1
|
Maxwell EA, King TI, Kamble SH, Raju KSR, Berthold EC, León F, Avery BA, McMahon LR, McCurdy CR, Sharma A. Pharmacokinetics and Safety of Mitragynine in Beagle Dogs. PLANTA MEDICA 2020; 86:1278-1285. [PMID: 32693425 PMCID: PMC7907416 DOI: 10.1055/a-1212-5475] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Mitragynine is the most abundant psychoactive alkaloid derived from the leaves of Mitragyna speciosa (kratom), a tropical plant indigenous to regions of Southeast Asia. Mitragynine displays a moderate affinity to opioid receptors, and kratom is often self-prescribed to treat pain and/or opioid addiction. The purpose of this study was to investigate the safety and pharmacokinetic properties of mitragynine in the dog. Single dose oral (5 mg/kg) and intravenous (0.1 mg/kg) pharmacokinetic studies of mitragynine were performed in female beagle dogs. The plasma concentrations of mitragynine were measured using ultra-performance liquid chromatography coupled with a tandem mass spectrometer, and the pharmacokinetic properties were analyzed using non-compartmental analysis. Following intravenous administration, mitragynine showed a large volume of distribution (Vd, 6.3 ± 0.6 L/kg) and high clearance (Cl, 1.8 ± 0.4 L/h/kg). Following oral mitragynine dosing, first peak plasma (Cmax, 278.0 ± 47.4 ng/mL) concentrations were observed within 0.5 h. A potent mu-opioid receptor agonist and active metabolite of mitragynine, 7-hydroxymitragynine, was also observed with a Cmax of 31.5 ± 3.3 ng/mL and a Tmax of 1.7 ± 0.6 h in orally dosed dogs while its plasma concentrations were below the lower limit of quantification (1 ng/mL) for the intravenous study. The absolute oral bioavailability of mitragynine was 69.6%. Administration of mitragynine was well tolerated, although mild sedation and anxiolytic effects were observed. These results provide the first detailed pharmacokinetic information for mitragynine in a non-rodent species (the dog) and therefore also provide significant information for allometric scaling and dose predictions when designing clinical studies.
Collapse
Affiliation(s)
- Elizabeth A. Maxwell
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL, USA
| | - Tamara I. King
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, FL, USA
| | - Shyam H. Kamble
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, FL, USA
- Translational Drug Development Core, Clinical and Translational Science Institute, University of Florida, Gainesville, FL, USA
| | - Kanumuri Siva Rama Raju
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, FL, USA
- Translational Drug Development Core, Clinical and Translational Science Institute, University of Florida, Gainesville, FL, USA
| | - Erin C. Berthold
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, FL, USA
| | - Francisco León
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL, USA
| | - Bonnie A. Avery
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, FL, USA
- Translational Drug Development Core, Clinical and Translational Science Institute, University of Florida, Gainesville, FL, USA
| | - Lance R. McMahon
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, FL, USA
| | - Christopher R. McCurdy
- Translational Drug Development Core, Clinical and Translational Science Institute, University of Florida, Gainesville, FL, USA
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL, USA
| | - Abhisheak Sharma
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, FL, USA
- Translational Drug Development Core, Clinical and Translational Science Institute, University of Florida, Gainesville, FL, USA
| |
Collapse
|
2
|
Almomen A, Maher HM, Alzoman NZ, Shehata SM, Alsubaie A. Flavoured water consumption alters pharmacokinetic parameters and increases exposure of erlotinib and gefitinib in a preclinical study using Wistar rats. PeerJ 2020; 8:e9881. [PMID: 33024629 PMCID: PMC7518156 DOI: 10.7717/peerj.9881] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 08/15/2020] [Indexed: 12/17/2022] Open
Abstract
