1
|
Du M, Song M, Wu D, Zhang Y, Song H, Lv H, Ke A, Du H, Zhao S. Novel fluorescent nanoplatform for all-in-one sensing and removal of acrolein: An ultrasensitive probe to evaluate its removal efficiency. Food Chem 2024; 460:140667. [PMID: 39094348 DOI: 10.1016/j.foodchem.2024.140667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 07/05/2024] [Accepted: 07/25/2024] [Indexed: 08/04/2024]
Abstract
As a highly toxic aldehyde, acrolein is widely found in diet and environment, and can be produced endogenously, posing a serious threat to human health. Herein, we designed a novel fluorescent nanoplatform integrating carbon dots‑manganese dioxide (CDs-MnO2) and glutathione (GSH) for all-in-one sensing and removal of acrolein. By converting Mn4+ to free Mn2+, GSH inhibited the inner filter effect (IFE) of MnO2 nanosheets, and the Michael addition of acrolein with GSH inhibited the GSH-induced Mn4+ conversion, forming an "off-on-off" fluorescence response of CDs. The developed fluorescent nanoplatform exhibited high sensitivity (LOD was 0.067 μM) and selectivity for the simultaneous detection and removal of acrolein. The combination of CDs-MnO2 hydrogels with smartphones realized the point-of-care detection of acrolein, yielding satisfactory results (recovery rates varied between 97.01-104.65%, and RSD ranged from 1.42 to 4.16%). Moreover, the capability of the nanoplatform was investigated for on-site evaluating acrolein scavengers' efficacy, demonstrating excellent potential for practical application.
Collapse
Affiliation(s)
- Man Du
- College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China
| | - Meimei Song
- College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China
| | - Die Wu
- College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China
| | - Yue Zhang
- College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China.
| | - Haiwen Song
- Hebei Lansheng Biotechnology Co., LTD., Shijiazhuang 052260, China.
| | - Haijun Lv
- College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China
| | - Aibing Ke
- Hebei Lansheng Biotechnology Co., LTD., Shijiazhuang 052260, China
| | - Hongxia Du
- College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China
| | - Shuchun Zhao
- College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China
| |
Collapse
|
2
|
Chen YZ, Wang WK, Yang YF, Cheng SY, Li LF, Shen H, Qi ZM, Liu Y. Acrolein exposure affects ovarian function by interfering with glycolysis and mitochondrial energy metabolism in mouse. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 361:124776. [PMID: 39173867 DOI: 10.1016/j.envpol.2024.124776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 08/16/2024] [Accepted: 08/19/2024] [Indexed: 08/24/2024]
Abstract
Acrolein is a widespread contaminant found in both diet and environment, entering the human body through food, alcohol, smoking, and exposure to fuel combustion fumes. While prior studies have highlighted acrolein's harmful impact on oocyte quality and early embryonic development in vitro, the specific mechanisms by which acrolein affects the female reproductive system in vivo remain poorly understood. This study first confirmed that in vitro acrolein exposure disrupts spindle morphology and chromosome alignment during the mid-MI stage of oocyte development, thus hindering oocyte maturation. Besides, exposure to acrolein not only stunts growth in mice but also impairs ovarian development, decreases the ovarian coefficient, disrupts follicular development, and increases the count of atretic follicles in vivo. Additional research has shown that acrolein exposure reduces the activity of key enzymes in glycolysis, pyruvate metabolism, and the tricarboxylic acid cycle within the ovaries. It also suppresses mitochondrial complex expression and disturbs the balance between mitochondrial fission and fusion, as confirmed by metabolomic analyses. Moreover, acrolein exposure in vivo induced granulosa cell apoptosis and reduced oocyte number. In summary, acrolein exposure impairs glucose metabolism and induces mitochondrial dysfunction in the ovaries.
Collapse
Affiliation(s)
- Yan-Zhu Chen
- Medical College, Guangxi University, Nanning, Guangxi, 530004, China
| | - Wen-Ke Wang
- Medical College, Guangxi University, Nanning, Guangxi, 530004, China
| | - Yi-Fan Yang
- Medical College, Guangxi University, Nanning, Guangxi, 530004, China
| | - Si-Yao Cheng
- Medical College, Guangxi University, Nanning, Guangxi, 530004, China
| | - Lin-Feng Li
- Medical College, Guangxi University, Nanning, Guangxi, 530004, China
| | - Hao Shen
- Medical College, Guangxi University, Nanning, Guangxi, 530004, China
| | - Zhi-Min Qi
- Medical College, Guangxi University, Nanning, Guangxi, 530004, China
| | - Yu Liu
- Medical College, Guangxi University, Nanning, Guangxi, 530004, China.
| |
Collapse
|
3
|
Zhou Y, Jin W, Wu Q, Zhou Q. Acrolein: formation, health hazards and its controlling by dietary polyphenols. Crit Rev Food Sci Nutr 2024; 64:9604-9617. [PMID: 37203991 DOI: 10.1080/10408398.2023.2214625] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Acrolein, a highly reactive toxic aldehyde, is a common dietary and environmental contaminant which can also be generated endogenously. Exposure to acrolein has been positively associated with some pathological conditions, such as atherosclerosis, diabetes mellitus, stroke, and Alzheimer's disease. At the cellular level, acrolein induces various harmful effects, particularly protein adduction and oxidative damages. Polyphenols are a group of secondary plant metabolites ubiquitously presented in fruits, vegetables, and herbs. Recent evidence has gradually solidified the protective role of polyphenols by working as acrolein scavengers and regulator of acrolein toxicities. This was largely attributed to the ability of polyphenols as antioxidants and sacrificial nucleophiles in trapping acrolein. This review discussed the exposure and toxicity of acrolein, summarized the known and anticipated contribution of polyphenols in ameliorating acrolein contamination and its health hazards.
