1
|
Kaleta B, Zielniok K, Roszczyk A, Turło J, Zagożdżon R. Selenopolysaccharide Isolated from Lentinula edodes Mycelium Affects Human T-Cell Function. Int J Mol Sci 2024; 25:11576. [PMID: 39519128 PMCID: PMC11546230 DOI: 10.3390/ijms252111576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/23/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024] Open
Abstract
Lentinula edodes polysaccharides are natural immunomodulators. SeLe30, analyzed in this study, is a new mixture of selenium-enriched linear 1,4-α-glucans and 1,3-β- and 1,6-β-glucans isolated from L. edodes mycelium. In the present study, we evaluated its immunomodulatory properties in human T cells. Peripheral blood mononuclear cells (PBMCs) and T cells were isolated from healthy donors' buffy coats. The effects of SeLe30 on CD25, CD366, and CD279 expression, the subsets of CD8+ T cells, and IFN-γ, IL-6, and TNF-α production were analyzed. SeLe30 downregulated CD25, CD279, and CD366 expression on T cells stimulated by the anti-CD3 antibody (Ab) and upregulated in unstimulated and anti-CD3/CD28-Abs-stimulated T cells. It increased the percentage of central memory CD8+ T cells in unstimulated PBMCs and naïve and central memory T cells in anti-CD3-Ab-stimulated PBMCs. SeLe30 decreased the number of central memory and naïve CD8+ T cells in anti-CD3/CD28-stimulated T cells, whereas, in PBMCs, it reduced the percentage of effector memory CD8+ T cells. Moreover, SeLe30 upregulated cytokine production. SeLe30 exhibits context-dependent effects on T cells. It acts on unstimulated T cells, affecting their activation while increasing the expression of immune checkpoints, which sensitizes them to inhibitory signals that can silence this activation. In the case of a lack of costimulation, SeLe30 exhibits an inhibitory effect, reducing T-cell activation. In cells stimulated by dual signals, its effect is further enhanced, again increasing the "safety brake" of CD366 and CD279. However, the final SeLe30 effect is mediated by its indirect impacts by altering interactions with other immune cells.
Collapse
Affiliation(s)
- Beata Kaleta
- Department of Clinical Immunology, Medical University of Warsaw, Nowogrodzka 59, 02-006 Warsaw, Poland;
| | - Katarzyna Zielniok
- Laboratory of Cellular and Genetic Therapies, Center for Preclinical Research, Medical University of Warsaw, Banacha 1B, 02-097 Warsaw, Poland;
| | - Aleksander Roszczyk
- Department of Clinical Immunology, Medical University of Warsaw, Nowogrodzka 59, 02-006 Warsaw, Poland;
| | - Jadwiga Turło
- Department of Drug Technology and Pharmaceutical Biotechnology, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland;
| | - Radosław Zagożdżon
- Laboratory of Cellular and Genetic Therapies, Center for Preclinical Research, Medical University of Warsaw, Banacha 1B, 02-097 Warsaw, Poland;
| |
Collapse
|
2
|
The Effect of Novel Selenopolysaccharide Isolated from Lentinula edodes Mycelium on Human T Lymphocytes Activation, Proliferation, and Cytokines Synthesis. Biomolecules 2022; 12:biom12121900. [PMID: 36551328 PMCID: PMC9776057 DOI: 10.3390/biom12121900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/09/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
Polysaccharides isolated from Lentinula edodes are bioactive compounds with immunomodulatory properties. In our previous studies from L. edodes mycelium, we have isolated a selenium(Se)-enriched fraction (named Se-Le-30), a mixture of linear 1,4-α-glucan and linear 1,3-β- and 1,6-β-glucans. In this study, we analyzed the effects of Se-Le-30 on the activation and proliferation of human T lymphocytes stimulated by anti-CD3 and anti-CD3/CD28 antibodies (Abs) and on the production of cytokines by peripheral blood mononuclear cells (PBMCs). Se-Le-30 had effects on T cell proliferation induced by Abs against CD3 and CD28. It significantly inhibited the proliferation of CD3-stimulated CD4+ and CD8+ T cells and enhanced the proliferation of CD4+ T cells stimulated with anti-CD3/CD28 Ab. Moreover, Se-Le-30 downregulated the number of CD3-stimulated CD4+CD69+ cells, CD4+CD25+ cells, as well as CD8+CD25+ cells, and upregulated the expression of CD25 marker on CD4+ and CD8+ T cells activated with anti-CD3/CD28 Abs. Furthermore, Se-Le-30 enhanced the synthesis of IFN-γ by the unstimulated and anti-CD3/CD28-stimulated PBMCs, inhibited synthesis of IL-2 and IL-4 by CD3-stimulated cells, and augmented the synthesis of IL-6 and IL-10 by unstimulated, CD3-stimulated, and CD3/CD28-stimulated PBMCs. Together, we demonstrated that Se-Le-30 exerts immunomodulatory effects on human T lymphocytes. These observations are of importance for the prospective use of Se-Le-30 in research or as a therapeutic compound.