Background Erlotinib (ERL) and Gefitinib (GEF) are considered first line therapy for the management of non-small cell lung carcinoma (NSCLC). Like other tyrosine kinase inhibitors (TKIs), ERL and GEF are mainly metabolized by the cytochrome P450 (CYP450) CYP3A4 isoform and are substrates for transporter proteins with marked inter-/intra-individual pharmacokinetic (PK) variability. Therefore, ERL and GEF are candidates for drug-drug and food-drug interactions with a consequent effect on drug exposure and/or drug-related toxicities. In recent years, the consumption of flavoured water (FW) has gained in popularity. Among multiple ingredients, fruit extracts, which might constitute bioactive flavonoids, can possess an inhibitory effect on the CYP450 enzymes or transporter proteins. Therefore, in this study we investigated the effects of different types of FW on the PK parameters of ERL and GEF in Wistar rats. Methods ERL and GEF PK parameters in different groups of rats after four weeks consumption of different flavours of FW, namely berry, peach, lime, and pineapple, were determined from plasma drug concentrations using ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). Results Data indicated that tested FWs altered the PK parameters of both ERL and GEF differently. Lime water had the highest impact on most of ERL and GEF PK parameters, with a significant increase in Cmax (95% for ERL, 58% for GEF), AUC0-48 (111% for ERL, 203% for GEF), and AUC0-∞ (200% for ERL, 203% for GEF), along with a significant decrease in the apparent oral clearance of both drugs (65% for ERL, 67% for GEF). The order by which FW affected the PK parameters for ERL and GEF was as follows: lime > pineapple > berry > peach. Conclusion The present study indicates that drinking FW could be of significance in rats receiving ERL or GEF. Our results indicate that the alteration in PKs was mostly recorded with lime, resulting in an enhanced bioavailability, and reduced apparent oral clearance of the drugs. Peach FW had a minimum effect on the PK parameters of ERL and no significant effect on GEF PKs. Accordingly, it might be of clinical importance to evaluate the PK parameters of ERL and GEF in human subjects who consume FW while receiving therapy.
Collapse
Affiliation(s)
- Aliyah Almomen
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Hadir M Maher
- Faculty of Pharmacy, Department of Pharmaceutical Analytical Chemistry, Alexandria University, Alexandria, Egypt
| | - Nourah Z Alzoman
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Shereen M Shehata
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Amal Alsubaie
- Biological Products Evaluation Directorate, Saudi Food and Drug Authority, Riyadh, Saudi Arabia
| |
Collapse
|
3
|
Zhang D, Chen B, Tang J, Niu M, Zhu R, Li L, Wang L, Tian Y, Li R, Jia Q, Zhao D, Mo F, Romanenko E, Orekhov A, Gao S, Brömme D. Comparative study of the pharmacokinetic parameters for salidroside in normal and estrogen-deficient female rats after oral administration of an aqueous extract of Fructus Ligustri Lucidi using a validated ultra-performance liquid chromatography mass spectrometry/mass spectrometry method. Pharmacogn Mag 2020. [DOI: 10.4103/pm.pm_278_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
4
|
Sun R, Basu S, Zeng M, Sunsong R, Li L, Ghose R, Wang W, Liu Z, Hu M, Gao S. Xiao-Chai-Hu-Tang (XCHT) Intervening Irinotecan’s Disposition: The Potential of XCHT in Alleviating Irinotecan-Induced Diarrhea. Curr Cancer Drug Targets 2019; 19:551-560. [DOI: 10.2174/1568009618666181029153255] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 09/23/2018] [Accepted: 09/28/2018] [Indexed: 12/14/2022]
Abstract
<P>Background: Diarrhea is a severe side effect of irinotecan, a pro-drug of SN-38 used for the treatment of many types of cancers. Pre-clinical and clinical studies showed that decreasing the colonic exposure of SN-38 can mitigate irinotecan-induced diarrhea. </P><P> Objective: The purpose of this study is to evaluate the anti-diarrhea potential of Xiao-Chai-Hu-Tang (XCHT), a traditional Chinese herbal formula, against irinotecan-induced diarrhea by determining if and how XCHT alters the disposition of SN-38. </P><P> Methods: LC-MS/MS was used to quantify the concentrations of irinotecan and its major metabolites (i.e., SN-38, SN-38G). An Intestinal perfusion model was used to determine the effect of XCHT on the biliary and intestinal secretions of irinotecan, SN-38, and SN-38G. Pharmacokinetic (PK) studies were performed to determine the impact of XCHT on the blood and fecal concentrations of irinotecan, SN-38, and SN-38G. </P><P> Results: The results showed