1
|
Klčová B, Balarynová J, Trněný O, Krejčí P, Cechová MZ, Leonova T, Gorbach D, Frolova N, Kysil E, Orlova A, Ihling С, Frolov A, Bednář P, Smýkal P. Domestication has altered gene expression and secondary metabolites in pea seed coat. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 118:2269-2295. [PMID: 38578789 DOI: 10.1111/tpj.16734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 03/09/2024] [Indexed: 04/07/2024]
Abstract
The mature seed in legumes consists of an embryo and seed coat. In contrast to knowledge about the embryo, we know relatively little about the seed coat. We analyzed the gene expression during seed development using a panel of cultivated and wild pea genotypes. Gene co-expression analysis identified gene modules related to seed development, dormancy, and domestication. Oxidoreductase genes were found to be important components of developmental and domestication processes. Proteomic and metabolomic analysis revealed that domestication favored proteins involved in photosynthesis and protein metabolism at the expense of seed defense. Seed coats of wild peas were rich in cell wall-bound metabolites and the protective compounds predominated in their seed coats. Altogether, we have shown that domestication altered pea seed development and modified (mostly reduced) the transcripts along with the protein and metabolite composition of the seed coat, especially the content of the compounds involved in defense. We investigated dynamic profiles of selected identified phenolic and flavonoid metabolites across seed development. These compounds usually deteriorated the palatability and processing of the seeds. Our findings further provide resources to study secondary metabolism and strategies for improving the quality of legume seeds which comprise an important part of the human protein diet.
Collapse
Affiliation(s)
- Barbora Klčová
- Department of Botany, Faculty of Sciences, Palacky University, Šlechtitelů 27, Olomouc, 773 71, Czech Republic
| | - Jana Balarynová
- Department of Botany, Faculty of Sciences, Palacky University, Šlechtitelů 27, Olomouc, 773 71, Czech Republic
| | - Oldřich Trněný
- Agricultural Research Ltd., Zemědělská 1, Troubsko, 664 41, Czech Republic
| | - Petra Krejčí
- Department of Analytical Chemistry, Faculty of Sciences, Palacky University, 17. listopadu 1192/12, Olomouc, 771 46, Czech Republic
| | - Monika Zajacová Cechová
- Department of Analytical Chemistry, Faculty of Sciences, Palacky University, 17. listopadu 1192/12, Olomouc, 771 46, Czech Republic
| | - Tatiana Leonova
- Department of Bioorganic Chemistry, Leibniz-Institut für Pflanzenbiochemie, Weinberg 3, Halle (Saale), 06120, Germany
| | - Daria Gorbach
- Department of Bioorganic Chemistry, Leibniz-Institut für Pflanzenbiochemie, Weinberg 3, Halle (Saale), 06120, Germany
| | - Nadezhda Frolova
- Laboratory of Analytical Biochemistry, Timiryazev Institute of Plant Physiology, Botanicheskaja 36, Moscow, 127276, Russia
| | - Elana Kysil
- Department of Bioorganic Chemistry, Leibniz-Institut für Pflanzenbiochemie, Weinberg 3, Halle (Saale), 06120, Germany
| | - Anastasia Orlova
- Laboratory of Analytical Biochemistry, Timiryazev Institute of Plant Physiology, Botanicheskaja 36, Moscow, 127276, Russia
| | - Сhristian Ihling
- Department of Pharmaceutical Chemistry and Bioanalytics, Institute of Pharmacy, Martin-Luther University Halle-Wittenberg, Kurt-Mothes-Straße 3, Halle (Saale), 06120, Germany
| | - Andrej Frolov
- Laboratory of Analytical Biochemistry, Timiryazev Institute of Plant Physiology, Botanicheskaja 36, Moscow, 127276, Russia
| | - Petr Bednář
- Department of Analytical Chemistry, Faculty of Sciences, Palacky University, 17. listopadu 1192/12, Olomouc, 771 46, Czech Republic
| | - Petr Smýkal
- Department of Botany, Faculty of Sciences, Palacky University, Šlechtitelů 27, Olomouc, 773 71, Czech Republic
| |
Collapse
|
2
|
Gong F, Yu W, Zeng Q, Dong J, Cao K, Xu H, Zhou X. Rhododendron chrysanthum's Primary Metabolites Are Converted to Phenolics More Quickly When Exposed to UV-B Radiation. Biomolecules 2023; 13:1700. [PMID: 38136571 PMCID: PMC10742171 DOI: 10.3390/biom13121700] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 11/20/2023] [Accepted: 11/20/2023] [Indexed: 12/24/2023] Open
Abstract
The plant defense system is immediately triggered by UV-B irradiation, particularly the production of metabolites and enzymes involved in the UV-B response. Although substantial research on UV-B-related molecular responses in Arabidopsis has been conducted, comparatively few studies have examined the precise consequences of direct UV-B treatment on R. chrysanthum. The ultra-high-performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS) methodology and TMT quantitative proteomics are used in this study to describe the metabolic response of R. chrysanthum to UV-B radiation and annotate the response mechanism of the primary metabolism and phenolic metabolism of R. chrysanthum. The outcomes demonstrated that following UV-B radiation, the primary metabolites (L-phenylalanine and D-lactose*) underwent considerable changes to varying degrees. This gives a solid theoretical foundation for investigating the use of precursor substances, such as phenylalanine, to aid plants in overcoming abiotic stressors. The external application of ABA produced a considerable increase in the phenolic content and improved the plants' resistance to UV-B damage. Our hypothesis is that externally applied ABA may work in concert with UV-B to facilitate the transformation of primary metabolites into phenolic compounds. This hypothesis offers a framework for investigating how ABA can increase a plant's phenolic content in order to help the plant withstand abiotic stressors. Overall, this study revealed alterations and mechanisms of primary and secondary metabolic strategies in response to UV-B radiation.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Xiaofu Zhou
