1
|
Brito C, Silva JV, Gonzaga RV, La-Scalea MA, Giarolla J, Ferreira EI. A Review on Carbon Nanotubes Family of Nanomaterials and Their Health Field. ACS OMEGA 2024; 9:8687-8708. [PMID: 38434894 PMCID: PMC10905599 DOI: 10.1021/acsomega.3c08824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 01/17/2024] [Accepted: 01/24/2024] [Indexed: 03/05/2024]
Abstract
The use of carbon nanotubes (CNTs), which are nanometric materials, in pathogen detection, protection of environments, food safety, and in the diagnosis and treatment of diseases, as efficient drug delivery systems, is relevant for the improvement and advancement of pharmacological profiles of many molecules employed in therapeutics and in tissue bioengineering. It has contributed to the advancement of science due to the development of new tools and devices in the field of medicine. CNTs have versatile mechanical, physical, and chemical properties, in addition to their great potential for association with other materials to contribute to applications in different fields of medicine. As, for example, photothermal therapy, due to the ability to convert infrared light into heat, in tissue engineering, due to the mechanical resistance, flexibility, elasticity, and low density, in addition to many other possible applications, and as biomarkers, where the electronic and optics properties enable the transduction of their signals. This review aims to describe the state of the art and the perspectives and challenges of applying CNTs in the medical field. A systematic search was carried out in the indexes Medline, Lilacs, SciELO, and Web of Science using the descriptors "carbon nanotubes", "tissue regeneration", "electrical interface (biosensors and chemical sensors)", "photosensitizers", "photothermal", "drug delivery", "biocompatibility" and "nanotechnology", and "Prodrug design" and appropriately grouped. The literature reviewed showed great applicability, but more studies are needed regarding the biocompatibility of CNTs. The data obtained point to the need for standardized studies on the applications and interactions of these nanostructures with biological systems.
Collapse
Affiliation(s)
- Charles
L. Brito
- Department
of Pharmacy, Faculty of Pharmaceutical Sciences, University of São Paulo, Avenida Professor Lineu Prestes, 580, Bloco 13, São Paulo CEP 05508-000, Brazil
| | - João V. Silva
- Department
of Pharmacy, Faculty of Pharmaceutical Sciences, University of São Paulo, Avenida Professor Lineu Prestes, 580, Bloco 13, São Paulo CEP 05508-000, Brazil
| | - Rodrigo V. Gonzaga
- Department
of Pharmacy, Faculty of Pharmaceutical Sciences, University of São Paulo, Avenida Professor Lineu Prestes, 580, Bloco 13, São Paulo CEP 05508-000, Brazil
| | - Mauro A. La-Scalea
- Department
of Chemistry, Federal University of São
Paulo, Diadema 09972-270, Brazil
| | - Jeanine Giarolla
- Department
of Pharmacy, Faculty of Pharmaceutical Sciences, University of São Paulo, Avenida Professor Lineu Prestes, 580, Bloco 13, São Paulo CEP 05508-000, Brazil
| | - Elizabeth I. Ferreira
- Department
of Pharmacy, Faculty of Pharmaceutical Sciences, University of São Paulo, Avenida Professor Lineu Prestes, 580, Bloco 13, São Paulo CEP 05508-000, Brazil
| |
Collapse
|
2
|
Niu Y, Zhang R, Yang C, He J, Wang T. Dietary supplementation with dihydroartemisinin improves intestinal barrier function in weaned piglets with intrauterine growth retardation by modulating the gut microbiota. J Anim Sci 2024; 102:skae140. [PMID: 38813622 PMCID: PMC11222986 DOI: 10.1093/jas/skae140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 05/29/2024] [Indexed: 05/31/2024] Open
Abstract
