1
|
Borah SM, Kma L, Darjee MS, Deka D, Lyngdoh A, Sharan RN, Baruah TJ. Apigenin promotes cell death in NCI-H23 cells by upregulation of PTEN: potential involvement of the binding of apigenin with WWP2 protein. J Biomol Struct Dyn 2024; 42:9705-9719. [PMID: 37870050 DOI: 10.1080/07391102.2023.2272743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 08/21/2023] [Indexed: 10/24/2023]
Abstract
The tumour suppressor protein PTEN is often down-regulated in non-small cell lung cancer. A major protein promoting the lowering of the PTEN protein is WWP2. Polyphenols have been shown to promote the expression of tumour suppressor genes like PTEN. We carry out the study to check for the ability of apigenin to bind with the WWP2 protein using in-silico investigation comprising docking and simulation. We checked for the cytotoxic effect of apigenin upon the non-small cell lung cancer cell line NCI-H23. We checked the PTEN expression status at the gene and protein levels. The expression levels of the apoptotic regulators BCL2, BAX and CASPASE3 genes along with the activity levels of the caspase-3 protein were checked. The ultrastructure of the cells was analysed. Our Autodock analysis showed that apigenin bound favourably with the WWP2 protein. Molecular dynamics simulation revealed that apigenin increased the parameters of RMSD, Rg and SASA when bound with the WWP2 protein. The protein-ligand complex had hydrogen bonding and majorly van der Wal's interactions. PCA analysis revealed greater fluctuations in the apigenin-bound state of the protein. The mutant form of the WWP2 revealed similar results in the presence of apigenin. Apigenin showed efficacy against the NCI-H23 cell line and promoted PTEN protein levels, lowered BCL2 gene expression and up-regulated BAX and CASPASE3 gene expression. Increased caspase-3 activity and ultra-structural analysis revealed the occurrence of apoptosis. Thus the binding of apigenin with WWP2 could promote PTEN protein levels and lead to apoptotic activity in NCI-H23 cells.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Sapna Mayuri Borah
- Department of Plant Pathology, Assam Agricultural University, Jorhat, India
| | - Lakhon Kma
- Department of Biochemistry, North-Eastern Hill University, Shillong, India
| | | | - Dikshit Deka
- Department of Biochemistry, Assam Royal Global University, Guwahati, India
| | - Anisha Lyngdoh
- Department of Biochemistry, North-Eastern Hill University, Shillong, India
| | - Rajesh N Sharan
- Department of Biochemistry, Assam Royal Global University, Guwahati, India
| | | |
Collapse
|
2
|
Oginga E, Toeri J, Marete E, Arimi J. Potential Application of Camel Milk as a Therapeutic Ingredient in Bath Soaps and Shampoos. Dermatol Res Pract 2024; 2024:4846339. [PMID: 39219666 PMCID: PMC11364480 DOI: 10.1155/2024/4846339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 08/06/2024] [Indexed: 09/04/2024] Open
Abstract
The increasing worldwide market for natural-ingredient-based cosmetic toiletries is fuelled by the awareness of the dangers of synthetic cosmetics and benefits of natural-based cosmetics on the skincare and management of skin disorders. Besides naturally formulated cosmetics being biodegradable, they also contain ingredients which are chemically beneficial to human skin. Milk-based cosmetics are very promising since milk is rich in essential components such as lactoferrins, vitamins, and lactic acids, which have shown therapeutic properties against disorders such as skin cancer, acne scars, and dandruff. One of the milk that is very promising in the cosmetics industry is the camel milk. Currently, there is limited information in literature regarding the use of camel milk in cosmetics and their benefits. Camel milk stands out from bovine milk following its unique therapeutic properties and chemical composition, making it a potential ingredient for skincare and haircare products such as bath soaps and shampoos. The aim of this paper is to review the available literature on camel milk composition and evaluate the contribution of camel milk constituents to cosmetics.
Collapse
Affiliation(s)
- Elly Oginga
- Department of Physical SciencesMeru University of Science and Technology, Meru, Kenya
- Centre of Excellence in Camel ResearchMeru University of Science and Technology, Meru, Kenya
| | - Julius Toeri
- Department of Physical SciencesMeru University of Science and Technology, Meru, Kenya
| | - Eunice Marete
- Department of Physical SciencesMeru University of Science and Technology, Meru, Kenya
- Centre of Excellence in Camel ResearchMeru University of Science and Technology, Meru, Kenya
| | - Joshua Arimi
- Centre of Excellence in Camel ResearchMeru University of Science and Technology, Meru, Kenya
- Department of Food ScienceMeru University of Science and Technology, Meru, Kenya
| |
Collapse
|
3
|
Cimmino A, Fasciglione GF, Gioia M, Marini S, Ciaccio C. Multi-Anticancer Activities of Phytoestrogens in Human Osteosarcoma. Int J Mol Sci 2023; 24:13344. [PMID: 37686148 PMCID: PMC10487502 DOI: 10.3390/ijms241713344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/19/2023] [Accepted: 08/24/2023] [Indexed: 09/10/2023] Open
Abstract
Phytoestrogens are plant-derived bioactive compounds with estrogen-like properties. Their potential health benefits, especially in cancer prevention and treatment, have been a subject of considerable research in the past decade. Phytoestrogens exert their effects, at least in part, through interactions with estrogen receptors (ERs), mimicking or inhibiting the actions of natural estrogens. Recently, there has been growing interest in exploring the impact of phytoestrogens on osteosarcoma (OS), a type of bone malignancy that primarily affects children and young adults and is currently presenting limited treatment options. Considering the critical role of the estrogen/ERs axis in bone development and growth, the modulation of ERs has emerged as a highly promising approach in the treatment of OS. This review provides an extensive overview of current literature on the effects of phytoestrogens on human OS models. It delves into the multiple mechanisms through which these molecules regulate the cell cycle, apoptosis, and key pathways implicated in the growth and progression of OS, including ER signaling. Moreover, potential interactions between phytoestrogens and conventional chemotherapy agents commonly used in OS treatment will be examined. Understanding the impact of these compounds in OS holds great promise for developing novel therapeutic approaches that can augment current OS treatment modalities.
Collapse
Affiliation(s)
| | | | | | | | - Chiara Ciaccio
- Department of Clinical Sciences and Translational Medicine, University of Rome ‘Tor Vergata’, Via Montpellier 1, I-00133 Rome, Italy; (A.C.); (G.F.F.); (M.G.); (S.M.)
| |
Collapse
|
4
|
Khan NA, Rashid F, Jadoon MSK, Jalil S, Khan ZA, Orfali R, Perveen S, Al-Taweel A, Iqbal J, Shahzad SA. Design, Synthesis, and Biological Evaluation of Novel Dihydropyridine and Pyridine Analogs as Potent Human Tissue Nonspecific Alkaline Phosphatase Inhibitors with Anticancer Activity: ROS and DNA Damage-Induced Apoptosis. Molecules 2022; 27:molecules27196235. [PMID: 36234774 PMCID: PMC9570995 DOI: 10.3390/molecules27196235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 09/14/2022] [Accepted: 09/19/2022] [Indexed: 12/05/2022] Open
Abstract
Small molecules with nitrogen-containing scaffolds have gained much attention due to their biological importance in the development of new anticancer agents. The present paper reports the synthesis of a library of new dihydropyridine and pyridine analogs with diverse pharmacophores. All compounds were tested against the human tissue nonspecific alkaline phosphatase (h-TNAP) enzyme. Most of the compounds showed excellent enzyme inhibition against h-TNAP, having IC50 values ranging from 0.49 ± 0.025 to 8.8 ± 0.53 µM, which is multi-fold higher than that of the standard inhibitor (levamisole = 22.65 ± 1.60 µM) of the h-TNAP enzyme. Furthermore, an MTT assay was carried out to evaluate cytotoxicity against the HeLa and MCF-7 cancer cell lines. Among the analogs, the most potent dihydropyridine-based compound 4d was selected to investigate pro-apoptotic behavior. The further analysis demonstrated that compound 4d played a significant role in inducing apoptosis through multiple mechanisms, including overproduction of reactive oxygen species, mitochondrial dysfunction, DNA damaging, and arrest of the cell cycle at the G1 phase by inhibiting CDK4/6. The apoptosis-inducing effect of compound 4d was studied through staining agents, microscopic, and flow cytometry techniques. Detailed structure–activity relationship (SAR) and molecular docking studies were carried out to identify the core structural features responsible for inhibiting the enzymatic activity of the h-TNAP enzyme. Moreover, fluorescence emission studies corroborated the binding interaction of compound 4d with DNA through a fluorescence titration experiment.
Collapse
Affiliation(s)
- Nazeer Ahmad Khan
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, University Road, Abbottabad 22060, Pakistan
| | - Faisal Rashid
- Centre for Advanced Drug Research, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22060, Pakistan
| | - Muhammad Siraj Khan Jadoon
- Centre for Advanced Drug Research, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22060, Pakistan
| | - Saquib Jalil
- Centre for Advanced Drug Research, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22060, Pakistan
| | - Zulfiqar Ali Khan
- Department of Chemistry, Government College University, Faisalabad 38000, Pakistan
| | - Raha Orfali
- Department of Pharmacognosy, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Shagufta Perveen
- Department of Chemistry, School of Computer, Mathematical and Natural Sciences, Morgan State University, Baltimore, MD 21251, USA
| | - Areej Al-Taweel
- Department of Pharmacognosy, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Jamshed Iqbal
- Centre for Advanced Drug Research, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22060, Pakistan
| | - Sohail Anjum Shahzad
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, University Road, Abbottabad 22060, Pakistan
- Correspondence: or
| |
Collapse
|
5
|
The Potential Role of Apigenin in Cancer Prevention and Treatment. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27186051. [PMID: 36144783 PMCID: PMC9505045 DOI: 10.3390/molecules27186051] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 09/09/2022] [Accepted: 09/13/2022] [Indexed: 11/18/2022]
Abstract
Cancer is the leading cause of death worldwide. In spite of advances in the treatment of cancer, currently used treatment modules including chemotherapy, hormone therapy, radiation therapy and targeted therapy causes adverse effects and kills the normal cells. Therefore, the goal of more effective and less side effects-based cancer treatment approaches is still at the primary position of present research. Medicinal plants or their bioactive ingredients act as dynamic sources of drugs due to their having less side effects and also shows the role in reduction of resistance against cancer therapy. Apigenin is an edible plant-derived flavonoid that has received significant scientific consideration for its health-promoting potential through modulation of inflammation, oxidative stress and various other biological activities. Moreover, the anti-cancer potential of apigenin is confirmed through its ability to modulate various cell signalling pathways, including tumor suppressor genes, angiogenesis, apoptosis, cell cycle, inflammation, apoptosis, PI3K/AKT, NF-κB, MAPK/ERK and STAT3 pathways. The current review mainly emphases the potential role of apigenin in different types of cancer through the modulation of various cell signaling pathways. Further studies based on clinical trials are needed to explore the role of apigenin in cancer management and explain the possible potential mechanisms of action in this vista.
