1
|
Wang M, Qu L, Du X, Song P, Ng JPL, Wong VKW, Law BYK, Fu X. Natural Products and Derivatives Targeting Metabolic Reprogramming in Colorectal Cancer: A Comprehensive Review. Metabolites 2024; 14:490. [PMID: 39330497 PMCID: PMC11433951 DOI: 10.3390/metabo14090490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/03/2024] [Accepted: 09/05/2024] [Indexed: 09/28/2024] Open
Abstract
Metabolic reprogramming is a critical pathogenesis of colorectal cancer (CRC), referring to metabolic disorders that cancer cells make in response to the stimulating pressure. Metabolic reprogramming induces changes in genetic material and promotes CRC progression and has been proven to be an efficient target of CRC. As natural products have garnered interest due to notable pharmacological effects and potential in counteracting chemoresistance, an increasing body of research is delving into the impact of these natural products on the metabolic reprogramming associated with CRC. In this review, we collected published data from the Web of Science and PubMed, covering the period from January 1980 to October 2023. This article focuses on five central facets of metabolic alterations in cancer cells, glucose metabolism, mitochondrial oxidative phosphorylation (OXPHOS), amino acid metabolism, fatty acid synthesis, and nucleotide metabolism, to provide an overview of recent advancements in natural product interventions targeting metabolic reprogramming in CRC. Our analysis underscores the potential of natural products in disrupting the metabolic pathways of CRC, suggesting promising therapeutic targets for CRC and expanding treatment options for metabolic-associated ailments.
Collapse
Affiliation(s)
- Mengyu Wang
- Nehr’s Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau 999078, China; (M.W.)
- Research Institute for Marine Traditional Chinese Medicine, Key Laboratory of Marine Traditional Chinese Medicine in Shandong Universities, Shandong Engineering and Technology Research Center on Omics of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Liqun Qu
- Research Institute for Marine Traditional Chinese Medicine, Key Laboratory of Marine Traditional Chinese Medicine in Shandong Universities, Shandong Engineering and Technology Research Center on Omics of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
- Qingdao Academy of Chinese Medical Sciences Shandong University of Traditional Chinese Medicine, Qingdao Key Laboratory of Research in Marine Traditional Chinese Medicine, Qingdao Key Technology Innovation Center of Marine Traditional Chinese Medicine’s Deep Development and Industrialization, Qingdao 266114, China
| | - Xinying Du
- Research Institute for Marine Traditional Chinese Medicine, Key Laboratory of Marine Traditional Chinese Medicine in Shandong Universities, Shandong Engineering and Technology Research Center on Omics of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
- Qingdao Academy of Chinese Medical Sciences Shandong University of Traditional Chinese Medicine, Qingdao Key Laboratory of Research in Marine Traditional Chinese Medicine, Qingdao Key Technology Innovation Center of Marine Traditional Chinese Medicine’s Deep Development and Industrialization, Qingdao 266114, China
| | - Peng Song
- Nehr’s Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau 999078, China; (M.W.)
- Research Institute for Marine Traditional Chinese Medicine, Key Laboratory of Marine Traditional Chinese Medicine in Shandong Universities, Shandong Engineering and Technology Research Center on Omics of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Jerome P. L. Ng
- Nehr’s Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau 999078, China; (M.W.)
| | - Vincent Kam Wai Wong
- Nehr’s Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau 999078, China; (M.W.)
| | - Betty Yuen Kwan Law
- Nehr’s Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau 999078, China; (M.W.)
| | - Xianjun Fu
- Research Institute for Marine Traditional Chinese Medicine, Key Laboratory of Marine Traditional Chinese Medicine in Shandong Universities, Shandong Engineering and Technology Research Center on Omics of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
- Qingdao Academy of Chinese Medical Sciences Shandong University of Traditional Chinese Medicine, Qingdao Key Laboratory of Research in Marine Traditional Chinese Medicine, Qingdao Key Technology Innovation Center of Marine Traditional Chinese Medicine’s Deep Development and Industrialization, Qingdao 266114, China
| |
Collapse
|
2
|
Carlosama C, Arévalo C, Jimenez MC, Lasso P, Urueña C, Fiorentino S, Barreto A. Triple negative breast cancer migration is modified by mitochondrial metabolism alteration induced by natural extracts of C. spinosa and P. alliacea. Sci Rep 2024; 14:20253. [PMID: 39215068 PMCID: PMC11364553 DOI: 10.1038/s41598-024-70550-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024] Open
Abstract
Tumor metabolism is a crucial aspect of cancer development, and mitochondria plays a significant role in the aggressiveness and metastasis of tumors. As a result, mitochondria have become a promising therapeutic target in cancer treatment, leading to the development of compounds known as mitocans. In our group, we have consolidated the search of anticancer therapies based on natural products derived from plants, obtaining extracts such as P2Et from Caesalpinia spinosa and Anamu-SC from Petiveria alliacea, which have been shown to have antitumor activities in different cancer models. These extracts, due to their complex molecular composition, can interfere with multiple functions during tumor progression. To better understand how these natural products operate (P2Et and Anamu-SC), we constructed a model using 4T1 murine breast cancer cells with reduced expression of genes associated with glycolysis (Hexokinase-2) and mitochondrial function (Cqbp). The results indicate that the cells were more sensitive to the Anamu-SC extract, showing significant decreases in glucose consumption, ATP production, and oxygen consumption rate. Additionally, we observed changes in mitochondrial function, which reduced the cells' ability to migrate, particularly when C1qbp was silenced. This triple-negative breast cancer model allows us to identify potential natural products that can modulate tumor cell metabolism.
Collapse
Affiliation(s)
- Carolina Carlosama
- Grupo de Inmunobiología y Biología Celular, Unidad de Investigación en Ciencias Biomédicas, Facultad de Ciencias, Pontificia Universidad Javeriana, Carrera 7a. No. 43-82, Ed. 50, Lab. 101, 110211, Bogotá, Colombia
| | - Cindy Arévalo
- Grupo de Inmunobiología y Biología Celular, Unidad de Investigación en Ciencias Biomédicas, Facultad de Ciencias, Pontificia Universidad Javeriana, Carrera 7a. No. 43-82, Ed. 50, Lab. 101, 110211, Bogotá, Colombia
| | - María Camila Jimenez
- Grupo de Inmunobiología y Biología Celular, Unidad de Investigación en Ciencias Biomédicas, Facultad de Ciencias, Pontificia Universidad Javeriana, Carrera 7a. No. 43-82, Ed. 50, Lab. 101, 110211, Bogotá, Colombia
| | - Paola Lasso
- Grupo de Inmunobiología y Biología Celular, Unidad de Investigación en Ciencias Biomédicas, Facultad de Ciencias, Pontificia Universidad Javeriana, Carrera 7a. No. 43-82, Ed. 50, Lab. 101, 110211, Bogotá, Colombia
| | - Claudia Urueña
- Grupo de Inmunobiología y Biología Celular, Unidad de Investigación en Ciencias Biomédicas, Facultad de Ciencias, Pontificia Universidad Javeriana, Carrera 7a. No. 43-82, Ed. 50, Lab. 101, 110211, Bogotá, Colombia
| | - Susana Fiorentino
- Grupo de Inmunobiología y Biología Celular, Unidad de Investigación en Ciencias Biomédicas, Facultad de Ciencias, Pontificia Universidad Javeriana, Carrera 7a. No. 43-82, Ed. 50, Lab. 101, 110211, Bogotá, Colombia
| | - Alfonso Barreto
- Grupo de Inmunobiología y Biología Celular, Unidad de Investigación en Ciencias Biomédicas, Facultad de Ciencias, Pontificia Universidad Javeriana, Carrera 7a. No. 43-82, Ed. 50, Lab. 101, 110211, Bogotá, Colombia.
