3·4. Production of n-3 LC-PUFA exceeded that of n-6 LC-PUFA by almost 9-fold. Reducing the dietary ALA:LA ratio reduced n-3 LC-PUFA production and EPA:ARA and DHA:ARA ratios but increased n-6 LC-PUFA production and DHA:EPA ratio.
Collapse
|
9
|
Elovl4a participates in LC-PUFA biosynthesis and is regulated by PPARαβ in golden pompano Trachinotus ovatus (Linnaeus 1758). Sci Rep 2019; 9:4684. [PMID: 30886313 PMCID: PMC6423087 DOI: 10.1038/s41598-019-41288-w] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 03/01/2019] [Indexed: 12/23/2022] Open
Abstract
The elongases of very long-chain fatty acids (Elovls) are responsible for the rate-limiting elongation process in long-chain polyunsaturated fatty acid (LC-PUFA) biosynthesis. The transcription factor, PPARα, regulates lipid metabolism in mammals; however, the detailed mechanism whereby PPARαb regulates Elovls remains largely unknown in fish. In the present study, we report the full length cDNA sequence of Trachinotus ovatus Elovl4a (ToElovl4a), which encodes a 320 amino acid polypeptide that possesses five putative membrane-spanning domains, a conserved HXXHH histidine motif and an ER retrieval signal. Phylogenetic analysis revealed that the deduced protein of ToElovl4a is highly conserved with the Oreochromis niloticus corresponding homologue. Moreover, functional characterization by heterologous expression in yeast indicated that ToElovl4a can elongate C18 up to C20 polyunsaturated fatty acids. A nutritional study showed that the protein expressions of ToElovl4a in the brain and liver were not significantly affected among the different treatments. The region from PGL3-basic-Elovl4a-5 (−148 bp to +258 bp) is defined as the core promoter via a progressive deletion mutation of ToElovl4a. The results from promoter activity assays suggest that ToElovl4a transcription is positively regulated by PPARαb. Mutation analyses indicated that the M2 binding site of PPARαb is functionally important for protein binding, and transcriptional activity of the ToElovl4a promoter significantly decreased after targeted mutation. Furthermore, PPARαb RNA interference reduced ToPPARαb and ToElovl4a expression at the protein levels in a time-dependent manner. In summary, PPARαb may promote the biosynthesis of LC-PUFA by regulating ToElovl4a expression in fish.
Collapse
|
10
|
Nuez-Ortín WG, Carter CG, Wilson R, Cooke I, Nichols PD. Preliminary Validation of a High Docosahexaenoic Acid (DHA) and α-Linolenic Acid (ALA) Dietary Oil Blend: Tissue Fatty Acid Composition and Liver Proteome Response in Atlantic Salmon (Salmo salar) Smolts. PLoS One 2016; 11:e0161513. [PMID: 27556399 PMCID: PMC4996530 DOI: 10.1371/journal.pone.0161513] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 08/05/2016] [Indexed: 11/24/2022] Open
Abstract
Marine oils are important to human nutrition as the major source of docosahexaenoic acid (DHA), a key omega-3 long-chain (≥C20) polyunsaturated fatty acid (n-3 LC-PUFA) that is low or lacking in terrestrial plant or animal oils. The inclusion of fish oil as main source of n-3 LC-PUFA in aquafeeds is mostly limited by the increasing price and decreasing availability. Fish oil replacement with cheaper terrestrial plant and animal oils has considerably reduced the content of n-3 LC-PUFA in flesh of farmed Atlantic salmon. Novel DHA-enriched oils with high alpha-linolenic acid (ALA) content will be available from transgenic oilseeds plants in the near future as an alternative for dietary fish oil replacement in aquafeeds. As a preliminary validation, we formulated an oil blend (TOFX) with high DHA and ALA content using tuna oil (TO) high in DHA and the flaxseed oil (FX) high in ALA, and assessed its ability to achieve fish oil-like n-3 LC-PUFA tissue composition in Atlantic salmon smolts. We applied proteomics as an exploratory approach to understand the effects of nutritional changes on the fish liver. Comparisons were made between fish fed a fish oil-based diet (FO) and a commercial-like oil blend diet (fish oil + poultry oil, FOPO) over 89 days. Growth and feed efficiency ratio were lower on the TOFX diet. Fish muscle concentration of n-3 LC-PUFA was significantly higher for TOFX than for FOPO fish, but not higher than for FO fish, while retention efficiency of n-3 LC-PUFA was promoted by TOFX relative to FO. Proteomics analysis revealed an oxidative stress response indicative of the main adaptive physiological mechanism in TOFX fish. While specific dietary fatty acid concentrations and balances and antioxidant supplementation may need further attention, the use of an oil with a high content of DHA and ALA can enhance tissue deposition of n-3 LC-PUFA in relation to a commercially used oil blend.