Collapse
|
3
|
Increased PPARD Expression May Play a Protective Role in Human Lung Adenocarcinoma and Squamous Cell Carcinoma. PPAR Res 2022; 2022:9414524. [PMID: 35342393 PMCID: PMC8941584 DOI: 10.1155/2022/9414524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 01/02/2022] [Accepted: 02/03/2022] [Indexed: 11/17/2022] Open
Abstract
Peroxisome proliferator-activated receptor-δ, encoded by gene PPARD, is overexpressed in a majority of human lung cancer subtypes, but its role in the tumor progression remains poorly understood. We have analyzed the expression of PPARD in lung adenocarcinoma (LA) and squamous cell carcinoma (LSCC) datasets. The potential roles of PPARD in the pathological development of LA and LSCC were explored through literature-based pathway analysis and pathway enrichment analysis. In all LA datasets (
) and in seven out of nine LSCC studies, the levels of PPARD were increased as compared to control tissues (log-fold changes were
and
for LA and LSCC, respectively). On average, the expression levels of PPARD in LA were higher than those in LSCC (
). Pathway analysis showed that the overexpression of PPARD might play both positive and negative roles in the development of both LA and LSCC. Specifically, PPARD inhibits seven LSCC promoters and seven LA promoters and activates one LSCC inhibitor and another LA inhibitor. However, PPARD also activates six and one promoters of LA and LSCC, respectively, which would facilitate the development of LA/LSCC. Our results suggested a mixed role of PPARD in LA/LSCC, which may add new insights into the understanding of the PPARD-lung cancer relationship.
Collapse
|
4
|
Ionizing radiation and toll like receptors: A systematic review article. Hum Immunol 2021; 82:446-454. [PMID: 33812705 DOI: 10.1016/j.humimm.2021.03.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 03/07/2021] [Accepted: 03/19/2021] [Indexed: 11/24/2022]
Abstract
Ionizing radiation, including X and gamma rays, are used for various purposes such as; medicine, nuclear power, research, manufacturing, food preservation and construction. Furthermore, people are also exposed to ionizing radiation from their workplace or the environment. Apart from DNA fragmentation resulting in apoptosis, several additional mechanisms have been proposed to describe how radiation can alter human cell functions. Ionizing radiation may alter immune responses, which are the main cause of human disorders. Toll like receptors (TLRs) are important human innate immunity receptors which participate in several immune and non-immune cell functions including, induction of appropriate immune responses and immune related disorders. Based on the role played by ionizing radiation on human cell systems, it has been hypothesized that radiation may affect immune responses. Therefore, the main aim of this review article is to discuss recent information regarding the effects of ionizing radiation on TLRs and their related disorders.