| |
Collapse
|
3
|
Feng C, Zheng W, Han L, Wang JK, Zha XP, Xiao Q, He ZJ, Kang JC. AaLaeA targets AaFla1 to mediate the production of antitumor compound in Alternaria alstroemeria. J Basic Microbiol 2024; 64:68-80. [PMID: 37717245 DOI: 10.1002/jobm.202300319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 08/25/2023] [Accepted: 09/05/2023] [Indexed: 09/19/2023]
Abstract
Endophytic fungi are an important source of novel antitumor substances. Previously, we isolated an endophytic fungus, Alternaria alstroemeria, from the medicinal plant Artemisia artemisia, whose crude extracts strongly inhibited A549 tumor cells. We obtained a transformant, namely AaLaeAOE26 , which completely loses its antitumor activity due to overexpression of the global regulator AaLaeA. Re-sequencing analysis of the genome revealed that the insertion site was in the noncoding region and did not destroy any other genes. Metabolomics analysis revealed that the level of secondary antitumor metabolic substances was significantly lower in AaLaeAOE26 compared with the wild strain, in particular flavonoids were more downregulated according to the metabolomics analysis. A further comparative transcriptome analysis revealed that a gene encoding FAD-binding domain protein (Fla1) was significantly downregulated. On the other hand, overexpression of AaFla1 led to significant enhancement of antitumor activity against A549 with a sevenfold higher inhibition ratio than the wild strain. At the same time, we also found a significant increase in the accumulation of antitumor metabolites including quercetin, gitogenin, rhodioloside, liensinine, ginsenoside Rg2 and cinobufagin. Our data suggest that the global regulator AaLaeA negatively affects the production of antitumor compounds via controlling the transcription of AaFla1 in endophytic A. alstroemeria.
Collapse
Affiliation(s)
- Can Feng
- College of Pharmacy, Guizhou University, Guiyang, People's Republic of China
- Southwest Biomedical Resources of the Ministry of Education, Guizhou University, Guiyang, People's Republic of China
| | - Wen Zheng
- Southwest Biomedical Resources of the Ministry of Education, Guizhou University, Guiyang, People's Republic of China
| | - Long Han
- Southwest Biomedical Resources of the Ministry of Education, Guizhou University, Guiyang, People's Republic of China
| | - Jian-Kang Wang
- Southwest Biomedical Resources of the Ministry of Education, Guizhou University, Guiyang, People's Republic of China
| | - Xing-Ping Zha
- Southwest Biomedical Resources of the Ministry of Education, Guizhou University, Guiyang, People's Republic of China
| | - Qing Xiao
- Southwest Biomedical Resources of the Ministry of Education, Guizhou University, Guiyang, People's Republic of China
| | - Zhang-Jiang He
- College of Pharmacy, Guizhou University, Guiyang, People's Republic of China
- Southwest Biomedical Resources of the Ministry of Education, Guizhou University, Guiyang, People's Republic of China
| | - Ji-Chuan Kang
- College of Pharmacy, Guizhou University, Guiyang, People's Republic of China
- Southwest Biomedical Resources of the Ministry of Education, Guizhou University, Guiyang, People's Republic of China
| |
Collapse
|
4
|
Shannar A, Sarwar MS, Kong ANT. A New Frontier in Studying Dietary Phytochemicals in Cancer and in Health: Metabolic and Epigenetic Reprogramming. Prev Nutr Food Sci 2022; 27:335-346. [PMID: 36721757 PMCID: PMC9843711 DOI: 10.3746/pnf.2022.27.4.335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 10/25/2022] [Accepted: 10/25/2022] [Indexed: 01/03/2023] Open
Abstract
Metabolic rewiring and epigenetic reprogramming are closely inter-related, and mutually regulate each other to control cell growth in cancer initiation, promotion, progression, and metastasis. Epigenetics plays a crucial role in regulating normal cellular functions as well as pathological conditions in many diseases, including cancer. Conversely, certain mitochondrial metabolites are considered as essential cofactors and regulators of epigenetic mechanisms. Furthermore, dysregulation of metabolism promotes tumor cell growth and reprograms the cells to produce metabolites and bioenergy needed to support cancer cell proliferation. Hence, metabolic reprogramming which alters the metabolites/epigenetic cofactors, would drive the epigenetic landscape, including DNA methylation and histone modification, that could lead to cancer initiation, promotion, and progression. Recognizing the diverse array of benefits of phytochemicals, they are gaining increasing interest in cancer interception and treatment. One of the significant mechanisms of cancer interception and treatment by phytochemicals is reprogramming of the key metabolic pathways and remodeling of cancer epigenetics. This review focuses on the metabolic remodeling and epigenetics reprogramming in cancer and investigates the potential mechanisms by which phytochemicals can mitigate cancer.
Collapse
Affiliation(s)
- Ahmad Shannar
- Graduate Program in Pharmaceutical Science, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Md. Shahid Sarwar
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Ah-Ng Tony Kong
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA,
Correspondence to Ah-Ng Tony Kong,
| |
Collapse
|
5
|
Li XX, Liu C, Dong SL, Ou CS, Lu JL, Ye JH, Liang YR, Zheng XQ. Anticarcinogenic potentials of tea catechins. Front Nutr 2022; 9:1060783. [PMID: 36545470 PMCID: PMC9760998 DOI: 10.3389/fnut.2022.1060783] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 11/21/2022] [Indexed: 12/07/2022] Open
Abstract
Catechins are a cluster of polyphenolic bioactive components in green tea. Anticarcinogenic effects of tea catechins have been reported since the 1980s, but it has been controversial. The present paper reviews the advances in studies on the anticarcinogenic activities of tea and catechins, including epidemiological evidence and anticarcinogenic mechanism. Tea catechins showed antagonistic effects on many cancers, such as gynecological cancers, digestive tract cancers, incident glioma, liver and gallbladder cancers, lung cancer, etc. The mechanism underlying the anticarcinogenic effects of catechins involves in inhibiting the proliferation and growth of cancer cells, scavenging free radicals, suppressing metastasis of cancer cells, improving immunity, interacting with other anticancer drugs, and regulating signaling pathways. The inconsistent results and their causes are also discussed in this paper.