Collapse
|
6
|
Abid R, Ghazanfar S, Farid A, Sulaman SM, Idrees M, Amen RA, Muzammal M, Shahzad MK, Mohamed MO, Khaled AA, Safir W, Ghori I, Elasbali AM, Alharbi B. Pharmacological Properties of 4', 5, 7-Trihydroxyflavone (Apigenin) and Its Impact on Cell Signaling Pathways. Molecules 2022; 27:4304. [PMID: 35807549 PMCID: PMC9267958 DOI: 10.3390/molecules27134304] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/23/2022] [Accepted: 07/01/2022] [Indexed: 12/04/2022] Open
Abstract
Plant bioactive compounds, particularly apigenin, have therapeutic potential and functional activities that aid in the prevention of infectious diseases in many mammalian bodies and promote tumor growth inhibition. Apigenin is a flavonoid with low toxicities and numerous bioactive properties due to which it has been considered as a traditional medicine for decades. Apigenin shows synergistic effects in combined treatment with sorafenib in the HepG2 human cell line (HCC) in less time and statistically reduces the viability of tumor cells, migration, gene expression and apoptosis. The combination of anti-cancerous drugs with apigenin has shown health promoting potential against various cancers. It can prevent cell mobility, maintain the cell cycle and stimulate the immune system. Apigenin also suppresses mTOR activity and raises the UVB-induced phagocytosis and reduces the cancerous cell proliferation and growth. It also has a high safety threshold, and active (anti-cancer) doses can be gained by consuming a vegetable and apigenin rich diet. Apigenin also boosted autophagosome formation, decreased cell proliferation and activated autophagy by preventing the activity of the PI3K pathway, specifically in HepG2 cells. This paper provides an updated overview of apigenin's beneficial anti-inflammatory, antibacterial, antiviral, and anticancer effects, making it a step in the right direction for therapeutics. This study also critically analyzed the effect of apigenin on cancer cell signaling pathways including the PI3K/AKT/MTOR, JAK/STAT, NF-κB and ERK/MAPK pathways.
Collapse
Affiliation(s)
- Rameesha Abid
- Department of Biotechnology, University of Sialkot, Sialkot 51310, Pakistan
- National Institute for Genomics and Advanced Biotechnology (NIGAB), National Agricultural Research Center, Islamabad 44100, Pakistan; (S.G.); (M.I.)
| | - Shakira Ghazanfar
- National Institute for Genomics and Advanced Biotechnology (NIGAB), National Agricultural Research Center, Islamabad 44100, Pakistan; (S.G.); (M.I.)
| | - Arshad Farid
- Gomal Center of Biochemistry and Biotechnology, Gomal University, Dera Ismail Khan 29050, Pakistan;
| | | | - Maryam Idrees
- National Institute for Genomics and Advanced Biotechnology (NIGAB), National Agricultural Research Center, Islamabad 44100, Pakistan; (S.G.); (M.I.)
- Department of Microbiology, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | | | - Muhammad Muzammal
- Gomal Center of Biochemistry and Biotechnology, Gomal University, Dera Ismail Khan 29050, Pakistan;
| | - Muhammad Khurram Shahzad
- Biotechnology and Bioinformatics Department, International Islamic University, Islamabad 44100, Pakistan;
| | | | | | - Waqas Safir
- College of Life Science and Technology, Xinjiang University, Urumqi 830046, China;
| | - Ifra Ghori
- Department of Biotechnology, Fatima Jinnah Women University, Rawalpindi 46000, Pakistan;
| | - Abdelbaset Mohamed Elasbali
- Department of Clinical Laboratory Science, College of Applied Sciences-Qurayyat, Jouf University, Sakaka 72388, Saudi Arabia
| | - Bandar Alharbi
- Department of Medical Laboratory, College of Applied Medical Science, University of Hail, Hail 81481, Saudi Arabia;
| |
Collapse
|
7
|
The effect of apigenin and chemotherapy combination treatments on apoptosis-related genes and proteins in acute leukaemia cell lines. Sci Rep 2022; 12:8858. [PMID: 35614109 PMCID: PMC9132959 DOI: 10.1038/s41598-022-11441-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 03/30/2022] [Indexed: 12/30/2022] Open
Abstract
Apigenin is a dietary polyphenol found abundantly in fruit and vegetables, which sensitizes leukaemia cells to topoisomerase inhibitor agents (e.g., etoposide), and alkylating agents (e.g., cyclophosphamide), reducing ATP levels and inducing apoptosis; whilst being protective to control haematopoietic stem cells. This study analysed the expression profiles of intrinsic and extrinsic apoptosis-related genes and proteins to help elucidate the mechanisms of action of apigenin when used in combination with etoposide or cyclophosphamide in lymphoid and myeloid leukaemia cell lines (Jurkat and THP-1). Expression of apoptosis-related genes were measured using a TaqMan® Human Apoptosis Array and the StepOne Plus RT-qPCR System, whilst apoptosis-related proteins were determined using a protein profiler™-human apoptosis array and the LI-COR OdysseyR Infrared Imaging System. Apigenin when combined with etoposide or cyclophosphamide-induced apoptosis via the mitochondrial pathway, increasing the expression of pro-apoptotic cytochrome c, SMAC/DIABLO, and HTRA2/OMI, which promoted caspase-9 and -3 activation. Targeting anti-apoptotic and/or pro-apoptotic members of the apoptotic pathways is a promising strategy to induce cancer cell death and improve sensitivity to chemotherapy agents. Here the apoptotic pathways induced by apigenin in combination with etoposide or cyclophosphamide were identified within human leukaemia cell lines, such applications could provide combination therapies for the treatment of leukaemia.
Collapse
|
8
|
Role of Induced Programmed Cell Death in the Chemopreventive Potential of Apigenin. Int J Mol Sci 2022; 23:ijms23073757. [PMID: 35409117 PMCID: PMC8999072 DOI: 10.3390/ijms23073757] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/25/2022] [Accepted: 03/28/2022] [Indexed: 02/01/2023] Open
Abstract
The flavonoid apigenin (4′,5,7-trihydroxyflavone), which is one of the most widely distributed phytochemicals in the plant kingdom, is one of the most thoroughly investigated phenolic components. Previous studies have attributed the physiological effects of apigenin to its anti-allergic, antibacterial, antidiabetic, anti-inflammatory, antioxidant, antiviral, and blood-pressure-lowering properties, and its documented anticancer properties have been attributed to the induction of apoptosis and autophagy, the inhibition of inflammation, angiogenesis, and cell proliferation, and the regulation of cellular responses to oxidative stress and DNA damage. The most well-known mechanism for the compound’s anticancer effects in human cancer cell lines is apoptosis, followed by autophagy, and studies have also reported that apigenin induces novel cell death mechanisms, such as necroptosis and ferroptosis. Therefore, the aim of this paper is to review the therapeutic potential of apigenin as a chemopreventive agent, as well as the roles of programmed cell death mechanisms in the compound’s chemopreventive properties.
Collapse
|
9
|
Yun BD, Son SW, Choi SY, Kuh HJ, Oh TJ, Park JK. Anti-Cancer Activity of Phytochemicals Targeting Hypoxia-Inducible Factor-1 Alpha. Int J Mol Sci 2021; 22:ijms22189819. [PMID: 34575983 PMCID: PMC8467787 DOI: 10.3390/ijms22189819] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 09/02/2021] [Accepted: 09/03/2021] [Indexed: 12/15/2022] Open
Abstract
Hypoxia-inducible factor-1 alpha (HIF-1α) is overexpressed in cancer, leading to a poor prognosis in patients. Diverse cellular factors are able to regulate HIF-1α expression in hypoxia and even in non-hypoxic conditions, affecting its progression and malignant characteristics by regulating the expression of the HIF-1α target genes that are involved in cell survival, angiogenesis, metabolism, therapeutic resistance, et cetera. Numerous studies have exhibited the anti-cancer effect of HIF-1α inhibition itself and the augmentation of anti-cancer treatment efficacy by interfering with HIF-1α-mediated signaling. The anti-cancer effect of plant-derived phytochemicals has been evaluated, and they have been found to possess significant therapeutic potentials against numerous cancer types. A better understanding of phytochemicals is indispensable for establishing advanced strategies for cancer therapy. This article reviews the anti-cancer effect of phytochemicals in connection with HIF-1α regulation.
Collapse
Affiliation(s)
- Ba Da Yun
- Department of Biomedical Science and Research Institute for Bioscience & Biotechnology, Hallym University, Chunchon 24252, Korea; (B.D.Y.); (S.W.S.); (S.Y.C.)
| | - Seung Wan Son
- Department of Biomedical Science and Research Institute for Bioscience & Biotechnology, Hallym University, Chunchon 24252, Korea; (B.D.Y.); (S.W.S.); (S.Y.C.)
| | - Soo Young Choi
- Department of Biomedical Science and Research Institute for Bioscience & Biotechnology, Hallym University, Chunchon 24252, Korea; (B.D.Y.); (S.W.S.); (S.Y.C.)
| | - Hyo Jeong Kuh
- Department of Medical Life Sciences, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea;
| | - Tae-Jin Oh
- Department of Pharmaceutical Engineering and Biotechnology, SunMoon University, 70 Sunmoon-ro 221, Tangjeong-myeon, Asan-si 31460, Korea;
| | - Jong Kook Park
- Department of Biomedical Science and Research Institute for Bioscience & Biotechnology, Hallym University, Chunchon 24252, Korea; (B.D.Y.); (S.W.S.); (S.Y.C.)
- Correspondence: ; Tel.: +82-33-248-2114
| |
Collapse
|
10
|
Lei C, Liao J, Li Q, Shi J, Zhang H, Guo J, Han Q, Hu L, Li Y, Pan J, Tang Z. Copper induces mitochondria-mediated apoptosis via AMPK-mTOR pathway in hypothalamus of Pigs. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 220:112395. [PMID: 34102394 DOI: 10.1016/j.ecoenv.2021.112395] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 05/27/2021] [Accepted: 05/30/2021] [Indexed: 06/12/2023]
Abstract
Copper (Cu), one of the heavy metals, is far beyond the carrying capacity of the environment with Cu mining, industrial wastewater discharging and the use of Cu-containing pesticides. Intaking excess Cu can cause toxic effects on liver, kidney, heart, but few studies report Cu toxicity on brain tissue. It is noteworthy that most toxicity tests are based on rodent models, but large mammals chosen as animal models has no reported. To explore the relationship of the Cu toxicity and mitochondria-mediated apoptosis on hypothalamus in pigs, the content of Cu, histomorphology, mitochondrial related indicators, apoptosis, and AMPK-mTOR signaling pathway were detected. Results showed that Cu could accumulate in hypothalamus and lead to mitochondrial dysfunction, evidenced by the decrease of ATP production, activities of respiratory chain complex I-IV, and mitochondrial respiratory function in Cu-treated groups. Additionally, the genes and proteins expression of Bax, Caspase-3, Cytc in treatment group were higher than control group. Furthermore, the protein level of p-AMPK was enhanced significantly and p-mTOR was declined, which manifested that AMPK-mTOR signaling pathway was activated in Cu-treated groups. In conclusion, this study illuminated that the accumulation of Cu could cause mitochondrial dysfunction, induce mitochondria-mediated apoptosis and activate AMPK-mTOR pathway in hypothalamus.
