1
|
Tan L, Ge J, Jie G, Zhou H, Wang H. Ultrasensitive electrochemiluminescence biosensor based on dual quenching effects of silver nanoclusters and multiple cycling amplification for detection of ATP. Talanta 2024; 271:125668. [PMID: 38237282 DOI: 10.1016/j.talanta.2024.125668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 01/09/2024] [Accepted: 01/12/2024] [Indexed: 02/24/2024]
Abstract
In this work, an electrochemiluminescence (ECL) biosensor based on dual ECL quenching effects of silver nanoclusters (Ag NCs) and multiple cycling amplification was designed to achieve ultrasensitive detection of ATP. The specific recognition of target ATP to aptamer initiated multiple cycling amplification, and a small amount of target was converted into a large number of DNA product chains (S1) by amplification. After S1 opened hairpin DNA 2 (HP2), Ag NCs approached the surface of CdS quantum dots (QDs) modified-electrode by complementary DNA, resulting in a significant decrease of ECL intensity from CdS QDs. The quenching principle is as follows. Firstly, the absorption spectrum of Ag NCs overlaps well with the ECL emission spectrum of CdS QDs, leading to effective ECL resonance energy transfer (ECL-RET); Secondly, Ag NCs could catalyze electrochemical reduction of K2S2O8, leading to consumption of ECL co-reactant and reducing ECL of QDs. The double-ECL quenching achieved ultrasensitive biosensing detection of ATP with a wide range from 1 aM to 1 pM. This present work reported new principle of double-quenching QDs ECL by Ag NCs, and developed a novel ECL biosensor by combining with multiple cycle amplification technique, which has great contribution to the development of QDs ECL and biosensing applications.
Collapse
Affiliation(s)
- Lu Tan
- Department of Blood Transfusion, the Affiliated Hospital of Qingdao University, Qingdao, 266042, PR China; Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering. Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Junjun Ge
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering. Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Guifen Jie
- Department of Blood Transfusion, the Affiliated Hospital of Qingdao University, Qingdao, 266042, PR China; Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering. Qingdao University of Science and Technology, Qingdao 266042, PR China.
| | - Hong Zhou
- Department of Blood Transfusion, the Affiliated Hospital of Qingdao University, Qingdao, 266042, PR China; Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering. Qingdao University of Science and Technology, Qingdao 266042, PR China.
| | - Haiyan Wang
- Department of Blood Transfusion, the Affiliated Hospital of Qingdao University, Qingdao, 266042, PR China.
| |
Collapse
|
2
|
Liu Z, Qiao D, Li H, Chen L. S-methyl-L-cysteine sulfoxide as a characteristic marker for rape royal jelly: Insights from untargeted and targeted metabolomic analysis. Food Chem 2024; 437:137880. [PMID: 37950973 DOI: 10.1016/j.foodchem.2023.137880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 10/06/2023] [Accepted: 10/26/2023] [Indexed: 11/13/2023]
Abstract
Among the varieties of royal jelly (RJ), often referred to as "liquid gold", rape royal jelly (RRJ) is popular because of its superior nutritional value. However, existing physicochemical indicators fall short in identifying different types of RJ. Utilizing a UPLC-Q-Exactive Orbitrap-MS technique combined with metabolomics, this study was the first to identify S-methyl-L-cysteine sulfoxide (SMCSO) in RRJ, thereby it from other types of RJ. Subsequent to this observation, a method based on UPLC-QqQ-MS/MS, was developed and optimized for precise SMCSO quantification in RRJ, achieving a detection range of 77.55-112.68 mg/kg. Furthermore, an analysis of honey and bee bread harvested from the same batch of rape plants confirmed the presence of SMCSO, with the highest concentration detected in rape bee bread. In light of these findings, SMCSO emerges as a potent authenticity marker for RRJ.
Collapse
Affiliation(s)
- Zhaolong Liu
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China; Key Laboratory of Risk Assessment for Quality and Safety of Bee Products, Ministry of Agriculture and Rural Affairs, Beijing 100093, China
| | - Dong Qiao
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China; Key Laboratory of Risk Assessment for Quality and Safety of Bee Products, Ministry of Agriculture and Rural Affairs, Beijing 100093, China; Fujian Agriculture and Forestry University, Fuzhou City 350002, China
| | - Hongxia Li
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China; Key Laboratory of Risk Assessment for Quality and Safety of Bee Products, Ministry of Agriculture and Rural Affairs, Beijing 100093, China
| | - Lanzhen Chen
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China; Key Laboratory of Risk Assessment for Quality and Safety of Bee Products, Ministry of Agriculture and Rural Affairs, Beijing 100093, China.
| |
Collapse
|
3
|
Chen L, Ning F, Zhao L, Ming H, Zhang J, Yu W, Yi S, Luo L. Quality assessment of royal jelly based on physicochemical properties and flavor profiles using HS-SPME-GC/MS combined with electronic nose and electronic tongue analyses. Food Chem 2022; 403:134392. [DOI: 10.1016/j.foodchem.2022.134392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 09/19/2022] [Accepted: 09/20/2022] [Indexed: 11/26/2022]
|
4
|
Wang X, Luo X. Precursor Quantitation Methods for Next Generation Food Production. Front Bioeng Biotechnol 2022; 10:849177. [PMID: 35360389 PMCID: PMC8960114 DOI: 10.3389/fbioe.2022.849177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 02/22/2022] [Indexed: 11/21/2022] Open
Abstract
Food is essential for human survival. Nowadays, traditional agriculture faces challenges in balancing the need of sustainable environmental development and the rising food demand caused by an increasing population. In addition, in the emerging of consumers' awareness of health related issues bring a growing trend towards novel nature-based food additives. Synthetic biology, using engineered microbial cell factories for production of various molecules, shows great advantages for generating food alternatives and additives, which not only relieve the pressure laid on tradition agriculture, but also create a new stage in healthy and sustainable food supplement. The biosynthesis of food components (protein, fats, carbohydrates or vitamins) in engineered microbial cells often involves cellular central metabolic pathways, where common precursors are processed into different proteins and products. Quantitation of the precursors provides information of the metabolic flux and intracellular metabolic state, giving guidance for precise pathway engineering. In this review, we summarized the quantitation methods for most cellular biosynthetic precursors, including energy molecules and co-factors involved in redox-reactions. It will also be useful for studies worked on pathway engineering of other microbial-derived metabolites. Finally, advantages and limitations of each method are discussed.