Collapse
Affiliation(s)
- Xiao-Xiang Li
- Tea Research Institute, Zhejiang University, Hangzhou, China
| | - Chang Liu
- Tea Science Society of China, Hangzhou, China
| | - Shu-Ling Dong
- Tea Research Institute, Zhejiang University, Hangzhou, China
| | - Can-Song Ou
- Development Center of Liubao Tea Industry, Cangwu, China
| | - Jian-Liang Lu
- Tea Research Institute, Zhejiang University, Hangzhou, China
| | - Jian-Hui Ye
- Tea Research Institute, Zhejiang University, Hangzhou, China
| | - Yue-Rong Liang
- Tea Research Institute, Zhejiang University, Hangzhou, China,*Correspondence: Yue-Rong Liang,
| | - Xin-Qiang Zheng
- Tea Research Institute, Zhejiang University, Hangzhou, China,Xin-Qiang Zheng,
| |
Collapse
|
6
|
Stochmal A, Moniuszko-Szajwaj B, Zuchowski J, Pecio Ł, Kontek B, Szumacher-Strabel M, Olas B, Cieslak A. Qualitative and Quantitative Analysis of Secondary Metabolites in Morphological Parts of Paulownia Clon In Vitro 112 ® and Their Anticoagulant Properties in Whole Human Blood. Molecules 2022; 27:980. [PMID: 35164250 PMCID: PMC8840654 DOI: 10.3390/molecules27030980] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/19/2022] [Accepted: 01/25/2022] [Indexed: 12/17/2022] Open
Abstract
It is not easy to find data in the scientific literature on the quantitative content of individual phytochemicals. It is possible to find groups of compounds and even individual compounds rather easily, but it is not known what their concentration is in cultivated or wild plants. Therefore, the subject of this study was to determine the content of individual compounds in the new Paulownia species, Oxytree, developed in a biotechnology laboratory in 2008 at La Mancha University in Spain. Six secondary metabolites were isolated, and their chemical structure was confirmed by spectral methods. An analytical method was developed, which was then used to determine the content of individual compounds in leaves, twigs, flowers and fruits of Paulownia Clon in Vitro 112®. No flavonoids were found in twigs and fruits of Oxytree, while the highest phenylethanoid glycosides were found in twigs. In this study, we also focused on biological properties (anticoagulant or procoagulant) of extract and four fractions (A-D) of different chemical composition from Paulownia Clon in Vitro 112 leaves using whole human blood. These properties were determined based on the thrombus-formation analysis system (T-TAS), which imitates in vivo conditions to assess whole blood thrombogenecity. We observed that three fractions (A, C and D) from leaves decrease AUC10 measured by T-TAS. In addition, fraction D rich in triterpenoids showed the strongest anticoagulant activity. However, in order to clarify the exact mechanism of action of the active substances present in this plant, studies closer to physiological conditions, i.e., in vivo studies, should be performed, which will also allow to determine the effects of their long-term effects.
Collapse
Affiliation(s)
- Anna Stochmal
- Department of Biochemistry and Crop Quality, Institute of Soil Science and Plant Cultivation—State Research Institute, Czartoryskich 8, 24-100 Puławy, Poland; (A.S.); (B.M.-S.); (J.Z.); (Ł.P.)
| | - Barbara Moniuszko-Szajwaj
- Department of Biochemistry and Crop Quality, Institute of Soil Science and Plant Cultivation—State Research Institute, Czartoryskich 8, 24-100 Puławy, Poland; (A.S.); (B.M.-S.); (J.Z.); (Ł.P.)
| | - Jerzy Zuchowski
- Department of Biochemistry and Crop Quality, Institute of Soil Science and Plant Cultivation—State Research Institute, Czartoryskich 8, 24-100 Puławy, Poland; (A.S.); (B.M.-S.); (J.Z.); (Ł.P.)
| | - Łukasz Pecio
- Department of Biochemistry and Crop Quality, Institute of Soil Science and Plant Cultivation—State Research Institute, Czartoryskich 8, 24-100 Puławy, Poland; (A.S.); (B.M.-S.); (J.Z.); (Ł.P.)
| | - Bogdan Kontek
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Łódź, Poland;
| | - Malgorzata Szumacher-Strabel
- Department of Animal Nutrition, Poznań University of Life Sciences, Wołyńska 33, 60-637 Poznań, Poland; (M.S.-S.); (A.C.)
| | - Beata Olas
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Łódź, Poland;
| | - Adam Cieslak
- Department of Animal Nutrition, Poznań University of Life Sciences, Wołyńska 33, 60-637 Poznań, Poland; (M.S.-S.); (A.C.)
| |
Collapse
|
7
|
Cianciosi D, Forbes-Hernández TY, Regolo L, Alvarez-Suarez JM, Navarro-Hortal MD, Xiao J, Quiles JL, Battino M, Giampieri F. The reciprocal interaction between polyphenols and other dietary compounds: Impact on bioavailability, antioxidant capacity and other physico-chemical and nutritional parameters. Food Chem 2021; 375:131904. [PMID: 34963083 DOI: 10.1016/j.foodchem.2021.131904] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 12/16/2021] [Accepted: 12/17/2021] [Indexed: 02/08/2023]
Abstract
Polyphenols are plant secondary metabolites, whose biological activity has been widely demonstrated. However, the research in this field is a bit reductive, as very frequently the effect of individual compound is investigated in different experimental models, neglecting more complex, but common, relationships that are established in the diet. This review summarizes the data that highlighted the interaction between polyphenols and other food components, especially macro- (lipids, proteins, carbohydrates and fibers) and micronutrients (minerals, vitamins and organic pigments), paying particular attention on their bioavailability, antioxidant capacity and chemical, physical, organoleptic and nutritional characteristics. The topic of food interaction has yet to be extensively studied because a greater knowledge of the food chemistry behind these interactions and the variables that modify their effects, could offer innovations and improvements in various fields ranging from organoleptic, nutritional to health and economic field.