that XCHT significantly inhibits both biliary and intestinal excretions of irinotecan, SN-38, and SN-38G (range: 35% to 95%). PK studies revealed that the fecal concentrations of irinotecan and SN-38 were significantly decreased from 818.35 ± 120.2 to 411.74 ± 138.83 µg/g or from 423.95 ± 76.44 to 245.63 ± 56.72 µg/g (p<0.05) by XCHT, respectively, suggesting the colonic exposure of SN-38 is significantly decreased by XCHT. PK studies also showed that the plasma concentrations of irinotecan, SN-38, and SN-38G were not affected by XCHT. </P><P> Conclusion: In conclusion, XCHT significantly decreased the exposure of SN-38 in the gut without affecting its plasma level, thereby possessing the potential of alleviating irinotecan-induced diarrhea without negatively impacting its therapeutic efficacy.</P>
Collapse
Affiliation(s)
- Rongjin Sun
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 51006, China
| | - Sumit Basu
- Department of Pharmacological and Pharmaceutical Sciences, The University of Houston, 1441 Moursund Street, Houston, TX 77030, United States
| | - Min Zeng
- Department of Pharmacological and Pharmaceutical Sciences, The University of Houston, 1441 Moursund Street, Houston, TX 77030, United States
| | - Robin Sunsong
- Department of Pharmaceutical and Environmental Sciences, Texas Southern University, 3100 Cleburne Street, Houston, TX 77004, United States
| | - Li Li
- Department of Pharmacological and Pharmaceutical Sciences, The University of Houston, 1441 Moursund Street, Houston, TX 77030, United States
| | - Romi Ghose
- Department of Pharmacological and Pharmaceutical Sciences, The University of Houston, 1441 Moursund Street, Houston, TX 77030, United States
| | - Wei Wang
- Department of Pharmacological and Pharmaceutical Sciences, The University of Houston, 1441 Moursund Street, Houston, TX 77030, United States
| | - Zhongqiu Liu
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 51006, China
| | - Ming Hu
- Department of Pharmacological and Pharmaceutical Sciences, The University of Houston, 1441 Moursund Street, Houston, TX 77030, United States
| | - Song Gao
- Department of Pharmaceutical and Environmental Sciences, Texas Southern University, 3100 Cleburne Street, Houston, TX 77004, United States
| |
Collapse
|
5
|
López de las Hazas MC, Rubió L, Kotronoulas A, de la Torre R, Solà R, Motilva MJ. Dose effect on the uptake and accumulation of hydroxytyrosol and its metabolites in target tissues in rats. Mol Nutr Food Res 2015; 59:1395-9. [DOI: 10.1002/mnfr.201500048] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Revised: 03/06/2015] [Accepted: 03/17/2015] [Indexed: 01/16/2023]
Affiliation(s)
- Maria-Carmen López de las Hazas
- Food Technology Department; Agrotecnio Research Center, Escuela Técnica Superior de Ingeniería Agraria, University of Lleida; Lleida Spain
| | - Laura Rubió
- Food Technology Department; Agrotecnio Research Center, Escuela Técnica Superior de Ingeniería Agraria, University of Lleida; Lleida Spain
| | - Aristotelis Kotronoulas
- Human Pharmacology and Clinical Neurociences Research Group; IMIM-Institut, Hospital del Mar d'Investigaciones Mèdiques, Barcelona; Spain
- Pompeu Fabra University (CEXS-UPF); Barcelona Spain
| | - Rafael de la Torre
- Human Pharmacology and Clinical Neurociences Research Group; IMIM-Institut, Hospital del Mar d'Investigaciones Mèdiques, Barcelona; Spain
- Cardiovascular Risk and Nutrition Research Group; REGICOR Study Group, IMIM-Research Institute Hospital del Mar; Barcelona Spain
| | - Rosa Solà
- Unitat de Recerca en Lípids i Arteriosclerosis; CIBERDEM, St. Joan de Reus University Hospital, IISPV, Facultat de Medicina i Ciències de la Salut, Universitat Rovira i Virgili; Reus Spain
| | - Maria-José Motilva
- Food Technology Department; Agrotecnio Research Center, Escuela Técnica Superior de Ingeniería Agraria, University of Lleida; Lleida Spain
| |
Collapse
|
6
|
Leung L, Bhakta A, Cotangco K, Al-Nakkash L. Genistein stimulates jejunum chloride secretion via an Akt-mediated pathway in intact female mice. Cell Physiol Biochem 2015; 35:1317-25. [PMID: 25721972 PMCID: PMC4386721 DOI: 10.1159/000373953] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/08/2015] [Indexed: 11/19/2022] Open
Abstract