Collapse
Affiliation(s)
- Yue Zhou
- Shenzhen Key Laboratory of Food Nutrition and Health, Institute for Advanced Study, Shenzhen University, Shenzhen, China
| | - Wendy Jin
- Rutgers Core Facility for Natural Products and Bioanalysis, New Use Agriculture and Natural Plant Products Program (NUANP), Department of Plant Biology, Rutgers University, New Brunswick, NJ, USA
| | - Qingli Wu
- Rutgers Core Facility for Natural Products and Bioanalysis, New Use Agriculture and Natural Plant Products Program (NUANP), Department of Plant Biology, Rutgers University, New Brunswick, NJ, USA
| | - Qian Zhou
- Shenzhen Key Laboratory of Food Nutrition and Health, Institute for Advanced Study, Shenzhen University, Shenzhen, China
| |
Collapse
|
4
|
Hikisz P, Jacenik D. Diet as a Source of Acrolein: Molecular Basis of Aldehyde Biological Activity in Diabetes and Digestive System Diseases. Int J Mol Sci 2023; 24:6579. [PMID: 37047550 PMCID: PMC10095194 DOI: 10.3390/ijms24076579] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 03/25/2023] [Accepted: 03/31/2023] [Indexed: 04/05/2023] Open
Abstract
Acrolein, a highly reactive α,β-unsaturated aldehyde, is a compound involved in the pathogenesis of many diseases, including neurodegenerative diseases, cardiovascular and respiratory diseases, diabetes mellitus, and the development of cancers of various origins. In addition to environmental pollution (e.g., from car exhaust fumes) and tobacco smoke, a serious source of acrolein is our daily diet and improper thermal processing of animal and vegetable fats, carbohydrates, and amino acids. Dietary intake is one of the main routes of human exposure to acrolein, which is a major public health concern. This review focuses on the molecular mechanisms of acrolein activity in the context of its involvement in the pathogenesis of diseases related to the digestive system, including diabetes, alcoholic liver disease, and intestinal cancer.
Collapse
Affiliation(s)
- Pawel Hikisz
- Department of Oncobiology and Epigenetics, Faculty of Biology and Environmental Protection, University of Lodz, ul. Pomorska 141/143, 90-236 Lodz, Poland
| | - Damian Jacenik
- Department of Cytobiochemistry, Faculty of Biology and Environmental Protection, University of Lodz, ul. Pomorska 141/143, 90-236 Lodz, Poland
| |
Collapse
|
5
|
Tsuzuki S. A point of view on human fat olfaction - do fatty derivatives serve as cues for awareness of dietary fats? Biomed Res 2023; 44:127-146. [PMID: 37544735 DOI: 10.2220/biomedres.44.127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Fat (triglycerides) consumption is critical for the survival of animals, including humans. Being able to smell fat can be advantageous in judging food value. However, fat has poor volatility; thus, olfaction of fat seems impossible. What about fatty acids that comprise fat? Humans smell and discriminate medium-chain fatty acids. However, no conclusive evidence has been provided for the olfactory sense of long-chain fatty acids, including essential acids such as linoleic acid (LA). Instead, humans likely perceive the presence of essential fatty acids through the olfaction of volatile compounds generated by their oxidative breakdown (e.g., hexanal and γ-decalactone). For some people, such scents are pleasing, especially when they come from fruit. Nonetheless, it remains unclear whether the olfaction of these volatiles leads to the recognition of fat per se. Nowadays, people often smell LA-borne aldehydes such as E,E-2,4-decadienal that occur appreciably, for example, from edible oils during deep frying, and are pronely captivated by their characteristic "fatty" note, which can be considered a "pseudo-perception" of fat. However, our preference for such LA-borne aldehyde odors may be a potential cause behind the modern overdose of n-6 fatty acids. This review aims to provide a view of whether and, if any, how we olfactorily perceive dietary fats and raises future purposes related to human fat olfaction, such as investigating sub-olfactory systems for detecting long-chain fatty acids.
Collapse
Affiliation(s)
- Satoshi Tsuzuki
- Laboratory of Nutrition Chemistry, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University
| |
Collapse
|
6
|
Chen P, Liu S, Yin Z, Liang P, Wang C, Zhu H, Liu Y, Ou S, Li G. Rutin alleviated acrolein-induced cytotoxicity in Caco-2 and GES-1 cells by forming a cyclic hemiacetal product. Front Nutr 2022; 9:976400. [PMID: 36051900 PMCID: PMC9424909 DOI: 10.3389/fnut.2022.976400] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 07/18/2022] [Indexed: 11/13/2022] Open
Abstract
Acrolein (ACR), an α, β-unsaturated aldehyde, is a toxic compound formed during food processing, and the use of phenolics derived from dietary materials to scavenge ACR is a hot spot. In this study, rutin, a polyphenol widely present in various dietary materials, was used to investigate its capacity to scavenge ACR. It was shown that more than 98% of ACR was eliminated under the conditions of reaction time of 2 h, temperature of 80 °C, and molar ratio of rutin/ACR of 2/1. Further structural characterization of the formed adduct revealed that the adduct of rutin to ACR to form a cyclic hemiacetal compound (RAC) was the main scavenging mechanism. Besides, the stability of RAC during simulated in vitro digestion was evaluated, which showed that more than 83.61% of RAC was remained. Furthermore, the cytotoxicity of RAC against Caco-2 and GES-1 cells was significantly reduced compared with ACR, where the IC50 values of ACR were both below 20 μM while that of RAC were both above 140 μM. And the improvement of the loss of mitochondrial membrane potential (MMP) by RAC might be one of the detoxification pathways. The present study indicated that rutin was one of the potential ACR scavengers among natural polyphenols.
Collapse
Affiliation(s)
- Peifang Chen
- Department of Food Science, Foshan University, Foshan, China
| | - Shuang Liu
- Department of Hematology, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Zhao Yin
- Department of Hematology, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Pengjie Liang
- Department of Food Science, Foshan University, Foshan, China
| | - Chunhua Wang
- Department of Food Science, Foshan University, Foshan, China
| | - Hanyue Zhu
- Department of Food Science, Foshan University, Foshan, China
| | - Yang Liu
- Department of Food Science, Foshan University, Foshan, China
| | - Shiyi Ou
- Department of Food Science and Engineering, Jinan University, Guangzhou, China
- Shiyi Ou
| | - Guoqiang Li
- Department of Food Science, Foshan University, Foshan, China
- Guangdong Provincial Key Laboratory of Intelligent Food Manufacturing, Foshan University, Foshan, China
- South China National Center for Food Safety Research and Development, Foshan University, Foshan, China
- *Correspondence: Guoqiang Li
| |
Collapse
|
7
|
Jiang K, Huang C, Liu F, Zheng J, Ou J, Zhao D, Ou S. Origin and Fate of Acrolein in Foods. Foods 2022; 11:foods11131976. [PMID: 35804791 PMCID: PMC9266280 DOI: 10.3390/foods11131976] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/27/2022] [Accepted: 06/30/2022] [Indexed: 02/05/2023] Open
Abstract
Acrolein is a highly toxic agent that may promote the occurrence and development of various diseases. Acrolein is pervasive in all kinds of foods, and dietary intake is one of the main routes of human exposure to acrolein. Considering that acrolein is substantially eliminated after its formation during food processing and re-exposed in the human body after ingestion and metabolism, the origin and fate of acrolein must be traced in food. Focusing on molecular mechanisms, this review introduces the formation of acrolein in food and summarises both in vitro and in vivo fates of acrolein based on its interactions with small molecules and biomacromolecules. Future investigation of acrolein from different perspectives is also discussed.