Collapse
|
5
|
Cui F, Jiang L, Qian L, Sun W, Tao T, Zan X, Yang Y, Wu D, Zhao X. A macromolecular α-glucan from fruiting bodies of Volvariella volvacea activating RAW264. 7 macrophages through MAPKs pathway. Carbohydr Polym 2020; 230:115674. [DOI: 10.1016/j.carbpol.2019.115674] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 11/18/2019] [Accepted: 11/25/2019] [Indexed: 01/16/2023]
|
6
|
Złotko K, Wiater A, Waśko A, Pleszczyńska M, Paduch R, Jaroszuk-Ściseł J, Bieganowski A. A Report on Fungal (1→3)-α-d-glucans: Properties, Functions and Application. Molecules 2019; 24:E3972. [PMID: 31684030 PMCID: PMC6864487 DOI: 10.3390/molecules24213972] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 10/30/2019] [Accepted: 10/31/2019] [Indexed: 12/13/2022] Open
Abstract
The cell walls of fungi are composed of glycoproteins, chitin, and α- and β-glucans. Although there are many reports on β-glucans, α-glucan polysaccharides are not yet fully understood. This review characterizes the physicochemical properties and functions of (1→3)-α-d-glucans. Particular attention has been paid to practical application and the effect of glucans in various respects, taking into account unfavourable effects and potential use. The role of α-glucans in plant infection has been proven, and collected facts have confirmed the characteristics of Aspergillus fumigatus infection associated with the presence of glucan in fungal cell wall. Like β-glucans, there are now evidence that α-glucans can also stimulate the immune system. Moreover, α-d-glucans have the ability to induce mutanases and can thus decompose plaque.
Collapse
Affiliation(s)
- Katarzyna Złotko
- Institute of Agrophysics, Polish Academy of Sciences, Doświadczalna 4, 20-290 Lublin, Poland.
| | - Adrian Wiater
- Department of Industrial and Environmental Microbiology, Maria Curie-Skłodowska University, Akademicka 19, 20-033 Lublin, Poland.
| | - Adam Waśko
- Department of Biotechnology, Human Nutrition and Food Commodity Science, University of Life Sciences in Lublin, Skromna 8, 20-704 Lublin, Poland.
| | - Małgorzata Pleszczyńska
- Department of Industrial and Environmental Microbiology, Maria Curie-Skłodowska University, Akademicka 19, 20-033 Lublin, Poland.
| | - Roman Paduch
- Department of Virology and Immunology, Maria Curie-Skłodowska University, ul. Akademicka 19, 20-033 Lublin, Poland.
- Department of General Ophthalmology, Medical University, Chmielna 1, 20-079 Lublin, Poland.
| | - Jolanta Jaroszuk-Ściseł
- Department of Industrial and Environmental Microbiology, Maria Curie-Skłodowska University, Akademicka 19, 20-033 Lublin, Poland.
| | - Andrzej Bieganowski
- Institute of Agrophysics, Polish Academy of Sciences, Doświadczalna 4, 20-290 Lublin, Poland.