Collapse
Affiliation(s)
- Chaiqin Lei
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, Guangdong, PR China
| | - Jianzhao Liao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, Guangdong, PR China
| | - Quanwei Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, Guangdong, PR China
| | - Jian Shi
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, Guangdong, PR China
| | - Hui Zhang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, Guangdong, PR China
| | - Jianying Guo
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, Guangdong, PR China
| | - Qingyue Han
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, Guangdong, PR China
| | - Lianmei Hu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, Guangdong, PR China
| | - Ying Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, Guangdong, PR China
| | - Jiaqiang Pan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, Guangdong, PR China
| | - Zhaoxin Tang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, Guangdong, PR China.
| |
Collapse
|
11
|
Metformin-induced ROS upregulation as amplified by apigenin causes profound anticancer activity while sparing normal cells. Sci Rep 2021; 11:14002. [PMID: 34234193 PMCID: PMC8263563 DOI: 10.1038/s41598-021-93270-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 06/21/2021] [Indexed: 12/16/2022] Open
Abstract
Metformin increased cellular ROS levels in AsPC-1 pancreatic cancer cells, with minimal effect in HDF, human primary dermal fibroblasts. Metformin reduced cellular ATP levels in HDF, but not in AsPC-1 cells. Metformin increased AMPK, p-AMPK (Thr172), FOXO3a, p-FOXO3a (Ser413), and MnSOD levels in HDF, but not in AsPC-1 cells. p-AMPK and p-FOXO3a also translocated from the cytosol to the nucleus by metformin in HDF, but not in AsPC-1 cells. Transfection of si-FOXO3a in HDF increased ROS levels, while wt-FOXO3a-transfected AsPC-1 cells decreased ROS levels. Metformin combined with apigenin increased ROS levels dramatically and decreased cell viability in various cancer cells including AsPC-1 cells, with each drug used singly having a minimal effect. Metformin/apigenin combination synergistically decreased mitochondrial membrane potential in AsPC-1 cells but to a lesser extent in HDF cells. Metformin/apigenin combination in AsPC-1 cells increased DNA damage-, apoptosis-, autophagy- and necroptosis-related factors, but not in HDF cells. Oral administration with metformin/apigenin caused dramatic blocks tumor size in AsPC-1-xenografted nude mice. Our results suggest that metformin in cancer cells differentially regulates cellular ROS levels via AMPK-FOXO3a-MnSOD pathway and combination of metformin/apigenin exerts anticancer activity through DNA damage-induced apoptosis, autophagy and necroptosis by cancer cell-specific ROS amplification.
Collapse
|
12
|
Pan FF, Shao J, Shi CJ, Li ZP, Fu WM, Zhang JF. Apigenin promotes osteogenic differentiation of mesenchymal stem cells and accelerates bone fracture healing via activating Wnt/β-catenin signaling. Am J Physiol Endocrinol Metab 2021; 320:E760-E771. [PMID: 33645251 DOI: 10.1152/ajpendo.00543.2019] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Apigenin (API), a natural plant flavone, is abundantly found in common fruits and vegetables. As a bioactive flavonoid, API exhibits several activities including antiproliferation and anti-inflammation. A recent study showed that API could retard osteoporosis progress, indicating its role in the skeletal system. However, the detailed function and mechanism remain obscure. In the present study, API was found to promote osteogenic differentiation of mesenchymal stem cells (MSCs). And further investigation showed that API could enhance the expression of the critical transcription factor β-catenin and several downstream target genes of Wnt signaling, thus activated Wnt/β-catenin signaling. Using a rat femoral fracture model, API was found to improve new bone formation and accelerate fracture healing in vivo. In conclusion, our data demonstrated that API could promote osteogenesis in vitro and facilitate the fracture healing in vivo via activating Wnt/β-catenin signaling, indicating that API may be a promising therapeutic candidate for bone fracture repair.NEW & NOTEWORTHY1) API promoted osteogenic differentiation of human MSCs in vitro; 2) API facilitated bone formation and accelerated fracture healing in vivo; 3) API stimulated Wnt/β-catenin signaling during osteogenesis of human MSCs.
Collapse
Affiliation(s)
- Fei-Fei Pan
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, P.R. China
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, P.R. China
| | - Jiang Shao
- Key Laboratory of Orthopaedics and Traumatology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, P.R. China
| | - Chuan-Jian Shi
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, P.R. China
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, P.R. China
| | - Zhi-Peng Li
- Key Laboratory of Orthopaedics and Traumatology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, P.R. China
| | - Wei-Ming Fu
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, P.R. China
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, P.R. China
| | - Jin-Fang Zhang
- Key Laboratory of Orthopaedics and Traumatology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, P.R. China
| |
Collapse
|
13
|
Lee Y, Lee J, Lim C. Anticancer activity of flavonoids accompanied by redox state modulation and the potential for a chemotherapeutic strategy. Food Sci Biotechnol 2021; 30:321-340. [PMID: 33868744 PMCID: PMC8017064 DOI: 10.1007/s10068-021-00899-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 03/02/2021] [Accepted: 03/04/2021] [Indexed: 12/13/2022] Open
Abstract
Since researchers began studying the mechanism of flavonoids' anticancer activity, little attention has been focused on the modulation of redox state in cells as a potential chemotherapeutic strategy. However, recent studies have begun identifying that the anticancer effect of flavonoids occurs both in their antioxidative activity which scavenges ROS and their prooxidative activity which generates ROS. Against this backdrop, this study attempts to achieve a comprehensive analysis of the individual and separate study findings regarding flavonoids' modulation of redox state in cancer cells. It focuses on the mechanism behind the anticancer effect, and mostly on the modulation of redox potential by flavonoids such as quercetin, hesperetin, apigenin, genistein, epigallocatechin-3-gallate (EGCG), luteolin and kaempferol in both in vitro and animal models. In addition, the clinical applications of and bioavailability of flavonoids were reviewed to help build a treatment strategy based on flavonoids' prooxidative potential.
Collapse
Affiliation(s)
- Yongkyu Lee
- Foood and Nutrition, College of Science and Engineering, Dongseo University, Jurae-ro 47, Sasang-Gu, Busan, 47011 Korea
| | - Jehyung Lee
- Department of Medicine, College of Medicine, Dong-A University, Daesingongwon-ro 32, Seo-Gu, Busan, 49201 Korea
| | - Changbaek Lim
- Central Research & Development Center, Daewoo Pharmaceutical Co, LTD. 153, Dadae-ro, Saha-gu, Busan, 49393 Korea
| |
Collapse
|
14
|
Ahmed SA, Parama D, Daimari E, Girisa S, Banik K, Harsha C, Dutta U, Kunnumakkara AB. Rationalizing the therapeutic potential of apigenin against cancer. Life Sci 2020; 267:118814. [PMID: 33333052 DOI: 10.1016/j.lfs.2020.118814] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/14/2020] [Accepted: 11/20/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND Despite the remarkable advances made in the diagnosis and treatment of cancer during the past couple of decades, it remains the second largest cause of mortality in the world, killing approximately 9.6 million people annually. The major challenges in the treatment of the advanced stage of this disease are the development of chemoresistance, severe adverse effects of the drugs, and high treatment cost. Therefore, the development of drugs that are safe, efficacious, and cost-effective remains a 'Holy Grail' in cancer research. However, the research over the past four decades shed light on the cancer-preventive and therapeutic potential of natural products and their underlying mechanism of action. Apigenin is one such compound, which is known to be safe and has significant potential in the prevention and therapy of this disease. AIM To assess the literature available on the potential of apigenin and its analogs in modulating the key molecular targets leading to the prevention and treatment of different types of cancer. METHOD A comprehensive literature search has been carried out on PubMed for obtaining information related to the sources and analogs, chemistry and biosynthesis, physicochemical properties, biological activities, bioavailability and toxicity of apigenin. KEY FINDINGS The literature search resulted in many in vitro, in vivo and a few cohort studies that evidenced the effectiveness of apigenin and its analogs in modulating important molecular targets and signaling pathways such as PI3K/AKT/mTOR, JAK/STAT, NF-κB, MAPK/ERK, Wnt/β-catenin, etc., which play a crucial role in the development and progression of cancer. In addition, apigenin was also shown to inhibit chemoresistance and radioresistance and make cancer cells sensitive to these agents. Reports have further revealed the safety of the compound and the adaptation of nanotechnological approaches for improving its bioavailability. SIGNIFICANCE Hence, the present review recapitulates the properties of apigenin and its pharmacological activities against different types of cancer, which warrant further investigation in clinical settings.
Collapse
Affiliation(s)
- Semim Akhtar Ahmed
- Cell and Molecular Biology Laboratory, Department of Zoology, Cotton University, Pan Bazar, Guwahati, Assam 781001, India
| | - Dey Parama
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Enush Daimari
- Cell and Molecular Biology Laboratory, Department of Zoology, Cotton University, Pan Bazar, Guwahati, Assam 781001, India
| | - Sosmitha Girisa
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Kishore Banik
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Choudhary Harsha
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Uma Dutta
- Cell and Molecular Biology Laboratory, Department of Zoology, Cotton University, Pan Bazar, Guwahati, Assam 781001, India.
| | - Ajaikumar B Kunnumakkara
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India.
| |
Collapse
|
15
|
Imran M, Aslam Gondal T, Atif M, Shahbaz M, Batool Qaisarani T, Hanif Mughal M, Salehi B, Martorell M, Sharifi-Rad J. Apigenin as an anticancer agent. Phytother Res 2020; 34:1812-1828. [PMID: 32059077 DOI: 10.1002/ptr.6647] [Citation(s) in RCA: 106] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 01/03/2020] [Accepted: 01/31/2020] [Indexed: 12/26/2022]
Abstract
Apigenin is an edible plant-derived flavonoid that has been reported as an anticancer agent in several experimental and biological studies. It exhibits cell growth arrest and apoptosis in different types of tumors such as breast, lung, liver, skin, blood, colon, prostate, pancreatic, cervical, oral, and stomach, by modulating several signaling pathways. Apigenin induces apoptosis by the activation of extrinsic caspase-dependent pathway by upregulating the mRNA expressions of caspase-3, caspase-8, and TNF-α. It induces intrinsic apoptosis pathway as evidenced by the induction of cytochrome c, Bax, and caspase-3, while caspase-8, TNF-α, and B-cell lymphoma 2 levels remained unchanged in human prostate cancer PC-3 cells. Apigenin treatment leads to significant downregulation of matrix metallopeptidases-2, -9, Snail, and Slug, suppressing invasion. The expressions of NF-κB p105/p50, PI3K, Akt, and the phosphorylation of p-Akt decreases after treatment with apigenin. However, apigenin-mediated treatment significantly reduces pluripotency marker Oct3/4 protein expression which might be associated with the downregulation of PI3K/Akt/NF-κB signaling.