- Jilin Provincial Key Laboratory of Plant Resource Science and Green Production, Jilin Normal University, Siping 136000, China
| |
Collapse
|
3
|
Kanawati B, Bertic M, Moritz F, Habermann F, Zimmer I, Mackey D, Schmitt‐Kopplin P, Schnitzler J, Durner J, Gaupels F. Blue-green fluorescence during hypersensitive cell death arises from phenylpropanoid deydrodimers. PLANT DIRECT 2023; 7:e531. [PMID: 37705693 PMCID: PMC10496137 DOI: 10.1002/pld3.531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 08/12/2023] [Accepted: 08/25/2023] [Indexed: 09/15/2023]
Abstract
Infection of Arabidopsis with avirulent Pseudomonas syringae and exposure to nitrogen dioxide (NO2) both trigger hypersensitive cell death (HCD) that is characterized by the emission of bright blue-green (BG) autofluorescence under UV illumination. The aim of our current work was to identify the BG fluorescent molecules and scrutinize their biosynthesis, localization, and functions during the HCD. Compared with wild-type (WT) plants, the phenylpropanoid-deficient mutant fah1 developed normal HCD except for the absence of BG fluorescence. Ultrahigh resolution metabolomics combined with mass difference network analysis revealed that WT but not fah1 plants rapidly accumulate dehydrodimers of sinapic acid, sinapoylmalate, 5-hydroxyferulic acid, and 5-hydroxyferuloylmalate during the HCD. FAH1-dependent BG fluorescence appeared exclusively within dying cells of the upper epidermis as detected by microscopy. Saponification released dehydrodimers from cell wall polymers of WT but not fah1 plants. Collectively, our data suggest that HCD induction leads to the formation of free BG fluorescent dehydrodimers from monomeric sinapates and 5-hydroxyferulates. The formed dehydrodimers move from upper epidermis cells into the apoplast where they esterify cell wall polymers. Possible functions of phenylpropanoid dehydrodimers are discussed.
Collapse
Affiliation(s)
- Basem Kanawati
- Analytical BioGeoChemistryHelmholtz Zentrum MünchenNeuherbergGermany
| | - Marko Bertic
- Research Unit Environmental Simulation, Institute of Biochemical Plant PathologyHelmholtz Zentrum MünchenNeuherbergGermany
| | - Franco Moritz
- Analytical BioGeoChemistryHelmholtz Zentrum MünchenNeuherbergGermany
| | - Felix Habermann
- Institute of Anatomy, Histology and Embryology, Department of Veterinary SciencesLudwig‐Maximilians‐University MunichMunichGermany
| | - Ina Zimmer
- Research Unit Environmental Simulation, Institute of Biochemical Plant PathologyHelmholtz Zentrum MünchenNeuherbergGermany
| | - David Mackey
- Department of Horticulture and Crop Science and Department of Molecular GeneticsOhio State UniversityColumbusOhioUSA
| | | | - Jörg‐Peter Schnitzler
- Research Unit Environmental Simulation, Institute of Biochemical Plant PathologyHelmholtz Zentrum MünchenNeuherbergGermany
| | - Jörg Durner
- Institute of Biochemical Plant PathologyHelmholtz Zentrum MünchenNeuherbergGermany
| | - Frank Gaupels
- Institute of Biochemical Plant PathologyHelmholtz Zentrum MünchenNeuherbergGermany
| |
Collapse
|
4
|
Sharova E, Bilova T, Tsvetkova E, Smolikova G, Frolov A, Medvedev S. Red light-induced inhibition of maize ( Zea mays) mesocotyl elongation: evaluation of apoplastic metabolites. FUNCTIONAL PLANT BIOLOGY : FPB 2023; 50:532-539. [PMID: 37258494 DOI: 10.1071/fp22181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 12/09/2022] [Indexed: 06/02/2023]
Abstract
Light is a crucial factor affecting plant growth and development. Besides providing the energy for photosynthesis, light serves as a sensory cue to control the adaptation of plants to environmental changes. We used the etiolated maize (Zea mays ) seedlings as a model system to study the red light-regulated growth. Exposure of the maize seedlings to red light resulted in growth inhibition of mesocotyls. We demonstrate for the first time (to the best our knowledge) that red light affected the patterns of apoplastic fluid (AF) metabolites extracted from the mesocotyl segments. By means of the untargeted gas chromatography-mass spectrometry (GC-MS)-based metabolomics approach, we identified 44 metabolites in the AF of maize mesocotyls and characterised the dynamics of their relative tissue abundances. The characteristic metabolite patterns of mesocotyls dominated with mono- and disaccharides, organic acids, amino acids, and other nitrogen-containing compounds. Upon red light irradiation, the contents of β -alanine, putrescine and trans -aconitate significantly increased (P -value<0.05). In contrast, there was a significant decrease in the total ascorbate content in the AF of maize mesocotyls. The regulatory role of apoplastic metabolites in the red light-induced inhibition of maize mesocotyl elongation is discussed.