Collapse
Affiliation(s)
- Kaiyu Jiang
- Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China; (K.J.); (C.H.); (F.L.); (J.Z.)
| | - Caihuan Huang
- Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China; (K.J.); (C.H.); (F.L.); (J.Z.)
| | - Fu Liu
- Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China; (K.J.); (C.H.); (F.L.); (J.Z.)
| | - Jie Zheng
- Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China; (K.J.); (C.H.); (F.L.); (J.Z.)
| | - Juanying Ou
- Institute of Food Safety & Nutrition, Jinan University, Guangzhou 510632, China;
| | - Danyue Zhao
- Research Institute for Future Food, The Hong Kong Polytechnic University, Hong Kong 999077, China;
| | - Shiyi Ou
- Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China; (K.J.); (C.H.); (F.L.); (J.Z.)
- Guangdong-Hong Kong Joint Innovation Platform for the Safety of Bakery Products, Guangzhou 510632, China
- Correspondence:
| |
Collapse
|
8
|
Chiang KM, Xiu L, Peng CY, Lung SCC, Chen YC, Pan WH. Particulate matters, aldehydes, and polycyclic aromatic hydrocarbons produced from deep-frying emissions: comparisons of three cooking oils with distinct fatty acid profiles. NPJ Sci Food 2022; 6:28. [PMID: 35660737 PMCID: PMC9166761 DOI: 10.1038/s41538-022-00143-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 05/13/2022] [Indexed: 11/24/2022] Open
Abstract
It is recognized that hazardous emissions produced from frying oils may be related to oil properties, particularly the fatty acid composition. However, investigations have been limited and partial. In this work, the emissions from deep-frying foods with three oils (palm, olive, and soybean oils) with distinct fatty acid profiles were comprehensively examined in a simulated kitchen, and the interrelationship among emitted substances, oil quality parameters, and fatty acids profiles was explored. Firstly, palm oil emitted the highest number concentration of total particle matters ((3895 ± 1796) × 103 #/cm3), mainly in the Aitken mode (20-100 nm). We observed a positive correlation between particle number concentration and levels of palmitic acid, a major saturated fatty acid (SAFA) (rs = 0.73, p < 0.05), and total polar compounds (TPC) (rs = 0.68, p < 0.05) in the fried oil, a degradation marker which was also positively correlated with that of black carbon (BC) (rs = 0.68, p < 0.05). Secondly, soybean oil emitted the highest level of gaseous aldehydes (3636 ± 607 μg/m3), including acrolein, propinoaldehyde, crotonaldehyde, hexanal, and trans-2-heptenal; the total aldehyde concentration were positively correlated with α-linolenic acid (ALA) percentage (rs = 0.78, p < 0.01), while hexanal and trans-2-heptenal were with linoleic acid (LA) (rs = 0.73 and 0.67, p < 0.05). LA and ALA were two major polyunsaturated fatty acids in non-tropical plant oils. Thirdly, palm oil emitted the most particle-bound polycyclic aromatic hydrocarbons (PAHs), and a positive association was discovered between two PAHs and SAFA percentage. Olive oil seems superior to soybean and palm oils with regards to toxic emissions during deep-frying.
Collapse
Affiliation(s)
- Kuang-Mao Chiang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 11529, Taiwan
| | - Lili Xiu
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, China
- Institute of Population Health Sciences, National Health Research Institutes, Miaoli, 35053, Taiwan
| | - Chiung-Yu Peng
- Department of Public Health, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
| | | | - Yu-Cheng Chen
- National Institute of Environmental Health Sciences, National Health Research Institutes, Miaoli, 35053, Taiwan.
- Department of Occupational Safety and Health, China Medical University, Taichung, 40402, Taiwan.
| | - Wen-Harn Pan
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 11529, Taiwan.
- Institute of Population Health Sciences, National Health Research Institutes, Miaoli, 35053, Taiwan.
| |
Collapse
|
9
|
Rietjens IMCM, Michael A, Bolt HM, Siméon B, Andrea H, Nils H, Christine K, Angela M, Gloria P, Daniel R, Natalie T, Gerhard E. The role of endogenous versus exogenous sources in the exposome of putative genotoxins and consequences for risk assessment. Arch Toxicol 2022; 96:1297-1352. [PMID: 35249149 PMCID: PMC9013691 DOI: 10.1007/s00204-022-03242-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 02/01/2022] [Indexed: 12/21/2022]
Abstract
The "totality" of the human exposure is conceived to encompass life-associated endogenous and exogenous aggregate exposures. Process-related contaminants (PRCs) are not only formed in foods by heat processing, but also occur endogenously in the organism as physiological components of energy metabolism, potentially also generated by the human microbiome. To arrive at a comprehensive risk assessment, it is necessary to understand the contribution of in vivo background occurrence as compared to the ingestion from exogenous sources. Hence, this review provides an overview of the knowledge on the contribution of endogenous exposure to the overall exposure to putative genotoxic food contaminants, namely ethanol, acetaldehyde, formaldehyde, acrylamide, acrolein, α,β-unsaturated alkenals, glycation compounds, N-nitroso compounds, ethylene oxide, furans, 2- and 3-MCPD, and glycidyl esters. The evidence discussed herein allows to conclude that endogenous formation of some contaminants appears to contribute substantially to the exposome. This is of critical importance for risk assessment in the cases where endogenous exposure is suspected to outweigh the exogenous one (e.g. formaldehyde and acrolein).