Collapse
Affiliation(s)
- Waldo G. Nuez-Ortín
- Institute for Marine and Antarctic Studies, University of Tasmania, Private Bag 49, Hobart, TAS 7001, Australia
- CSIRO Food Nutrition and Bio-based Products, Oceans & Atmosphere, GPO Box 1538, Hobart, TAS 7001, Australia
- * E-mail:
| | - Chris G. Carter
- Institute for Marine and Antarctic Studies, University of Tasmania, Private Bag 49, Hobart, TAS 7001, Australia
| | - Richard Wilson
- Central Science Laboratory, University of Tasmania, Bag 74, Hobart, TAS 7001, Australia
| | - Ira Cooke
- Department of Molecular and Cell Biology, James Cook University, Townsville, QLD 4811, Australia
| | - Peter D. Nichols
- Institute for Marine and Antarctic Studies, University of Tasmania, Private Bag 49, Hobart, TAS 7001, Australia
- CSIRO Food Nutrition and Bio-based Products, Oceans & Atmosphere, GPO Box 1538, Hobart, TAS 7001, Australia
| |
Collapse
|
11
|
Xie D, Chen F, Lin S, You C, Wang S, Zhang Q, Monroig Ó, Tocher DR, Li Y. Long-chain polyunsaturated fatty acid biosynthesis in the euryhaline herbivorous teleost Scatophagus argus: Functional characterization, tissue expression and nutritional regulation of two fatty acyl elongases. Comp Biochem Physiol B Biochem Mol Biol 2016; 198:37-45. [DOI: 10.1016/j.cbpb.2016.03.009] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2016] [Revised: 03/30/2016] [Accepted: 03/31/2016] [Indexed: 01/01/2023]
|
12
|
Geay F, Wenon D, Mellery J, Tinti E, Mandiki SNM, Tocher DR, Debier C, Larondelle Y, Kestemont P. Dietary Linseed Oil Reduces Growth While Differentially Impacting LC-PUFA Synthesis and Accretion into Tissues in Eurasian Perch (Perca fluviatilis). Lipids 2015; 50:1219-32. [PMID: 26439838 DOI: 10.1007/s11745-015-4079-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 09/04/2015] [Indexed: 10/23/2022]
Abstract
The aim of this study was to evaluate the impact of replacing dietary fish oil (FO) with linseed oil (LO) on growth, fatty acid composition and regulation of lipid metabolism in Eurasian perch (Perca fluviatilis) juveniles. Fish (17.5 g initial body weight) were fed isoproteic and isoenergetic diets containing 116 g/kg of lipid for 10 weeks. Fish fed the LO diet displayed lower growth rates and lower levels of DHA in the liver and muscle than fish fed the FO diet, while mortality was not affected by dietary treatment. However, DHA content recorded in the liver and muscle of fish fed the LO diet remained relatively high, despite a weight gain of 134 % and a reduced dietary level of long-chain polyunsaturated fatty acids (LC-PUFA), suggesting endogenous LC-PUFA biosynthesis. This was supported by the higher amounts of pathway intermediates, including 18:4n-3, 20:3n-3, 20:4n-3, 18:3n-6 and 20:3n-6, recorded in the liver of fish fed the LO diet in comparison with those fed the FO diet. However, fads2 and elovl5 gene expression and FADS2 enzyme activity were comparable between the two groups. Similarly, the expression of genes involved in eicosanoid synthesis was not modulated by dietary LO. Thus, the present study demonstrated that in fish fed LO for 10 weeks, growth was reduced but DHA levels in tissues were largely maintained compared to fish fed FO, suggesting a physiologically relevant rate of endogenous LC-PUFA biosynthesis capacity.