Collapse
Affiliation(s)
- Elena Sharova
- Department of Plant Physiology and Biochemistry, Saint Petersburg State University, Saint Petersburg, Russian Federation
| | - Tatiana Bilova
- Department of Plant Physiology and Biochemistry, Saint Petersburg State University, Saint Petersburg, Russian Federation; and K.A. Timiryazev Institute of Plant Physiology RAS, Moscow, Russian Federation
| | - Elena Tsvetkova
- Department of Biochemistry, Saint Petersburg State University, Saint Petersburg, Russian Federation
| | - Galina Smolikova
- Department of Plant Physiology and Biochemistry, Saint Petersburg State University, Saint Petersburg, Russian Federation
| | - Andrej Frolov
- K.A. Timiryazev Institute of Plant Physiology RAS, Moscow, Russian Federation
| | - Sergei Medvedev
- Department of Plant Physiology and Biochemistry, Saint Petersburg State University, Saint Petersburg, Russian Federation
| |
Collapse
|
5
|
Li G, Huang S, Li X, Luo Y, Nie H. Identification of compounds from chufa ( Eleocharis dulcis) peels by widely targeted metabolomics. Food Sci Nutr 2023; 11:545-554. [PMID: 36655076 PMCID: PMC9834879 DOI: 10.1002/fsn3.3085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 09/12/2022] [Accepted: 09/13/2022] [Indexed: 01/21/2023] Open
Abstract
The Chinese water chestnut (CWC) is among the most widespread and economically important vegetables in Southern China. There are two different types of cultivars for this vegetable, namely, big CWC (BCWC) and small CWC (SCWC). These are used for different purposes based on their metabolic profiles. This study aimed to investigate the metabolite profile of CWC and compare the profiles of peels collected in different harvest years using ultraperformance liquid chromatography/mass spectrometry (UPLC-MS)-based metabolomics analysis. Three hundred and twenty-one metabolites were identified, of which 87 flavonoids, 25 phenylpropanoids, and 33 organic acids and derivatives were significantly different in the content of the two varieties of BCWC and SCWC. The metabolite profiles of the two different cultivars were distinguished using principle component analysis (PCA) and orthogonal projections to latent structures discriminant analysis, and the results indicated differences in the metabolite profile of Eleocharis dulcis (Burm. f.) Trin. ex Hensch. Three isomers of hydroxycoumarin, namely, O-feruloyl-4-hydroxycoumarin, O-feruloyl-3-hydroxycoumarin, and O-feruloyl-2-hydroxycoumarin, exhibited increased levels in BCWC, while p-coumaric acid and vanillic acid did not show any significant differences in their content in BCWC and SCWC peels. This study, for the first time, provides novel insights into the differences among metabolite profiles between BCWC and SCWC.
Collapse
Affiliation(s)
- Guanli Li
- Guangxi Key Laboratory of Health Care Food Science and TechnologyHezhou UniversityHezhouGuangxiChina
| | - Shuangquan Huang
- Guangxi Key Laboratory of Health Care Food Science and TechnologyHezhou UniversityHezhouGuangxiChina
| | - Xiaochun Li
- Guangxi Key Laboratory of Health Care Food Science and TechnologyHezhou UniversityHezhouGuangxiChina
| | - Yanghe Luo
- Guangxi Key Laboratory of Health Care Food Science and TechnologyHezhou UniversityHezhouGuangxiChina
- School of Food Science and TechnologyDalian Polytechnic UniversityDalianLiaoningChina
| | - Hui Nie
- Guangxi Key Laboratory of Health Care Food Science and TechnologyHezhou UniversityHezhouGuangxiChina
- School of Food Science and TechnologyDalian Polytechnic UniversityDalianLiaoningChina
| |
Collapse
|
6
|
Nandasiri R, Zago E, Thiyam‐Holländer U, Eskin NAM. Attenuation of sinapic acid and
sinapine‐derived flavor‐active
compounds using a
factorial‐based
pressurized
high‐temperature
processing. J AM OIL CHEM SOC 2021. [DOI: 10.1002/aocs.12510] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Ruchira Nandasiri
- Department of Food and Human Nutritional Sciences University of Manitoba Winnipeg Manitoba Canada
- Richardson Centre for Functional Foods & Nutraceuticals Winnipeg Manitoba Canada
| | - Erika Zago
- BioMatter Unit—École Polytechnique de Bruxelles Université Libre de Bruxelles Brussels Belgium
| | - Usha Thiyam‐Holländer
- Department of Food and Human Nutritional Sciences University of Manitoba Winnipeg Manitoba Canada
- Richardson Centre for Functional Foods & Nutraceuticals Winnipeg Manitoba Canada
| | | |
Collapse
|
7
|
Analysis of Unusual Sulfated Constituents and Anti-infective Properties of Two Indonesian Mangroves, Lumnitzera littorea and Lumnitzera racemosa (Combretaceae). SEPARATIONS 2021. [DOI: 10.3390/separations8060082] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Lumnitzera littorea and Lumnitzera racemosa are mangrove species distributed widely along the Indonesian coasts. Besides their ecological importance, both are of interest owing to their wealth of natural products, some of which constitute potential sources for medicinal applications. We aimed to discover and characterize new anti-infective compounds, based on population-level sampling of both species from across the Indonesian Archipelago. Root metabolites were investigated by TLC, hyphenated LC-MS/MS and isolation, the internal transcribed spacer (ITS) region of rDNA was used for genetic characterization. Phytochemical characterization of both species revealed an unusual diversity in sulfated constituents with 3,3’,4’-tri-O-methyl-ellagic acid 4-sulfate representing the major compound in most samples. None of these compounds was previously reported for mangroves. Chemophenetic comparison of L. racemosa populations from different localities provided evolutionary information, as supported by molecular phylogenetic evidence. Samples of both species from particular locations exhibited anti-bacterial potential (Southern Nias Island and East Java against Gram-negative bacteria, Halmahera and Ternate Island against Gram-positive bacteria). In conclusion, Lumnitzera roots from natural mangrove stands represent a promising source for sulfated ellagic acid derivatives and further sulfur containing plant metabolites with potential human health benefits.