Collapse
Affiliation(s)
- Ivonne M C M Rietjens
- Division of Toxicology, Wageningen University, Stippeneng 4, 6708 WE, Wageningen, The Netherlands.
| | - Arand Michael
- Institute of Pharmacology and Toxicology, University of Zurich, Winterthurerstr. 190, 8057, Zurich, Switzerland
| | - Hermann M Bolt
- Department of Toxicology, Leibniz Research Centre for Working Environment and Human Factors at TU Dortmund (IfADo), Ardeystr. 67, 44139, Dortmund, Germany
| | | | - Hartwig Andrea
- Department of Food Chemistry and Toxicology, Institute of Applied Biosciences (IAB), Karlsruhe Institute of Technology (KIT), Adenauerring 20a, 76131, Karlsruhe, Germany
| | - Hinrichsen Nils
- Food Oils and Fats Research, ADM Hamburg AG, Research, Seehafenstraße 24, 21079, Hamburg, Germany
| | - Kalisch Christine
- Department of Toxicology, University of Würzburg, Versbacher Straße 9, 97078, Wurzburg, Germany
| | - Mally Angela
- Department of Toxicology, University of Würzburg, Versbacher Straße 9, 97078, Wurzburg, Germany
| | - Pellegrino Gloria
- Scientific Affairs and Research, Luigi Lavazza SpA, Strada Settimo, 410, 10156, Turin, Italy
| | - Ribera Daniel
- Regulatory and Scientific Affairs EMEA, Cargill R&D, Havenstraat 84, 1800, Vivoorde, Belgium
| | - Thatcher Natalie
- Food Safety, Mondelez International, Bournville Lane, Birmingham, B30 2LU, UK
| | - Eisenbrand Gerhard
- Department of Toxicology and Food Chemistry, University of Kaiserslautern, Kühler Grund 48/1, 69126, Heidelberg, Germany
| |
Collapse
|
10
|
Jiang K, Zhou P, Zheng J, Huang C, Hu J, Guo H, Ou J, Ou S. Design of a naphthalimide-based probe for acrolein detection in foods and cells. JOURNAL OF HAZARDOUS MATERIALS 2022; 426:128118. [PMID: 34968849 DOI: 10.1016/j.jhazmat.2021.128118] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 12/15/2021] [Accepted: 12/16/2021] [Indexed: 06/14/2023]
Abstract
Acrolein is a highly toxic agent that can be generated exogenously and endogenously. Therefore, a highly specific and sensitive probe for acrolein with potential applications in acrolein detection must be developed. In this research, a novel fluorescent probe named "probe for acrolein detection" (Pr-ACR) was designed and synthesized based on a naphthalimide fluorophore skeleton, and a thiol group (-SH) was introduced into its structure for acrolein recognition. The -SH traps acrolein via Michael addition and the resultant interaction product of the probe inhibits the photoinduced electron transfer process and produce a strong fluorescence at 510 nm. The probe showed high sensitivity and specificity for acrolein. HPLC-MS/MS analysis verified that it can be used to quantify acrolein in foods, such as soda crackers, red wine, and baijiu, with a fluorescence spectrophotometer. After methyl esterification, the methyl esterified probe (mPr-ACR) successfully visualised acrolein in Hela cells under a laser scanning confocal microscope. This finding proved that Pr-ACR and mPr-ACR are potential tools for the detection and visualisation of acrolein from different sources.
Collapse
Affiliation(s)
- Kaiyu Jiang
- Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China
| | - Ping Zhou
- InnoStar Bio-tech Nantong Co., Ltd., Nantong 226133, China
| | - Jie Zheng
- Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China
| | - Caihuan Huang
- Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China
| | - Jiaman Hu
- Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China
| | - Hongyang Guo
- Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China
| | - Juanying Ou
- Institute of Food Safety & Nutrition, Jinan University, Guangzhou 510632, China; Guangdong-Hong Kong Joint Innovation Platform for the Safety of Bakery Products, Guangzhou 510632, China.
| | - Shiyi Ou
- Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China; Guangdong-Hong Kong Joint Innovation Platform for the Safety of Bakery Products, Guangzhou 510632, China.
| |
Collapse
|
11
|
Jiang X, Lv H, Lu Y, Lu Y, Lv L. Trapping of Acrolein by Curcumin and the Synergistic Inhibition Effect of Curcumin Combined with Quercetin. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:294-301. [PMID: 33373211 DOI: 10.1021/acs.jafc.0c06692] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Acrolein (ACR) is a toxic unsaturated aldehyde that is formed during different steps of thermal food processing. Here, we explored the kinetics of curcumin and ACR and elucidated the pathway of curcumin trapping ACR by preparing a mono-adduct of ACR (CMA-1) conjugated with curcumin. The synergistic scavenging effect and mechanism of curcumin combined with quercetin on ACR was analyzed by liquid chromatography-tandem mass spectrometry (LC-MS/MS). Comparing the uses of curcumin and quercetin both individually and in combination, we found that quercetin in combination resulted in more curcumin being transformed into CMA-2, while curcumin in combination made the amount of di-ACR conjugated to quercetin (QDA) increase. We also added combined curcumin and quercetin into grilled chicken wings to demonstrate that curcumin and quercetin could scavenge ACR by forming their own ACR adducts and antioxidant activity during the process. Our results have noted a new strategy, in which some combinations of dietary polyphenols might contribute to the removal of toxic ACR produced during thermal food processing.
Collapse
Affiliation(s)
- Xiaoyun Jiang
- Department of Food Science and Technology, School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Nanjing 210023, P. R. China
| | - Huifang Lv
- Department of Food Science and Technology, School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Nanjing 210023, P. R. China
| | - Yang Lu
- Department of Food Science and Technology, School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Nanjing 210023, P. R. China
| | - Yongling Lu
- Department of Food Science and Technology, School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Nanjing 210023, P. R. China
| | - Lishuang Lv
- Department of Food Science and Technology, School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Nanjing 210023, P. R. China
| |
Collapse
|
12
|
|
13
|
Jiang X, Zhang D, Lu Y, Lv L. Acrolein-Trapping Mechanism of Theophylline in Green Tea, Coffee, and Cocoa: Speedy and Successful. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:9718-9724. [PMID: 32786830 DOI: 10.1021/acs.jafc.0c03895] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Increasing evidence has identified the unsaturated aldehyde acrolein (ACR) as the potential factor that causes deoxyribonucleic acid cross-linking and the development of chronic diseases. The objective of this study was to investigate the mechanism by which theophylline (TP) scavenges ACR for the first time. TP efficiently scavenged ACR through forming adducts, which was demonstrated in a system in which TP was incubated with ACR at different ratios for different times for liquid chromatography with tandem mass spectrometry. Then, the mono- and di-ACR-TP adducts were purified, and their structures were elucidated by high-resolution mass spectrometry and nuclear magnetic resonance analysis. We found that the ACR residue on mono-ACR-TP further trapped one more ACR and formed di-ACR-TP adducts. Furthermore, mono- and di-ACR-TP had similar time-dependent ACR-scavenging activity to TP. Finally, we demonstrated that green tea, coffee, and cocoa inhibited ACR by trapping ACR to form mono- and di-ACR-TP adducts during the incubation of green tea, coffee, and cocoa with ACR.