| |
Collapse
|
7
|
Yu H, Yang Y, Jiang T, Zhang X, Zhao Y, Pang G, Feng Y, Zhang S, Wang F, Wang Y, Wang Y, Zhang LW. Effective Radiotherapy in Tumor Assisted by Ganoderma lucidum Polysaccharide-Conjugated Bismuth Sulfide Nanoparticles through Radiosensitization and Dendritic Cell Activation. ACS APPLIED MATERIALS & INTERFACES 2019; 11:27536-27547. [PMID: 31294958 DOI: 10.1021/acsami.9b07804] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Radiotherapy is a traditional method for cancer therapy but may become ineffective likely due to the radiation-induced immunosuppression. Instead of simply increasing the radiation dose, reactivation of immunosuppression in the tumor microenvironment is an alternative strategy for successful cancer treatment. In this work, we synthesized bismuth sulfide nanoparticles (BiNP) and conjugated with immunoactive Ganoderma lucidum polysaccharide (GLP). GLP-BiNP were able to increase the sensitivity of radiotherapy, attributing to the efficient X-ray absorption of bismuth element. BiNP alone can mildly activate dendritic cells (DC) in vitro, while GLP-BiNP further enhanced the level of DC maturation, shown as the increase in phenotypic maturation markers, cytokine release, acid phosphatase activity, and T cell proliferation in DC/T cell co-culture. Compared to BiNP, GLP-BiNP altered the tissue distribution with faster accumulation in the tumor. Meanwhile, mature DC greatly increased in both tumor and spleen by GLP-BiNP within 24 h. GLP-BiNP combination with radiation achieved remarkable inhibition of tumor growth through apoptosis. Alternatively, lung metastasis was largely prohibited by GLP-BiNP, shown as a reduced amount of tumor nodules and cancer cell invasion by pathological findings. Mechanistically, GLP-BiNP altered the tumor immunosuppression microenvironment by preferably increasing the number of intratumor CD8+ T cell proliferation, as well as the improved immunobalance shown as the increased serum interferon-γ/interleukin-4 ratio. Specifically, GLP conjugation seemed to protect the kidney from injury occasionally introduced by bare BiNP. As a result, GLP-BiNP play a dual role in tumor treatment through radiosensitization and immunoactivities.
Collapse
Affiliation(s)
- Huan Yu
- School of Radiation Medicine and Protection, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions , Soochow University , Suzhou 215123 , China
| | - Yang Yang
- School of Radiation Medicine and Protection, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions , Soochow University , Suzhou 215123 , China
| | - Tianyan Jiang
- School of Radiation Medicine and Protection, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions , Soochow University , Suzhou 215123 , China
| | - Xihui Zhang
- School of Radiation Medicine and Protection, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions , Soochow University , Suzhou 215123 , China
| | - Yuhao Zhao
- School of Radiation Medicine and Protection, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions , Soochow University , Suzhou 215123 , China
| | - Guibin Pang
- Institute of Chinese Materia Medica , Shanghai University of Traditional Chinese Medicine , Shanghai 201203 , China
- Shanghai R&D Centre for Standardization of Chinese Medicines , Shanghai 201210 , China
| | - Yahui Feng
- College of Life Sciences and Chemistry , Hunan University of Technology , Zhuzhou 412007 , China
| | - Shulei Zhang
- Institute of Chinese Materia Medica , Shanghai University of Traditional Chinese Medicine , Shanghai 201203 , China
- Shanghai R&D Centre for Standardization of Chinese Medicines , Shanghai 201210 , China
| | - Fujun Wang
- Institute of Chinese Materia Medica , Shanghai University of Traditional Chinese Medicine , Shanghai 201203 , China
- Shanghai R&D Centre for Standardization of Chinese Medicines , Shanghai 201210 , China
| | - Yong Wang
- School of Radiation Medicine and Protection, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions , Soochow University , Suzhou 215123 , China
| | - Yangyun Wang
- School of Radiation Medicine and Protection, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions , Soochow University , Suzhou 215123 , China
| | - Leshuai W Zhang
- School of Radiation Medicine and Protection, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions , Soochow University , Suzhou 215123 , China
| |
Collapse
|
8
|
Masuda Y, Nakayama Y, Mukae T, Tanaka A, Naito K, Konishi M. Maturation of dendritic cells by maitake α-glucan enhances anti-cancer effect of dendritic cell vaccination. Int Immunopharmacol 2019; 67:408-416. [DOI: 10.1016/j.intimp.2018.12.039] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 11/30/2018] [Accepted: 12/14/2018] [Indexed: 02/06/2023]
|
9
|
Immunomodulatory effect of structurally-characterized mushroom sclerotial polysaccharides isolated from Polyporus rhinocerus on human monoctyes THP-1. J Funct Foods 2018. [DOI: 10.1016/j.jff.2017.12.039] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
|
10
|
Papetti A, Signoretto C, Spratt DA, Pratten J, Lingström P, Zaura E, Ofek I, Wilson M, Pruzzo C, Gazzani G. Components in Lentinus edodes mushroom with anti-biofilm activity directed against bacteria involved in caries and gingivitis. Food Funct 2018; 9:3489-3499. [DOI: 10.1039/c7fo01727h] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The present study investigated the compounds present in the low molecular mass fraction of Lentinus edodes mushroom (shiitake) extract and their anti-virulence activity against oral pathogens.