Collapse
Affiliation(s)
- F Geay
- Research Unit in Environmental and Evolutionary Biology (URBE), University of Namur (UNamur), Rue de Bruxelles 61, 5000, Namur, Belgium
| | - D Wenon
- Research Unit in Environmental and Evolutionary Biology (URBE), University of Namur (UNamur), Rue de Bruxelles 61, 5000, Namur, Belgium
| | - J Mellery
- Institut des Sciences de la Vie, UCLouvain, Croix du Sud, 2/L7.05.08, 1348, Louvain-La-Neuve, Belgium
| | - E Tinti
- Unité de Chimie Physique Théorique et Structurale, Université de Namur (UNamur), Rue de Bruxelles 61, 5000, Namur, Belgium
| | - S N M Mandiki
- Research Unit in Environmental and Evolutionary Biology (URBE), University of Namur (UNamur), Rue de Bruxelles 61, 5000, Namur, Belgium
| | - D R Tocher
- Institute of Aquaculture, School of Natural Sciences, University of Stirling, Stirling, FK9 4LA, Scotland, UK
| | - C Debier
- Institut des Sciences de la Vie, UCLouvain, Croix du Sud, 2/L7.05.08, 1348, Louvain-La-Neuve, Belgium
| | - Y Larondelle
- Institut des Sciences de la Vie, UCLouvain, Croix du Sud, 2/L7.05.08, 1348, Louvain-La-Neuve, Belgium
| | - P Kestemont
- Research Unit in Environmental and Evolutionary Biology (URBE), University of Namur (UNamur), Rue de Bruxelles 61, 5000, Namur, Belgium.
| |
Collapse
|
13
|
Butts IAE, Baeza R, Støttrup JG, Krüger-Johnsen M, Jacobsen C, Pérez L, Asturiano JF, Tomkiewicz J. Impact of dietary fatty acids on muscle composition, liver lipids, milt composition and sperm performance in European eel. Comp Biochem Physiol A Mol Integr Physiol 2015; 183:87-96. [PMID: 25638567 DOI: 10.1016/j.cbpa.2015.01.015] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Revised: 01/22/2015] [Accepted: 01/22/2015] [Indexed: 10/24/2022]
Abstract
In order for European eel aquaculture to be sustainable, the life cycle should be completed in captivity. Development of broodstock diets may improve the species' reproductive success in captivity, through the production of high-quality gametes. Here, our aim was to evaluate the influence of dietary regime on muscle composition, and liver lipids prior to induced maturation, and the resulting sperm composition and performance. To accomplish this fish were reared on three "enhanced" diets and one commercial diet, each with different levels of fatty acids, arachidonic acid (ARA), eicosapentaenoic acid (EPA), and docosahexaenoic acid (DHA). Neutral lipids from the muscle and liver incorporated the majority of the fatty acid profile, while phospholipids incorporated only certain fatty acids. Diet had an effect on the majority of sperm fatty acids, on the total volume of extractable milt, and on the percentage of motile sperm. Here, our results suggest that the total volume of extractable milt is a DHA-dependent process, as we found the diets with the highest DHA levels induced the most milt while the diet with the lowest DHA level induced the least amount of milt. The diet with the highest level of ARA induced medium milt volumes but had the highest sperm motility. EPA also seems important for sperm quality parameters since diets with higher EPA percentages had a higher volume of milt and higher sperm motility. In conclusion, dietary fatty acids had an influence on fatty acids in the tissues of male eel and this impacted sperm performance.
Collapse
Affiliation(s)
- Ian Anthony Ernest Butts
- Technical University of Denmark, National Institute of Aquatic Resources, Jægersborg Allé 1, 2920 Charlottenlund, Denmark.