Collapse
|
8
|
Valorization of canola by-products: Concomitance of flavor-active bitter phenolics using pressurized heat treatments. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2020.110397] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
9
|
Smolikova G, Gorbach D, Lukasheva E, Mavropolo-Stolyarenko G, Bilova T, Soboleva A, Tsarev A, Romanovskaya E, Podolskaya E, Zhukov V, Tikhonovich I, Medvedev S, Hoehenwarter W, Frolov A. Bringing New Methods to the Seed Proteomics Platform: Challenges and Perspectives. Int J Mol Sci 2020; 21:E9162. [PMID: 33271881 PMCID: PMC7729594 DOI: 10.3390/ijms21239162] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 11/26/2020] [Accepted: 11/27/2020] [Indexed: 12/14/2022] Open
Abstract
For centuries, crop plants have represented the basis of the daily human diet. Among them, cereals and legumes, accumulating oils, proteins, and carbohydrates in their seeds, distinctly dominate modern agriculture, thus play an essential role in food industry and fuel production. Therefore, seeds of crop plants are intensively studied by food chemists, biologists, biochemists, and nutritional physiologists. Accordingly, seed development and germination as well as age- and stress-related alterations in seed vigor, longevity, nutritional value, and safety can be addressed by a broad panel of analytical, biochemical, and physiological methods. Currently, functional genomics is one of the most powerful tools, giving direct access to characteristic metabolic changes accompanying plant development, senescence, and response to biotic or abiotic stress. Among individual post-genomic methodological platforms, proteomics represents one of the most effective ones, giving access to cellular metabolism at the level of proteins. During the recent decades, multiple methodological advances were introduced in different branches of life science, although only some of them were established in seed proteomics so far. Therefore, here we discuss main methodological approaches already employed in seed proteomics, as well as those still waiting for implementation in this field of plant research, with a special emphasis on sample preparation, data acquisition, processing, and post-processing. Thereby, the overall goal of this review is to bring new methodologies emerging in different areas of proteomics research (clinical, food, ecological, microbial, and plant proteomics) to the broad society of seed biologists.
Collapse
Affiliation(s)
- Galina Smolikova
- Department of Plant Physiology and Biochemistry, St. Petersburg State University; 199034 St. Petersburg, Russia; (G.S.); (T.B.); (S.M.)
| | - Daria Gorbach
- Department of Biochemistry, St. Petersburg State University; 199178 St. Petersburg, Russia; (D.G.); (E.L.); (G.M.-S.); (A.S.); (A.T.); (E.R.)
| | - Elena Lukasheva
- Department of Biochemistry, St. Petersburg State University; 199178 St. Petersburg, Russia; (D.G.); (E.L.); (G.M.-S.); (A.S.); (A.T.); (E.R.)
| | - Gregory Mavropolo-Stolyarenko
- Department of Biochemistry, St. Petersburg State University; 199178 St. Petersburg, Russia; (D.G.); (E.L.); (G.M.-S.); (A.S.); (A.T.); (E.R.)
| | - Tatiana Bilova
- Department of Plant Physiology and Biochemistry, St. Petersburg State University; 199034 St. Petersburg, Russia; (G.S.); (T.B.); (S.M.)
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry; 06120 Halle (Saale), Germany
| | - Alena Soboleva
- Department of Biochemistry, St. Petersburg State University; 199178 St. Petersburg, Russia; (D.G.); (E.L.); (G.M.-S.); (A.S.); (A.T.); (E.R.)
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry; 06120 Halle (Saale), Germany
| | - Alexander Tsarev
- Department of Biochemistry, St. Petersburg State University; 199178 St. Petersburg, Russia; (D.G.); (E.L.); (G.M.-S.); (A.S.); (A.T.); (E.R.)
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry; 06120 Halle (Saale), Germany
| | - Ekaterina Romanovskaya
- Department of Biochemistry, St. Petersburg State University; 199178 St. Petersburg, Russia; (D.G.); (E.L.); (G.M.-S.); (A.S.); (A.T.); (E.R.)
| | - Ekaterina Podolskaya
- Institute of Analytical Instrumentation, Russian Academy of Science; 190103 St. Petersburg, Russia;
- Institute of Toxicology, Russian Federal Medical Agency; 192019 St. Petersburg, Russia
| | - Vladimir Zhukov
- All-Russia Research Institute for Agricultural Microbiology; 196608 St. Petersburg, Russia; (V.Z.); (I.T.)
| | - Igor Tikhonovich
- All-Russia Research Institute for Agricultural Microbiology; 196608 St. Petersburg, Russia; (V.Z.); (I.T.)
- Department of Genetics and Biotechnology, St. Petersburg State University; 199034 St. Petersburg, Russia
| | - Sergei Medvedev
- Department of Plant Physiology and Biochemistry, St. Petersburg State University; 199034 St. Petersburg, Russia; (G.S.); (T.B.); (S.M.)
| | - Wolfgang Hoehenwarter
- Proteome Analytics Research Group, Leibniz Institute of Plant Biochemistry, 06120 Halle (Saale), Germany;
| | - Andrej Frolov
- Department of Biochemistry, St. Petersburg State University; 199178 St. Petersburg, Russia; (D.G.); (E.L.); (G.M.-S.); (A.S.); (A.T.); (E.R.)