Collapse
Affiliation(s)
- Adele Papetti
- Department of Drug Sciences
- University of Pavia
- 27100 Pavia
- Italy
| | - Caterina Signoretto
- Department of Diagnostics and Public Health
- section of Microbiology
- University of Verona
- 37134 Verona
- Italy
| | - David A. Spratt
- Department of Microbial Diseases
- UCL Eastman Dental Institute
- London
- UK
| | - Jonathan Pratten
- Department of Microbial Diseases
- UCL Eastman Dental Institute
- London
- UK
| | - Peter Lingström
- Department of Cariology
- Institute of Odontology at Sahlgrenska Academy
- University of Gothenburg
- Gothenburg
- Sweden
| | - Egija Zaura
- Department of Preventive Dentistry
- Academic Centre for Dentistry Amsterdam (ACTA)
- University of Amsterdam and Vrije Universiteit Amsterdam
- 1081 LA Amsterdam
- the Netherlands
| | - Itzhak Ofek
- Department of Clinical Microbiology and Immunology
- Sackler Faculty of Medicine
- Tel Aviv University 9778 Tel Aviv
- Israel
| | - Michael Wilson
- Department of Microbial Diseases
- UCL Eastman Dental Institute
- London
- UK
| | | | | |
Collapse
|
11
|
Roudi R, Mohammadi SR, Roudbary M, Mohsenzadegan M. Lung cancer and β-glucans: review of potential therapeutic applications. Invest New Drugs 2017; 35:509-517. [PMID: 28303529 DOI: 10.1007/s10637-017-0449-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 03/01/2017] [Indexed: 12/11/2022]
Abstract
The potential of natural substances with immunotherapeutic properties has long been studied. β-glucans, a cell wall component of certain bacteria and fungi, potentiate the immune system against microbes and toxic substances. Moreover, β-glucans are known to exhibit direct anticancer effects and can suppress cancer proliferation through immunomodulatory pathways. Mortality of lung cancer has been alarmingly increasingly worldwide; therefore, treatment of lung cancer is an urgent necessity. Numerous researchers are now dedicated to using β-glucans as a therapy for lung cancer. In the present attempt, we have reviewed the studies addressing therapeutic effects of β-glucans in primary and metastatic lung cancer published in the time period of 1991-2016.