| | - Rosa Baeza
- Grupo de Acuicultura y Biodiversidad, Instituto de Ciencia y Tecnología Animal, Universitat Politècnica de València, 46022 Valencia, Spain
| | - Josianne Gatt Støttrup
- Technical University of Denmark, National Institute of Aquatic Resources, Jægersborg Allé 1, 2920 Charlottenlund, Denmark
| | - Maria Krüger-Johnsen
- Technical University of Denmark, National Institute of Aquatic Resources, Jægersborg Allé 1, 2920 Charlottenlund, Denmark
| | - Charlotte Jacobsen
- National Food Institute, Technical University of Denmark, Lyngby, Denmark
| | - Luz Pérez
- Grupo de Acuicultura y Biodiversidad, Instituto de Ciencia y Tecnología Animal, Universitat Politècnica de València, 46022 Valencia, Spain
| | - Juan F Asturiano
- Grupo de Acuicultura y Biodiversidad, Instituto de Ciencia y Tecnología Animal, Universitat Politècnica de València, 46022 Valencia, Spain
| | - Jonna Tomkiewicz
- Technical University of Denmark, National Institute of Aquatic Resources, Jægersborg Allé 1, 2920 Charlottenlund, Denmark
| |
Collapse
|
14
|
dos Santos HMC, Nishiyama MF, Bonafe EG, de Oliveira CAL, Matsushita M, Visentainer JV, Ribeiro RP. Influence of a Diet Enriched with Perilla Seed Bran on the Composition of Omega-3 Fatty Acid in Nile Tilapia. J AM OIL CHEM SOC 2014. [DOI: 10.1007/s11746-014-2545-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
15
|
Pang SC, Wang HP, Li KY, Zhu ZY, Kang JX, Sun YH. Double transgenesis of humanized fat1 and fat2 genes promotes omega-3 polyunsaturated fatty acids synthesis in a zebrafish model. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2014; 16:580-593. [PMID: 24832481 DOI: 10.1007/s10126-014-9577-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Accepted: 04/28/2014] [Indexed: 06/03/2023]
Abstract
Omega-3 long-chain polyunsaturated fatty acid (n-3 LC-PUFA), especially eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), are essential nutrients for human health. However, vertebrates, including humans, have lost the abilities to synthesize EPA and DHA de novo, majorly due to the genetic absence of delta-12 desaturase and omega-3 desaturase genes. Fishes, especially those naturally growing marine fish, are major dietary source of EPA and DHA. Because of the severe decline of marine fishery and the decrease in n-3 LC-PUFA content of farmed fishes, it is highly necessary to develop alternative sources of n-3 LC-PUFA. In the present study, we utilized transgenic technology to generate n-3 LC-PUFA-rich fish by using zebrafish as an animal model. Firstly, fat1 was proved to function efficiently in fish culture cells, which showed an effective conversion of n-6 PUFA to n-3 PUFA with the n-6/n-3 ratio that decreased from 7.7 to 1.1. Secondly, expression of fat1 in transgenic zebrafish increased the 20:5n-3 and 22:6n-3 contents to 1.8- and 2.4-fold, respectively. Third, co-expression of fat2, a fish codon-optimized delta-12 desaturase gene, and fat1 in fish culture cell significantly promoted n-3 PUFA synthesis with the decreased n-6/n-3 ratio from 7.7 to 0.7. Finally, co-expression of fat1 and fat2 in double transgenic zebrafish increased the 20:5n-3 and 22:6n-3 contents to 1.7- and 2.8-fold, respectively. Overall, we generated two types of transgenic zebrafish rich in endogenous n-3 LC-PUFA, fat1 transgenic zebrafish and fat1/fat2 double transgenic zebrafish. Our results demonstrate that application of transgenic technology of humanized fat1 and fat2 in farmed fishes can largely improve the n-3 LC-PUFA production.
Collapse
Affiliation(s)
- Shao-Chen Pang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | | | | | | | | | | |
Collapse
|
16
|
Teoh CY, Ng WK. Evaluation of the impact of dietary petroselinic acid on the growth performance, fatty acid composition, and efficacy of long chain-polyunsaturated fatty acid biosynthesis of farmed Nile tilapia. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2013; 61:6056-6068. [PMID: 23718861 DOI: 10.1021/jf400904j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The present study aimed to investigate the potential role of dietary petroselinic acid (PSA) in enhancing the n-3 long-chain polyunsaturated fatty acid (LC-PUFA) content in fish tissues. Three isolipidic casein-based diets were formulated to comprise graded levels of PSA (0, 10, or 20% of total fatty acid) with the incremented inclusion of coriander seed oil. Fish growth and nutrient digestibility were not significantly (P > 0.05) influenced by dietary PSA level. In general, dietary PSA affected the fatty acid composition of tilapia tissues and whole-body, which reflected dietary fatty acid ratios. Dietary PSA significantly (P < 0.05) increased β-oxidation, particularly on α-linolenic acid (18:3n-3) and linoleic acid (18:2n-6). This study provided evidence that PSA, a pseudoproduct mimicking the structure of 18:3n-6, did reduce Δ-6 desaturation on 18:2n-6 but, contrary to popular speculation, did not stimulate more Δ-6 desaturase activity on 18:3n-3. The overall Δ-6 desaturase enzyme activity may be suppressed at high dietary levels of PSA. Nevertheless, the n-3 and n-6 LC-PUFA biosynthesis was not significantly inhibited by dietary PSA, indicating that the bioconversion efficiency is not modulated only by Δ-6 desaturase. The deposition of n-3 LC-PUFA in liver and fillet lipids was higher in fish fed PSA-supplemented diets.