Background/Aims We have previously shown that daily subcutaneous injections with the naturally occurring phytoestrogen genistein (600 mg genistein/kg body weight/day, 600G) results in a significantly increased basal intestinal chloride, Cl−, secretion (Isc, a measure of transepithelial secretion) in intact C57BL/6J female mice after 1-week of treatment, compared to controls (DMSO vehicle injected). Removal of endogenous estrogen via ovariectomy (OVX) had no effect on the 600G-mediated increase in basal Isc. Methods Given the estrogen-like characteristics of genistein, we compared the effects of daily estradiol (E2) injections (10 mg E2/kg body weight/day, 10E2) on basal Isc in intact and OVX mice. In intact mice, 10E2 was without effect on basal Isc, however, in OVX mice, 10E2 significantly increased basal Isc (mimicked 600G). The goal of the current study was to characterize the intracellular signaling pathways responsible for mediating 600G- or 10E2-stimulated increases in basal Isc in intact female or OVX mice. Results We measured total protein expression in isolated segments of jejunum using western blot from the following six groups of mice; intact or OVX with; 600G, 10E2 or control. The proteins of interest were: Akt, p-Akt, p-PDK1, p-PTEN, p-c-Raf, p-GSK-3β, rap-1 and ERK1/2. All blots were normalized to GAPDH levels (n = 6–18/group). Conclusion These data suggest that the presence of the endogenous sex steroid, estrogen, modifies the intracellular signaling pathway required to mediate Cl− secretion when the intestine is exposed to exogenous 600G or E2. These studies may have relevance for designing pharmacological tools for women with intestinal chloride secretory dysfunctions.
Collapse
Affiliation(s)
- Lana Leung
- Department of Physiology, Midwestern University, Glendale, AZ, USA
| | | | | | | |
Collapse
|
7
|
Liu W, Kulkarni K, Hu M. Gender-dependent differences in uridine 5'-diphospho-glucuronosyltransferase have implications in metabolism and clearance of xenobiotics. Expert Opin Drug Metab Toxicol 2013; 9:1555-69. [DOI: 10.1517/17425255.2013.829040] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
8
|
Cutts JK, Peavy TR, Moore DR, Prasain J, Barnes S, Kim H. Ovariectomy lowers urine levels of unconjugated (+)-catechin, (–)-epicatechin, and their methylated metabolites in rats fed grape seed extract. Horm Mol Biol Clin Investig 2013; 16:129-38. [DOI: 10.1515/hmbci-2013-0044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Accepted: 10/29/2013] [Indexed: 11/15/2022]
Abstract
AbstractSteroid hormones modulate expression of enzymes that metabolize xenobiotics, including dietary supplements. Half of the human population undergoes menopause, yet the effect of this age-related loss of ovarian steroid hormones on the metabolism of dietary supplements has yet to be determined. Grape seed extract (GSE) is a dietary supplement comprised of monomeric and oligomeric catechins and has health benefits in models of age-related diseases. We hypothesized that surgically-induced loss of ovarian hormones would increase methylation, glucuronidation, and/or sulfation of the grape seed polyphenols (+)-catechin and (–)-epicatechin. Fourteen-week-old spontaneously hypertensive rats (SHRs) were ovariectomized (OVX) or sham-OVX. At 17 weeks of age, SHRs were gavaged with vehicle (water) or GSE (300 mg/kg body weight) once daily for 6 days. Urinary excretion of (+)-catechin, (–)-epicatechin, and their metabolites was analyzed by liquid chromatography-mass spectrometry. Although total urinary output of (+)-catechin, (–)-epicatechin, and their methylated metabolites was unaffected by OVX, the amounts of (+)-catechin, (–)-epicatechin and their methylated metabolites that were not conjugated with glucuronic acid or sulfate were lowered by OVX. Specifically, urine from OVX SHRs administered GSE contained 30% higher proportions (91.8% vs. 62.3%) of glucuronidated (+)-catechin and (–)-epicatechin and glucuronidated methyl (+)-catechin and methyl (–)-epicatechin than urine from sham-OVX SHRs. However, there were no differences in urinary levels of total methylated or sulfated catechins in OVX SHRs. This is the first quantitative characterization of metabolites of grape seed polyphenols in a model of menopause; it indicates that ovariectomy causes either an increase in expression and/or activity of select uridine 5′-diphospho-glucuronosyltransferase(s).
Collapse
|