Collapse
Affiliation(s)
- Xinran Wang
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Xiaozhou Luo
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Shenzhen Institute of Advanced Technology, Shenzhen, China
| |
Collapse
|
5
|
Nucleobases, Nucleosides and Nucleotides Determination in Yeasts Isolated from Extreme Environments. Chromatographia 2022. [DOI: 10.1007/s10337-022-04138-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
6
|
Pastor-Belda M, Fernández-Caballero I, Campillo N, Arroyo-Manzanares N, Hernández-Córdoba M, Viñas P. Hydrophilic interaction liquid chromatography coupled to quadrupole-time-of-flight mass spectrometry for determination of nuclear and cytoplasmatic contents of nucleotides, nucleosides and their nucleobases in food yeasts. TALANTA OPEN 2021. [DOI: 10.1016/j.talo.2021.100064] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
|
7
|
Pan Y, Zhu C, Zeng WB, Fu P, Chen C, Xu BM, Gao ZF. Visual Detection of Adenosine Triphosphate by Taylor Rising: A Simple Point-of-Care Testing Method Based on Rolling Circle Amplification. Chembiochem 2021; 22:3431-3436. [PMID: 34617654 DOI: 10.1002/cbic.202100407] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 10/06/2021] [Indexed: 11/07/2022]
Abstract
Rapid and sensitive point-of-care testing (POCT) is an extremely critical mission in practical applications, especially for rigorous military medicine, home health care, and in the third world. Here, we report a visual POCT method for adenosine triphosphate (ATP) detection based on Taylor rising in the corner of quadratic geometries between two rod surfaces. We discuss the principle of Taylor rising, demonstrating that it is significantly influenced by contact angle, surface tension, and density of the sample, which are controlled by ATP-dependent rolling circle amplification (RCA). In the presence of ATP, RCA reaction effectively suppresses Taylor-rising behavior, due to the increased contact angle, density, and decreased surface tension. Without addition of ATP, untriggered RCA reaction is favorable for Taylor rising, resulting in a significant height. With this proposed method, visual sensitive detection of ATP without the aid of other instruments is realized with only a 5 μL droplet, which has good selectivity and a low detection limit (17 nM). Importantly, this visual method provides a promising POCT tool for user-friendly molecular diagnostics.
Collapse
Affiliation(s)
- Yong Pan
- School of Materials and Chemical Engineering, Hubei University of Technology, Wuhan, 430068, P. R. China
| | - Chen Zhu
- School of Materials and Chemical Engineering, Hubei University of Technology, Wuhan, 430068, P. R. China
| | - Wen Bin Zeng
- School of Materials and Chemical Engineering, Hubei University of Technology, Wuhan, 430068, P. R. China
| | - Pei Fu
- School of Materials and Chemical Engineering, Hubei University of Technology, Wuhan, 430068, P. R. China
| | - Chi Chen
- School of Materials and Chemical Engineering, Hubei University of Technology, Wuhan, 430068, P. R. China
| | - Bao Ming Xu
- School of Materials and Chemical Engineering, Hubei University of Technology, Wuhan, 430068, P. R. China
| | - Zhong Feng Gao
- Collaborative Innovation Center of Tumor Marker Detection Technology, Equipment and Diagnosis-Therapy Integration in Universities of Shandong, Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, College of Chemistry and Chemical Engineering, Linyi University, Linyi, 276005, P. R. China
| |
Collapse
|
8
|
Wang X, Lin ZZ, Hong CY, Huang ZY. Colorimetric detection of hypoxanthine in aquatic products based on the enzyme mimic of cobalt-doped carbon nitride. NEW J CHEM 2021. [DOI: 10.1039/d1nj03467g] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A colorimetric method for the rapid detection of Hx in aquatic products was established based on the peroxidase-like activity of cobalt-doped graphite phase carbon nitride (Co-doped-g-C3N4).
Collapse
Affiliation(s)
- Xin Wang
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, 361021, China
| | - Zheng-Zhong Lin
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, 361021, China
| | - Cheng-Yi Hong
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, 361021, China
| | - Zhi-Yong Huang
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, 361021, China
| |
Collapse
|
9
|
Singh VR, Malegaonkar JN, Bhosale SV, Singh PK. An ATP responsive fluorescent supramolecular assembly based on a polyelectrolyte and an AIE active tetraphenylethylene derivative. Org Biomol Chem 2020; 18:8414-8423. [PMID: 33044482 DOI: 10.1039/d0ob01661f] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
Aggregation induced emission (AIE) active probes have attracted enormous attention due to their wide-spread and ever increasing number of applications in the sensing of chemically and biologically important molecules. AIE probes undergo drastic modulation in their photophysical features from a monomeric to aggregated state. In the current work, we report the aggregation of tetra-anionic Su-TPE (AIE active probe) in the presence of a cationic polyelectrolyte, poly(allylaminehydrochloride) (PAH). A supramolecular assembly is formed by the electrostatic interaction between cationic PAH and anionic Su-TPE molecules, which leads to drastic modulations in the spectral features of anionic Su-TPE upon addition of cationic PAH. The Su-TPE-PAH aggregate assembly has been investigated using various photophysical techniques, such as, ground-state absorption, steady-state and time-resolved emission spectroscopic techniques along with 1H NMR measurements. The Su-TPE-PAH aggregate assembly is found to be responsive towards the ionic strength of the medium and temperature which results in drastic modulations of the spectral features of the emissive supramolecular aggregate assembly. Finally, the specific recognition of an important bioanalyte, ATP, has been achieved using the formed Su-TPE-PAH supramolecular aggregate assembly as a sensing platform which displays good selectivity and high sensitivity towards ATP. Importantly, the developed sensor platform could also function in the human serum matrix, hence, demonstrating the potential of the established sensor platform for real-life applications in near future.