The aim of this study was to investigate whether dietary dihydroartemisinin (DHA) supplementation could improve intestinal barrier function and microbiota composition in intrauterine growth restriction (IUGR) weaned piglets. Twelve normal birth weight (NBW) piglets and 24 IUGR piglets at 21 d of age were divided into three groups, which were fed a basal diet (NBW-CON and IUCR-CON groups) and an 80 mg/kg DHA diet (IUGR-DHA group). At 49 d of age, eight piglets of each group with similar body weights within groups were slaughtered, and serum and small intestine samples were collected. The results showed that IUGR piglets reduced growth performance, impaired the markers of intestinal permeability, induced intestinal inflammation, decreased intestinal immunity, and disturbed the intestinal microflora. Dietary DHA supplementation increased average daily gain, average daily feed intake, and body weight at 49 d of age in IUGR-weaned piglets (P < 0.05). DHA treatment decreased serum diamine oxidase activity and increased the numbers of intestinal goblet cells and intraepithelial lymphocytes, concentrations of jejunal mucin-2 and ileal trefoil factor 3, and intestinal secretory immunoglobin A and immunoglobin G (IgG) concentrations of IUGR piglets (P < 0.05). Diet supplemented with DHA also upregulated mRNA abundances of jejunal IgG, the cluster of differentiation 8 (CD8), major histocompatibility complex-I (MHC-I), and interleukin 6 (IL-6) and ileal IgG, Fc receptor for IgG (FcRn), cluster of differentiation 8 (CD4), CD8, MHC-I, IL-6 and tumor necrosis factor α (TNF-α), and enhanced mRNA abundance and protein expression of intestinal occludin and ileal claudin-1 in IUGR piglets (P < 0.05). In addition, DHA supplementation in the diet improved the microbial diversity of the small intestine of IUGR piglets and significantly increased the relative abundance of Actinobacteriota, Streptococcus, Blautia and Streptococcus in the jejunum, and Clostridium sensu_ stricto_in the ileum (P < 0.05). The intestinal microbiota was correlated with the mRNA abundance of tight junction proteins and inflammatory response-related genes. These data suggested that DHA could improve the markers of intestinal barrier function in IUGR-weaned piglets by modulating gut microbiota. DHA may be a novel nutritional candidate for preventing intestinal dysfunction in IUGR pigs.
Collapse
Affiliation(s)
- Yu Niu
- College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A and F University, Hangzhou, 311300, China
| | - Ruiqiang Zhang
- College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A and F University, Hangzhou, 311300, China
| | - Caimei Yang
- College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A and F University, Hangzhou, 311300, China
| | - Jintian He
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Tian Wang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
3
|
García-García AL, Hernández D, Santana-Mayor Á, Jiménez-Arias D, Boto A. TBS-pyrrole as an "universal" reference to quantify artemisinin and structurally-diverse natural products in plants extracts by NMR. FRONTIERS IN PLANT SCIENCE 2023; 14:1255512. [PMID: 37841619 PMCID: PMC10570554 DOI: 10.3389/fpls.2023.1255512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 08/31/2023] [Indexed: 10/17/2023]
Abstract
The commercial production of artemisinin and other valuable bioactive natural products depends on their plant sources, which may provide variable amounts of the compound depending on plant variety, the period of the year, abiotic stress and other factors. Therefore, it requires a method for large-scale, low-cost natural product quantification. The standard HPLC and UHPLC methods are accurate but the analysis are costly and require different optimization for structurally-diverse products. An alternative method using NMR with TBS-pyrrole as a novel "universal" reference affords a simple, fast method to quantify many different products. The method is shown with antimalarial artemisinin, whose yield using conventional and novel extraction procedures was determined by standard UHPLC-MS procedures and by our NMR protocol, with similar quantification results. The novel reference compound does not interfere with artemisinin or extract signals, only needs a small amount of the extract, is accurate and operationally simple, and a large volume of samples can be processed in little time. Moreover, bioactive terpenes, steroids, alkaloids, aromatic compounds, and quinones, among others, were quantified in a model vegetal extract with this "universal" reference with excellent accuracy.