Collapse
Affiliation(s)
- Danila Cianciosi
- Department of Clinical Sciences, Polytechnic University of Marche, Ancona 60131, Italy
| | - Tamara Y Forbes-Hernández
- Department of Physiology, Institute of Nutrition and Food Technology "José Mataix", Biomedical Research Centre, University of Granada, Granada 1800, Spain
| | - Lucia Regolo
- Department of Clinical Sciences, Polytechnic University of Marche, Ancona 60131, Italy
| | - José M Alvarez-Suarez
- Departamento de Ingeniería en Alimentos. Colegio de Ciencias e Ingenierías. Universidad San Francisco de Quito, Quito, Ecuador 170157, Ecuador; Instituto de Investigaciones en Biomedicina iBioMed, Universidad San Francisco de Quito, Quito, Ecuador; King Fahd Medical Research Center, King Abdulaziz University, 21589 Jeddah, Saudi Arabia
| | - Maria Dolores Navarro-Hortal
- Department of Physiology, Institute of Nutrition and Food Technology "José Mataix", Biomedical Research Centre, University of Granada, Granada 1800, Spain
| | - Jianbo Xiao
- Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo - Ourense Campus, Ourense, Spain; International Joint Research Laboratory of Intelligent Agriculture and Agri-products Processing, Jiangsu University, Zhenjiang, China
| | - José L Quiles
- Department of Physiology, Institute of Nutrition and Food Technology "José Mataix", Biomedical Research Centre, University of Granada, Granada 1800, Spain; Research Group on Food, Nutritional Biochemistry and Health, Universidad Europea del Atlántico, Santander 39011, Spain
| | - Maurizio Battino
- Department of Clinical Sciences, Polytechnic University of Marche, Ancona 60131, Italy; International Joint Research Laboratory of Intelligent Agriculture and Agri-products Processing, Jiangsu University, Zhenjiang, China.
| | - Francesca Giampieri
- Research Group on Food, Nutritional Biochemistry and Health, Universidad Europea del Atlántico, Santander 39011, Spain; Department of Biochemistry, Faculty of Sciences, King Abdulaziz University, Jeddah, Saudi Arabia.
| |
Collapse
|
8
|
Chen L, Guo Y, Wu Z, Zhao S, Zhang Z, Zheng F, Sun L, Hao Z, Xu C, Wang T, Peng Y. Epicatechin gallate prevents the de novo synthesis of fatty acid and the migration of prostate cancer cells. Acta Biochim Biophys Sin (Shanghai) 2021; 53:1662-1669. [PMID: 34718375 DOI: 10.1093/abbs/gmab144] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Indexed: 12/25/2022] Open
Abstract
Lipid metabolism disorder caused by the upregulation of lipogenic genes is a typical feature of prostate cancer. The synthesis of fatty acids is enhanced to accelerate the development of prostate cancer and is considered as a potential therapeutic target. Epicatechin gallate, an active compound of green tea, has been reported to modulate lipid metabolism. In this research, the potential role of epicatechin gallate in prostate cancer cells was evaluated. The results indicated that epicatechin gallate downregulates the expression of acetyl-CoA carboxylase, ATP citrate lyase, and fatty acid synthase in prostate cancer cells and prostate xenograft tissues, suggesting that epicatechin gallate can inhibit de novo fatty acid synthesis. Moreover, epicatechin gallate significantly restrains the migration rather than the viability of prostate cancer cells. PI3K/AKT/mTOR signaling pathway, which exhibits regulatory effect on lipogenesis, is also inhibited under epicatechin gallate treatment, while pretreatment with AKT activator SC79 or mTOR activator MHY1485 blocks the inhibitory effect of epicatechin gallate on the expression of lipogenic genes and the migration of prostate cancer cells. In conclusion, this study revealed that epicatechin gallate impairs the synthesis of fatty acids via inhibition PI3K/AKT/mTOR signaling pathway and then attenuates the migration of prostate cancer cells.
Collapse
Affiliation(s)
- Luyao Chen
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yaping Guo
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Zixuan Wu
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Shuwu Zhao
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Zhaiyi Zhang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Fang Zheng
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Likang Sun
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Zheng Hao
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Chen Xu
- Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin 300121, China
| | - Tao Wang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yanfei Peng
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| |
Collapse
|
9
|
Colombo G, Gelardi ELM, Balestrero FC, Moro M, Travelli C, Genazzani AA. Insight Into Nicotinamide Adenine Dinucleotide Homeostasis as a Targetable Metabolic Pathway in Colorectal Cancer. Front Pharmacol 2021; 12:758320. [PMID: 34880756 PMCID: PMC8645963 DOI: 10.3389/fphar.2021.758320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 11/02/2021] [Indexed: 11/13/2022] Open
Abstract
Tumour cells modify their cellular metabolism with the aim to sustain uncontrolled proliferation. Cancer cells necessitate adequate amounts of NAD and NADPH to support several enzymes that are usually overexpressed and/or overactivated. Nicotinamide adenine dinucleotide (NAD) is an essential cofactor and substrate of several NAD-consuming enzymes, such as PARPs and sirtuins, while NADPH is important in the regulation of the redox status in cells. The present review explores the rationale for targeting the key enzymes that maintain the cellular NAD/NADPH pool in colorectal cancer and the enzymes that consume or use NADP(H).
Collapse
Affiliation(s)
- Giorgia Colombo
- Department of Pharmaceutical Sciences, Università Del Piemonte Orientale, Novara, Italy
| | | | | | - Marianna Moro
- Department of Pharmaceutical Sciences, Università Del Piemonte Orientale, Novara, Italy
| | - Cristina Travelli
- Department of Drug Sciences, Università Degli Studi di Pavia, Pavia, Italy
| | - Armando A. Genazzani
- Department of Pharmaceutical Sciences, Università Del Piemonte Orientale, Novara, Italy
| |
Collapse
|
10
|
Tatipamula VB, Kukavica B. Phenolic compounds as antidiabetic, anti-inflammatory, and anticancer agents and improvement of their bioavailability by liposomes. Cell Biochem Funct 2021; 39:926-944. [PMID: 34498277 DOI: 10.1002/cbf.3667] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 08/15/2021] [Accepted: 08/21/2021] [Indexed: 12/20/2022]
Abstract
Phenolic compounds, widespread in plants, are a necessary part of the human regimen due to their antioxidant and pro-oxidative properties. Naturally, phenolics structurally range from a very simple phenolic molecule moiety to an intricate polymer. For decades, phenolic compounds have gained pronounced attention because of their protective effects against degenerative disorders such as inflammation, diabetes and cancer. Physico-chemical properties (eg, solubility) restricted their bioactivity and also limited their usage as nutraceutical ingredients. However, encapsulation technology like liposomal formulations has been developed for the delivery of phenolic compounds without affecting their original aesthetic and organoleptic property. Hence, this review outlines the antioxidant and pro-oxidative properties of phenolic compounds and focuses on biological activity reports of flavonoids and phenolic acids as antidiabetic, anti-inflammatory and anticancer agents. Also, the delivery applications of phenolic compounds as liposomes are discussed with few examples.