Collapse
Affiliation(s)
- Vidya R Singh
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre, Mumbai 400 085, India.
| | - Jotiram N Malegaonkar
- Polymers and Functional Materials Division, CSIR-Indian Institute of Chemical Technology, Hyderabad - 500 007, India and Academy of Scientific and Innovative Research (AcSIR), Ghaziabad - 201 002, Uttar Pradesh, India
| | - Sidhanath V Bhosale
- Polymers and Functional Materials Division, CSIR-Indian Institute of Chemical Technology, Hyderabad - 500 007, India and Academy of Scientific and Innovative Research (AcSIR), Ghaziabad - 201 002, Uttar Pradesh, India
| | - Prabhat K Singh
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre, Mumbai 400 085, India. and Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai 400 094, India
| |
Collapse
|
10
|
Nie Y, Liu Y, Zhang Q, Zhang F, Ma Q, Su X. Fe 3O 4 NP@ZIF-8/MoS 2 QD-based electrochemiluminescence with nanosurface energy transfer strategy for point-of-care determination of ATP. Anal Chim Acta 2020; 1127:190-197. [PMID: 32800123 DOI: 10.1016/j.aca.2020.06.051] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 06/16/2020] [Accepted: 06/20/2020] [Indexed: 01/28/2023]
Abstract
Herein, Fe3O4 NP@ZIF-8/MoS2 QD-based electrochemiluminescence (ECL) biosensor with nanosurface energy transfer strategy was successfully developed for point-of-care determination of ATP. With the porous structure and poor electron transfer ability, Fe3O4 NP@ZIF-8 complex was first used as an excellent catalyst in ECL. The complex catalyzed the coreactant for more free radicals and hindered the quenching effect of Fe3O4 nanoparticles (NPs) on quantum dots (QDs). In ECL-nanosurface energy transfer (NSET) system, through the specific binding of complementary DNA linked to MoS2 QDs (QDs-cDNA) and aptamer linked to Au NPs, interaction between the point dipole of MoS2 QDs and the collective dipoles of Au NPs quenched ECL signal. When ATP was captured by aptamer, the ECL-NSET system was taken apart, which resulted in the recovery of ECL signal. Moreover, changes of the ECL imaging can be captured by a smartphone, which enabled point-of-care determination of ATP from 0.05 nmol L-1 to 200 nmol L-1 with LOD of 0.015 nmol L-1. With superior specificity and stability, the sensing system showed significant potential about the application of catalysts coated with ZIF and NSET in point-of-care ECL determination.
Collapse
Affiliation(s)
- Yixin Nie
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Yang Liu
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Qian Zhang
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Feng Zhang
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Qiang Ma
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China.
| | - Xingguang Su
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China.
| |
Collapse
|
11
|
Ning Z, Zheng Y, Pan D, Zhang Y, Shen Y. Coupling aptazyme and catalytic hairpin assembly for cascaded dual signal amplified electrochemiluminescence biosensing. Biosens Bioelectron 2019; 150:111945. [PMID: 31818762 DOI: 10.1016/j.bios.2019.111945] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 11/22/2019] [Accepted: 11/30/2019] [Indexed: 01/22/2023]
Abstract
Developing reliable and sensitive detection methods for adenosine triphosphate (ATP) is vital for both clinical diagnosis and food safety. In this work, by coupling aptazyme- and catalytic hairpin assembly (CHA)-based signal amplification and electrochemiluminescence (ECL), an ultrasensitive biosensor for sensing ATP was fabricated using Ru(bpy)32+-doped silica nanoparticles (RuSiO2) as ECL probes and a ferrocene-functionalized hairpin DNA (hairpin-Fc) as quencher. The aptazyme-triggered cleavage of the DNA substrate and the CHA reaction both led to the circular release of trigger DNA, resulting in a significant dual signal amplification, with unprecedented enhancement up to 940-fold. Moreover, the bioconjugation of the DNA substrate with Au@Fe3O4 facilitated the separation and purification of the released trigger DNA, and effectively reduced the background signal. As a result, the as-prepared ECL biosensor exhibited a much lower detection limit of 0.054 pM for ATP, compared to those in previous reports, and showed high reliability for ATP detection in both spiked serum samples and Staphylococcus aureus. This work offers a new perspective for designing nucleic acid-based signal amplification for detecting ATP in bacterial analysis and clinical diagnosis.
Collapse
Affiliation(s)
- Zhenqiang Ning
- Medical School, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 210009, China
| | - Yongjun Zheng
- Medical School, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 210009, China
| | - Deng Pan
- Medical School, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 210009, China
| | - Yuanjian Zhang
- Medical School, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 210009, China
| | - Yanfei Shen
- Medical School, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 210009, China.
| |
Collapse
|
12
|
Wang J, Li W, Xiao J, Ni B, Li J, Wu J, Zhang Q. Hydroxyapatite-embedded monolithic column for selective on-line solid-phase extraction of adenosine triphosphate and its phosphorylated metabolites. J Chromatogr B Analyt Technol Biomed Life Sci 2019; 1128:121769. [PMID: 31476577 DOI: 10.1016/j.jchromb.2019.121769] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 07/19/2019] [Accepted: 08/18/2019] [Indexed: 01/03/2023]
Abstract
A novel hydroxyapatite-embedded monolithic column has been facilely prepared in a stainless-steel column with inner diameter of 2.1 mm by the strong adhesion of urea-formaldehyde (UF) resin and exploited as a sorbent for selective on-line solid-phase extraction (on-line SPE) of adenosine triphosphate and its phosphorylated metabolites. The composition for this preparation, including the amount of hydroxyapatite nanopowders and the porogen were investigated to obtain a suitable monolith with large surface area and satisfactory permeability. Owing to anion exchange interaction of hydroxyapatite and hydrophilic interaction of UF monolithic matrix, the prepared monolith showed good extraction efficiency and selectivity towards these phosphorylated analytes. Several parameters for on-line SPE, including ACN percentage in the sampling solution, collection time span, salt concentration of the eluent, sampling and elution flow rate, were optimized with respect to the extraction efficiencies of the target compounds. Under the optimized conditions, the LODs of the analytes were in the range of 0.01-0.04 μg/g, the recoveries in the spiked samples ranged from 78.3%-92.5% with RSDs <4.7%. Due to the excellent extraction ability towards phosphorylated compounds in practical samples, a simple on-line SPE-HPLC method using hydroxyapatite-embedded monolith as sorbent has been proposed for monitoring freshness of grass carp.