Collapse
Affiliation(s)
- Ana L. García-García
- Grupo de Síntesis de Fármacos y Compuestos Bioactivos, Instituto de Productos Naturales y Agrobiología del Consejo Superior de Investigaciones Científicas (CSIC), La Laguna, Spain
- Programa de Doctorado de Química e Ingeniería Química, Universidad de La Laguna, San Cristóbal de La Laguna, Spain
| | - Dácil Hernández
- Grupo de Síntesis de Fármacos y Compuestos Bioactivos, Instituto de Productos Naturales y Agrobiología del Consejo Superior de Investigaciones Científicas (CSIC), La Laguna, Spain
| | - Álvaro Santana-Mayor
- Fundación Canaria General de la Universidad de La Laguna, Edificio Servicios Generales de Apoyo a la Investigación (SEGAI), San Cristóbal de La Laguna, Spain
| | - David Jiménez-Arias
- Isoplexis-Centro de Agricultura Sustentável e Tecnologia Alimentar, Universidade da Madeira, Funchal, Portugal
- Instituto Canario de Investigaciones Agrarias, La Laguna, Spain
| | - Alicia Boto
- Grupo de Síntesis de Fármacos y Compuestos Bioactivos, Instituto de Productos Naturales y Agrobiología del Consejo Superior de Investigaciones Científicas (CSIC), La Laguna, Spain
| |
Collapse
|
4
|
Damphathik C, Butmee P, Kunpatee K, Kalcher K, Ortner A, Kerr M, Jitcharoen J, Samphao A. An electrochemical sensor for the voltammetric determination of artemisinin based on carbon materials and cobalt phthalocyanine. Mikrochim Acta 2022; 189:224. [PMID: 35585361 DOI: 10.1007/s00604-022-05257-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Accepted: 03/01/2022] [Indexed: 11/28/2022]
Abstract
An electrochemical sensor for the determination of artemisinin has been developed based on a glassy carbon electrode modified with hybrid nanocomposites of cobalt phthalocyanine, graphene nanoplatelets, multi-walled carbon nanotubes and ionic liquids (IL). To improve the sensitivity and selectivity of the sensor, cobalt phthalocyanine (CoPc) was used as an effective redox mediator to promote and catalyze the artemisinin reduction. Furthermore, the graphene nanoplatelets and multi-walled carbon nanotubes were used as excellent conducting supporting materials to improve the sensitivity of the electrochemical sensor. Moreover, IL with a surface charge was also employed to prevent aggregation of the graphene nanoplatelets and multi-walled carbon nanotubes. The analytical signal was generated from the reduction of Co(III)Pc generated by artemisinin. The proposed electrochemical sensor was applied to the detection of artemisinin using differential pulse voltammetry and provided a signal with wide linearity ranging from 1.5-60 μM and 60-600 μM and a detection limit of 0.70 μM (3SD/m). Furthermore, the proposed sensor displayed good repeatability and reproducibility of 2.9-3.0 and 3.1-4.4% RSD, respectively. Applications of the sensor to drug and plant samples demonstrated accuracy in a range of 105-116% recoveries. In addition, the results were in good agreement with those obtained from the HPLC method as a reference technique. Thus, the proposed electrochemical sensor provides a new alternative platform for sensitive and selective determination of artemisinin in the analysis of pharmaceuticals with good precision and accuracy.
Collapse
Affiliation(s)
- Chulalak Damphathik
- Department of Chemistry, Faculty of Science, Ubon Ratchathani University, Ubon Ratchathani, 34190, Thailand
| | - Preeyanut Butmee
- National Nanotechnology Center, National Science and Technology Development Agency, Pathum Thani, 12120, Thailand
| | - Kanjana Kunpatee
- Department of Chemistry, Faculty of Science, Ubon Ratchathani University, Ubon Ratchathani, 34190, Thailand
| | - Kurt Kalcher
- Institute of Chemistry-Analytical Chemistry, University of Graz, 8010, Graz, Austria
| | - Astrid Ortner
- Institute of Pharmaceutical Sciences, University of Graz, 8010, Graz, Austria
| | - Margaret Kerr
- Department of Chemistry, Worcester State University, 486 Chandler Street, Worcester, MA, 01602, USA
| | - Juthamas Jitcharoen
- Department of Chemistry, Faculty of Science, Ubon Ratchathani University, Ubon Ratchathani, 34190, Thailand
| | - Anchalee Samphao
- Department of Chemistry, Faculty of Science, Ubon Ratchathani University, Ubon Ratchathani, 34190, Thailand. .,Department of Chemistry and Center of Excellent for Innovation in Chemistry, Faculty of Science, Ubon Ratchathani University, Ubon Ratchathani, 34190, Thailand.