Collapse
Affiliation(s)
- Vinay Bharadwaj Tatipamula
- Institute of Research and Development, Duy Tan University, Da Nang, Vietnam.,Faculty of Pharmacy, Duy Tan University, Da Nang, Vietnam
| | - Biljana Kukavica
- Faculty of Natural Sciences and Mathematics, University of Banja Luka, Banja Luka, Bosnia and Herzegovina
| |
Collapse
|
11
|
Khan A, Siddiqui S, Husain SA, Mazurek S, Iqbal MA. Phytocompounds Targeting Metabolic Reprogramming in Cancer: An Assessment of Role, Mechanisms, Pathways, and Therapeutic Relevance. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:6897-6928. [PMID: 34133161 DOI: 10.1021/acs.jafc.1c01173] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The metabolism of cancer is remarkably different from that of normal cells and confers a variety of benefits, including the promotion of other cancer hallmarks. As the rewired metabolism is a near-universal property of cancer cells, efforts are underway to exploit metabolic vulnerabilities for therapeutic benefits. In the continued search for safer and effective ways of cancer treatment, structurally diverse plant-based compounds have gained substantial attention. Here, we present an extensive assessment of the role of phytocompounds in modulating cancer metabolism and attempt to make a case for the use of plant-based compounds in targeting metabolic vulnerabilities of cancer. We discuss the pharmacological interactions of phytocompounds with major metabolic pathways and evaluate the role of phytocompounds in the regulation of growth signaling and transcriptional programs involved in the metabolic transformation of cancer. Lastly, we examine the potential of these compounds in the clinical management of cancer along with limitations and challenges.
Collapse
Affiliation(s)
- Asifa Khan
- Department of Biotechnology, Faculty of Natural Sciences, Jamia Millia Islamia (A Central University), New Delhi 110025, India
- Department of Biosciences, Faculty of Natural Sciences, Jamia Millia Islamia (A Central University), New Delhi 110025, India
| | - Shumaila Siddiqui
- Department of Biotechnology, Faculty of Natural Sciences, Jamia Millia Islamia (A Central University), New Delhi 110025, India
| | - Syed Akhtar Husain
- Department of Biosciences, Faculty of Natural Sciences, Jamia Millia Islamia (A Central University), New Delhi 110025, India
| | - Sybille Mazurek
- Institute of Veterinary-Physiology and Biochemistry, University of Giessen, Giessen 35392, Germany
| | - Mohammad Askandar Iqbal
- Department of Biotechnology, Faculty of Natural Sciences, Jamia Millia Islamia (A Central University), New Delhi 110025, India
| |
Collapse
|
12
|
Shan S, Wu C, Shi J, Zhang X, Niu J, Li H, Li Z. Inhibitory Effects of Peroxidase from Foxtail Millet Bran on Colitis-Associated Colorectal Carcinogenesis by the Blockage of Glycerophospholipid Metabolism. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:8295-8307. [PMID: 32657580 DOI: 10.1021/acs.jafc.0c03257] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Abnormal glycerophospholipid (GPL) metabolism represented by phosphatidylcholine (PC) and phosphatidylethanolamine (PE) has been as a universal metabolic hallmark of cancer, which is involved in tumor progression. Our previous finding showed that peroxidase from foxtail millet bran (FMBP) exhibited significant anticolorectal cancer (CRC) activity in vitro and in nude mice. Presently, the potential of FMBP in clinical application was further evaluated by an azoxymethane (AOM)/dextran sodium sulfate (DSS)-induced colitis-associated carcinogenesis (CAC) mice model, revealed the pivotal role of GPL metabolism in anti-CRC effects of FMBP. Excitedly, FMBP significantly reduced the number and volume of CAC polyps of mice and effectively improved physiological indexes of CAC mice. Meanwhile, the elevated expressions of CRC early markers (cyclooxygenase 2, tumor-proliferating nuclear antigen Ki-67, and EGF module-containing mucin-like receptor 1) in CAC mice were efficiently prevented by FMBP treatment. Metabolomics analysis showed that the elevated abundances of PC and PE involved in GPL metabolism in CAC mice were markedly decreased in FMBP-treated groups, which was also verified in human CRC cells. Further, FMBP reduced the expression levels of PE and PC key metabolic enzymes, resulting in the blockage of GPL metabolism and insufficient adenosine triphosphate to maintain CRC growth. Collectively, FMBP has the potential as a preventive and therapeutic candidate for CRC through the blockage of GPL metabolism.
Collapse
Affiliation(s)
- Shuhua Shan
- Institute of Biotechnology, Key Laboratory of Chemical Biology and Molecular Engineering of National Ministry of Education, Shanxi University, Taiyuan 030006, China
| | - Caihong Wu
- Institute of Biotechnology, Key Laboratory of Chemical Biology and Molecular Engineering of National Ministry of Education, Shanxi University, Taiyuan 030006, China
| | - Jiangying Shi
- Institute of Biotechnology, Key Laboratory of Chemical Biology and Molecular Engineering of National Ministry of Education, Shanxi University, Taiyuan 030006, China
| | - Xiaoli Zhang
- Institute of Biotechnology, Key Laboratory of Chemical Biology and Molecular Engineering of National Ministry of Education, Shanxi University, Taiyuan 030006, China
| | - Jinping Niu
- Institute of Biotechnology, Key Laboratory of Chemical Biology and Molecular Engineering of National Ministry of Education, Shanxi University, Taiyuan 030006, China
| | - Hanqing Li
- School of Life Science, Shanxi University, Taiyuan 030006, China
| | - Zhuoyu Li
- Institute of Biotechnology, Key Laboratory of Chemical Biology and Molecular Engineering of National Ministry of Education, Shanxi University, Taiyuan 030006, China
- School of Life Science, Shanxi University, Taiyuan 030006, China
| |
Collapse
|
13
|
Kim TL, Jeong GH, Yang JW, Lee KH, Kronbichler A, van der Vliet HJ, Grosso G, Galvano F, Aune D, Kim JY, Veronese N, Stubbs B, Solmi M, Koyanagi A, Hong SH, Dragioti E, Cho E, de Rezende LFM, Giovannucci EL, Shin JI, Gamerith G. Tea Consumption and Risk of Cancer: An Umbrella Review and Meta-Analysis of Observational Studies. Adv Nutr 2020; 11:1437-1452. [PMID: 32667980 PMCID: PMC7666907 DOI: 10.1093/advances/nmaa077] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Revised: 04/17/2020] [Accepted: 06/11/2020] [Indexed: 01/15/2023] Open
Abstract
Tea is one of the most widely consumed beverages, but its association with cancer risk remains controversial and unclear. We performed an umbrella review to clarify and determine the associations between tea consumption and various types of cancer by summarizing and recalculating the existing meta-analyses. Meta-analyses of observational studies reporting associations between tea consumption and cancer risk were searched on PubMed and Embase. Associations found to be statistically significant were further classified into levels of evidence (convincing, suggestive, or weak), based on P value, between-study heterogeneity, prediction intervals, and small study effects. Sixty-four observational studies (case-control or cohort) corresponding to 154 effect sizes on the incidence of 25 types of cancer were included. Forty-three (27.9%) results in 15 different types of cancer were statistically significant. When combining all studies on the same type of cancer, 19 results in 11 different types of cancer showed significant associations with lower risk of gastrointestinal tract organ cancer (oral, gastric, colorectal, biliary tract, and liver cancer), breast cancer, and gynecological cancer (endometrial and ovarian cancer) as well as leukemia, lung cancer, and thyroid cancer. Only the reduced risk of oral cancer in tea-consuming populations (OR = 0.62; 95% CI: 0.55, 0.72; P value < 10-6) was supported by convincing evidence. Suggestive evidence was found for 6 results on biliary tract, breast, endometrial, liver, and oral cancer. To summarize, tea consumption was shown to have protective effects on some types of cancer, particularly oral cancer. More well-designed prospective studies are needed with consideration of other factors that can cause biases.