Collapse
Affiliation(s)
- Jiabin Wang
- Institute of Biomedical and Pharmaceutical Technology, Fuzhou University, Fuzhou 350002, China.
| | - Wenbang Li
- Institute of Biomedical and Pharmaceutical Technology, Fuzhou University, Fuzhou 350002, China
| | - Jianhua Xiao
- Institute of Biomedical and Pharmaceutical Technology, Fuzhou University, Fuzhou 350002, China
| | - Bichen Ni
- Institute of Biomedical and Pharmaceutical Technology, Fuzhou University, Fuzhou 350002, China
| | - Jianhua Li
- Institute of Biomedical and Pharmaceutical Technology, Fuzhou University, Fuzhou 350002, China
| | - Jiulin Wu
- Institute of Biomedical and Pharmaceutical Technology, Fuzhou University, Fuzhou 350002, China
| | - Qiqing Zhang
- Institute of Biomedical and Pharmaceutical Technology, Fuzhou University, Fuzhou 350002, China
| |
Collapse
|
13
|
A label-free fluorometric aptasensor for adenosine triphosphate (ATP) detection based on aggregation-induced emission probe. Anal Biochem 2019; 578:60-65. [PMID: 31095938 DOI: 10.1016/j.ab.2019.05.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 05/09/2019] [Accepted: 05/12/2019] [Indexed: 12/17/2022]
Abstract
Based on Aggregation-Induced Emission (AIE), the development of a label-free, simple and sensitive fluorometric aptasensor for adenosine triphosphate (ATP) detection is described. With ATP present, the aptamers will combine with ATP and the conformation of the aptamer will switch from a random coil to an antiparallel G-quadruplex, which impedes the digestion by exonuclease I (Exo I). Addition of 4,4 -(1E,1E)-2,2-(anthracene-9,10-diyl) bis (ethene-2,1-diyl) bis (N,N, N-trimethyl-benzenaminium iodide) (DSAI) into the solution will cause aggregation of DSAI on the surface of the aptamer/ATP complex and consequently give rise to strong emission. Additionally, a good linear relationship was observed under optimized conditions between the fluorescence intensities and the logarithm of ATP concentrations (R2 = 0.9908). The established aptamer sensor was highly sensitive and exhibited a low limit of detection of 32.8 nM, with superior specificity for ATP. It was also used in the quantification of ATP levels in human serum samples and demonstrated satisfactory recoveries in the scope of 93.2%-107.6%. The cellular ATP assay results indicated that the developed method can be used for monitoring ATP concentrations in cell extracts without the interference of other substances in the cells. This method offers several advantages such as simplicity, rapidity, low cost and excellent selectivity, which make it hold great potential for the detection of ATP in bioanalytical and biological studies.
Collapse
|
14
|
Zhong Y, Yi T. MoS 2 quantum dots as a unique fluorescent "turn-off-on" probe for the simple and rapid determination of adenosine triphosphate. J Mater Chem B 2019; 7:2549-2556. [PMID: 32255131 DOI: 10.1039/c9tb00191c] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
We report a one-step hydrothermal method for the preparation of fluorescent molybdenum disulfide quantum dots (MoS2 QDs) and demonstrate the feasibility of fluorescent "turn-off-on" sensing of adenosine triphosphate (ATP) by using the MoS2 QDs. MoS2 QDs having strong blue-green fluorescence at 506 nm and good water-solubility were successfully synthesized by using ammonium tetrathiomolybdate as a single precursor. The fluorescence of MoS2 QDs was first quenched by Fe3+ through the formation of a MoS2 QDs/Fe3+ complex. ATP with the ability to coordinate with Fe3+ caused the dissociation of MoS2 QDs/Fe3+, resulting in the final release of MoS2 QDs and the recovery of fluorescence through a one-step competitive chelating process that took only 10 min to reach equilibrium at room temperature (RT). Facile and rapid sensing of Fe3+ and ATP could thus be achieved through the fluorescent "turn-off-on" strategy. Good linear relationships were obtained over the concentration ranges of 0-200 μM for Fe3+ and 0-140 μM for ATP with a lowest detectable concentration of 5 μM for ATP. Satisfactory results were obtained when the method was applied to a standard addition recovery trial of ATP in human serum samples. No complex surface modification during the preparation or detection process was needed based on the fluorescent "turn-off-on" method of the MoS2 QDs, which suggests its great potential in fluorescent sensing.
Collapse
Affiliation(s)
- Yaping Zhong
- Department of Chemistry and Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, 2005 Songhu Road, Shanghai 200438, China.
| | | |
Collapse
|
15
|
Simultaneous determination of ten neonicotinoid insecticides and two metabolites in honey and Royal-jelly by solid−phase extraction and liquid chromatography−tandem mass spectrometry. Food Chem 2019; 270:204-213. [DOI: 10.1016/j.foodchem.2018.07.068] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 05/25/2018] [Accepted: 07/11/2018] [Indexed: 01/08/2023]
|
16
|
Li X, Yang J, Xie J, Jiang B, Yuan R, Xiang Y. Cascaded signal amplification via target-triggered formation of aptazyme for sensitive electrochemical detection of ATP. Biosens Bioelectron 2017; 102:296-300. [PMID: 29156404 DOI: 10.1016/j.bios.2017.11.005] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 10/08/2017] [Accepted: 11/01/2017] [Indexed: 11/29/2022]
Abstract
The construction of reliable sensors for adenosine triphosphate (ATP) detection gains increasing interest because of its important roles in various enzymatic activities and biological processes. Based on a cascaded, significant signal amplification approach by the integration of the aptazymes and catalytic hairpin assembly (CHA), we have developed a sensitive electrochemical sensor for the detection of ATP. The target ATP leads to the conformational change of the aptazyme sequences and their association with the hairpin substrates to form active aptazymes, in which the hairpin substrates are cyclically cleaved by the metal ion cofactors in buffer to release the enzymatic sequences that can also bind the hairpin substrates to generate active DNAzymes. The catalytic cleavage of the hairpin substrates in the aptazymes/DNAzymes thus results in the generation of a large number of intermediate sequences. Subsequently, these intermediate sequences trigger catalytic capture of many methylene blue-tagged signal sequences on the electrode surface through CHA, producing significantly amplified current response for sensitive detection of ATP at 0.6nM. Besides, the developed sensor can discriminate ATP from analogous interference molecules and be applied to human serum samples, making the sensor a useful addition to the arena for sensitive detection of small molecules.