Collapse
Affiliation(s)
- Muhammad Imran
- University Institute of Diet and Nutritional Sciences, Faculty of Allied Health Sciences, The University of Lahore-Lahore, Lahore, Pakistan
| | - Tanweer Aslam Gondal
- School of Exercise and Nutrition, Deakin University, Melbourne, Victoria, Australia
| | - Muhammad Atif
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka, Saudi Arabia
| | - Muhammad Shahbaz
- Department of Food Science and Technology, MNS-University of Agriculture Multan, Multan, Pakistan
| | - Tahira Batool Qaisarani
- Department of Agricultural Engineering and Technology, Ghazi University, Dera Ghazi Khan, Pakistan
| | - Muhammad Hanif Mughal
- University Institute of Diet and Nutritional Sciences, Faculty of Allied Health Sciences, The University of Lahore-Lahore, Lahore, Pakistan
| | - Bahare Salehi
- Student Research Committee, School of Medicine, Bam University of Medical Sciences, Bam, Iran
| | - Miquel Martorell
- Department of Nutrition and Dietetics, Faculty of Pharmacy, University of Concepción, Concepción, Chile.,Unidad de Desarrollo Tecnológico, UDT, Universidad de Concepción, Concepción, Chile
| | - Javad Sharifi-Rad
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
16
|
Huang S, Yu M, Shi N, Zhou Y, Li F, Li X, Huang X, Jin J. Apigenin and Abivertinib, a novel BTK inhibitor synergize to inhibit diffuse large B-cell lymphoma in vivo and vitro. J Cancer 2020; 11:2123-2132. [PMID: 32127939 PMCID: PMC7052937 DOI: 10.7150/jca.34981] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 12/28/2019] [Indexed: 01/19/2023] Open
Abstract
Background: Apigenin, a flavonoid phytochemical extracted from fruits and vegetables, has shown anti-neoplastic effects in a variety of malignant tumors. DLBCL is the most common type of aggressive lymphoma in adults with a poor prognosis. Small-molecule inhibitors like BTK inhibitors have demonstrated extended period of disease control. Whereas the effects of the synergetic inhibition of the two have not been elucidated. Methods: We assessed the efficacy of Apigenin alone or combined with Abivertinib to inhibit DLBCL progression. Cell viability was examined using the cell proliferation cell proliferation assay (MTS). Apoptotic cells and cell cycle evaluation were detected by Annexin V-FITC and DNA staining solution respectively. Western blot was used to explore the potential mechanism, and the in vivo effects of the two drugs were performed by a DLBCL xenograft BALB/c nude mice model. Results: Our results demonstrated that Apigenin can inhibit the proliferation and clone forming of DLBCL cells. Apigenin also induces apoptosis by down-regulating BCL-XL and activating Caspase family. In addition, Apigenin down-regulates cell cycle proteins including CDK2/CDK4/CDK6/CDC2/p-RB to increase G2/M phase arrest. Mechanically, our data demonstrate that Apigenin leads to a significant reduction of the expression of pro-proliferative pathway PI3K/mTOR to inhibit DLBCL cells survival. Moreover, our in vitro and in vivo results show that Apigenin can synergize with Abivertinib, a novel BTK inhibitor, in treating DLBCL visa synergistically inducing apoptosis and inhibiting the p-GS3K-β and its downstream targets. Conclusions: Collectively, our study suggests that Apigenin exerts improving anti-lymphoma effect of BTK inhibitors and provides hope to targeted therapy of those develop resistance.
Collapse
Affiliation(s)
- Shujuan Huang
- Department of Hematology, the First Affiliated Hospital, Zhejiang University College of Medicine, Hangzhou, People's Republic of China.,Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Zhejiang, Hangzhou, People's Republic of China
| | - Mengxia Yu
- Department of Hematology, Hangzhou First people's hospital, Zhejiang, Hangzhou, China
| | - Nana Shi
- The Children's Hospital Zhejiang University School of Medicine
| | - Yile Zhou
- Department of Hematology, the First Affiliated Hospital, Zhejiang University College of Medicine, Hangzhou, People's Republic of China.,Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Zhejiang, Hangzhou, People's Republic of China
| | - Fengling Li
- Department of Hematology, the First Affiliated Hospital, Zhejiang University College of Medicine, Hangzhou, People's Republic of China.,Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Zhejiang, Hangzhou, People's Republic of China
| | - Xia Li
- Department of Hematology, the First Affiliated Hospital, Zhejiang University College of Medicine, Hangzhou, People's Republic of China.,Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Zhejiang, Hangzhou, People's Republic of China
| | - Xin Huang
- Department of Hematology, the First Affiliated Hospital, Zhejiang University College of Medicine, Hangzhou, People's Republic of China.,Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Zhejiang, Hangzhou, People's Republic of China
| | - Jie Jin
- Department of Hematology, the First Affiliated Hospital, Zhejiang University College of Medicine, Hangzhou, People's Republic of China.,Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Zhejiang, Hangzhou, People's Republic of China
| |
Collapse
|
17
|
Methyl protodioscin from Polygonatum sibiricum inhibits cervical cancer through cell cycle arrest and apoptosis induction. Food Chem Toxicol 2019; 132:110655. [DOI: 10.1016/j.fct.2019.110655] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 06/28/2019] [Accepted: 06/29/2019] [Indexed: 12/18/2022]
|
18
|
Chinese Herbal Medicine for Osteosarcoma in the Mouse: A Systematic Review and Meta-Analysis. Chin J Integr Med 2018; 25:370-377. [PMID: 30484018 DOI: 10.1007/s11655-018-2565-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/28/2016] [Indexed: 10/27/2022]
Abstract
OBJECTIVE To summarize and critically assess the inhibitory effects of Chinese herbal medicine (CHM) on tumor volume and tumor weight for the treatment of osteosarcoma (OS) in mouse models. METHODS PubMed, Embase, Web of Science, China Knowledge Resource Integrated Database (CNKI), Wanfang Database, VIP Database, and Chinese BioMedical (CBM) were searched since their inception dates to March 10, 2016. Two reviewers independently selected the controlled studies estimating effects of CHM on mouse OS by administration in vivo. A pair-wise meta-analysis was performed. Twenty-five studies with adequate randomization were included in the systematic review. RESULTS CHM may significantly inhibit OS growth in mice, as assessed using the tumor weight [20 studies, n=443; 290 for CHM and 153 for the control: pooled mean difference (MD)=-2.90; 95% confidence interval (Cl): -3.50 to -2.31: P<0.01], tumor volume (16 studies, n=382; 257 for CHM and 125 for the control; pooled MD =-2.57; 95% Cl: -3.33 to -1.80; P<0.01) and tumor growth inhibition rate. CONCLUSION CHM could significantly inhibit the growth of OS in mouse models, which might be supportive for the design of preclinical and clinical trials in future.
Collapse
|
19
|
Shang HS, Lu HF, Lee CH, Chiang HS, Chu YL, Chen A, Lin YF, Chung JG. Quercetin induced cell apoptosis and altered gene expression in AGS human gastric cancer cells. ENVIRONMENTAL TOXICOLOGY 2018; 33:1168-1181. [PMID: 30152185 DOI: 10.1002/tox.22623] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 06/19/2018] [Accepted: 06/22/2018] [Indexed: 05/20/2023]
Abstract
Quercetin is one of the natural components from natural plant and it induces cell apoptosis in many human cancer cell lines. However, no available reports show that quercetin induces apoptosis and altered associated gene expressions in human gastric cancer cells, thus, we investigated the effect of quercetin on the apoptotic cell death and associated gene expression in human gastric cancer AGS cells. Results indicated that quercetin induced cell morphological changes and reduced total viability via apoptotic cell death in AGS cells. Furthermore, results from flow cytometric assay indicated that quercetin increased reactive oxygen species (ROS) production, decreased the levels of mitochondrial membrane potential (ΔΨm ), and increased the apoptotic cell number in AGS cells. Results from western blotting showed that quercetin decreased anti-apoptotic protein of Mcl-1, Bcl-2, and Bcl-x but increased pro-apoptotic protein of Bad, Bax, and Bid. Furthermore, quercetin increased the gene expressions of TNFRSF10D (Tumor necrosis factor receptor superfamily, member 10d, decoy with truncated death domain), TP53INP1 (tumor protein p53 inducible nuclear protein 1), and JUNB (jun B proto-oncogene) but decreased the gene expression of VEGFB (vascular endothelial growth factor B), CDK10 (cyclin-dependent kinase 10), and KDELC2 (KDEL [Lys-Asp-Glu-Leu] containing 2) that are associated with apoptosis pathways. Thus, those findings may offer more information regarding the molecular, gene expression, and signaling pathway for quercetin induced apoptotic cell death in human gastric cancer cells.
Collapse
Affiliation(s)
- Hung-Sheng Shang
- Graduate Institute of Clinical of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Division of Clinical Pathology, Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Hsu-Feng Lu
- Department of Clinical Pathology, Cheng-Hsin General Hospital, Taipei, Taiwan
- Department of Restaurant, Hotel and Institutional Management, Fu-Jen Catholic University, New Taipei City, Taiwan
| | - Ching-Hsiao Lee
- Department of Medical Technology, Jen-Teh Junior College of Medicine, Nursing and Management, Miaoli County, Taiwan
| | - Han-Sun Chiang
- Graduate Institute of Basic Medicine, Fu-Jen Catholic University, New Taipei city, Taiwan
| | - Yung-Lin Chu
- International Master's Degree Program in Food Science, International College, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Ann Chen
- Division of Clinical Pathology, Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Yuh-Feng Lin
- Graduate Institute of Clinical of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Division of Nephrology, Department of Medicine, Shuang Ho Hospital, New Taipei City, Taiwan
| | - Jing-Gung Chung
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan
- Department of Biotechnology, Asia University, Taichung, Taiwan
| |
Collapse
|
20
|
Chen T, Su W, Yan Z, Wu H, Zeng X, Peng W, Gan L, Zhang Y, Yao H. Identification of naringin metabolites mediated by human intestinal microbes with stable isotope-labeling method and UFLC-Q-TOF-MS/MS. J Pharm Biomed Anal 2018; 161:262-272. [PMID: 30172881 DOI: 10.1016/j.jpba.2018.08.039] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 08/04/2018] [Accepted: 08/18/2018] [Indexed: 12/15/2022]
Abstract
Widely presented in medicinal plants, naringin is one of the major flavanones with various pharmaceutical bioactivities. After oral administration, naringin predominantly undergoes metabolisms mediated by liver cytochrome P450 and gut microbes, while its human microbes-mediated metabolic profiling is still largely obscure due to the endogenous interferences, which makes it extremely difficult to analyze metabolites precisely. In this study, we aim of systematically investigating the biotransformation of naringin mediated by human intestinal microbes through applying stable isotope-labeling method. [2',3',5',6'-D4]naringin was synthesized and incubated anaerobically with human gut microbes. A total of 13 microbial metabolites were detected and identified by UFLC-Q-TOF-MS/MS, among which 5 were reported for the first time. Furthermore, the proposed metabolic pathway revealed that naringin went through extensive phase I metabolism in human intestinal microbes. Of note, diverse metabolic profiles of naringin among human participants were obtained, which could be attributed to the distinct gut microbiota compositions of individuals.