Collapse
Affiliation(s)
- Tai Lim Kim
- Yonsei University College of Medicine, Severance Hospital, Seoul, Korea
| | - Gwang Hun Jeong
- College of Medicine, Gyeongsang National University, Jinju, Korea
| | - Jae Won Yang
- Department of Nephrology, Yonsei University Wonju College of Medicine, Wonju, Korea
| | - Keum Hwa Lee
- Department of Pediatrics, Yonsei University College of Medicine, Seoul, Korea,Division of Pediatric Nephrology, Severance Children's Hospital, Seoul, Korea
| | - Andreas Kronbichler
- Department of Internal Medicine IV (Nephrology and Hypertension), Medical University Innsbruck, Innsbruck, Austria
| | - Hans J van der Vliet
- Department of Medical Oncology, Amsterdam UMC, VU University, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Giuseppe Grosso
- Department of Biomedical and Biotechnological Science, School of Medicine, University of Catania, Catania, Italy
| | - Fabio Galvano
- Department of Biomedical and Biotechnological Science, School of Medicine, University of Catania, Catania, Italy
| | - Dagfinn Aune
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK,Department of Nutrition, Bjørknes University College, Oslo, Norway,Department of Endocrinology, Morbid Obesity and Preventive Medicine, Oslo University Hospital, Oslo, Norway
| | - Jong Yeob Kim
- Yonsei University College of Medicine, Severance Hospital, Seoul, Korea
| | - Nicola Veronese
- National Research Council, Neuroscience Institute, Aging Branch, Padova, Italy
| | - Brendon Stubbs
- Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK,South London and Maudsley NHS Foundation Trust, London, UK,Positive Ageing Research Institute, Faculty of Health, Social Care, Medicine and Education, Anglia Ruskin University, Chelmsford, UK
| | - Marco Solmi
- Department of Neuroscience, University of Padova, Padova, Italy
| | - Ai Koyanagi
- Parc Sanitari Sant Joan de Déu/CIBERSAM, Universitat de Barcelona, Barcelona, Spain,ICREA, Barcelona, Spain
| | - Sung Hwi Hong
- Yonsei University College of Medicine, Severance Hospital, Seoul, Korea,Department of Global Health and Population, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Elena Dragioti
- Pain and Rehabilitation Centre, and Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
| | - Eunyoung Cho
- Department of Dermatology, The Warren Alpert Medical School, Brown University, Providence, RI, USA,Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Leandro F M de Rezende
- Universidade Federal de São Paulo, Escola Paulista de Medicina, Departamento de Medicina Preventiva, São Paulo, Brazil
| | - Edward L Giovannucci
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA,Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | | | - Gabriele Gamerith
- Internal Medicine V, Department of Hematology & Oncology, Medical University Innsbruck, Innsbruck, Austria
| |
Collapse
|
14
|
Fakhri S, Khodamorady M, Naseri M, Farzaei MH, Khan H. The ameliorating effects of anthocyanins on the cross-linked signaling pathways of cancer dysregulated metabolism. Pharmacol Res 2020; 159:104895. [PMID: 32422342 DOI: 10.1016/j.phrs.2020.104895] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 04/13/2020] [Accepted: 05/05/2020] [Indexed: 12/25/2022]
Abstract
Cancer cells underlie the dysregulated metabolism of carbohydrate, lipid and protein and thereby, employ interconnected cross-linked signaling pathways to supply adequate energy for growth and related biosynthetic procedures. In the present study, a comprehensive review of cancer metabolism and anthocyanin's effect was conducted using the existing electronic databases, including Medline, PubMed, Scopus, and Web of Science, as well as related articles in the field. Such keywords as "cancer", and "cancer metabolism" in the title/abstract/keyword and all the "anthocyanins" in the whole text were used. Data were collected without time restriction until February 2020. The results indicated the involvement of several signaling pathways, including inflammatory PI3K/Akt/mTOR pathway, Bax/Bcl-2/caspases as apoptosis modulators, and NF-κB/Nrf2 as oxidative stress mediators in the cancer dysregulated metabolism. Compelling studies have shown that targeting these pathways, as critical hallmarks of cancer, plays a critical role in combating cancer dysregulated metabolism. The complexity of cancer metabolism signaling pathways, along with toxicity, high costs, and resistance to conventional drugs urge the need to investigate novel multi-target agents. Increasing evidence has introduced plant-derived secondary metabolites as hopeful anticancer candidates which target multiple dysregulated cross-linked pathways of cancer metabolism. Amongst these metabolites, anthocyanins have demonstrated positive anticancer effects by targeting inflammation, oxidative stress, and apoptotic signaling pathways. The current study revealed the cross-linked signaling pathways of cancer metabolism, as well as the promising pharmacological mechanisms of anthocyanins in targeting the aforementioned signaling mediators. To overcome the pharmacokinetic limitations of anthocyanins in cancer treatment, their interactions with gut microbiota and the need to develop related nano-formulations were also considered.
Collapse
Affiliation(s)
- Sajad Fakhri
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran.
| | - Minoo Khodamorady
- Department of Organic Chemistry, Faculty of Chemistry, Razi University, Kermanshah, 67149-67346, Iran.
| | - Maryam Naseri
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran.
| | - Mohammad Hosein Farzaei
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran.