| |
Collapse
|
5
|
Huang JQ, Li DM, Tian X, Lin JL, Yang L, Xu JJ, Fang X. Side Products of Recombinant Amorpha-4,11-diene Synthase and Their Effect on Microbial Artemisinin Production. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:2168-2178. [PMID: 33566615 DOI: 10.1021/acs.jafc.0c07462] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Amorpha-4,11-diene synthase (ADS) is the first committed enzyme in the biosynthesis of artemisinin. Artemisinin production by biobased fermentation is considered a reliable alternative pathway. Heterologously expressed ADS has been established to generate several minor products, including structural analogues of amorpha-4,11-diene, but their fate in fermentation is still unknown. Here, using chiral analysis, we found that ADS produces one of the analogues, amorpha-4-en-11-ol, as a pair of epimers. Labeling experiments revealed that ADS mutants yielded amorphene-type sesquiterpenes, indicating the co-occurrence of initial 1,6 and 1,10 cyclization of farnesyl diphosphate in a single enzyme. Interestingly, the immediate downstream oxidase CYP71AV1 had very low affinity to the side products of the recombinant ADS, including amorpha-4-en-7-ol, which is structurally similar to amorpha-4,11-diene. Our data uncover the complex catalytic mechanism of recombinant ADS and reveal a potential negative effect of the side products of recombinant ADS on the production of the artemisinin precursor in microbes.
Collapse
Affiliation(s)
- Jin-Quan Huang
- , Yunnan University, Kunming 650091, P. R. China
- , National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology/CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, P. R. China
| | - Dong-Mei Li
- , Yunnan University, Kunming 650091, P. R. China
- , State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650204, P. R. China
| | - Xiu Tian
- , National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology/CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, P. R. China
| | - Jia-Ling Lin
- , National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology/CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, P. R. China
- , School of Life Science and Technology, ShanghaiTech Universit, Shanghai 200031, P. R. China
| | - Lei Yang
- , Shanghai Key Laboratory of Plant Functional Genomics and Resources, Plant Science Research Center, Shanghai Chenshan Botanical Garden, Shanghai 201602, P. R. China
| | - Jing-Jing Xu
- , Shanghai Key Laboratory of Plant Functional Genomics and Resources, Plant Science Research Center, Shanghai Chenshan Botanical Garden, Shanghai 201602, P. R. China
| | - Xin Fang
- , State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650204, P. R. China
| |
Collapse
|
6
|
Application of LC-MS/MS method for determination of dihydroartemisin in human plasma in a pharmacokinetic study. Bioanalysis 2020; 12:1635-1646. [PMID: 33118839 DOI: 10.4155/bio-2020-0224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Aim: Dihydroartemisinin (DHA) was also found therapeutic potential for the treatment of systemic lupus erythematosus (SLE). To assess the pharmacokinetic profile of DHA, the concentration of DHA in plasma of SLE patients needed be accurately determined based on a rapid and reliable analytical method. Experimental method & results: Developed method utilizes stable isotope-labeled internal standards and SPE method for sample preparation, applied XBridge C18 column (2.1 × 50 mm, 3.5 μm) for chromatography separation. Detection of the analytes was achieved by an AB Sciex 4000 mass spectrometer under positive electrospray ionization mode. The method was validated in accordance with international guidelines on bioanalytical methods validations. Conclusion: DHA concentrations in human plasma of Chinese SLE patients were quantified by developed LC-MS/MS (no. 2016L02562).
Collapse
|
7
|
Singh P, Bajpai V, Khandelwal N, Varshney S, Gaikwad AN, Srivastava M, Singh B, Kumar B. Determination of bioactive compounds of Artemisia Spp. plant extracts by LC-MS/MS technique and their in-vitro anti-adipogenic activity screening. J Pharm Biomed Anal 2020; 193:113707. [PMID: 33160219 DOI: 10.1016/j.jpba.2020.113707] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 10/11/2020] [Accepted: 10/12/2020] [Indexed: 11/27/2022]
Abstract
Ultra Performance Liquid Chromatography coupled with hybrid triple quadrupole linear ion trap tandem mass spectrometry (UPLC-ESI-QqQLIT-MS/MS) method in multiple reaction monitoring (MRM) acquisition mode was developed and validated for identification and simultaneous determination of potential anti-diabetic and anti-malarial compounds in ethanolic extracts of different Artemisia species. The chromatographic separation was carried out on an Acquity BEH™ C18 column (1.7 μm, 2.1 × 50 mm) with 0.1 % (v/v) formic acid in water and acetonitrile as mobile phase under gradient condition in 6 min. The developed method was validated in terms of linearity, LOD, LOQ, precision, stability and recovery according to international conference on harmonization guidelines. The correlation coefficients of all the calibration curves were ≥0.9902 and recoveries ranged from 98.22 to 104.49% (RSD ≤2.18 %). Relative standard deviations of intra-day, inter-day precisions and stability were ≤ 1.04, 1.09 and 2.80 %, respectively. The quantitative results showed remarkable differences in the content of all the compounds in different Artemisia species. The quantitative values of each peak were summarized as mean ± SD. The statistical analysis for comparison of observed quantitative differences of each compound was done to show that they are statistically significant. In-vitro assessment of extracts of selected Artemisia species inhibited adipocyte differentiation in 3T3-L1 cells, hence it may have certain phytochemicals which are responsible for reducing obesity and related metabolic disorders.