Collapse
Affiliation(s)
- Chaiw-Yee Teoh
- Fish Nutrition Laboratory, School of Biological Sciences, Universiti Sains Malaysia , Penang 11800, Malaysia
| | | |
Collapse
|
17
|
Wang X, Lin H, Gu Y. Multiple roles of dihomo-γ-linolenic acid against proliferation diseases. Lipids Health Dis 2012; 11:25. [PMID: 22333072 PMCID: PMC3295719 DOI: 10.1186/1476-511x-11-25] [Citation(s) in RCA: 139] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2011] [Accepted: 02/14/2012] [Indexed: 11/10/2022] Open
Abstract
Considerable arguments remain regarding the diverse biological activities of polyunsaturated fatty acids (PUFA). One of the most interesting but controversial dietary approaches focused on the diverse function of dihomo-dietary γ-linolenic acid (DGLA) in anti-inflammation and anti-proliferation diseases, especially for cancers. This strategy is based on the ability of DGLA to interfere in cellular lipid metabolism and eicosanoid (cyclooxygenase and lipoxygenase) biosynthesis. Subsequently, DGLA can be further converted by inflammatory cells to 15-(S)-hydroxy-8,11,13-eicosatrienoic acid and prostaglandin E1 (PGE1). This is noteworthy because these compounds possess both anti-inflammatory and anti-proliferative properties. PGE1 could also induce growth inhibition and differentiation of cancer cells. Although the mechanism of DGLA has not yet been elucidated, it is significant to anticipate the antitumor potential benefits from DGLA.
Collapse
Affiliation(s)
- Xiaoping Wang
- Laboratory of Molecular Pathology, Shaanxi University of Chinese Medicine, Xianyang 712046, Shaanxi, China.
| | | | | |
Collapse
|
18
|
Thanuthong T, Francis DS, Senadheera SPSD, Jones PL, Turchini GM. LC-PUFA biosynthesis in rainbow trout is substrate limited: use of the whole body fatty acid balance method and different 18:3n-3/18:2n-6 ratios. Lipids 2011; 46:1111-27. [PMID: 21892784 DOI: 10.1007/s11745-011-3607-4] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2011] [Accepted: 08/11/2011] [Indexed: 10/17/2022]
Abstract
Five experimental diets with constant total C(18) PUFA and varying 18:3n-3/18:2n-6 ratios were fed to rainbow trout over an entire production cycle. The whole-body fatty acid balance method demonstrated a clear trend of progressively reduced fatty acid bioconversion activity along the n-3 and n-6 pathways, up to the production of 20:5n-3 and 20:4n-6, respectively. This suggests that the pathway exhibits a "funnel like" progression of activity rather than the existence of a single rate limiting step. The production of 22:5n-3 and 22:6n-3 was more active than that of 20:5n-3. However, despite this trend in reduced apparent in vivo net enzyme activity, the efficiency of the various bioconversion steps (measured as % of bioconverted substrate) confirmed an opposing trend. A 3.2-fold higher Δ-6 desaturase affinity towards 18:3n-3 over 18:2n-6 and an 8-fold greater Δ-5 desaturase affinity towards 20:4n-3 over 20:3n-6 were recorded. The main results of the study were that (1) rainbow trout are quite efficient at bioconverting 18:3n-3 to 22:6n-3, and (2) the LC-PUFA biosynthetic pathway is substrate limited. Fillet n-3 LC-PUFA concentrations increased with the increasing dietary supply of 18:3n-3. Despite an almost identical dietary supply of n-3 LC-PUFA, originating from the fish meal fraction of the diets, the fillets of trout fed the diet richest in 18:3n-3 were 2-fold higher in n-3 LC-PUFA than fish fed low 18:3n-3 diets. Nevertheless, fillets of trout fed a fish oil control diet contained more than double the amount of n-3 LC-PUFA compared to fish fed the diets richest in 18:3n-3.
Collapse
Affiliation(s)
- T Thanuthong
- School of Life and Environmental Sciences, Deakin University, Warrnambool, VIC, Australia
| | | | | | | | | |
Collapse
|