Collapse
Affiliation(s)
- Xiaoyun Jiang
- Department of Food Science and Technology, School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2# Xuelin Road, Nanjing 210023, P. R. China
| | - Dingmin Zhang
- Department of Food Science and Technology, School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2# Xuelin Road, Nanjing 210023, P. R. China
| | - Yongling Lu
- Department of Food Science and Technology, School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2# Xuelin Road, Nanjing 210023, P. R. China
| | - Lishuang Lv
- Department of Food Science and Technology, School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2# Xuelin Road, Nanjing 210023, P. R. China
| |
Collapse
|
14
|
Scalone GLL, Ioannidis AG, Lamichhane P, Devlieghere F, De Kimpe N, Cadwallader K, De Meulenaer B. Impact of whey protein hydrolysates on the formation of 2,5-dimethylpyrazine in baked food products. Food Res Int 2020; 132:109089. [PMID: 32331666 DOI: 10.1016/j.foodres.2020.109089] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 02/03/2020] [Accepted: 02/09/2020] [Indexed: 11/28/2022]
Abstract
Peptides have been reported to serve as precursors in the generation of alkylpyrazines, key aroma compounds in heated foods. Most previous studies, concerned with the generation of pyrazines via the Maillard reaction, were conducted using model systems of varying complexities. However, the formation of pyrazines in real food systems has received less attention. The aim of this study was to investigate the impact of adding protein hydrolysates as precursors for the generation of alkylpyrazines in baked food products such as bread and cookies. Two whey protein hydrolysates, obtained using either trypsin or proteinase from Aspergillus melleus, were used in the presented study. 2,5-Dimethylpyrazine was produced in both food systems. Therefore, its formation was quantitatively monitored using a stable isotope dilution assay. Additionally, sensory evaluation was performed. Results demonstrated that the addition of the protein hydrolysates were effective in promoting the generation of 2,5-dimethylpyrazine and other aroma compounds in two well-known food products.
Collapse
Affiliation(s)
- Gustavo Luis Leonardo Scalone
- Department of Food Technology, Safety and Health, nutriFOODchem group, member of Food2Know, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, B-9000 Ghent, Belgium; Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, B-9000 Ghent, Belgium
| | - Angelos Gerasimos Ioannidis
- Department of Food Technology, Safety and Health, nutriFOODchem group, member of Food2Know, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, B-9000 Ghent, Belgium; Department of Food Technology, Safety and Health, Food Microbiology and Food Preservation Research Unit, Member of Food2Know, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, B-9000 Ghent, Belgium
| | - Prabin Lamichhane
- Department of Food Technology, Safety and Health, nutriFOODchem group, member of Food2Know, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, B-9000 Ghent, Belgium
| | - Frank Devlieghere
- Department of Food Technology, Safety and Health, nutriFOODchem group, member of Food2Know, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, B-9000 Ghent, Belgium; Department of Food Technology, Safety and Health, Food Microbiology and Food Preservation Research Unit, Member of Food2Know, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, B-9000 Ghent, Belgium
| | - Norbert De Kimpe
- Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, B-9000 Ghent, Belgium
| | - Keith Cadwallader
- Department of Food Science and Human Nutrition, University of Illinois, 1302 W. Pennsylvania Avenue, Urbana, IL 61801, USA
| | - Bruno De Meulenaer
- Department of Food Technology, Safety and Health, nutriFOODchem group, member of Food2Know, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, B-9000 Ghent, Belgium.
| |
Collapse
|
15
|
Ruenz M, Goerke K, Bakuradze T, Abraham K, Lampen A, Eisenbrand G, Richling E. Sustained Human Background Exposure to Acrolein Evidenced by Monitoring Urinary Exposure Biomarkers. Mol Nutr Food Res 2019; 63:e1900849. [DOI: 10.1002/mnfr.201900849] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 10/01/2019] [Indexed: 11/09/2022]
Affiliation(s)
- Meike Ruenz
- Department of ChemistryDivision of Food Chemistry and ToxicologyUniversity of Kaiserslautern Erwin‐Schroedinger‐Str. 52 67663 Kaiserslautern Germany
| | - Katharina Goerke
- Department of ChemistryDivision of Food Chemistry and ToxicologyUniversity of Kaiserslautern Erwin‐Schroedinger‐Str. 52 67663 Kaiserslautern Germany
| | - Tamara Bakuradze
- Department of ChemistryDivision of Food Chemistry and ToxicologyUniversity of Kaiserslautern Erwin‐Schroedinger‐Str. 52 67663 Kaiserslautern Germany
| | - Klaus Abraham
- Department of Food SafetyGerman Federal Institute for Risk Assessment (BfR) Max‐Dohrn‐Str. 8–10 10589 Berlin Germany
| | - Alfonso Lampen
- Department of Food SafetyGerman Federal Institute for Risk Assessment (BfR) Max‐Dohrn‐Str. 8–10 10589 Berlin Germany
| | - Gerhard Eisenbrand
- Department of ChemistryDivision of Food Chemistry and ToxicologyUniversity of Kaiserslautern Erwin‐Schroedinger‐Str. 52 67663 Kaiserslautern Germany
| | - Elke Richling
- Department of ChemistryDivision of Food Chemistry and ToxicologyUniversity of Kaiserslautern Erwin‐Schroedinger‐Str. 52 67663 Kaiserslautern Germany
| |
Collapse
|
16
|
|
17
|
Zirak MR, Mehri S, Karimani A, Zeinali M, Hayes AW, Karimi G. Mechanisms behind the atherothrombotic effects of acrolein, a review. Food Chem Toxicol 2019; 129:38-53. [DOI: 10.1016/j.fct.2019.04.034] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Revised: 03/18/2019] [Accepted: 04/18/2019] [Indexed: 12/31/2022]
|
18
|
Kishimoto A, Nomura S, Tanaka K. Chemical Sensing of Acrolein-Amine Conjugates for Food Quality Control: A Case Study of Milk Products. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2019. [DOI: 10.1246/bcsj.20190010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Arisa Kishimoto
- Biofunctional Synthetic Chemistry Laboratory, Cluster for Pioneering Research, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Shogo Nomura
- Biofunctional Synthetic Chemistry Laboratory, Cluster for Pioneering Research, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Katsunori Tanaka
- Biofunctional Synthetic Chemistry Laboratory, Cluster for Pioneering Research, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Biofunctional Chemistry Laboratory, A. Butlerov Institute of Chemistry, Kazan Federal University, 18 Kremlyovskaya street, Kazan 420008, Russia
| |
Collapse
|
19
|
Daniali G, Jinap S, Sanny M, Tan C. Effect of amino acids and frequency of reuse frying oils at different temperature on acrylamide formation in palm olein and soy bean oils via modeling system. Food Chem 2018; 245:1-6. [DOI: 10.1016/j.foodchem.2017.10.070] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 10/02/2017] [Accepted: 10/11/2017] [Indexed: 12/20/2022]