Collapse
Affiliation(s)
- Pratibha Singh
- Sophisticated Analytical Instrument Facility, CSIR-Central Drug Research Institute, Lucknow, 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh - 201002, India.
| | - Vikas Bajpai
- Sophisticated Analytical Instrument Facility, CSIR-Central Drug Research Institute, Lucknow, 226031, India
| | - Nilesh Khandelwal
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh - 201002, India; Pharmacology Division, CSIR-Central Drug Research Institute, Lucknow, 226031, India
| | - Salil Varshney
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh - 201002, India; Pharmacology Division, CSIR-Central Drug Research Institute, Lucknow, 226031, India
| | - Anil N Gaikwad
- Pharmacology Division, CSIR-Central Drug Research Institute, Lucknow, 226031, India.
| | - Mukesh Srivastava
- Biometry and Statistics Division, CSIR-Central Drug Research Institute, Lucknow, 226031, Uttar Pradesh, India
| | - Bikarma Singh
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh - 201002, India; Biodiversity and Applied Botany Division CSIR- Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India
| | - Brijesh Kumar
- Sophisticated Analytical Instrument Facility, CSIR-Central Drug Research Institute, Lucknow, 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh - 201002, India.
| |
Collapse
|
8
|
Gao J, Ma F, Wang X, Li G. Combination of dihydroartemisinin and resveratrol effectively inhibits cancer cell migrationviaregulation of the DLC1/TCTP/Cdc42 pathway. Food Funct 2020; 11:9573-9584. [DOI: 10.1039/d0fo00996b] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Mechanism of DHA combined with RES in inhibition of cancer cell migration by DLC1/TCTP/Cdc42 signaling.
Collapse
Affiliation(s)
- Junying Gao
- Shandong Provincial Key Laboratory of Animal Resistant Biology
- School of Life Sciences
- Shandong Normal University
- Jinan
- China
| | - Fengqiu Ma
- Shandong Provincial Key Laboratory of Animal Resistant Biology
- School of Life Sciences
- Shandong Normal University
- Jinan
- China
| | - Xingjie Wang
- Shandong Provincial Key Laboratory of Animal Resistant Biology
- School of Life Sciences
- Shandong Normal University
- Jinan
- China
| | - Guorong Li
- Shandong Provincial Key Laboratory of Animal Resistant Biology
- School of Life Sciences
- Shandong Normal University
- Jinan
- China
| |
Collapse
|
9
|
Ruan J, Liu Z, Qiu F, Shi H, Wang M. Simultaneous Quantification of Five Sesquiterpene Components after Ultrasound Extraction in Artemisia annua L. by an Accurate and Rapid UPLC⁻PDA Assay. Molecules 2019; 24:molecules24081530. [PMID: 31003442 PMCID: PMC6515398 DOI: 10.3390/molecules24081530] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 04/12/2019] [Accepted: 04/16/2019] [Indexed: 11/16/2022] Open
Abstract
Objective: To develop an accurate and rapid ultra-performance liquid chromatography (UPLC) coupled with a photodiode array (PDA) method for the simultaneous determination of artemisinin (Art), arteannuin B (Art B), arteannuin C (Art C), dihydroartemisinic acid (DHAA) and artemisinic acid (AA) in Artemisia annua L. Methodology: Chromatography separation was performed on an ACQUITY UPLC BEH C18 Column with isocratic elution; the mobile phase was 0.1% formic acid aqueous solution (A) and acetonitrile (B) (A:B = 40:60, v/v). Data were recorded at an ultraviolet (UV) wavelength of 191 nm for Art, Art C, DHAA and AA, and 206 nm for Art B. Results: The calibration curves of the five sesquiterpene components were all linear with correlation coefficients more than 0.9990. The linear ranges were 31.44–1572 μg/mL, 25.48–1274 μg/mL, 40.56–2028 μg/mL, 31.44–1572 μg/mL and 26.88–1396 μg/mL for Art, Art B, Art C, DHAA and AA, respectively. The precision ranged from 0.08% to 2.88%, the stability was from 0.96% to 1.66%, and the repeatability was all within 2.42% and had a mean extraction recovery of 96.5% to 100.6%. Conclusion: The established UPLC–PDA method would be valuable for improving the quantitative analysis of sesquiterpene components in Artemisia annua L.