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University Mardan, 23200, Pakistan.
| |
Collapse
|
15
|
Cao S, Han Y, Li Q, Chen Y, Zhu D, Su Z, Guo H. Mapping Pharmacological Network of Multi-Targeting Litchi Ingredients in Cancer Therapeutics. Front Pharmacol 2020. [DOI: 10.3389/fphar.2020.00451
expr 967555229 + 995954239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
|
16
|
Cao S, Han Y, Li Q, Chen Y, Zhu D, Su Z, Guo H. Mapping Pharmacological Network of Multi-Targeting Litchi Ingredients in Cancer Therapeutics. Front Pharmacol 2020; 11:451. [PMID: 32390834 PMCID: PMC7193898 DOI: 10.3389/fphar.2020.00451] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 03/23/2020] [Indexed: 12/12/2022] Open
Abstract
Considerable pharmacological studies have demonstrated that the extracts and ingredients from different parts (seeds, peels, pulps, and flowers) of Litchi exhibited anticancer effects by affecting the proliferation, apoptosis, autophagy, metastasis, chemotherapy and radiotherapy sensitivity, stemness, metabolism, angiogenesis, and immunity via multiple targeting. However, there is no systematical analysis on the interaction network of “multiple ingredients-multiple targets-multiple pathways” anticancer effects of Litchi. In this study, we summarized the confirmed anticancer ingredients and molecular targets of Litchi based on published articles and applied network pharmacology approach to explore the complex mechanisms underlying these effects from a perspective of system biology. The top ingredients, top targets, and top pathways of each anticancer function were identified using network pharmacology approach. Further intersecting analyses showed that Epigallocatechin gallate (EGCG), Gallic acid, Kaempferol, Luteolin, and Betulinic acid were the top ingredients which might be the key ingredients exerting anticancer function of Litchi, while BAX, BCL2, CASP3, and AKT1 were the top targets which might be the main targets underling the anticancer mechanisms of these top ingredients. These results provided references for further understanding and exploration of Litchi as therapeutics in cancer as well as the application of “Component Formula” based on Litchi’s effective ingredients.
Collapse
Affiliation(s)
- Sisi Cao
- College of Pharmacy, Guangxi Medical University, Nanning, China
| | - Yaoyao Han
- College of Pharmacy, Guangxi Medical University, Nanning, China.,Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education & Center for Translational Medicine, Guangxi Medical University, Nanning, China
| | - Qiaofeng Li
- Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education & Center for Translational Medicine, Guangxi Medical University, Nanning, China.,School of Preclinical Medicine, Guangxi Medical University, Nanning, China
| | - Yanjiang Chen
- Department of Surgery, University of Melbourne, Parkville, VIC, Australia
| | - Dan Zhu
- College of Pharmacy, Guangxi Medical University, Nanning, China
| | - Zhiheng Su
- College of Pharmacy, Guangxi Medical University, Nanning, China
| | - Hongwei Guo
- College of Pharmacy, Guangxi Medical University, Nanning, China.,Key Laboratory of Longevity and Aging-related Diseases of Chinese Ministry of Education & Center for Translational Medicine, Guangxi Medical University, Nanning, China
| |
Collapse
|
17
|
Fakhri S, Moradi SZ, Farzaei MH, Bishayee A. Modulation of dysregulated cancer metabolism by plant secondary metabolites: A mechanistic review. Semin Cancer Biol 2020; 80:276-305. [PMID: 32081639 DOI: 10.1016/j.semcancer.2020.02.007] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 02/08/2020] [Accepted: 02/10/2020] [Indexed: 12/12/2022]
Abstract
Several signaling pathways and basic metabolites are responsible for the control of metabolism in both normal and cancer cells. As emerging hallmarks of cancer metabolism, the abnormal activities of these pathways are of the most noticeable events in cancer. This altered metabolism expedites the survival and proliferation of cancer cells, which have attracted a substantial amount of interest in cancer metabolism. Nowadays, targeting metabolism and cross-linked signaling pathways in cancer has been a hot topic to investigate novel drugs against cancer. Despite the efficiency of conventional drugs in cancer therapy, their associated toxicity, resistance, and high-cost cause limitations in their application. Besides, considering the numerous signaling pathways cross-linked with cancer metabolism, discovery, and development of multi-targeted and safe natural compounds has been a high priority. Natural secondary metabolites have exhibited promising anticancer effects by targeting dysregulated signaling pathways linked to cancer metabolism. The present review reveals the metabolism and cross-linked dysregulated signaling pathways in cancer. The promising therapeutic targets in cancer, as well as the critical role of natural secondary metabolites for significant anticancer enhancements, have also been highlighted to find novel/potential therapeutic agents for cancer treatment.
Collapse
Affiliation(s)
- Sajad Fakhri
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran
| | - Seyed Zachariah Moradi
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran; Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran
| | - Mohammad Hosein Farzaei
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran.
| | - Anupam Bishayee
- Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA.
| |
Collapse
|
18
|
Guerra AR, Duarte MF, Duarte IF. Targeting Tumor Metabolism with Plant-Derived Natural Products: Emerging Trends in Cancer Therapy. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:10663-10685. [PMID: 30227704 DOI: 10.1021/acs.jafc.8b04104] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Recognition of neoplastic metabolic reprogramming as one of cancer's hallmarks has paved the way for developing novel metabolism-targeted therapeutic approaches. The use of plant-derived natural bioactive compounds for this endeavor is especially promising, due to their diverse structures and multiple targets. Hence, over the past decade, a growing number of studies have assessed the impact of phytochemicals on tumor cell metabolism, aiming at improving current knowledge on their mechanisms of action and, at the same time, evaluating their potential as anti-cancer metabolic modulators. In this Review, we focus on three classes of plant-derived compounds with promising anti-cancer activity-phenolic compounds, isoprenoids, and alkaloids-to describe their effects on major energetic and biosynthetic pathways of human tumor cells. Such a comprehensive and integrated account of the ability of these compounds to hit different metabolic targets is expected to contribute to the rational design and critical assessment of novel anti-cancer therapies based on natural-product-mediated metabolic reprogramming.