Collapse
Affiliation(s)
- Xia Li
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Jianmei Yang
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Jiaqing Xie
- School of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, PR China
| | - Bingying Jiang
- School of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, PR China.
| | - Ruo Yuan
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Yun Xiang
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China.
| |
Collapse
|
17
|
Colorimetric and visual determination of adenosine triphosphate using a boronic acid as the recognition element, and based on the deaggregation of gold nanoparticles. Mikrochim Acta 2017. [DOI: 10.1007/s00604-017-2454-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
18
|
Domínguez-Álvarez J, Mateos-Vivas M, Rodríguez-Gonzalo E, García-Gómez D, Bustamante-Rangel M, Delgado Zamarreño MM, Carabias-Martínez R. Determination of nucleosides and nucleotides in food samples by using liquid chromatography and capillary electrophoresis. Trends Analyt Chem 2017. [DOI: 10.1016/j.trac.2017.04.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
19
|
Murana E, Pagani F, Basilico B, Sundukova M, Batti L, Di Angelantonio S, Cortese B, Grimaldi A, Francioso A, Heppenstall P, Bregestovski P, Limatola C, Ragozzino D. ATP release during cell swelling activates a Ca 2+-dependent Cl - current by autocrine mechanism in mouse hippocampal microglia. Sci Rep 2017. [PMID: 28646166 PMCID: PMC5482828 DOI: 10.1038/s41598-017-04452-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Microglia cells, resident immune cells of the brain, survey brain parenchyma by dynamically extending and retracting their processes. Cl− channels, activated in the cellular response to stretch/swelling, take part in several functions deeply connected with microglia physiology, including cell shape changes, proliferation, differentiation and migration. However, the molecular identity and functional properties of these Cl− channels are largely unknown. We investigated the properties of swelling-activated currents in microglial from acute hippocampal slices of Cx3cr1+/GFP mice by whole-cell patch-clamp and imaging techniques. The exposure of cells to a mild hypotonic medium, caused an outward rectifying current, developing in 5–10 minutes and reverting upon stimulus washout. This current, required for microglia ability to extend processes towards a damage signal, was carried mainly by Cl− ions and dependent on intracellular Ca2+. Moreover, it involved swelling-induced ATP release. We identified a purine-dependent mechanism, likely constituting an amplification pathway of current activation: under hypotonic conditions, ATP release triggered the Ca2+-dependent activation of anionic channels by autocrine purine receptors stimulation. Our study on native microglia describes for the first time the functional properties of stretch/swelling-activated currents, representing a key element in microglia ability to monitor the brain parenchyma.
Collapse
Affiliation(s)
- E Murana
- Department of Physiology and Pharmacology, Sapienza University, Rome, Italy
| | - F Pagani
- Istituto Italiano di Tecnologia, CLNS@Sapienza, Rome, Italy.
| | - B Basilico
- Department of Physiology and Pharmacology, Sapienza University, Rome, Italy
| | - M Sundukova
- Mouse Biology Unit, EMBL, Monterotondo, Italy
| | - L Batti
- Mouse Biology Unit, EMBL, Monterotondo, Italy
| | - S Di Angelantonio
- Department of Physiology and Pharmacology, Sapienza University, Rome, Italy.,Istituto Italiano di Tecnologia, CLNS@Sapienza, Rome, Italy
| | - B Cortese
- CNR NANOTEC - Istituto di Nanotecnologia, Department of Physics, University Sapienza, Rome, Italy
| | - A Grimaldi
- Istituto Italiano di Tecnologia, CLNS@Sapienza, Rome, Italy
| | - A Francioso
- Department of Biochemistry, "Sapienza" University of Rome, Rome, Italy
| | | | - P Bregestovski
- Aix Marseille University, Inserm, INS, Institut de Neurosciences des Systèmes, Marseille, France
| | - C Limatola
- IRCCS Neuromed, Via Atinese, Pozzilli, Italy.,Pasteur Institute - Department of Physiology and Pharmacology, Sapienza University, Rome, Italy
| | - D Ragozzino
- Department of Physiology and Pharmacology, Sapienza University, Rome, Italy.,IRCCS Neuromed, Via Atinese, Pozzilli, Italy
| |
Collapse
|
20
|
Saheki T, Inoue K, Ono H, Fujimoto Y, Furuie S, Yamamura KI, Kuroda E, Ushikai M, Asakawa A, Inui A, Eto K, Kadowaki T, Moriyama M, Sinasac DS, Yamamoto T, Furukawa T, Kobayashi K. Oral aversion to dietary sugar, ethanol and glycerol correlates with alterations in specific hepatic metabolites in a mouse model of human citrin deficiency. Mol Genet Metab 2017; 120:306-316. [PMID: 28259708 DOI: 10.1016/j.ymgme.2017.02.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2016] [Revised: 02/05/2017] [Accepted: 02/05/2017] [Indexed: 01/23/2023]
Abstract
Mice carrying simultaneous homozygous mutations in the genes encoding citrin, the mitochondrial aspartate-glutamate carrier 2 (AGC2) protein, and mitochondrial glycerol-3-phosphate dehydrogenase (mGPD), are a phenotypically representative model of human citrin (a.k.a., AGC2) deficiency. In this study, we investigated the voluntary oral intake and preference for sucrose, glycerol or ethanol solutions by wild-type, citrin (Ctrn)-knockout (KO), mGPD-KO, and Ctrn/mGPD double-KO mice; all substances that are known or suspected precipitating factors in the pathogenesis of human citrin deficiency. The double-KO mice showed clear suppressed intake of sucrose, consuming less with progressively higher concentrations compared to the other mice. Similar observations were made when glycerol or ethanol were given. The preference of Ctrn-KO and mGPD-KO mice varied with the different treatments; essentially no differences were observed for sucrose, while an intermediate intake or similar to that of the double-KO mice was observed for glycerol and ethanol. We next examined the hepatic glycerol 3-phosphate, citrate, citrulline, lysine, glutamate and adenine nucleotide levels following forced enteral administration of these solutions. A strong correlation between the simultaneous increased hepatic glycerol 3-phosphate and decreased ATP or total adenine nucleotide content and observed aversion of the mice during evaluation of their voluntary preferences was found. Overall, our results suggest that the aversion observed in the double-KO mice to these solutions is initiated and/or mediated by hepatic metabolic perturbations, resulting in a behavioral response to increased hepatic cytosolic NADH and a decreased cellular adenine nucleotide pool. These findings may underlie the dietary predilections observed in human citrin deficient patients.