Collapse
Affiliation(s)
- Taobin Chen
- Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China; Shenzhen Research Institute of Sun Yat-sen University, Shenzhen 518057, China
| | - Weiwei Su
- Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China; Shenzhen Research Institute of Sun Yat-sen University, Shenzhen 518057, China
| | - Zenghao Yan
- Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Hao Wu
- Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Xuan Zeng
- Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China; Shenzhen Research Institute of Sun Yat-sen University, Shenzhen 518057, China
| | - Wei Peng
- Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Li Gan
- Artis-chem Co. Ltd., Shanghai 201203, China
| | | | - Hongliang Yao
- Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China; Shenzhen Research Institute of Sun Yat-sen University, Shenzhen 518057, China.
| |
Collapse
|
21
|
The Effects of Synthetically Modified Natural Compounds on ABC Transporters. Pharmaceutics 2018; 10:pharmaceutics10030127. [PMID: 30096910 PMCID: PMC6161255 DOI: 10.3390/pharmaceutics10030127] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 08/03/2018] [Accepted: 08/07/2018] [Indexed: 12/12/2022] Open
Abstract
Multidrug resistance (MDR) is a major hurdle which must be overcome to effectively treat cancer. ATP-binding cassette transporters (ABC transporters) play pivotal roles in drug absorption and disposition, and overexpression of ABC transporters has been shown to attenuate cellular/tissue drug accumulation and thus increase MDR across a variety of cancers. Overcoming MDR is one desired approach to improving the survival rate of patients. To date, a number of modulators have been identified which block the function and/or decrease the expression of ABC transporters, thereby restoring the efficacy of a range of anticancer drugs. However, clinical MDR reversal agents have thus far proven ineffective and/or toxic. The need for new, effective, well-tolerated and nontoxic compounds has led to the development of natural compounds and their derivatives to ameliorate MDR. This review evaluates whether synthetically modifying natural compounds is a viable strategy to generate potent, nontoxic, ABC transporter inhibitors which may potentially reverse MDR.
Collapse
|
22
|
Park H, Park S, Bazer FW, Lim W, Song G. Myricetin treatment induces apoptosis in canine osteosarcoma cells by inducing DNA fragmentation, disrupting redox homeostasis, and mediating loss of mitochondrial membrane potential. J Cell Physiol 2018; 233:7457-7466. [PMID: 29663365 DOI: 10.1002/jcp.26598] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2018] [Accepted: 03/14/2018] [Indexed: 01/25/2023]
Abstract
Canine osteosarcoma is an aggressive primary bone tumor that shows metastasis to distal regions and is associated with a high mortality rate. However, the pathophysiological mechanisms of canine osteosarcoma are not well characterized. In addition, development of prognostic factors and novel therapeutic agents is necessary to efficiently treat osteosarcoma. Therefore, we studied the effects of myricetin, an antioxidant found in berries, nuts, teas, wine, and vegetables, on apoptosis and signal transduction in the canine osteosarcoma cell lines, D-17 and DSN. Results of the present study demonstrated that treatment with myricetin decreased cell proliferation and DNA replication, while it increased apoptotic DNA fragmentation in D-17 and DSN cells. In addition, it increased generation of ROS, lipid peroxidation, and depolarization of MMP in both D-17 and DSN cells. Myricetin treatment activated phosphorylation of AKT, p70S6K, ERK1/2, JNK, and p90RSK in canine osteosarcoma cells. Moreover, inhibition of PI3K and MAPK using LY294002, U0126, or SP600125, in addition to myricetin treatment, effectively suppressed cell proliferation compared to treatment with myricetin or each inhibitor alone. Therefore, we concluded that myricetin may be a potentially effective and less toxic therapeutic agent to prevent and control progression of canine osteosarcoma.
Collapse
Affiliation(s)
- Hahyun Park
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea
| | - Sunwoo Park
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea
| | - Fuller W Bazer
- Center for Animal Biotechnology and Genomics and Department of Animal Science, Texas A&M University, College Station, Texas
| | - Whasun Lim
- Department of Biomedical Sciences, Catholic Kwandong University, Gangneung, Republic of Korea
| | - Gwonhwa Song
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea
| |
Collapse
|
23
|
Salmani JMM, Zhang XP, Jacob JA, Chen BA. Apigenin's anticancer properties and molecular mechanisms of action: Recent advances and future prospectives. Chin J Nat Med 2018; 15:321-329. [PMID: 28558867 DOI: 10.1016/s1875-5364(17)30052-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2016] [Indexed: 01/31/2023]
Abstract
Cancer is a major health concern and leading burden on economy worldwide. An increasing effort is devoted to isolation and development of plant-derived dietary components as effective chemo-preventive products. Phytochemical compounds from natural resources such as fruits and vegetables are responsible for decreasing the risk of certain cancers among the consuming populations. Apigenin, a flavonoid phytochemical found in many kinds of fruits and vegetables, has been shown to exert significant biological effects, such as anti-oxidant, anti-inflammatory and most particularly anti-neoplastic properties. This review is intended to summarize the most recent advances in the anti-proliferative and chemo-preventive effects of apigenin in different cancer models. Analysis of the data from the studied cancer models has revealed that apigenin exerts its anti-proliferative effects through multiple and complex pathways. This guided us to discover some controversial results about the exact role of certain molecular pathways such as autophagy in the anticancer effects of apigenin. Further, there were cumulative positive evidences supporting the involvement of certain pathways such as apoptosis, ROS and DNA damage and repair. Apigenin possesses a high potential to be used as a chemosensitizing agent through the up-regulation of DR5 pathway. According to these preclinical findings we recommend that further robust unbiased studies should consider the possible interactions between different molecular pathways.
Collapse
Affiliation(s)
- Jumah Masoud Mohammad Salmani
- Department of Hematology and Oncology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China
| | - Xiao-Ping Zhang
- Department of Hematology and Oncology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China
| | - Joe Antony Jacob
- Department of Hematology and Oncology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China
| | - Bao-An Chen
- Department of Hematology and Oncology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China.
| |
Collapse
|
24
|
Chou GL, Peng SF, Liao CL, Ho HC, Lu KW, Lien JC, Fan MJ, La KC, Chung JG. Casticin impairs cell growth and induces cell apoptosis via cell cycle arrest in human oral cancer SCC-4 cells. ENVIRONMENTAL TOXICOLOGY 2018; 33:127-141. [PMID: 29098808 DOI: 10.1002/tox.22497] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 09/26/2017] [Accepted: 10/06/2017] [Indexed: 06/07/2023]
Abstract
Casticin, a polymethoxyflavone, present in natural plants, has been shown to have biological activities including anti-cancer activities. Herein, we investigated the anti-oral cancer activity of casticin on SCC-4 cells in vitro. Viable cells, cell cycle distribution, apoptotic cell death, reactive oxygen species (ROS) production, and Ca2+ production, levels of ΔΨm and caspase activity were measured by flow cytometric assay. Cell apoptosis associated protein expressions were examined by Western blotting and confocal laser microscopy. Results indicated that casticin induced cell morphological changes, DNA condensation and damage, decreased the total viable cells, induced G2 /M phase arrest in SCC-4 cells. Casticin promoted ROS and Ca2+ productions, decreases the levels of ΔΨm , promoted caspase-3, -8, and -9 activities in SCC-4 cells. Western blotting assay demonstrated that casticin affect protein level associated with G2/M phase arrest and apoptosis. Confocal laser microscopy also confirmed that casticin increased the translocation of AIF and cytochrome c in SCC-4 cells. In conclusion, casticin decreased cell number through G2 /M phase arrest and the induction of cell apoptosis through caspase- and mitochondria-dependent pathways in SCC-4 cells.
Collapse
Affiliation(s)
- Guan-Ling Chou
- Department of Biological Science and Technology, China Medical University, Taichung, 404, Taiwan
| | - Shu-Fen Peng
- Department of Biological Science and Technology, China Medical University, Taichung, 404, Taiwan
| | - Ching-Lung Liao
- Graduate Institute of Chinese Medicine, China Medical University, Taichung, 404, Taiwan
| | - Heng-Chien Ho
- School of Medicine, China Medical University, Taichung, 404, Taiwan
| | - Kung-Wen Lu
- College of Chinese Medicine, School of Post-Baccalaureate Chinese Medicine, China Medical University, Taichung, 404, Taiwan
| | - Jin-Cherng Lien
- School of Pharmacy, China Medical University, Taichung, 404, Taiwan
| | - Ming-Jen Fan
- Department of Biotechnology, Asia University, Taichung, 413, Taiwan
| | - Kuang-Chi La
- Department of Medical Laboratory Science and Biotechnology, College of Medicine and Life Science, Chung Hwa University of Medical Technology, Tainan, 717, Taiwan
| | - Jing-Gung Chung
- Department of Biological Science and Technology, China Medical University, Taichung, 404, Taiwan
- Department of Biotechnology, Asia University, Taichung, 413, Taiwan
| |
Collapse
|
25
|
Shankar E, Goel A, Gupta K, Gupta S. Plant flavone apigenin: An emerging anticancer agent. CURRENT PHARMACOLOGY REPORTS 2017; 3:423-446. [PMID: 29399439 PMCID: PMC5791748 DOI: 10.1007/s40495-017-0113-2] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Research in cancer chemoprevention provides convincing evidence that increased intake of vegetables and fruits may reduce the risk of several human malignancies. Phytochemicals present therein provide beneficial anti-inflammatory and antioxidant properties that serve to improve the cellular microenvironment. Compounds known as flavonoids categorized anthocyanidins, flavonols, flavanones, flavonols, flavones, and isoflavones have shown considerable promise as chemopreventive agents. Apigenin (4', 5, 7-trihydroxyflavone), a major plant flavone, possessing antioxidant, anti-inflammatory, and anticancer properties affecting several molecular and cellular targets used to treat various human diseases. Epidemiologic and case-control studies have suggested apigenin reduces the risk of certain cancers. Studies demonstrate that apigenin retain potent therapeutic properties alone and/or increases the efficacy of several chemotherapeutic drugs in combination on a variety of human cancers. Apigenin's anticancer effects could also be due to its differential effects in causing minimal toxicity to normal cells with delayed plasma clearance and slow decomposition in liver increasing the systemic bioavailability in pharmacokinetic studies. Here we discuss the anticancer role of apigenin highlighting its potential activity as a chemopreventive and therapeutic agent. We also highlight the current caveats that preclude apigenin for its use in the human trials.