|
20
|
Thürer A, Granvogl M. Generation of Desired Aroma-Active as Well as Undesired Toxicologically Relevant Compounds during Deep-Frying of Potatoes with Different Edible Vegetable Fats and Oils. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:9107-9115. [PMID: 27806575 DOI: 10.1021/acs.jafc.6b04749] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Deep-frying leads to the generation of various degradation products providing desired properties, like aroma, taste, or color, but some can have adverse effects on human health. The study investigated the influence of frying oils differing in their fatty acid compositions on the generation of desirable and undesirable compounds during deep-frying of potato chips. Selected key odorants and toxicologically relevant compounds (acrolein, acrylamide, furan, and glycidamide) were quantitated by stable isotope dilution assays. Significantly higher concentrations of (E,E)-2,4-decadienal and (E,Z)-2,4-decadienal were found in chips fried with oils rich in linoleic acid, the precursor of the 2,4-decadienals. In contrast, the amounts of Strecker aldehydes and pyrazines were similar. Oils rich in linolenic acid revealed the highest amounts of the toxicologically relevant (E)-2-alkenal acrolein, whereas oils mainly consisting of monounsaturated or saturated fatty acids led to a clearly lower amount. Acrylamide and glycidamide concentrations in chips also showed a clear dependence on the used frying medium, in contrast to furan, whose amount was more or less similar in all chips.
Collapse
Affiliation(s)
- Alice Thürer
- Deutsche Forschungsanstalt für Lebensmittelchemie , Lise-Meitner-Straße 34, D-85354 Freising, Germany
| | - Michael Granvogl
- Lehrstuhl für Lebensmittelchemie, Technische Universität München , Lise-Meitner-Straße 34, D-85354 Freising, Germany
| |
Collapse
|
21
|
Merkle S, Giese E, Dietz N, Lösche K, Fritsche J. Development and technofunctional-sensory characterization of virtually TFA free deep-frying fats for artisan bakery products. EUR J LIPID SCI TECH 2016. [DOI: 10.1002/ejlt.201500572] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Sybille Merkle
- Faculty of Life Sciences/Food Science; Hamburg University of Applied Sciences; Hamburg Germany
| | - Editha Giese
- Faculty of Life Sciences/Food Science; Hamburg University of Applied Sciences; Hamburg Germany
| | | | - Klaus Lösche
- University of Applied Sciences Bremerhaven; Bremerhaven Germany
| | - Jan Fritsche
- Faculty of Life Sciences/Food Science; Hamburg University of Applied Sciences; Hamburg Germany
- Department of Safety and Quality of Milk and Fish Products; Max Rubner-Institut; Federal Research Institute of Nutrition and Food; Kiel Germany
| |
Collapse
|
22
|
Globisch M, Deuber M, Henle T. Identification and Quantitation of the Lipation Product 2-Amino-6-(3-methylpyridin-1-ium-1-yl)hexanoic Acid (MP-Lysine) in Peanuts. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:6605-6612. [PMID: 27499313 DOI: 10.1021/acs.jafc.6b03371] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The lipid peroxidation product acrolein was semiquantitated by GC-MS (EI) in unheated and heated peanut oil, respectively, representing a model system for peanut roasting. Depending on the heating time, acrolein levels significantly increased from 0.2 to 10.7 mg/kg oil. As a result of heating N(α)-acetyl-l-lysine and acrolein, the pyridinium derivative 2-acetamido-6-(3-methylpyridin-1-ium-1-yl)hexanoic acid (MP-acetyl lysine) was identified. In addition, the lysine derivative 2-amino-6-[5-(hydroxymethyl)-3,6-dihydro-2H-pyridin-1-yl]hexanoic acid was identified after reduction and hydrolysis. After preparation of 2-amino-6-(3-methylpyridin-1-ium-1-yl)hexanoic acid (MP-lysine) as reference material, its amounts were quantitated in acrolein-modified peanut proteins by HPLC-ESI-MS/MS after acid hydrolysis, showing that at low acrolein concentrations, the modification of lysine could be entirely explained by the formation of MP-lysine. Furthermore, for the first time, MP-lysine was quantitated in peanut samples in amounts up to 10.2 mg/kg, showing an increase depending on the roasting time. Thus, MP-lysine might represent a marker to evaluate the extent of food protein lipation by acrolein.
Collapse
Affiliation(s)
- Martin Globisch
- Institute of Food Chemistry, Technische Universität Dresden , D-01062 Dresden, Germany
| | - Meike Deuber
- Institute of Food Chemistry, Technische Universität Dresden , D-01062 Dresden, Germany
| | - Thomas Henle
- Institute of Food Chemistry, Technische Universität Dresden , D-01062 Dresden, Germany
| |
Collapse
|
23
|
Zamora R, Aguilar I, Granvogl M, Hidalgo FJ. Toxicologically Relevant Aldehydes Produced during the Frying Process Are Trapped by Food Phenolics. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:5583-5589. [PMID: 27322490 DOI: 10.1021/acs.jafc.6b02165] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The lipid-derived carbonyl trapping ability of phenolic compounds under common food processing conditions was studied by determining the presence of carbonyl-phenol adducts in both onions fried in the laboratory and commercially crispy fried onions. Four carbonyl-phenol adducts produced between quercetin and acrolein, crotonaldehyde, or (E)-2-pentenal were prepared and characterized by (1)H and (13)C nuclear magnetic resonance (NMR) spectroscopy and high performance liquid chromatography coupled to high resolution mass spectrometry (HPLC-HRMS). The synthesized compounds were 2-(3,4-dihydroxyphenyl)-3,5,8-trihydroxy-9,10-dihydro-4H,8H-pyrano[2,3-f]chromen-4-one (4), 2-(3,4-dihydroxyphenyl)-3,5,8-trihydroxy-10-methyl-9,10-dihydro-4H,8H-pyrano[2,3-f]chromen-4-one (5), 2-(3,4-dihydroxyphenyl)-3,5-dihydroxy-8-methyl-4H,8H-pyrano[2,3-f]chromen-4-one (9), and 2-(3,4-dihydroxyphenyl)-8-ethyl-3,5-dihydroxy-4H,8H-pyrano[2,3-f]chromen-4-one (10). When onions were fried in fresh rapeseed oil spiked with acrolein, crotonaldehyde, and (E)-2-pentenal (2.7 μmol/g of oil), adduct 10 was the major compound produced, and trace amounts of adducts 4 and 5, but not of adduct 9, were also detected. In contrast, compound 4 was the major adduct present in commercially crispy fried onions. Compound 10 was also present to a lower extent, and trace amounts of compound 5, but not of compound 9, were also detected. These data suggested that lipid-derived carbonyl-phenol adducts are formed in food products under standard cooking conditions. They also pointed to a possible protective role of food polyphenols, which might contribute to the removal of toxicologically relevant aldehydes produced during deep-frying, assuming that the formed products are stable during food consumption in the human organism.