Collapse
Affiliation(s)
- Jiaqi Ruan
- School of Traditional Chinese Medicine, Capital Medical University, No.10, Xitoutiao, You'anmenwai, Fengtai District, Beijing 100069, China.
| | - Zhengyue Liu
- School of Traditional Chinese Medicine, Capital Medical University, No.10, Xitoutiao, You'anmenwai, Fengtai District, Beijing 100069, China.
| | - Feng Qiu
- School of Traditional Chinese Medicine, Capital Medical University, No.10, Xitoutiao, You'anmenwai, Fengtai District, Beijing 100069, China.
| | - Henan Shi
- School of Traditional Chinese Medicine, Capital Medical University, No.10, Xitoutiao, You'anmenwai, Fengtai District, Beijing 100069, China.
| | - Manyuan Wang
- School of Traditional Chinese Medicine, Capital Medical University, No.10, Xitoutiao, You'anmenwai, Fengtai District, Beijing 100069, China.
| |
Collapse
|
10
|
Pérez-Fernández V, Mainero Rocca L, Tomai P, Fanali S, Gentili A. Recent advancements and future trends in environmental analysis: Sample preparation, liquid chromatography and mass spectrometry. Anal Chim Acta 2017; 983:9-41. [DOI: 10.1016/j.aca.2017.06.029] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2017] [Revised: 05/30/2017] [Accepted: 06/01/2017] [Indexed: 02/06/2023]
|
11
|
Zhou L, Yang G, Sun H, Tang J, Yang J, Wang Y, Garran TA, Guo L. Effects of different doses of cadmium on secondary metabolites and gene expression in Artemisia annua L. Front Med 2017; 11:137-146. [PMID: 27928651 DOI: 10.1007/s11684-016-0486-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 08/26/2016] [Indexed: 11/26/2022]
Abstract
This study aims to elucidate the underlying molecular mechanisms of artemisinin accumulation induced by Cd. The effects of different Cd concentrations (0, 20, 60, and 120 μmol/L) on the biosynthesis of Artemisia annua L. were examined. Intermediate and end products were quantified by HPLC-ESI-MS/MS analysis. The expression of key biosynthesis enzymes was also determined by qRT-PCR. The results showed that the application of treatment with 60 and 120 μmol/L Cd for 3 days significantly improved the biosynthesis of artemisinic acid, arteannuin B, and artemisinin. The concentrations of artemisinic acid, arteannuin B, and artemisinin in the 120 μmol/L Cd-treated group were 2.26, 102.08, and 33.63 times higher than those in the control group, respectively. The concentrations of arteannuin B and artemisinin in 60 μmol/L Cd-treated leaves were 61.10 and 26.40 times higher than those in the control group, respectively. The relative expression levels of HMGR, FPS, ADS, CYP71AV1, DBR2, ALDH1, and DXR were up-regulated in the 120 μmol/L Cd-treated group because of increased contents of artemisinic metabolites after 3 days of treatment. Hence, appropriate doses of Cd can increase the concentrations of artemisinic metabolites at a certain time point by up-regulating the relative expression levels of key enzyme genes involved in artemisinin biosynthesis.