Collapse
Affiliation(s)
- Eswar Shankar
- Department of Urology, The James and Eilleen Dicke Laboratory, Case Western Reserve University, Cleveland, OH 44106, USA
- Department of Urology, The Urology Institute, University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA
| | - Aditi Goel
- Department of Biology, School of Undergraduate Studies, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Karishma Gupta
- Department of Urology, The James and Eilleen Dicke Laboratory, Case Western Reserve University, Cleveland, OH 44106, USA
- Department of Urology, The Urology Institute, University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA
| | - Sanjay Gupta
- Department of Urology, The James and Eilleen Dicke Laboratory, Case Western Reserve University, Cleveland, OH 44106, USA
- Department of Urology, The Urology Institute, University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA
- Department of Nutrition, Case Western Reserve University, Cleveland, OH 44106, USA
- Division of General Medical Sciences, Case Comprehensive Cancer Center, Cleveland, OH 44106, USA
- Department of Urology, Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, OH 44106, USA
| |
Collapse
|
26
|
Joo JC, Hwang JH, Jo E, Kim YR, Kim DJ, Lee KB, Park SJ, Jang IS. Cordycepin induces apoptosis by caveolin-1-mediated JNK regulation of Foxo3a in human lung adenocarcinoma. Oncotarget 2017; 8:12211-12224. [PMID: 28099944 PMCID: PMC5355338 DOI: 10.18632/oncotarget.14661] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 12/27/2016] [Indexed: 11/29/2022] Open
Abstract
Forkhead transcription factor (Foxo3a) is a downstream effector of JNK-induced tumor suppression. However, it is not clear whether the caveolin-1 (CAV1)-mediated JNK/Foxo3a pathway is involved in cancer cell apoptosis. We found that cordycepin upregulates CAV1 expression, which was accompanied by JNK phosphorylation (p-JNK) and subsequent Foxo3a translocation into the nucleus, resulting in the upregulation of Bax protein expression. Furthermore, we found that CAV1 overexpression upregulated p-JNK, whereas CAV1 siRNA downregulated p-JNK. Additionally, SP600125, a specific JNK inhibitor, significantly increased Foxo3a phosphorylation, which downregulated Foxo3a translocation into the nucleus, indicating that CAV1 mediates JNK regulation of Foxo3a. Foxo3a siRNA downregulated Bax protein and attenuated A549 apoptosis, indicating that the CAV1-mediated JNK/Foxo3a pathway induces the apoptosis of A549 lung cancer cells. Cordycepin significantly decreased tumor volume in nude mice. Taken together, these results indicate that cordycepin promotes CAV1 upregulation to enhance JNK/Foxo3a signaling pathway activation, inducing apoptosis in lung cancer cells, and support its potential as a therapeutic agent for lung cancer.
Collapse
Affiliation(s)
- Jong Cheon Joo
- Department of Sasang Constitutional Medicine, Wonkwang University, Iksan, 54538, Republic of Korea
| | - Jung Hoo Hwang
- College of Medicine, Chung-Ang University, Seoul 156-756, Republic of Korea
| | - Eunbi Jo
- Division of Bioconvergence Analysis, Korea Basic Science Institute, Daejeon 305-333, Republic of Korea
| | - Young-Rang Kim
- Division of Bioconvergence Analysis, Korea Basic Science Institute, Daejeon 305-333, Republic of Korea
| | - Dae Joon Kim
- Department of Biomedical Sciences, School of Medicine, University of Texas Rio Grande Valley, Edinburg, TX 78539, USA
| | - Kyung-Bok Lee
- Division of Bioconvergence Analysis, Korea Basic Science Institute, Daejeon 305-333, Republic of Korea
| | - Soo Jung Park
- Department of Sasang Constitutional Medicine, Woosuk University, Wanju, Jeonbuk, 55338, Republic of Korea
| | - Ik-Soon Jang
- Division of Bioconvergence Analysis, Korea Basic Science Institute, Daejeon 305-333, Republic of Korea
| |
Collapse
|
27
|
Apigenin Attenuates Adriamycin-Induced Cardiomyocyte Apoptosis via the PI3K/AKT/mTOR Pathway. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 2017:2590676. [PMID: 28684964 PMCID: PMC5480054 DOI: 10.1155/2017/2590676] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 03/10/2017] [Accepted: 04/19/2017] [Indexed: 11/18/2022]
Abstract
Treatment with Adriamycin (ADR) is one of the major causes of chemotherapy-induced cardiotoxicity and therefore is the principal limiting factor in the effectiveness of chemotherapy for cancer patients. Apigenin (API) has been shown to play a cardioprotective role. The present study examined the effect of API on ADR-induced cardiotoxicity in mice. Sixty male Kunming mice were randomly divided into 4 groups: a control group, ADR model group, low-dose API treatment group (125 mg·kg−1), and high-dose API treatment group (250 mg·kg−1). Blood samples were taken to evaluate a spectrum of myocardial enzymes. Cardiomyocyte apoptosis was measured using a TUNEL assay, and cardiomyocyte autophagy was observed using electron microscopy. Moreover, apoptosis-related proteins, such as Bax and Bcl-2, autophagy-related proteins, including Beclin1 and LC3B, and PI3K/AKT/mTOR pathway-related proteins were examined with western blot. Our results demonstrate that ADR caused an increase in the serum levels of cardiac injury markers and enhanced cardiomyocyte apoptosis and autophagy. API administration prevented the effects associated with ADR-induced cardiotoxicity in mice and inhibited ADR-induced apoptosis and autophagy. API also promoted PI3K/AKT/mTOR pathway activity in ADR-treated mice. In conclusion, API may have a protective effect against ADR-induced cardiotoxicity by inhibiting apoptosis and autophagy via activation of the PI3K/AKT/mTOR pathway.
Collapse
|
28
|
Lee CH, Shih YL, Lee MH, Au MK, Chen YL, Lu HF, Chung JG. Bufalin Induces Apoptosis of Human Osteosarcoma U-2 OS Cells through Endoplasmic Reticulum Stress, Caspase- and Mitochondria-Dependent Signaling Pathways. Molecules 2017; 22:molecules22030437. [PMID: 28287444 PMCID: PMC6155407 DOI: 10.3390/molecules22030437] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 03/06/2017] [Accepted: 03/06/2017] [Indexed: 12/22/2022] Open
Abstract
Bone cancer is one of the cancer-related diseases, and there are increased numbers of patients with bone cancer worldwide. Therefore the efficacy of treatment of bone cancer is considered extremely vital. Bufalin has been showed to have biological activities including anticancer activities in vitro and in vivo. However, the exact associated mechanisms for bufalin induced apoptosis in human bone cancer cells are still unclear. In the present study, we investigated the effect of bufalin on the cytotoxic effects in U-2 OS human osteosarcoma cells. For examining apoptotic cell deaths, we used flow cytometry assay, Annexin V/PI double staining, and TUNNEL assay. Reactive oxygen species (ROS), Ca2+, mitochondrial membrane potential (ΔΨm), and caspase-8, -9 and -3 activities were measured by flow cytometry assay. Furthermore, western blotting and a confocal laser microscopy examination were used for measuring the alterations of apoptotic associated protein expression and translocation, respectively. The results indicated that bufalin induced cell morphological changes, decreased the viable cell number, induced apoptotic cell death, and increased the apoptotic cell number, and affected apoptotic associated protein expression in U-2 OS cells. Bufalin increased apoptotic proteins such as Bak, and decreased anti-apoptotic proteins such as Bcl-2 and Bcl-x in U-2 OS cells. Furthermore, bufalin increased the protein levels of cytochrome c (Cyto c), AIF (Apoptosis inducing factor) and Endo G (Endonuclease G) in cytoplasm that were also confirmed by confocal microscopy examination. Based on those findings, bufalin induced apoptotic cell death in U-2 OS cells may be via endoplasmic reticulum (ER) stress, caspase-, and mitochondria-dependent pathways; thus, we may suggest that bufalin could be used as an anti-cancer agent for the treatment of osteosarcoma in the future, and further in vivo studies are needed.
Collapse
Affiliation(s)
- Ching-Hsiao Lee
- Department of Medical Technology, Jen-Teh Junior College of Medicine, Nursing and Management, Miaoli Country 356, Taiwan.
| | - Yung-Luen Shih
- Department of Pathology and Laboratory Medicine, Shin Kong Wu Ho-Su Memorial Hospital, Taipei 111, Taiwan.
- School of Medical Laboratory Science and Biotechnology, Taipei Medical University, Taipei 110, Taiwan.
- School of Medicine, College of Medicine, Fu-Jen Catholic University, New Taipei City 242, Taiwan.
| | - Mei-Hui Lee
- Department of Genetic Counseling Center, Changhua Christian Hospital, Changhua 500, Taiwan.
| | - Man-Kuan Au
- Department of Orthopedics, Cheng Hsin General Hospital, Taipei 112, Taiwan.
| | - Yung-Liang Chen
- Department of Medical Laboratory Science and Biotechnology, Yuanpei University, Hsinchu 300, Taiwan.
| | - Hsu-Feng Lu
- Restaurant, Hotel and Institutional Management, Fu-Jen Catholic University, New Taipei City 242, Taiwan.
- Department of Clinical Pathology, Cheng Hsin General Hospital, Taipei 112, Taiwan.
| | - Jing-Gung Chung
- Department of Biological Science and Technology, China Medical University, Taichung 404, Taiwan.