Collapse
Affiliation(s)
- Takeyori Saheki
- Laboratory of Yamamura Project, Institute of Resource Development and Analysis, Kumamoto University, Kumamoto 860-0811, Japan; Institute for Health Sciences, Tokushima Bunri University, Tokushima 770-8514, Japan; Department of Molecular Oncology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima 890-8544, Japan.
| | - Kanako Inoue
- Institute for Health Sciences, Tokushima Bunri University, Tokushima 770-8514, Japan
| | - Hiromi Ono
- Institute for Health Sciences, Tokushima Bunri University, Tokushima 770-8514, Japan
| | - Yuki Fujimoto
- Laboratory of Yamamura Project, Institute of Resource Development and Analysis, Kumamoto University, Kumamoto 860-0811, Japan
| | - Sumie Furuie
- Laboratory of Yamamura Project, Institute of Resource Development and Analysis, Kumamoto University, Kumamoto 860-0811, Japan
| | - Ken-Ichi Yamamura
- Laboratory of Yamamura Project, Institute of Resource Development and Analysis, Kumamoto University, Kumamoto 860-0811, Japan
| | - Eishi Kuroda
- Department of Psychosomatic Internal Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima 890-8520, Japan; Department of Molecular Oncology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima 890-8544, Japan
| | - Miharu Ushikai
- Department of Psychosomatic Internal Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima 890-8520, Japan; Department of Hygiene and Health Promotion Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima 890-8520, Japan
| | - Akihiro Asakawa
- Department of Psychosomatic Internal Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima 890-8520, Japan
| | - Akio Inui
- Department of Psychosomatic Internal Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima 890-8520, Japan
| | - Kazuhiro Eto
- Department of Internal Medicine, Teikyo University, Tokyo 173-8605, Japan
| | - Takashi Kadowaki
- Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Mitsuaki Moriyama
- Laboratory of Integrative Physiology in Veterinary Sciences, Osaka Prefecture University, Izumisano 598-8531, Japan
| | - David S Sinasac
- Alberta Children's Hospital Research Institute, Department of Medical Genetics, Cumming School of Medicine, University of Calgary, Alberta T2N 2N1, Canada
| | - Takashi Yamamoto
- Faculty of Health Science, Kio University, Koryo 635-0832, Japan
| | - Tatsuhiko Furukawa
- Department of Molecular Oncology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima 890-8544, Japan
| | - Keiko Kobayashi
- Department of Molecular Metabolism and Genetics, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima 890-8544, Japan
| |
Collapse
|
21
|
Hu T, Wen W, Zhang X, Wang S. Nicking endonuclease-assisted recycling of target-aptamer complex for sensitive electrochemical detection of adenosine triphosphate. Analyst 2017; 141:1506-11. [PMID: 26815141 DOI: 10.1039/c5an02484f] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
An electrochemical biosensor was developed for the detection of adenosine triphosphate (ATP) based on target-induced conformation switching and nicking endonuclease (NEase)-assisted signal amplification. The electrochemical biosensor was constructed by base pairing and target recognition. After capture DNA hybridized with the gold electrode, a significant current of Methylene Blue (MB) was obtained by differential pulse voltammetry. In the presence of ATP, the hairpin DNA formed a G-quadruplex structure due to the specific recognition between hairpin DNA and ATP. Then the exposed part of the target-aptamer complex hybridized with the 3'-terminus of capture DNA to form a specific nicking site for Nb.BbvCI, which led to NEase-assisted target-aptamer complex recycling. The released target-aptamer complex hybridized with the remaining capture DNA. Nb.BbvCI-assisted target-aptamer complex recycling caused the continuous cleavage of capture DNA with MB at its 5'-terminus, resulting in release of a certain amount of DNA fragment labeled with MB. Then the current value decreased significantly. The reduced current showed a linear range from 10 nM to 1 μM with a limit of detection as low as 3.4 nM. Furthermore, the proposed strategy can be used for the detection of similar substances.
Collapse
Affiliation(s)
- Tianxing Hu
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules & College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, PR China.
| | - Wei Wen
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules & College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, PR China.
| | - Xiuhua Zhang
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules & College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, PR China.
| | - Shengfu Wang
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules & College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, PR China.
| |
Collapse
|
22
|
Kouassi Nzoughet J, Bocca C, Simard G, Prunier-Mirebeau D, Chao de la Barca JM, Bonneau D, Procaccio V, Prunier F, Lenaers G, Reynier P. A Nontargeted UHPLC-HRMS Metabolomics Pipeline for Metabolite Identification: Application to Cardiac Remote Ischemic Preconditioning. Anal Chem 2017; 89:2138-2146. [PMID: 27992159 DOI: 10.1021/acs.analchem.6b04912] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
In recent years, the number of investigations based on nontargeted metabolomics has increased, although often without a thorough assessment of analytical strategies applied to acquire data. Following published guidelines for metabolomics experiments, we report a validated nontargeted metabolomics strategy with pipeline for unequivocal identification of metabolites using the MSMLS molecule library. We achieved an in-house database containing accurate m/z values, retention times, isotopic patterns, full MS, and MS/MS spectra. A UHPLC-HRMS Q-Exactive method was developed, and experimental variations were determined within and between 3 experimental days. The extraction efficiency as well as the accuracy, precision, repeatability, and linearity of the method were assessed, the method demonstrating good performances. The methodology was further blindly applied to plasma from remote ischemic pre-conditioning (RIPC) rats. Samples, previously analyzed by targeted metabolomics using completely different protocol, analytical strategy, and platform, were submitted to our analytical pipeline. A combination of multivariate and univariate statistical analyses was employed. Selection of putative biomarkers from OPLS-DA model and S-plot was combined to jack-knife confidence intervals, metabolites' VIP values, and univariate statistics. Only variables with strong model contribution and highly statistical reliability were selected as discriminated metabolites. Three biomarkers identified by the previous targeted metabolomics study were found in the current work, in addition to three novel metabolites, emphasizing the efficiency of the current methodology and its ability to identify new biomarkers of clinical interest, in a single sequence. The biomarkers were identified to level 1 according to the metabolomics standard initiative and confirmed by both RPLC and HILIC-HRMS.