Collapse
Affiliation(s)
- Liangyun Zhou
- The State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Guang Yang
- The State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Haifeng Sun
- College of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, 030006, China
| | - Jinfu Tang
- The State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Jian Yang
- The State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Yizhan Wang
- Eye Hospital, China Academy of Chinese Medical Sciences, Beijing, 100523, China
| | - Thomas Avery Garran
- The State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Lanping Guo
- The State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| |
Collapse
|
12
|
Yan ZQ, Wang DD, Ding L, Cui HY, Jin H, Yang XY, Yang JS, Qin B. Mechanism of artemisinin phytotoxicity action: induction of reactive oxygen species and cell death in lettuce seedlings. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2015; 88:53-9. [PMID: 25658194 DOI: 10.1016/j.plaphy.2015.01.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Accepted: 01/29/2015] [Indexed: 05/27/2023]
Abstract
Artemisinin has been recognized as an allelochemical that inhibits growth of several plant species. However, its mode of action is not well clarified. In this study, the mechanism of artemisinin phytotoxicity on lettuce seedlings was investigated. Root and shoot elongation of lettuce seedlings were inhibited by artemisinin in a concentration-dependent manner. The compound effectively arrested cell division and caused loss of cell viability in root tips of lettuce. Overproduction of reactive oxygen species (ROS) was induced by artemisinin. Lipid peroxidation, proline overproduction and reduction of chlorophyll content in lettuce seedlings were found after treatments. These results suggested that artemisinin could induce ROS overproduction, which caused membrane lipids peroxidation and cell death, and impacted mitosis and physiological processes, resulting in growth inhibition of receptor plants.
Collapse
Affiliation(s)
- Zhi-Qiang Yan
- Key Laboratory of Chemistry of Northwestern Plant Resources of CAS and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Dan-Dan Wang
- College of Life Science, Northwest Normal University, Lanzhou 730070, China
| | - Lan Ding
- College of Life Science, Northwest Normal University, Lanzhou 730070, China
| | - Hai-Yan Cui
- Key Laboratory of Chemistry of Northwestern Plant Resources of CAS and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Hui Jin
- Key Laboratory of Chemistry of Northwestern Plant Resources of CAS and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China; Key Laboratory of Tobacco Diseases and Insect Pests Monitoring Controlling and Integrated Management, Institute of Tobacco Research, Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Xiao-Yan Yang
- Key Laboratory of Chemistry of Northwestern Plant Resources of CAS and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Jian-She Yang
- College of Life Science, Northwest Normal University, Lanzhou 730070, China
| | - Bo Qin
- Key Laboratory of Chemistry of Northwestern Plant Resources of CAS and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China.
| |
Collapse
|
13
|
Krawczyk T, Baj S. Review: Advances in the Determination of Peroxides by Optical and Spectroscopic Methods. ANAL LETT 2014. [DOI: 10.1080/00032719.2014.900781] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
14
|
Amorim MHR, Gil da Costa RM, Lopes C, Bastos MMSM. Sesquiterpene lactones: adverse health effects and toxicity mechanisms. Crit Rev Toxicol 2014; 43:559-79. [PMID: 23875764 DOI: 10.3109/10408444.2013.813905] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Sesquiterpene lactones (STLs) present a wide range of biological activities, mostly based on their alkylating capabilities, which underlie their therapeutic potential. These compounds are the active constituents of a variety of plants, frequently used as herbal remedies. STLs such as artemisinin and its derivatives are in use as first-line antimalarials while others, such as parthenolide, have recently reached cancer clinical trials. However, the toxicological profile of these compounds must be thoroughly characterized, since the same properties that make STL useful medicines can also cause severe toxicity. STL-containing plants have long been known to induce a contact dermatitis in exposed farm workers, and also to cause several toxic syndromes in farm animals. More recently, concerns are been raised regarding the genotoxic potential of these compounds and the embryotoxicity of artemisinins. A growing number of STLs are being reported to be mutagenic in different in vitro and in vivo assays. As yet no systematic studies have been published, but the genotoxicity of STLs seems to depend not so much on direct DNA alkylation as on oxidative DNA damage and other partially elucidated mechanisms. As the medicinal use of these compounds increases, further studies of their toxic potential are needed, especially those focusing on the structural determinants of genotoxicity and embryotoxicity.