- Department of Biotechnology, Asia University, Wufeng, Taichung 413, Taiwan.
| |
Collapse
|
29
|
Yuan CH, Horng CT, Lee CF, Chiang NN, Tsai FJ, Lu CC, Chiang JH, Hsu YM, Yang JS, Chen FA. Epigallocatechin gallate sensitizes cisplatin-resistant oral cancer CAR cell apoptosis and autophagy through stimulating AKT/STAT3 pathway and suppressing multidrug resistance 1 signaling. ENVIRONMENTAL TOXICOLOGY 2017; 32:845-855. [PMID: 27200496 DOI: 10.1002/tox.22284] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 04/21/2016] [Accepted: 04/30/2016] [Indexed: 06/05/2023]
Abstract
Epigallocatechin gallate (EGCG) is a green tea polyphenol that presents anticancer activities in multiple cancer cells, but no available report was addressed for the underling molecular mechanism of cytotoxic impacts on drug-resistant oral squamous cell carcinoma cells. In the present study, the inhibitory effects of EGCG were experienced on cisplatin-resistant oral cancer CAR cells. EGCG inhibited cell viability in a time- and concentration-dependent manner by a sulforhodamine B (SRB) assay. EGCG induced CAR cell apoptosis and autophagy by 4',6-diamidino-2-phenylindole (DAPI) dye, acridine orange (AO) staining and green fluorescent protein (GFP)-tagged LC3B assay, respectively. EGCG also significantly enhanced caspase-9 and caspase-3 activities by caspase activity assay. EGCG markedly increased the protein levels of Bax, cleaved caspase-9, cleaved caspase-3, Atg5, Atg7, Atg12, Beclin-1, and LC3B-II, as well as significantly decreased the expression of Bcl-2, phosphorylated AKT (Ser473) and phosphorylation of STAT3 on Tyr705 by western blotting in CAR cells. Importantly, the protein and gene expression of multidrug resistance 1 (MDR1) were dose-dependently inhibited by EGCG. Overall, downregulation of MDR1 levels and alterations of AKT/STAT3 signaling contributed to EGCG-induced apoptosis and autophagy in CAR cells. Based on these results, EGCG has the potential for therapeutic effect on oral cancer and may be useful for long-term oral cancer prevention in the future. © 2016 Wiley Periodicals, Inc. Environ Toxicol 32: 845-855, 2017.
Collapse
Affiliation(s)
- Chien-Han Yuan
- Department of Otolaryngology, Kaohsiung Armed Forces General Hospital, Kaohsiung, Taiwan
- Department of Otorhinolaryngology Head and Neck Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Chi-Ting Horng
- Kaohsiung Armed Forces General Hospital, Medical Education Center, Kaohsiung, Taiwan
- Institute of Biochemistry and Biotechnology, Chung Shan Medical University and Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Chiu-Fang Lee
- Kaohsiung Veterans General Hospital Pingtung Branch, Pingtung, Taiwan
| | - Ni-Na Chiang
- Kaohsiung Veterans General Hospital Pingtung Branch, Pingtung, Taiwan
| | - Fuu-Jen Tsai
- Human Genetic Center, China Medical University Hospital, Taichung, Taiwan
- School of Post-Baccalaureate Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Chi-Cheng Lu
- School of Nutrition and Health Sciences, Taipei Medical University, Taipei, Taiwan
| | - Jo-Hua Chiang
- Department of Nursing, Chung-Jen Junior College of Nursing, Health Sciences and Management, Chiayi County, Taiwan
| | - Yuan-Man Hsu
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan
| | - Jai-Sing Yang
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Fu-An Chen
- Department of Pharmacy and Master Program, Tajen University, Pingtung, Taiwan
| |
Collapse
|
30
|
Yang JS, Lin CA, Lu CC, Wen YF, Tsai FJ, Tsai SC. Carboxamide analog ITR-284 evokes apoptosis and inhibits migration ability in human lung adenocarcinoma A549 cells. Oncol Rep 2017; 37:1786-1792. [PMID: 28098885 DOI: 10.3892/or.2017.5374] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 01/02/2017] [Indexed: 11/06/2022] Open
Abstract
Lung adenocarcinoma is the most common type of lung cancer and found in both smokers and non-smokers, but the treatment of lung cancer is limited. ITR-284 has been shown to be a potent carboxamide-derived anticancer agent and to induce apoptosis in leukemia and colon cancer cells. However, little is known whether ITR-284 has anticancer activity in human lung adenocarcinoma cells through induction of apoptosis and suppression of migration in vitro. We showed that ITR-284 inhibited human lung cancer A549 cells using the thiazolyl blue tetrazolium bromide (MTT) assay and evoked apoptosis via the cell cycle distribution at S phase arrest. After treatment with 20 nM ITR-284 for 24 h, apoptotic cells were induced and detected by Annexin V-FITC/PI staining. The production of reactive oxygen species (ROS) was dose-dependently increased in A549 cells caused by ITR-284. The results from immunoblotting analysis showed an elevation of protein levels of p53 and phosphorylation of p53 in A549 cells prior to ITR-284 exposure. Additionally, apoptosis-associated proteins such as Bax, cleaved caspase-3 and cleaved PARP were upregulated after ITR-284 treatment. By wound healing assay, low concentrations (1-5 nM) of ITR-284 exerted a greater effect on inhibition of A549 cell migration. The protein levels of E-cadherin and vimentin, which are the epithelial-mesenchymal transition (EMT) markers, were modulated in ITR-284-treated cells assessed by western blot analysis. Taken together, our data suggest that ITR-284 may be an effective anticancer agent for treating lung adenocarcinoma.
Collapse
Affiliation(s)
- Jai-Sing Yang
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 40447, Taiwan, R.O.C
| | - Chia-An Lin
- Department of Biological Science and Technology, China Medical University, Taichung 40402, Taiwan, R.O.C
| | - Chi-Cheng Lu
- School of Nutrition and Health Sciences, Taipei Medical University, Taipei 11031, Taiwan, R.O.C
| | - Yen-Fang Wen
- Medicinal Chemistry Laboratory, Biomedical Engineering Research Laboratories, Industrial Technology Research Institute, Hsinchu 31040, Taiwan, R.O.C
| | - Fuu-Jen Tsai
- Human Genetic Center, China Medical University Hospital, Taichung 40447, Taiwan, R.O.C
| | - Shih-Chang Tsai
- Department of Biological Science and Technology, China Medical University, Taichung 40402, Taiwan, R.O.C
| |
Collapse
|
31
|
Lin CF, Yang JS, Lin C, Tsai FJ, Lu CC, Lee MR. CCY-1a-E2 induces G2/M phase arrest and apoptotic cell death in HL-60 leukemia cells through cyclin-dependent kinase 1 signaling and the mitochondria-dependent caspase pathway. Oncol Rep 2016; 36:1633-9. [PMID: 27461132 DOI: 10.3892/or.2016.4970] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 04/22/2016] [Indexed: 11/05/2022] Open
Abstract
Our previous study demonstrated that 2-[(3-methoxybenzyl)oxy]benzaldehyde (CCY-1a-E2) is a potent compound that acts against multiple human leukemia cell lines. CCY-1a-E2 was also shown to have efficacious anti‑leukemic activity in vivo. However, the molecular mechanism of action of CCY‑1a‑E2 attributed to its anticancer effect remains poorly understood. In the present study, CCY‑1a‑E2 suppressed cell viability in multiple leukemia cell lines (HL‑60, K562, KG‑1 and KG‑1a) via inhibition of cell proliferation, cell cycle arrest and induction of apoptosis. CCY‑1a‑E2 exhibited a marked toxic effect on HL‑60 cells and displayed low cytotoxicity in normal human peripheral blood mononuclear cells (PBMCs). Results from flow cytometric analysis indicated that CCY‑1a‑E2 promoted G2/M phase arrest and promoted apoptosis in the HL‑60 cells. CCY‑1a‑E2 treatment upregulated cyclin B, cyclin‑dependent kinase 1 (CDK1), cell division cycle 25C (cdc25C) and p21 protein expression. CCY‑1a‑E2 caused apoptotic cell death and DNA fragmentation as determined by 4',6‑diamidino‑2‑phenylindole (DAPI) staining and DNA gel electrophoresis. Elevated activities of caspase‑8, ‑9 and ‑3 were observed during CCY‑1a‑E2‑induced cell apoptosis; their specific inhibitors were found to block CCY‑1a‑E2‑induced apoptosis, respectively. Moreover, CCY‑1a‑E2 time‑dependently disrupted the mitochondrial membrane potential (ΔΨm), and it enhanced the protein levels of Fas/CD95, cytochrome c, Bax, cleaved PARP, as well as attenuated Bcl‑2 expression in the HL‑60 cells. Our results provide direct evidence that supports the future potential therapeutic application of CCY-1a-E2 in leukemia.
Collapse
Affiliation(s)
- Chin-Fen Lin
- Department of Biochemistry, China Medical University, Taichung 404, Taiwan, R.O.C
| | - Jai-Sing Yang
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 404, Taiwan, R.O.C
| | - Chingju Lin
- Department of Physiology, China Medical University, Taichung 404, Taiwan, R.O.C
| | - Fuu-Jen Tsai
- Human Genetic Center, China Medical University Hospital, Taichung 404, Taiwan, R.O.C
| | - Chi-Cheng Lu
- School of Nutrition and Health Sciences, Taipei Medical University, Taipei 110, Taiwan, R.O.C
| | - Miau-Rong Lee
- Department of Biochemistry, China Medical University, Taichung 404, Taiwan, R.O.C
| |
Collapse
|
32
|
Lin CH, Chang CY, Lee KR, Lin HJ, Chen TH, Wan L. Flavones inhibit breast cancer proliferation through the Akt/FOXO3a signaling pathway. BMC Cancer 2015; 15:958. [PMID: 26675309 PMCID: PMC4682224 DOI: 10.1186/s12885-015-1965-7] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 11/30/2015] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Flavones found in plants display various biological activities, including anti-allergic, anti-viral, anti-inflammatory, anti-oxidation, and anti-tumor effects. In this study, we investigated the anti-tumor effects of flavone, apigenin and luteolin on human breast cancer cells. METHODS The anti-cancer activity of flavone, apigenin and luteolin was investigated using the MTS assay. Apoptosis was analyzed by Hoechst 33342 staining, flow cytometry and western blot. Cell migration was determined using the culture inserts and xCELLigence real-time cell analyzer instrument equipped with a CIM-plate 16. Real-time quantitative PCR and western blot were used to determine the signaling pathway elicited by flavone, apigenin and luteolin. RESULTS Flavone, apigenin and luteolin showed potent inhibitory effects on the proliferation of Hs578T, MDA-MB-231 and MCF-7 breast cancer cells in a concentration and time-dependent manner. The ability of flavone, apigenin and luteolin to inhibit the growth of breast cancer cells through apoptosis was confirmed by Hoechst33342 staining and the induction of sub-G1 phase of the cell cycle. Flavone, apigenin and luteolin induced forkhead box O3 (FOXO3a) expression by inhibiting Phosphoinositide 3-kinase (PI3K) and protein kinase B (PKB)/Akt. This subsequently elevated the expression of FOXO3a target genes, including the Cyclin-dependent kinase inhibitors p21Cip1 (p21) and p27kip1 (p27), which increased the levels of activated poly(ADP) polymerase (PARP) and cytochrome c. CONCLUSION Taken together, these data demonstrated that flavone, apigenin and luteolin induced cell cycle arrest and apoptosis in breast cancer cells through inhibiting PI3K/Akt activation and increasing FOXO3a activation, which suggest that flavone, apigenin and luteolin will be the potential leads for the preventing and treating of breast cancer.