Collapse
Affiliation(s)
- Rosario Zamora
- Instituto de la Grasa, Consejo Superior de Investigaciones Científicas, Carretera de Utrera km 1, Campus Universitario - Edificio 46, 41013-Seville, Spain
| | - Isabel Aguilar
- Instituto de la Grasa, Consejo Superior de Investigaciones Científicas, Carretera de Utrera km 1, Campus Universitario - Edificio 46, 41013-Seville, Spain
| | - Michael Granvogl
- Lehrstuhl für Lebensmittelchemie, Techniche Universität München , Lise-Meitner-Straβe 34, D-85354 Freising, Germany
| | - Francisco J Hidalgo
- Instituto de la Grasa, Consejo Superior de Investigaciones Científicas, Carretera de Utrera km 1, Campus Universitario - Edificio 46, 41013-Seville, Spain
| |
Collapse
|
24
|
Ewert A, Granvogl M, Schieberle P. Isotope-labeling studies on the formation pathway of acrolein during heat processing of oils. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2014; 62:8524-8529. [PMID: 25105208 DOI: 10.1021/jf501527u] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Acrolein (2-propenal) is classified as a foodborne toxicant and was shown to be present in significant amounts in heated edible oils. Up to now, its formation was mainly suggested to be from the glycerol part of triacylglycerides, although a clear influence of the unsaturation of the fatty acid moiety was also obvious in previous studies. To unequivocally clarify the role of the glycerol and the fatty acid parts in acrolein formation, two series of labeled triacylglycerides were synthesized: [(13)C(3)]-triacylglycerides of stearic, oleic, linoleic, and linolenic acid and [(13)C(54)]-triacylglycerides with labeled stearic, oleic, and linoleic acid, but with unlabeled glycerol. Heating of each of the seven intermediates singly in silicon oil and measurement of the formed amounts of labeled and unlabeled acrolein clearly proved the fatty acid backbone as the key precursor structure. Enzymatically synthesized pure linoleic acid and linolenic acid hydroperoxides were shown to be the key intermediates in acrolein formation, thus allowing the discussion of a radical-induced reaction pathway leading to the formation of the aldehyde. Surprisingly, although several oils contained high amounts of acrolein after heating, deep-fried foods themselves, such as donuts or French fries, were low in the aldehyde.
Collapse
Affiliation(s)
- Alice Ewert
- Deutsche Forschungsanstalt für Lebensmittelchemie and
| | | | | |
Collapse
|
25
|
Papastergiadis A, Fatouh A, Shrestha K, Van Langenhove H, De Meulenaer B. Investigation of the formation of (E)-2-butenal in oils and foods during frying. Food Res Int 2014. [DOI: 10.1016/j.foodres.2014.02.046] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
26
|
Affiliation(s)
- Rüdiger Weisshaar
- Chemisches und Veterinäruntersuchungsamt (CVUA) Stuttgart; Fellbach Germany
| |
Collapse
|
27
|
Kächele M, Monakhova YB, Kuballa T, Lachenmeier DW. NMR investigation of acrolein stability in hydroalcoholic solution as a foundation for the valid HS-SPME/GC-MS quantification of the unsaturated aldehyde in beverages. Anal Chim Acta 2014; 820:112-8. [PMID: 24745744 DOI: 10.1016/j.aca.2014.02.030] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Revised: 02/19/2014] [Accepted: 02/20/2014] [Indexed: 11/19/2022]
Abstract
Acrolein (propenal) is found in many foods and beverages and may pose a health hazard due to its cytotoxicity. Considerable knowledge gaps regarding human exposure to acrolein exist, and there is a lack of reliable analytical methods. Hydroalcoholic dilutions prepared for calibration purposes from pure acrolein show considerable degradation of the compound and nuclear magnetic resonance (NMR) spectroscopy showed that 1,3,3-propanetriol and 3-hydroxypropionaldehyde are formed. The degradation can be prevented by addition of hydroquinone as stabilizer to the calibration solutions, which then show linear concentration-response behaviour required for quantitative analysis. The stabilized calibration solutions were used for quantitative headspace solid-phase microextraction/gas chromatography-mass spectrometry (HS-SPME/GC-MS) determination of acrolein in alcoholic beverages with a detection limit of 14 μg L(-1). Of 117 tested alcoholic beverages, 64 were tested positive with the highest incidence in grape marc spirits and whiskey (100%, mean 252 μg L(-1)), followed by fruit spirits (86%, mean 591 μg/L(-1)), tequila (86%, mean 404 μg L(-1)), Asian spirits (43%, mean 54 μg L(-1)) and wine (9%, mean 0.7 μg L(-1)). Acrolein could not be detected in beer, vodka, absinthe and bottled water. Six of the fruit and grape marc spirits had acrolein levels above the World Health Organization (WHO) provisional tolerable concentration of 1.5 mg L(-1).