Collapse
Affiliation(s)
- Judith Kouassi Nzoughet
- PREMMi, Pôle de Recherche et d'Enseignement en Médecine Mitochondriale, Institut MITOVASC, CNRS 6214, INSERM U1083, Université d'Angers , 4 Rue Larrey, 49933 Angers CEDEX 9, France
| | - Cinzia Bocca
- PREMMi, Pôle de Recherche et d'Enseignement en Médecine Mitochondriale, Institut MITOVASC, CNRS 6214, INSERM U1083, Université d'Angers , 4 Rue Larrey, 49933 Angers CEDEX 9, France
| | - Gilles Simard
- PREMMi, Pôle de Recherche et d'Enseignement en Médecine Mitochondriale, Institut MITOVASC, CNRS 6214, INSERM U1083, Université d'Angers , 4 Rue Larrey, 49933 Angers CEDEX 9, France.,Département de Biochimie et Génétique, Centre Hospitalier Universitaire , 49933 Angers CEDEX 9, France
| | - Delphine Prunier-Mirebeau
- PREMMi, Pôle de Recherche et d'Enseignement en Médecine Mitochondriale, Institut MITOVASC, CNRS 6214, INSERM U1083, Université d'Angers , 4 Rue Larrey, 49933 Angers CEDEX 9, France.,Département de Biochimie et Génétique, Centre Hospitalier Universitaire , 49933 Angers CEDEX 9, France
| | - Juan Manuel Chao de la Barca
- PREMMi, Pôle de Recherche et d'Enseignement en Médecine Mitochondriale, Institut MITOVASC, CNRS 6214, INSERM U1083, Université d'Angers , 4 Rue Larrey, 49933 Angers CEDEX 9, France.,Département de Biochimie et Génétique, Centre Hospitalier Universitaire , 49933 Angers CEDEX 9, France
| | - Dominique Bonneau
- PREMMi, Pôle de Recherche et d'Enseignement en Médecine Mitochondriale, Institut MITOVASC, CNRS 6214, INSERM U1083, Université d'Angers , 4 Rue Larrey, 49933 Angers CEDEX 9, France.,Département de Biochimie et Génétique, Centre Hospitalier Universitaire , 49933 Angers CEDEX 9, France
| | - Vincent Procaccio
- PREMMi, Pôle de Recherche et d'Enseignement en Médecine Mitochondriale, Institut MITOVASC, CNRS 6214, INSERM U1083, Université d'Angers , 4 Rue Larrey, 49933 Angers CEDEX 9, France.,Département de Biochimie et Génétique, Centre Hospitalier Universitaire , 49933 Angers CEDEX 9, France
| | - Fabrice Prunier
- Institut MITOVASC, Laboratoire EA3860, Cardioprotection, Remodelage et Thrombose , Rue Haute de Reculée, FR-49045, Angers, France.,Département de Cardiologie, Centre Hospitalier Universitaire , 49933 Angers CEDEX 9, France
| | - Guy Lenaers
- PREMMi, Pôle de Recherche et d'Enseignement en Médecine Mitochondriale, Institut MITOVASC, CNRS 6214, INSERM U1083, Université d'Angers , 4 Rue Larrey, 49933 Angers CEDEX 9, France
| | - Pascal Reynier
- PREMMi, Pôle de Recherche et d'Enseignement en Médecine Mitochondriale, Institut MITOVASC, CNRS 6214, INSERM U1083, Université d'Angers , 4 Rue Larrey, 49933 Angers CEDEX 9, France.,Département de Biochimie et Génétique, Centre Hospitalier Universitaire , 49933 Angers CEDEX 9, France
| |
Collapse
|
23
|
Aptamer based electrochemical adenosine triphosphate assay based on a target-induced dendritic DNA nanoassembly. Mikrochim Acta 2016. [DOI: 10.1007/s00604-016-2026-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
24
|
Mateos-Vivas M, Rodríguez-Gonzalo E, Domínguez-Álvarez J, García-Gómez D, Carabias-Martínez R. Determination of nucleosides and nucleotides in baby foods by hydrophilic interaction chromatography coupled to tandem mass spectrometry in the presence of hydrophilic ion-pairing reagents. Food Chem 2016; 211:827-35. [PMID: 27283702 DOI: 10.1016/j.foodchem.2016.05.091] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 04/21/2016] [Accepted: 05/13/2016] [Indexed: 10/21/2022]
Abstract
In this work we propose a rapid and efficient method for the joint determination of nucleosides and nucleotides in dairy and non-dairy baby foods based on hydrophilic interaction chromatography coupled to tandem mass spectrometry in the presence of diethylammonium (DEA) as a hydrophilic ion-pairing reagent (IP-HILIC-MS/MS). Sample treatment of the baby food included dilution with water and centrifugal ultrafiltration (CUF) with an additional washing step that notably improved the global performance of the process. Later dilution of the extract with acetonitrile allowed adequate separation in the HILIC system. With the proposed treatment, we obtained extraction recoveries higher than 80% and, additionally, no matrix effects were observed. The CUF-IP-HILIC-MS/MS method was validated according to the 2002/657/EC decision and was used for the quantification of nucleotides and nucleosides in sixteen samples of commercial baby foods.
Collapse
Affiliation(s)
- María Mateos-Vivas
- Department of Analytical Chemistry, Nutrition and Food Science, University of Salamanca, 37008 Salamanca, Spain.
| | | | - Javier Domínguez-Álvarez
- Department of Analytical Chemistry, Nutrition and Food Science, University of Salamanca, 37008 Salamanca, Spain.
| | - Diego García-Gómez
- Department of Analytical Chemistry, Nutrition and Food Science, University of Salamanca, 37008 Salamanca, Spain.
| | - Rita Carabias-Martínez
- Department of Analytical Chemistry, Nutrition and Food Science, University of Salamanca, 37008 Salamanca, Spain.