Collapse
Affiliation(s)
- Chia-Hung Lin
- Institute of Molecular Medicine, National Tsing Hua University, No. 101, Section 2, Kuang-Fu Road, Hsinchu, 30013, Taiwan.
| | - Ching-Yao Chang
- Department of Biotechnology, Asia University, Taichung, Taiwan.
| | - Kuan-Rong Lee
- Institute of Molecular Medicine, National Tsing Hua University, No. 101, Section 2, Kuang-Fu Road, Hsinchu, 30013, Taiwan.
| | - Hui-Ju Lin
- Department of Ophthalmology, China Medical University Hospital, Taichung, Taiwan.
- School of Chinese Medicine, China Medical University, No. 91, Hsueh-Shih Road, Taichung, 40402, Taiwan.
| | - Ter-Hsin Chen
- Graduate Institute of Veterinary Pathobiology, College of Veterinary Medicine, National Chung Hsing University, Taichung, Taiwan.
| | - Lei Wan
- Department of Biotechnology, Asia University, Taichung, Taiwan.
- School of Chinese Medicine, China Medical University, No. 91, Hsueh-Shih Road, Taichung, 40402, Taiwan.
- Department of Gynecology, China Medical University Hospital, Taichung, Taiwan.
| |
Collapse
|
33
|
Li YY, Wu H, Dong YG, Lin BO, Xu G, Ma YB. Application of eupatilin in the treatment of osteosarcoma. Oncol Lett 2015; 10:2505-2510. [PMID: 26622880 DOI: 10.3892/ol.2015.3563] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Accepted: 05/22/2015] [Indexed: 02/01/2023] Open
Abstract
5,7-dihydroxy-3',4',6-trimethoxyflavone, commonly known as eupatilin, is a traditional Asian medicinal plant, which is mainly used for the treatment of gastritis, as well as its use as an anti-inflammatory agent. Eupatilin is a bioactive compound; however, its effects on osteosarcoma (OS) have remained to be elucidated. Therefore, the present study aimed to investigate the effects of eupatilin on this malignant bone tumor, using the U-2 OS cell line. The experimental results revealed that eupatilin inhibited U-2 OS cell growth in a concentration-dependent manner and induced G2/M phase cell cycle arrest and apoptosis. Additionally, western blot analysis indicated that eupatilin was able to trigger the mitochondrial apoptotic pathway, demonstrated by the enhanced Bax/B cell lymphoma-2 ratio, decrease in mitochondrial membrane potential, release of cytochrome c, caspase-3 and -9 activation and poly(ADP-ribose)polymerase cleavage detected in the U-2 OS cells. These results indicated that eupatilin was able to inhibit U-2 OS cancer cell proliferation by the induction of apoptosis via the mitochondrial intrinsic pathway. Eupatilin may therefore represent a novel anticancer drug for use in the treatment of osteosarcoma.
Collapse
Affiliation(s)
- Yan-Yan Li
- Department of Neurology, The Second People's Hospital of Mudanjiang, Mudanjiang, Heilongjiang 157013, P.R. China
| | - Hao Wu
- Department of Orthopedics, Sengong Hospital, Harbin, Heilongjiang 150040, P.R. China
| | - Yi-Guo Dong
- Department of Orthopedics, Hongqi Hospital, Mudanjiang Medical University, Mudanjiang, Heilongjiang 157011, P.R. China
| | - B O Lin
- Department of Orthopedics, Hongqi Hospital, Mudanjiang Medical University, Mudanjiang, Heilongjiang 157011, P.R. China
| | - Gang Xu
- Department of Orthopedics, Hongqi Hospital, Mudanjiang Medical University, Mudanjiang, Heilongjiang 157011, P.R. China
| | - Yu-Bo Ma
- Department of Orthopedics, Hongqi Hospital, Mudanjiang Medical University, Mudanjiang, Heilongjiang 157011, P.R. China
| |
Collapse
|
34
|
Zengin G, Sarikurkcu C, Gunes E, Uysal A, Ceylan R, Uysal S, Gungor H, Aktumsek A. Two Ganoderma species: profiling of phenolic compounds by HPLC-DAD, antioxidant, antimicrobial and inhibitory activities on key enzymes linked to diabetes mellitus, Alzheimer's disease and skin disorders. Food Funct 2015; 6:2794-802. [PMID: 26165701 DOI: 10.1039/c5fo00665a] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This work reports the antioxidant, antimicrobial, and inhibitory effects of methanol and water extracts from Ganoderma applanatum (GAM: methanol extract and GAW: water extract) and G. resinaceum (GRM: methanol extract and GRW: water extract) against cholinesterase, tyrosinase, α-amylase and α-glucosidase. The total phenolics, flavonoids contents, and HPLC profile of phenolic components present in the extracts, were also determined. Antioxidant activities were investigated by using different assays, including DPPH, ABTS, FRAP, CUPRAC, phosphomolybdenum and metal chelating assays. Antimicrobial activity of the tested Ganoderma extracts was also studied by the broth microdilution method. Generally, the highest antioxidant (59.24 mg TEs per g extract for DPPH, 41.32 mg TEs per g extract for ABTS, 41.35 mg TEs per g extract for CUPRAC, 49.68 mg TEs per g extract for FRAP, 130.57 mg AAEs per g extract for phosphomolybdenum and 26.92 mg EDTAEs per g extract) and enzyme inhibitory effects (1.47 mg GALAEs per g extract for AChE, 1.51 mg GALAEs per g extract for BChE, 13.40 mg KAEs per g extract for tyrosinase, 1.13 mmol ACEs per g extract for α-amylase and 2.20 mmol ACEs per g extract for α-glucosidase) were observed in GRM, which had the highest concentrations of phenolics (37.32 mg GAEs g(-1) extract). Again, Ganoderma extracts possess weak antibacterial and antifungal activities. Apigenin and protocatechuic acid were determined as the main components in GRM (1761 μg per g extract) and GAM (165 μg per g extract), respectively. The results suggest that the Ganoderma species may be considered as a candidate for preparing new food supplements and can represent a good model for the development of new drug formulations.
Collapse
Affiliation(s)
- Gokhan Zengin
- Selcuk University, Science Faculty, Department of Biology, Konya, Turkey.
| | | | | | | | | | | | | | | |
Collapse
|
35
|
LIU XIAOFENG, LI LIUBING, LV LING, CHEN DONGMEI, SHEN LIQIN, XIE ZONGGANG. Apigenin inhibits the proliferation and invasion of osteosarcoma cells by suppressing the Wnt/β-catenin signaling pathway. Oncol Rep 2015; 34:1035-41. [DOI: 10.3892/or.2015.4022] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Accepted: 10/06/2014] [Indexed: 11/06/2022] Open
|
36
|
Licochalcone-A induces intrinsic and extrinsic apoptosis via ERK1/2 and p38 phosphorylation-mediated TRAIL expression in head and neck squamous carcinoma FaDu cells. Food Chem Toxicol 2015; 77:34-43. [PMID: 25572524 DOI: 10.1016/j.fct.2014.12.013] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Revised: 12/16/2014] [Accepted: 12/17/2014] [Indexed: 01/01/2023]
Abstract
We investigated Licochalcone-A (Lico-A)-induced apoptosis and the pathway underlying its activity in a pharyngeal squamous carcinoma FaDu cell line. Lico-A purified from root of Glycyrrhiza inflata had cytotoxic effects, significantly increasing cell death in FaDu cells. Using a cell viability assay, we determined that the IC50 value of Lico-A in FaDu cells was approximately 100 µM. Chromatin condensation was observed in FaDu cells treated with Lico-A for 24 h. Consistent with this finding, the number of apoptotic cells increased in a time-dependent manner when FaDu cells were treated with Lico-A. TRAIL was significantly up-regulated in Lico-A-treated FaDu cells in a dose-dependent manner. Apoptotic factors such as caspases and PARP were subsequently activated in a caspase-dependent manner. In addition, levels of pro-apoptotic factors increased significantly in response to Lico-A treatment, while levels of anti-apoptotic factors decreased. Lico-A-induced TRAIL expression was mediated in part by a MAPK signaling pathway involving ERK1/2 and p38. In xenograft mouse model, Lico-A treatment effectively suppressed the growth of FaDu cell xenografts by activating caspase-3, without affecting the body weight of mice. Taken together, these data suggest that Lico-A has potential chemopreventive effects and should therefore be developed as a chemotherapeutic agent for pharyngeal squamous carcinoma.
Collapse
|
37
|
Activity of the dietary flavonoid, apigenin, against multidrug-resistant tumor cells as determined by pharmacogenomics and molecular docking. J Nutr Biochem 2015; 26:44-56. [DOI: 10.1016/j.jnutbio.2014.09.008] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2014] [Revised: 08/23/2014] [Accepted: 09/10/2014] [Indexed: 12/29/2022]
|
38
|
Lu CC, Yang JS, Chiang JH, Hour MJ, Lin KL, Lee TH, Chung JG. Cell death caused by quinazolinone HMJ-38 challenge in oral carcinoma CAL 27 cells: dissections of endoplasmic reticulum stress, mitochondrial dysfunction and tumor xenografts. Biochim Biophys Acta Gen Subj 2014; 1840:2310-20. [DOI: 10.1016/j.bbagen.2014.02.022] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Revised: 01/26/2014] [Accepted: 02/18/2014] [Indexed: 01/08/2023]
|
39
|
Synthesis and biological evaluation of apigenin derivatives as antibacterial and antiproliferative agents. Molecules 2013; 18:11496-511. [PMID: 24048283 PMCID: PMC6269912 DOI: 10.3390/molecules180911496] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Revised: 09/02/2013] [Accepted: 09/12/2013] [Indexed: 11/25/2022] Open
Abstract
Two series of apigenin [5,7-dihydroxy-2-(4-hydroxyphenyl)-4H-chromen-4-one] derivatives, 3a–3j and 4a–4j, were synthesized. The apigenin and alkyl amines moieties of these compounds were separated by C2 or C3 spacers, respectively. The chemical structures of the apigenin derivatives were confirmed using 1H-NMR, 13C-NMR, and electrospray ionization mass spectroscopy. The in vitro antibacterial and antiproliferative activities of all synthesized compounds were determined. Among the tested compounds, 4a–4j displayed significant antibacterial activity against the tested strains (Staphylococcus aureus, Bacillus subtilis, Escherichia coli, and Pseudomonas aeruginosa). Additionally, 4i showed the best inhibitory activity with minimum inhibitory concentrations of 1.95, 3.91, 3.91, and 3.91 μg/mL against S. aureus, B. subtilis, E. coli, and P. aeruginosa, respectively. The antiproliferative activity of the apigenin derivatives was evaluated by an MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide] assay. We determined that 4a–4j displayed better growth inhibition activity against four human cancer cell lines, namely, human lung (A549), human cervical (HeLa), human hepatocellular liver (HepG2), and human breast (MCF-7) cancer cells, than the parent apigenin. Compound 4j was found to be the most active antiproliferative compound against the selected cancer cells. Structure-activity relationships were also discussed based on the obtained experimental data.
Collapse
|