Collapse
Affiliation(s)
- Martin Kächele
- Chemisches und Veterinäruntersuchungsamt (CVUA) Karlsruhe, Weissenburger Strasse 3, D-76187 Karlsruhe, Germany; Hochschule Mannheim, Paul-Wittsack-Strasse 10, D-68163 Mannheim, Germany
| | - Yulia B Monakhova
- Chemisches und Veterinäruntersuchungsamt (CVUA) Karlsruhe, Weissenburger Strasse 3, D-76187 Karlsruhe, Germany; Bruker Biospin GmbH, Silbersteifen, 76287 Rheinstetten, Germany; Department of Chemistry, Saratov State University, Astrakhanskaya Street 83, 410012 Saratov, Russia
| | - Thomas Kuballa
- Chemisches und Veterinäruntersuchungsamt (CVUA) Karlsruhe, Weissenburger Strasse 3, D-76187 Karlsruhe, Germany
| | - Dirk W Lachenmeier
- Chemisches und Veterinäruntersuchungsamt (CVUA) Karlsruhe, Weissenburger Strasse 3, D-76187 Karlsruhe, Germany; Ministry of Rural Affairs and Consumer Protection, Kernerplatz 10, 70182 Stuttgart, Germany.
| |
Collapse
|
28
|
Granvogl M. Development of three stable isotope dilution assays for the quantitation of (E)-2-butenal (crotonaldehyde) in heat-processed edible fats and oils as well as in food. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2014; 62:1272-1282. [PMID: 24428123 DOI: 10.1021/jf404902m] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Three stable isotope dilution assays (SIDAs) were developed for the quantitation of (E)-2-butenal (crotonaldehyde) in heat-processed edible fats and oils as well as in food using synthesized [¹³C₄]-crotonaldehyde as internal standard. First, a direct headspace GC-MS method, followed by two indirect methods on the basis of derivatization with either pentafluorophenylhydrazine (GC-MS) or 2,4-dinitrophenylhydrazine (LC-MS/MS), was developed. All methods are also suitable for the quantitation of acrolein using the standard [¹³C₃]-acrolein. Applying these three methods on five different types of fats and oils varying in their fatty acid compositions revealed significantly varying crotonaldehyde concentrations for the different samples, but nearly identical quantitative data for all methods. Formed amounts of crotonaldehyde were dependent not only on the type of oil, e.g., 0.29-0.32 mg/kg of coconut oil or 33.9-34.4 mg/kg of linseed oil after heat-processing for 24 h at 180 °C, but also on the applied temperature and time. The results indicated that the concentration of formed crotonaldehyde seemed to be correlated with the amount of linolenic acid in the oils. Furthermore, the formation of crotonaldehyde was compared to that of its homologue acrolein, demonstrating that acrolein was always present in higher amounts in heat-processed oils, e.g., 12.3 mg of crotonaldehyde/kg of rapeseed oil in comparison to 23.4 mg of acrolein/kg after 24 h at 180 °C. Finally, crotonaldehyde was also quantitated in fried food, revealing concentrations from 12 to 25 μg/kg for potato chips and from 8 to 19 μg/kg for donuts, depending on the oil used.
Collapse
Affiliation(s)
- Michael Granvogl
- Lehrstuhl für Lebensmittelchemie, Technische Universität München , Lise-Meitner-Straβe 34, D-85354 Freising, Germany
| |
Collapse
|
29
|
Guth S, Habermeyer M, Baum M, Steinberg P, Lampen A, Eisenbrand G. Thermally induced process-related contaminants: the example of acrolein and the comparison with acrylamide: opinion of the Senate Commission on Food Safety (SKLM) of the German Research Foundation (DFG). Mol Nutr Food Res 2013; 57:2269-82. [PMID: 23970446 DOI: 10.1002/mnfr.201300418] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Revised: 06/07/2013] [Accepted: 06/17/2013] [Indexed: 12/11/2022]
Abstract
α,β-Unsaturated aliphatic carbonyl compounds are naturally widespread in food, but are also formed during the thermal treatment of food. This applies, for example, to the genotoxic carcinogen acrylamide (AA), but also to acrolein (AC), the simplest α,β-unsaturated aldehyde. First observations indicate that human exposure to AC may be higher than the exposure to AA. The DFG Senate Commission on Food Safety therefore compared data on AC and AA available in the scientific literature, evaluating current knowledge on formation, occurrence, exposure, metabolism, biological effects, toxicity, and carcinogenicity and defined knowledge gaps as well as research needs in an opinion on November 19, 2012, in German. The English version was agreed on April 17, 2013.
Collapse
Affiliation(s)
- Sabine Guth
- Department of Food Chemistry and Toxicology, University of Kaiserslautern, Kaiserslautern, Germany
| | | | | | | | | | | |
Collapse
|
30
|
Watzek N, Scherbl D, Feld J, Berger F, Doroshyenko O, Fuhr U, Tomalik-Scharte D, Baum M, Eisenbrand G, Richling E. Profiling of mercapturic acids of acrolein and acrylamide in human urine after consumption of potato crisps*. Mol Nutr Food Res 2012; 56:1825-37. [DOI: 10.1002/mnfr.201200323] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2012] [Revised: 08/31/2012] [Accepted: 09/05/2012] [Indexed: 11/11/2022]
Affiliation(s)
- Nico Watzek
- Division of Food Chemistry and Toxicology; Department of Chemistry; University of Kaiserslautern; Kaiserslautern; Germany
| | - Denise Scherbl
- Division of Food Chemistry and Toxicology; Department of Chemistry; University of Kaiserslautern; Kaiserslautern; Germany
| | - Julia Feld
- Division of Food Chemistry and Toxicology; Department of Chemistry; University of Kaiserslautern; Kaiserslautern; Germany
| | - Franz Berger
- Division of Food Chemistry and Toxicology; Department of Chemistry; University of Kaiserslautern; Kaiserslautern; Germany
| | | | - Uwe Fuhr
- Department of Pharmacology; University of Cologne; Cologne; Germany
| | | | - Matthias Baum
- Division of Food Chemistry and Toxicology; Department of Chemistry; University of Kaiserslautern; Kaiserslautern; Germany
| | - Gerhard Eisenbrand
- Division of Food Chemistry and Toxicology; Department of Chemistry; University of Kaiserslautern; Kaiserslautern; Germany
| | - Elke Richling
- Division of Food Chemistry and Toxicology; Department of Chemistry; University of Kaiserslautern; Kaiserslautern; Germany
| |
Collapse
|
31
|
|
32
|
Comparative Studies on the Generation of Acrolein as Well as of Aroma-Active Compounds during Deep-Frying with Different Edible Vegetable Fats and Oils. ACTA ACUST UNITED AC 2012. [DOI: 10.1021/bk-2012-1098.ch009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
33
|
Abraham K, Andres S, Palavinskas R, Berg K, Appel KE, Lampen A. Toxicology and risk assessment of acrolein in food. Mol Nutr Food Res 2011; 55:1277-90. [DOI: 10.1002/mnfr.201100481] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|