| |
Collapse
|
25
|
Qiu WQ, Chen SS, Xie J, Qu YH, Song X. Analysis of 10 nucleotides and related compounds in Litopenaeus vannamei during chilled storage by HPLC-DAD. Lebensm Wiss Technol 2016. [DOI: 10.1016/j.lwt.2015.11.047] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
26
|
Freshness determination of royal jelly by analyzing decomposition products of adenosine triphosphate. Lebensm Wiss Technol 2015. [DOI: 10.1016/j.lwt.2015.03.072] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
27
|
|
28
|
Ciulu M, Floris I, Nurchi VM, Panzanelli A, Pilo MI, Spano N, Sanna G. A Possible Freshness Marker for Royal Jelly: Formation of 5-Hydroxymethyl-2-furaldehyde as a Function of Storage Temperature and Time. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015; 63:4190-4195. [PMID: 25858076 DOI: 10.1021/acs.jafc.5b00873] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
In this article we present a study of the variability of the concentration of 5-hydroxymethyl-2-furaldehyde (HMF) in natural royal jelly (RJ) as a function of its storage temperature (-18, 4, and 25 °C) and time (up to 9 months after harvesting). For this work HMF is evaluated using an RP-HPLC method we previously assessed. While all RJ samples stored at 4 and -18 °C always showed levels of HMF under the limit of detection (0.13 mg kg(-1)), samples kept at 25 °C showed an exponential increase in the concentration of HMF as a function of the storage time. This behavior and a number of desirable features of the analytical method used (ease of use in routine laboratories, availability of a complete validation protocol specifically developed for RJ, based on consolidated chemical knowledge) allow us to hypothesize the use of HMF as a possible, reliable freshness marker for RJ.
Collapse
Affiliation(s)
- Marco Ciulu
- †Università degli Studi di Sassari, Dipartimento di Chimica e Farmacia, via Vienna 2, 07100 Sassari, Italy
| | - Ignazio Floris
- ‡Università degli Studi di Sassari, Dipartimento di Agraria, via De Nicola 9, 07100 Sassari, Italy
| | - Valeria M Nurchi
- §Università di Cagliari, Dipartimento di Scienze Chimiche e Geologiche, Cittadella Universitaria, 09042 Monserrato-Cagliari, Italy
| | - Angelo Panzanelli
- †Università degli Studi di Sassari, Dipartimento di Chimica e Farmacia, via Vienna 2, 07100 Sassari, Italy
| | - Maria I Pilo
- †Università degli Studi di Sassari, Dipartimento di Chimica e Farmacia, via Vienna 2, 07100 Sassari, Italy
| | - Nadia Spano
- †Università degli Studi di Sassari, Dipartimento di Chimica e Farmacia, via Vienna 2, 07100 Sassari, Italy
| | - Gavino Sanna
- †Università degli Studi di Sassari, Dipartimento di Chimica e Farmacia, via Vienna 2, 07100 Sassari, Italy
| |
Collapse
|
29
|
Bao T, Shu H, Wen W, Zhang X, Wang S. A sensitive electrochemical aptasensor for ATP detection based on exonuclease III-assisted signal amplification strategy. Anal Chim Acta 2014; 862:64-9. [PMID: 25682429 DOI: 10.1016/j.aca.2014.12.049] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2014] [Revised: 12/26/2014] [Accepted: 12/28/2014] [Indexed: 12/19/2022]
Abstract
A target-induced structure-switching electrochemical aptasensor for sensitive detection of ATP was successfully constructed which was based on exonuclease III-catalyzed target recycling for signal amplification. With the existence of ATP, methylene blue (MB) labeled hairpin DNA formed G-quadruplex with ATP, which led to conformational changes of the hairpin DNA and created catalytic cleavage sites for exonuclease III (Exo III). Then the structure-switching DNA hybridized with capture DNA which made MB close to electrode surface. Meanwhile, Exo III selectively digested aptamer from its 3'-end, thus G-quadruplex structure was destroyed and ATP was released for target recycling. The Exo III-assisted target recycling amplified electrochemical signal significantly. Fluorescence experiment was performed to confirm the structure-switching process of the hairpin DNA. In fluorescence experiment, AuNPs-aptamer conjugates were synthesized, AuNPs quenched fluorescence of MB, the target-induced structure-switching made Exo III digested aptamer, which restored fluorescence. Under optimized conditions, the proposed aptasensor showed a linear range of 0.1-20 nM with a detection limit of 34 pM. In addition, the proposed aptasensor had good stability and selectivity, offered promising choice for the detection of other small molecules.
Collapse
Affiliation(s)
- Ting Bao
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules & College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, PR China
| | - Huawei Shu
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules & College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, PR China
| | - Wei Wen
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules & College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, PR China
| | - Xiuhua Zhang
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules & College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, PR China
| | - Shengfu Wang
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules & College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, PR China.
| |
Collapse
|
30
|
Wu L, Chen L, Selvaraj JN, Wei Y, Wang Y, Li Y, Zhao J, Xue X. Identification of the distribution of adenosine phosphates, nucleosides and nucleobases in royal jelly. Food Chem 2014; 173:1111-8. [PMID: 25466132 DOI: 10.1016/j.foodchem.2014.10.137] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Revised: 10/24/2014] [Accepted: 10/25/2014] [Indexed: 11/17/2022]
Abstract
Nucleotides, nucleosides and nucleobases play a greater role in the physiological activity of organisms which are highly present in royal jelly (RJ). The objective of the present study is to develop a HPLC method to simultaneous determine nucleotides, nucleosides and nucleobases in RJ and access them in fresh and commercial RJ samples. The LOD and LOQ were 12.2-99.6 μg/L and 40.8-289.4 μg/L, respectively with nearly 100.9% recoveries. Except uric acid, all other compounds were found in RJ samples. Significant difference in the average content of compounds in fresh (2682.93 mg/kg) and commercial samples (3152.78 mg/kg) were observed. AMP, adenosine and adenine were found predominant in all the samples. Significant higher levels of ATP, ADP and AMP was seen in fresh RJ samples, and IMP, uridine, guanosine, and thymidine was seen in commercial RJ samples. The investigated compounds can be used as indexes for assessment RJ freshness and quality.
Collapse
Affiliation(s)
- Liming Wu
- Apicultural Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100093, China
| | - Lanzhen Chen
- Apicultural Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100093, China
| | - Jonathan Nimal Selvaraj
- Institute of Agro-Products Processing Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100093, China
| | - Yue Wei
- Apicultural Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100093, China
| | - Yong Wang
- Apicultural Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100093, China
| | - Yi Li
- Apicultural Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100093, China
| | - Jing Zhao
- Apicultural Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100093, China
| | - Xiaofeng Xue
- Apicultural Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100093, China.
| |
Collapse
|