Collapse
Affiliation(s)
- M Helena R Amorim
- Chemical Engineering Department, Faculty of Engineering, University of Porto, Portugal
| | | | | | | |
Collapse
|
15
|
Knudsmark Jessing K, Duke SO, Cedergreeen N. Potential ecological roles of artemisinin produced by Artemisia annua L. J Chem Ecol 2014; 40:100-17. [PMID: 24500733 DOI: 10.1007/s10886-014-0384-6] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Revised: 10/16/2013] [Accepted: 01/21/2014] [Indexed: 11/24/2022]
Abstract
Artemisia annua L. (annual wormwood, Asteraceae) and its secondary metabolite artemisinin, a unique sesquiterpene lactone with an endoperoxide bridge, has gained much attention due to its antimalarial properties. Artemisinin has a complex structure that requires a significant amount of energy for the plant to synthesize. So, what are the benefits to A. annua of producing this unique compound, and what is the ecological role of artemisinin? This review addresses these questions, discussing evidence of the potential utility of artemisinin in protecting the plant from insects and other herbivores, as well as pathogens and competing plant species. Abiotic factors affecting the artemisinin production, as well as mechanisms of artemisinin release to the surroundings also are discussed, and new data are provided on the toxicity of artemisinin towards soil and aquatic organisms. The antifungal and antibacterial effects reported are not very pronounced. Several studies have reported that extracts of A. annua have insecticidal effects, though few studies have proven that artemisinin could be the single compound responsible for the observed effects. However, the pathogen(s) or insect(s) that may have provided the selection pressure for the evolution of artemisinin synthesis may not have been represented in the research thus far conducted. The relatively high level of phytotoxicity of artemisinin in soil indicates that plant/plant allelopathy could be a beneficial function of artemisinin to the producing plant. The release routes of artemisinin (movement from roots and wash off from leaf surfaces) from A. annua to the soil support the rationale for allelopathy.
Collapse
Affiliation(s)
- Karina Knudsmark Jessing
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Denmark,
| | | | | |
Collapse
|
16
|
Vandercruyssen K, D’Hondt M, Vergote V, Jansen H, Burvenich C, De Spiegeleer B. LC-UV/MS quality analytics of paediatric artemether formulations. J Pharm Anal 2013; 4:37-52. [PMID: 29403867 PMCID: PMC5761056 DOI: 10.1016/j.jpha.2013.03.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2012] [Accepted: 03/26/2013] [Indexed: 11/18/2022] Open
Abstract
A highly selective and stability-indicating HPLC-method, combined with appropriate sample preparation steps, is developed for β-artemether assay and profiling of related impurities, including possible degradants, in a complex powder for oral suspension. Following HPLC conditions allowed the required selectivity: a Prevail organic acid (OA) column (250 mm×4.6 mm, 5 μm), flow rate set at 1.5 mL/min combined with a linear gradient (where A=25 mM phosphate buffer (pH 2.5), and B=acetonitrile) from 30% to 75% B in a runtime of 60 min. Quantitative UV-detection was performed at 210 nm. Acetonitrile was applied as extraction solvent for sample preparation. Using acetonitrile-water mixtures as extraction solvent, a compartmental behaviour by a non-solving excipient-bound fraction and an artemether-solubilising free fraction of solvent was demonstrated, making a mobile phase based extraction not a good choice. Method validation showed that the developed HPLC-method is considered to be suitable for its intended regulatory stability-quality characterisation of β-artemether paediatric formulations. Furthermore, LC-MS on references as well as on stability samples was performed allowing identity confirmation of the β-artemether related impurities. MS-fragmentation scheme of β-artemether and its related substances is proposed, explaining the m/z values of the in-source fragments obtained.
Collapse
Affiliation(s)
- Kirsten Vandercruyssen
- Drug Quality and Registration (DruQuaR) group, Faculty of Pharmaceutical Sciences, Ghent University, Harelbekestraat 72, B-9000 Ghent, Belgium
| | - Matthias D’Hondt
- Drug Quality and Registration (DruQuaR) group, Faculty of Pharmaceutical Sciences, Ghent University, Harelbekestraat 72, B-9000 Ghent, Belgium
| | - Valentijn Vergote
- Drug Quality and Registration (DruQuaR) group, Faculty of Pharmaceutical Sciences, Ghent University, Harelbekestraat 72, B-9000 Ghent, Belgium
| | - Herwig Jansen
- Dafra Pharma International, Slachthuisstraat 30/7, B-2300 Turnhout, Belgium
| | - Christian Burvenich
- Department of Physiology and Biometrics, Faculty of Veterinary Medicine, Ghent University, B-9820 Merelbeke, Belgium
| | - Bart De Spiegeleer
- Drug Quality and Registration (DruQuaR) group, Faculty of Pharmaceutical Sciences, Ghent University, Harelbekestraat 72, B-9000 Ghent, Belgium
- Corresponding author. Tel.: +32 9 264 8100; fax: +32 9 264 8193.
| |
Collapse
|
17
|
Affiliation(s)
- Braulio M Fraga
- Instituto de Productos Naturales y Agrobiología, CSIC, 38206-La Laguna, Tenerife, Canary Islands, Spain.
| |
Collapse
|