Collapse
Affiliation(s)
- Raheleh Roudi
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Shahla Roudbar Mohammadi
- Department of Medical Mycology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Maryam Roudbary
- Department of Medical Mycology and Parasitology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Monireh Mohsenzadegan
- Department of Medical Laboratory Science, Faculty of Allied Medical Sciences, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
12
|
Masuda Y, Nakayama Y, Tanaka A, Naito K, Konishi M. Antitumor activity of orally administered maitake α-glucan by stimulating antitumor immune response in murine tumor. PLoS One 2017; 12:e0173621. [PMID: 28278221 PMCID: PMC5344464 DOI: 10.1371/journal.pone.0173621] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 02/23/2017] [Indexed: 12/25/2022] Open
Abstract
Maitake α-glucan, YM-2A, isolated from Grifola frondosa, has been characterized as a highly α-1,6-branched α-1,4 glucan. YM-2A has been shown to possess an anti-virus effect in mice; however, it does not directly inhibit growth of the virus in vitro, indicating that the anti-virus effect of YM-2A might be associated with modulation of the host immune system. In this study, we found that oral administration of YM-2A could inhibit tumor growth and improve survival rate in two distinct mouse models of colon-26 carcinoma and B16 melanoma. Orally administered YM-2A enhanced antitumor immune response by increasing INF-γ-expressing CD4+ and CD8+ cells in the spleen and INF-γ-expressing CD8+ cells in tumor-draining lymph nodes. In vitro study showed that YM-2A directly activated splenic CD11b+ myeloid cells, peritoneal macrophages and bone marrow-derived dendritic cells, but did not affect splenic CD11b- lymphocytes or colon-26 tumor cells. YM-2A is more slowly digested by pancreatic α-amylase than are amylopectin and rabbit liver glycogen, and orally administered YM-2A enhanced the expression of MHC class II and CD86 on dendritic cells and the expression of MHC class II on macrophages in Peyer’s patches. Furthermore, in vitro stimulation of YM-2A increased the expression of pro-inflammatory cytokines in Peyer’s patch CD11c+ cells. These results suggest that orally administered YM-2A can activate dendritic cells and macrophages in Peyer’s patches, inducing systemic antitumor T-cell response. Thus, YM-2A might be a candidate for an oral therapeutic agent in cancer immunotherapy.
Collapse
Affiliation(s)
- Yuki Masuda
- Department of Microbial Chemistry, Kobe Pharmaceutical University, Kobe, Japan
- * E-mail:
| | - Yoshiaki Nakayama
- Department of Microbial Chemistry, Kobe Pharmaceutical University, Kobe, Japan
| | - Akihiro Tanaka
- Research and Development Department, Yukiguni Maitake Co., Ltd., Niigata, Japan
| | - Kenta Naito
- Research and Development Department, Yukiguni Maitake Co., Ltd., Niigata, Japan
| | - Morichika Konishi
- Department of Microbial Chemistry, Kobe Pharmaceutical University, Kobe, Japan
| |
Collapse
|
13
|
Li X, Zhong M, Liu B, Wang X, Liu L, Zhang W, Huang M. Antiproliferative protein from the culture supernatant of Lentinula edodes C91-3 mycelia. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2014; 62:5316-5320. [PMID: 24838083 DOI: 10.1021/jf500316f] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
We purified and isolated a novel protein (LFP(91-3)A2) with antitumor effect from Lentinula edodes C(91-3) liquid mycelial culture supernatant. LFP(91-3)A2 was purified by (NH4)2SO4 precipitation, ion-exchange chromatography (DEAE-cellulose) and gel filtration chromatography (Sephacryl S-200HR). SDS-PAGE and MALDI-TOF/MS analysis Mascot search showed LFP(91-3)A2 is a new protein with apparent molecular weight of 26 kDa. The effect on tumor cell proliferation was assessed by using MTT assay in vitro, and the LFP(91-3)A2 reduced tumor cell growth obviously in a dose dependent manner (5-15 μg/mL) (p < 0.05), while it exhibited no toxic effect on normal chick embryo fibroblasts. The antiproliferative mechanism of LFP(91-3)A2 was found to be associated with inducing cell apoptosis by flow cytometry analysis and transmission electron microscopy. The LFP(91-3)A2 is a novel protein from Lentinula edodes with tumor-suppressive activity via inducing apoptosis of tumor cells without toxicity on normal cells and may be beneficial to natural products in clinical treatment.
Collapse
Affiliation(s)
- Xingyun Li
- Department of Microbiology, Colleges of Basic Medical Sciences, Dalian Medical University , 9 Western Section, Lvshun South Street, Lvshunkou District, Dalian 116044, Liaoning Province, P.R. China
| | | | | | | | | | | | | |
Collapse
|
14
|
Finimundy TC, Dillon AJP, Henriques JAP, Ely MR. A Review on General Nutritional Compounds and Pharmacological Properties of the <i>Lentinula edodes</i> Mushroom. ACTA ACUST UNITED AC 2014. [DOI: 10.4236/fns.2014.512119] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|