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry; 06120 Halle (Saale), Germany
| |
Collapse
|
10
|
Liu Y, Liu J, Abozeid A, Wu KX, Guo XR, Mu LQ, Tang ZH. UV-B Radiation Largely Promoted the Transformation of Primary Metabolites to Phenols in Astragalus mongholicus Seedlings. Biomolecules 2020; 10:E504. [PMID: 32225015 PMCID: PMC7226020 DOI: 10.3390/biom10040504] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 03/20/2020] [Accepted: 03/20/2020] [Indexed: 12/11/2022] Open
Abstract
: Ultraviolet-B (UV-B) radiation (280-320 nm) may induce photobiological stress in plants, activate the plant defense system, and induce changes of metabolites. In our previous work, we found that between the two Astragalus varieties prescribed by the Chinese Pharmacopoeia, Astragalus mongholicus has better tolerance to UV-B. Thus, it is necessary to study the metabolic strategy of Astragalus under UV-B radiation further. In the present study, we used untargeted gas chromatography-mass spectrometry (GC-MS) and targeted liquid chromatography-mass spectrometry (LC-MS techniques) to investigate the profiles of primary and secondary metabolic. The profiles revealed the metabolic response of Astragalus to UV-B radiation. We then used real-time polymerase chain reaction (RT-PCR) to obtain the transcription level of relevant genes under UV-B radiation (UV-B supplemented in the field, λmax = 313 nm, 30 W, lamp-leaf distance = 60 cm, 40 min·day-1), which annotated the responsive mechanism of phenolic metabolism in roots. Our results indicated that supplemental UV-B radiation induced a stronger shift from carbon assimilation to carbon accumulation. The flux through the phenylpropanoids pathway increased due to the mobilization of carbon reserves. The response of metabolism was observed to be significantly tissue-specific upon the UV-B radiation treatment. Among phenolic compounds, C6C1 carbon compounds (phenolic acids in leaves) and C6C3C6 carbon compounds (flavones in leaves and isoflavones in roots) increased at the expense of C6C3 carbon compounds. Verification experiments show that the response of phenolics in roots to UV-B is activated by upregulation of relevant genes rather than phenylalanine. Overall, this study reveals the tissues-specific alteration and mechanism of primary and secondary metabolic strategy in response to UV-B radiation.
Collapse
Affiliation(s)
- Yang Liu
- School of Forestry, Northeast Forestry University, Harbin 150040, China
| | - Jia Liu
- Material Science and Engineering College, Northeast Forestry University, Harbin 150040, China
| | - Ann Abozeid
- Key Laboratory of Plant Ecology, Northeast Forestry University, Harbin 150040, China
- Botany Department, Faculty of Science, Menoufia University, Shebin El-koom 32511, Egypt
| | - Ke-Xin Wu
- Key Laboratory of Plant Ecology, Northeast Forestry University, Harbin 150040, China
| | - Xiao-Rui Guo
- Key Laboratory of Plant Ecology, Northeast Forestry University, Harbin 150040, China
| | - Li-Qiang Mu
- School of Forestry, Northeast Forestry University, Harbin 150040, China
| | - Zhong-Hua Tang
- Key Laboratory of Plant Ecology, Northeast Forestry University, Harbin 150040, China
| |
Collapse
|
11
|
Detection and Identification of Lignosulfonate Depolymerization Products Using UPLC-QTOF-MS and a Self-Built Database. Chromatographia 2019. [DOI: 10.1007/s10337-019-03821-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
12
|
Yang R, Deng L, Zhang L, Yue X, Mao J, Ma F, Wang X, Zhang Q, Zhang W, Li P. Comparative Metabolomic Analysis of Rapeseeds from Three Countries. Metabolites 2019; 9:metabo9080161. [PMID: 31374906 PMCID: PMC6724143 DOI: 10.3390/metabo9080161] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 07/24/2019] [Accepted: 07/25/2019] [Indexed: 01/15/2023] Open
Abstract
Rapeseed is an important oilseed with proper fatty acid composition and abundant bioactive components. Canada and China are the two major rapeseed-producing countries all over the world. Meanwhile, Canada and Mongolia are major importers of rapeseed due to the great demand for rapeseed in China. To investigate the metabolites in rapeseeds from three countries, ultra-performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF/MS)-based metabolomics was employed to analyze rapeseeds from China, Canada, and Mongolia. As results, 67, 53, and 68 metabolites showed significant differences between Chinese and Canadian, Chinese and Mongolian, and Canadian and Mongolian rapeseeds, respectively. Differential metabolites were mainly distributed in the metabolic pathways including phenylpropanoid biosynthesis, flavone and flavonol biosynthesis, and ubiquinone and other terpenoid-quinone biosynthesis. Among the differential metabolites, contents of sinapate and sinapine were higher in Chinese rapeseeds, while the contents of brassicasterol, stigmasterol, and campestanol were higher in Canadian rapeseeds. These findings might provide insight into the metabolic characteristics of rapeseeds from three countries to guide processing and consumption of the products of rapeseed.
Collapse
Affiliation(s)
- Ruinan Yang
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China
| | - Ligang Deng
- Institute of Agricultural Quality Standards and Testing Technology Research, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Liangxiao Zhang
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
- Laboratory of Quality and Safety Risk Assessment for Oilseed Products (Wuhan), Ministry of Agriculture and Rural Affairs, Wuhan 430062, China
- Quality Inspection and Test Center for Oilseed Products, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China
| | - Xiaofeng Yue
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
- Quality Inspection and Test Center for Oilseed Products, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China
| | - Jin Mao
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
- Quality Inspection and Test Center for Oilseed Products, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China
| | - Fei Ma
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
- Quality Inspection and Test Center for Oilseed Products, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China
| | - Xiupin Wang
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
- Quality Inspection and Test Center for Oilseed Products, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China
| | - Qi Zhang
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China
- Key Laboratory of Detection for Mycotoxins, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China
| | - Wen Zhang
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
- Quality Inspection and Test Center for Oilseed Products, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China
| | - Peiwu Li
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China.
- Laboratory of Quality and Safety Risk Assessment for Oilseed Products (Wuhan), Ministry of Agriculture and Rural Affairs, Wuhan 430062, China.
- Quality Inspection and Test Center for Oilseed Products, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China.
- Key Laboratory of Detection for Mycotoxins, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China.
| |
Collapse
|
13
|
Podolskaya EP, Gladchuk AS, Keltsieva OA, Dubakova PS, Silyavka ES, Lukasheva E, Zhukov V, Lapina N, Makhmadalieva MR, Gzgzyan AM, Sukhodolov NG, Krasnov KA, Selyutin AA, Frolov A. Thin Film Chemical Deposition Techniques as a Tool for Fingerprinting of Free Fatty Acids by Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry. Anal Chem 2018; 91:1636-1643. [PMID: 30532949 DOI: 10.1021/acs.analchem.8b05296] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Metabolic fingerprinting is a powerful analytical technique, giving access to high-throughput identification and relative quantification of multiple metabolites. Because of short analysis times, matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) is the preferred instrumental platform for fingerprinting, although its power in analysis of free fatty acids (FFAs) is limited. However, these metabolites are the biomarkers of human pathologies and indicators of food quality. Hence, a high-throughput method for their fingerprinting is required. Therefore, here we propose a MALDI-TOF-MS method for identification and relative quantification of FFAs in biological samples of different origins. Our approach relies on formation of monomolecular Langmuir films (LFs) at the interphase of aqueous barium acetate solution, supplemented with low amounts of 2,5-dihydroxybenzoic acid, and hexane extracts of biological samples. This resulted in detection limits of 10-13-10-14 mol and overall method linear dynamic range of at least 4 orders of magnitude with accuracy and precision within 2 and 17%, respectively. The method precision was verified with eight sample series of different taxonomies, which indicates a universal applicability of our approach. Thereby, 31 and 22 FFA signals were annotated by exact mass and identified by tandem MS, respectively. Among 20 FFAs identified in Fucus algae, 14 could be confirmed by gas chromatography-mass spectrometry.
Collapse
Affiliation(s)
- Ekaterina P Podolskaya
- Institute of Toxicology , Federal Medical-Biological Agency of Russia , St. Petersburg , Russia 192019.,Institute of Analytical Instrumentation , Russian Academy of Sciences , St. Petersburg , Russia 198095
| | - Alexey S Gladchuk
- Institute of Toxicology , Federal Medical-Biological Agency of Russia , St. Petersburg , Russia 192019.,Peter the Great St. Petersburg Polytechnic University , St. Petersburg , Russia 195251
| | - Olga A Keltsieva
- Institute of Toxicology , Federal Medical-Biological Agency of Russia , St. Petersburg , Russia 192019.,Institute of Analytical Instrumentation , Russian Academy of Sciences , St. Petersburg , Russia 198095
| | - Polina S Dubakova
- Institute of Toxicology , Federal Medical-Biological Agency of Russia , St. Petersburg , Russia 192019.,Peter the Great St. Petersburg Polytechnic University , St. Petersburg , Russia 195251
| | | | | | - Vladimir Zhukov
- All-Russia Research Institute for Agricultural Microbiology , St. Petersburg , Russia 196608
| | - Natalia Lapina
- Institute of Toxicology , Federal Medical-Biological Agency of Russia , St. Petersburg , Russia 192019
| | - Manizha R Makhmadalieva
- Research Institute of Obstetrics, Gynecology and Reproductology named after D.O. Ott , St. Petersburg , Russia 199034
| | - Alexander M Gzgzyan
- Research Institute of Obstetrics, Gynecology and Reproductology named after D.O. Ott , St. Petersburg , Russia 199034
| | - Nikolai G Sukhodolov
- Institute of Analytical Instrumentation , Russian Academy of Sciences , St. Petersburg , Russia 198095
| | - Konstantin A Krasnov
- Institute of Toxicology , Federal Medical-Biological Agency of Russia , St. Petersburg , Russia 192019
| | | | - Andrej Frolov
- Department of Bioorganic Chemistry , Leibniz Institute of Plant Biochemistry , Halle/Saale , Germany 06120
| |
Collapse
|
14
|
Cocuron JC, Casas MI, Yang F, Grotewold E, Alonso AP. Beyond the wall: High-throughput quantification of plant soluble and cell-wall bound phenolics by liquid chromatography tandem mass spectrometry. J Chromatogr A 2018; 1589:93-104. [PMID: 30626504 DOI: 10.1016/j.chroma.2018.12.059] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 12/20/2018] [Accepted: 12/26/2018] [Indexed: 10/27/2022]
Abstract
Plants accumulate several thousand of phenolic compounds, including lignins and flavonoids, which are mainly synthesized through the phenylpropanoid pathway, and play important roles in plant growth and adaptation. A novel high-throughput ultra-high performance liquid chromatography tandem mass spectrometry (UHPLC-MS/MS) method was established to quantify the levels of 19 flavonoids and 15 other phenolic compounds, including acids, aldehydes, and alcohols. The chromatographic separation was performed in 10 min, allowing for the resolution of isomers such as 3-, 4-, and 5-chlorogenic acids, 4-hydroxybenzoic and salicylic acids, isoorientin and orientin, and luteolin and kaempferol. The linearity range for each compound was found to be in the low fmol to the high pmol. Furthermore, this UHPLC-MS/MS approach was shown to be very sensitive with limits of detection between 1.5 amol to 300 fmol, and limits of quantification between 5 amol to 1000 fmol. Extracts from maize seedlings were used to assess the robustness of the method in terms of recovery efficiency, matrix effect, and accuracy. The biological matrix did not suppress the signal for 32 out of the 34 metabolites under investigation. Additionally, the majority of the analytes were recovered from the biological samples with an efficiency above 75%. All flavonoids and other phenolic compounds had an intra- and inter-day accuracy within a ±20% range, except for coniferyl alcohol and vanillic acid. Finally, the quantification of flavonoids, free and cell wall-bound phenolics in seedlings from two maize lines with contrasting phenolic content was successfully achieved using this methodology.
Collapse
Affiliation(s)
- Jean-Christophe Cocuron
- BioDiscovery Institute and Department of Biological Sciences, University of North Texas, Denton, TX 76203, USA
| | | | - Fan Yang
- Benson Hill Biosystems, St. Louis, MO, 63132, USA
| | - Erich Grotewold
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824-6473, USA
| | - Ana Paula Alonso
- BioDiscovery Institute and Department of Biological Sciences, University of North Texas, Denton, TX 76203, USA.
| |
Collapse
|
15
|
Koprivica MR, Trifković JĐ, Dramićanin AM, Gašić UM, Akšić MMF, Milojković-Opsenica DM. Determination of the phenolic profile of peach (Prunus persica L.) kernels using UHPLC–LTQ OrbiTrap MS/MS technique. Eur Food Res Technol 2018. [DOI: 10.1007/s00217-018-3116-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
16
|
Recent advances on HPLC/MS in medicinal plant analysis—An update covering 2011–2016. J Pharm Biomed Anal 2018; 147:211-233. [DOI: 10.1016/j.jpba.2017.07.038] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 07/28/2017] [Accepted: 07/28/2017] [Indexed: 12/13/2022]
|
17
|
Curti V, Di Lorenzo A, Dacrema M, Xiao J, Nabavi SM, Daglia M. In vitro polyphenol effects on apoptosis: An update of literature data. Semin Cancer Biol 2017; 46:119-131. [PMID: 28830771 DOI: 10.1016/j.semcancer.2017.08.005] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 06/07/2017] [Accepted: 08/09/2017] [Indexed: 02/08/2023]
Abstract
Polyphenols are secondary plant metabolites which have been studied extensively for their health-promoting properties, and which could also exert pharmacological activities ranging from anti-inflammatory effects, to cytotoxic activity against cancer cells. The main mechanism for programmed cell death is represented by apoptosis, and its dysregulation is involved in the etiopathology of cancer. As such, substances able to induce apoptosis in cancer cells could be used as new anticancer agents. The aim of this paper is to review literature data on the apoptotic effects of polyphenols and the molecular mechanisms through which they induce these effects in cancer cells. In addition, a brief summary of the new delivery forms used to increase the bioavailability, and clinical impact of polyphenols is provided. The studies reported show that many polyphenol rich plant extracts, originating from food and herbal medicine, as well as isolated polyphenols administered individually or in combination, can regulate cell apoptosis primarily through intrinsic and extrinsic mechanisms of action in in vitro conditions. Due to these promising results, the use of polyphenols in the treatment of cancer should therefore be deeply investigated. In particular, because of the low number of clinical trials, further studies are required to evaluate the anticancer activity of polyphenols in in vivo conditions.
Collapse
Affiliation(s)
- Valeria Curti
- Department of Drug Sciences, Medicinal Chemistry and Pharmaceutical Technology Section, University of Pavia, Via Taramelli 12, 27100 Pavia, Italy; KOLINPHARMA S.p.A., Lainate, Corso Europa 5, 20020 Lainate, Italy
| | - Arianna Di Lorenzo
- Department of Drug Sciences, Medicinal Chemistry and Pharmaceutical Technology Section, University of Pavia, Via Taramelli 12, 27100 Pavia, Italy; KOLINPHARMA S.p.A., Lainate, Corso Europa 5, 20020 Lainate, Italy
| | - Marco Dacrema
- Department of Drug Sciences, Medicinal Chemistry and Pharmaceutical Technology Section, University of Pavia, Via Taramelli 12, 27100 Pavia, Italy
| | - Jianbo Xiao
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Avenida da Universidade, Taipa, Macau
| | - Sayed Mohammad Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, PO Box 19395 5487, Iran.
| | - Maria Daglia
- Department of Drug Sciences, Medicinal Chemistry and Pharmaceutical Technology Section, University of Pavia, Via Taramelli 12, 27100 Pavia, Italy.
| |
Collapse
|
18
|
Jaini R, Wang P, Dudareva N, Chapple C, Morgan JA. Targeted Metabolomics of the Phenylpropanoid Pathway in Arabidopsis thaliana using Reversed Phase Liquid Chromatography Coupled with Tandem Mass Spectrometry. PHYTOCHEMICAL ANALYSIS : PCA 2017; 28:267-276. [PMID: 28146307 DOI: 10.1002/pca.2672] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 10/19/2016] [Accepted: 12/05/2016] [Indexed: 05/07/2023]
Abstract
INTRODUCTION The phenylpropanoid pathway is a source of a diverse group of compounds derived from phenylalanine, many of which are involved in lignin biosynthesis and serve as precursors for the production of valuable compounds, such as coumarins, flavonoids, and lignans. Consequently, recent efforts have been invested in mechanistically understanding monolignol biosynthesis, making the quantification of these metabolites vital. OBJECTIVE To develop an improved and comprehensive analytical method for (i) extensively profiling, and (ii) accurately quantifiying intermediates of the monolignol biosynthetic network, using Arabidopsis thaliana as a model system. METHOD A liquid chromatography-tandem mass spectrometry with electrospray ionization was developed to quantify phenylpropanoid metabolites in Arabidopsis wildtype and cinnamoyl CoA reductase1 (CCR1) deficient lines (ccr1). RESULTS Vortexing at high temperatures (65°C) enhanced release of phenylpropanoids, specifically the more hydrophobic compounds. A pH of 5.3 and ammonium acetate buffer concentration of 2.5 mM resulted in an optimal analyte response across standards. Ion suppression was estimated using standard spike recovery studies for accurate quantitation. The optimized method was used to profile Arabidopsis wildtype and ccr1 stems. An increase in hydroxycinnamic acid derivatives and a decrease in the hydroxycinnamyl aldehydes and alcohols in ccr1 lines, supports a shift of flux from lignin synthesis to other secondary metabolites and phenylpropanoid derivatives. CONCLUSIONS Compared to existing targeted profiling techniques, our method is capable of quantifying a wider range of intermediates (15 out of 22 in WT Arabidopsis stems) at low in vivo concentrations (~50 pmol/g-FW for certain compounds), while requiring minimal sample preparation. Copyright © 2017 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Rohit Jaini
- School of Chemical Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - Peng Wang
- Department of Biochemistry, Purdue University, West Lafayette, IN, 47907, USA
| | - Natalia Dudareva
- Department of Biochemistry, Purdue University, West Lafayette, IN, 47907, USA
- Department of Horticulture & Landscape Architecture, West Lafayette, IN, 47907, USA
| | - Clint Chapple
- Department of Biochemistry, Purdue University, West Lafayette, IN, 47907, USA
| | - John A Morgan
- School of Chemical Engineering, Purdue University, West Lafayette, IN, 47907, USA
- Department of Biochemistry, Purdue University, West Lafayette, IN, 47907, USA
| |
Collapse
|
19
|
Antioxidant Capacity of Rapeseed Extracts Obtained by Conventional and Ultrasound-Assisted Extraction. J AM OIL CHEM SOC 2014; 91:2011-2019. [PMID: 25431498 PMCID: PMC4239784 DOI: 10.1007/s11746-014-2557-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Revised: 10/07/2014] [Accepted: 10/11/2014] [Indexed: 11/16/2022]
Abstract
Ultrasound-assisted extraction (UAE) and conventional solid–liquid extraction were applied to extract total antioxidants from two rapeseed varieties. The antioxidant capacities (AC) of winter and spring rapeseed cultivars were determined by four different analytical methods: ferric reducing antioxidant power (FRAP), cupric reducing antioxidant capacity (CUPRAC), 2,2′-diphenyl-1-picrylhydrazyl (DPPH), 2,2′-azino-bis-3-ethylbenzothiazoline-6-sulfonic acid (ABTS). The average AC of the studied rapeseed cultivars ranged between 4.21–10.03 mmol Trolox (TE)/100 g, 7.82–10.61 mmol TE/100 g, 8.11–51.59 mmol TE/100 g, 22.48–43.13 mmol TE/100 g for FRAP, CUPRAC, DPPH and ABTS methods, respectively. There are positive correlations between total phenolics (TPC = 804–1625 mg sinapic acid (SA)/100 g) and AC of the studied rapeseed extracts (r = 0.2650–0.9931). Results of the principal component analysis (PCA) indicate that there are differences between the total amounts of antioxidants in rapeseed samples extracted by different extraction techniques. Rapeseed extracts obtained after 18 min of ultrasonication revealed the highest content of total antioxidants. The UAE is a very useful, efficient and rapid technique of oilseed samples preparation for determination of AC by different analytical methods.
Collapse
|
20
|
Gonzales GB, Smagghe G, Raes K, Van Camp J. Combined alkaline hydrolysis and ultrasound-assisted extraction for the release of nonextractable phenolics from cauliflower (Brassica oleracea var. botrytis) waste. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2014; 62:3371-3376. [PMID: 24665894 DOI: 10.1021/jf500835q] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Cauliflower waste contains high amounts phenolic compounds, but conventional solvent extraction misses high amounts of nonextractable phenolics (NEP), which may contribute more to the valorization of these waste streams. In this study, the NEP content and composition of cauliflower waste were investigated. The ability of alkaline hydrolysis, sonication, and their combination to release NEP was assessed. Alkaline hydrolysis with sonication was found to extract the highest NEP content (7.3 ± 0.17 mg gallic acid equivalents (GAE)/g dry waste), which was higher than the extractable fraction. The highest yield was obtained after treatment of 2 M NaOH at 60 °C for 30 min of sonication. Quantification and identification were done using U(H)PLC-DAD and U(H)PLC-ESI-MS(E). Kaempferol and quercetin glucosides along with several phenolic acids were found. The results of the study show that there are higher amounts of valuable health-promoting compounds from cauliflower waste than what is currently described in the literature.
Collapse
Affiliation(s)
- Gerard Bryan Gonzales
- Department of Food Safety and Food Quality, Faculty of Bioscience Engineering, ‡Department of Crop Protection, Faculty of Bioscience Engineering, and Ghent University , Gent, Belgium
| | | | | | | |
Collapse
|
21
|
Shao Y, Jiang J, Ran L, Lu C, Wei C, Wang Y. Analysis of flavonoids and hydroxycinnamic acid derivatives in rapeseeds (Brassica napus L. var. napus) by HPLC-PDA--ESI(--)-MS(n)/HRMS. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2014; 62:2935-45. [PMID: 24620834 DOI: 10.1021/jf404826u] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
A comprehensive description of flavonoids and hydroxycinnamic acid derivatives in Brassica napus L. var. napus seeds is important to improve rapeseed quality. HPLC-PDA-ESI(-)-MS(n)/HRMS has been broadly applied to study phenolic compounds in plants. In the present study, crude phenolic compounds extracted from rapeseed were subjected to column chromatography, alkaline hydrolysis, and HPLC-PDA-ESI(-)-MS(n)/HRMS analysis. A total of 91 flavonoids and hydroxycinnamic acid derivatives were detected, including 39 kaempferol derivatives, 11 isorhamnetin derivatives, 5 quercetin derivatives, 6 flavanols and their oligomers, and 30 hydroxycinnamic acid derivatives. A total of 78 of these compounds were tentatively identified; of these, 55 were reported for the first time in B. napus L. var. napus and 24 were detected for the first time in the genus Brassica. This research enriches our knowledge of the phenolic composition of rapeseed and provides a reliable guide for the selection of rapeseed with valuable breeding potential.
Collapse
Affiliation(s)
- Yanlin Shao
- Jiangsu Provincial Key Laboratory of Crop Genetics and Physiology and ‡Test Center, Yangzhou University , Yangzhou, 225009 Jiangsu, China
| | | | | | | | | | | |
Collapse
|
22
|
Castro-Puyana M, Herrero M. Metabolomics approaches based on mass spectrometry for food safety, quality and traceability. Trends Analyt Chem 2013. [DOI: 10.1016/j.trac.2013.05.016] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|