Collapse
Affiliation(s)
- Angela R Guerra
- Centro de Biotecnologia Agrícola e Agro-Alimentar do Alentejo (CEBAL), Instituto Politécnico de Beja , Apartado 6158 , 7801-908 Beja , Portugal
- CICECO - Instituto de Materiais de Aveiro, Departamento de Quı́mica , Universidade de Aveiro , Campus de Santiago , 3810-193 Aveiro , Portugal
| | - Maria F Duarte
- Centro de Biotecnologia Agrícola e Agro-Alimentar do Alentejo (CEBAL), Instituto Politécnico de Beja , Apartado 6158 , 7801-908 Beja , Portugal
- ICAAM - Instituto de Ciências Agrárias e Ambientais Mediterrânicas , Universidade de Évora , Pólo da Mitra, 7006-554 Évora , Portugal
| | - Iola F Duarte
- CICECO - Instituto de Materiais de Aveiro, Departamento de Quı́mica , Universidade de Aveiro , Campus de Santiago , 3810-193 Aveiro , Portugal
| |
Collapse
|
19
|
Sammi SR, Rawat JK, Raghav N, Kumar A, Roy S, Singh M, Gautam S, Yadav RK, Devi U, Pandey R, Kaithwas G. Galantamine attenuates N,N-dimethyl hydrazine induced neoplastic colon damage by inhibiting acetylcholinesterase and bimodal regulation of nicotinic cholinergic neurotransmission. Eur J Pharmacol 2017; 818:174-183. [PMID: 29074413 DOI: 10.1016/j.ejphar.2017.10.036] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 10/18/2017] [Accepted: 10/19/2017] [Indexed: 02/08/2023]
Abstract
The present study reveals the effect of galantamine (GAL) against 1, 2-dimethylhydrazine (DMH) induced colon cancer. Wistar albino rats were arbitrarily divided into four groups (n = 8). Group 1 served as normal control (normal saline, 3ml/kg/day, p.o.); group 2, 3 and 4 received DMH (20mg/kg/week, s.c.), for 6 weeks; groups 3 and 4 also received GAL (2 and 4mg/kg/day, p.o) for 6 weeks. DMH treated rats showed decreased heart rate variability (HRV) factors, increased incidence of aberrant crypt foci (ACF), increased thiobarbituric acid reactive substances (TBARs) along with the decrease in the enzymatic activity of superoxide dismutase (SOD) and catalase. Increased levels of inflammatory marker cyclooxygenase (COX) and lipoxygenase (LOX) was also evident in DMH treated animals. The colonic surface architecture was studied using scanning electron microscopy revealed aberrant crypts(X500) and neoplastic nodules (X2000). GAL treatment helped to minimize the ACF count, restored oxidative stress and inflammatory markers favorably. To further validate our results, our study was directed to define the effect of GAL on acetylcholine neurotransmission using a simple model organism, Caenorhabditis elegans (C. elegans). Increased synaptic cholinergic transmission by GAL (32µM) was evident in the worms when studied through aldicarb assay. However, GAL (32µM) treatment negatively modulated α7 nicotinic acetylcholine receptor (α7nAch receptor), when evaluated using the levamisole assay. GAL (32µM) treatment down regulated the genomic expression of ace-1, ace-2 along with unc-29, unc-38, and unc-50 (essential components of α7 nAch receptor). GAL by inhibiting AchE and regulating Alpha7nACh activity can improve cholinergic neurotransmission.
Collapse
Affiliation(s)
- Shreesh Raj Sammi
- Department of Microbial Technology and Nematology, CSIR-Central Institute of Medicinal and Aromatic Plants, Near Kukrail Picnic Spot, Lucknow, India
| | - Jitendra K Rawat
- Department of Pharmaceutical Sciences, School of Biosciences and Biotechnology, Babasaheb Bhimrao Ambedkar University (A Central University), Lucknow, Uttar Pradesh, India
| | - Neetu Raghav
- Department of Pharmaceutical Sciences, School of Biosciences and Biotechnology, Babasaheb Bhimrao Ambedkar University (A Central University), Lucknow, Uttar Pradesh, India
| | - Ajay Kumar
- Department of Pharmaceutical Sciences, School of Biosciences and Biotechnology, Babasaheb Bhimrao Ambedkar University (A Central University), Lucknow, Uttar Pradesh, India
| | - Subhadeep Roy
- Department of Pharmaceutical Sciences, School of Biosciences and Biotechnology, Babasaheb Bhimrao Ambedkar University (A Central University), Lucknow, Uttar Pradesh, India
| | - Manjari Singh
- Department of Pharmaceutical Sciences, School of Biosciences and Biotechnology, Babasaheb Bhimrao Ambedkar University (A Central University), Lucknow, Uttar Pradesh, India
| | - Swetlana Gautam
- Department of Pharmaceutical Sciences, School of Biosciences and Biotechnology, Babasaheb Bhimrao Ambedkar University (A Central University), Lucknow, Uttar Pradesh, India
| | - Rajnish K Yadav
- Department of Pharmaceutical Sciences, School of Biosciences and Biotechnology, Babasaheb Bhimrao Ambedkar University (A Central University), Lucknow, Uttar Pradesh, India
| | - Uma Devi
- Department of Pharmaceutical Sciences, Faculty of Health Medical Sciences Indigenous and Alternative Medicine, SHIATS- Deemed to be University, Formerly Allahabad Agricultural Institute Naini, Allahabad, U.P., India
| | - Rakesh Pandey
- Department of Microbial Technology and Nematology, CSIR-Central Institute of Medicinal and Aromatic Plants, Near Kukrail Picnic Spot, Lucknow, India
| | - Gaurav Kaithwas
- Department of Pharmaceutical Sciences, School of Biosciences and Biotechnology, Babasaheb Bhimrao Ambedkar University (A Central University), Lucknow, Uttar Pradesh, India.
| |
Collapse
|
20
|
Lu H, Zhu H. Effect of siRNA-mediated gene silencing of transketolase on A549 lung cancer cells. Oncol Lett 2017; 14:5906-5912. [PMID: 29113225 PMCID: PMC5661397 DOI: 10.3892/ol.2017.6916] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 05/04/2017] [Indexed: 01/25/2023] Open
Abstract
The aim of the present study was to investigate the effects of transketolase (TKT) on cell proliferation, cell migration and interaction with other metabolism-associated genes in A549 lung cancer cells. A549 cells were transfected with three TKT-specific small interfering (si)RNAs, screened for the optimal transfection concentration, and sequenced with flow cytometry and reverse transcription-quantitative polymerase chain reaction (RT-qPCR). Cell viability was evaluated using Cell Counting Kit-8 (CCK-8), cell cycle was assessed by flow cytometric analysis. Cell migration was determined by scratch-wound and Transwell chamber assays. The changes in mRNA expression levels of glucose-6-phosphate dehydrogenase (G6PDH), transaldolase (TAL), sorbitol dehydrogenase (SORD), phosphoribosyl pyrophosphate synthetase 1 (PRPS1) and hexokinase 1 (HK1) were detected by RT-qPCR. siRNA-C at 50 nmol/l was selected for the subsequent experiments. Compared with the negative control, cell proliferation of the TKT-siRNA-C group was inhibited dramatically (CCK-8 24 h, 0.2984±0.0371 vs. 0.0952±0.0063; P<0.0001), the cell cycle was arrested at the G1/G0 cell cycle phase (58±2.0% vs. 70±2.5%; P=0.002), and cell migration ability was decreased [wound size, 254.71±34.96 vs. 349.12±37.43 µm (P=0.0001); Transwell migration, 250±47.8/field vs. 150±49.0/field (P<0.0001)]. The mRNA expression levels of G6PDH, TAL, SORD, PRPS1 and HK1 were downregulated in the TKT-siRNA-C group compared with the negative control. The present study revealed that synthetic TKT-siRNA can inhibit A549 cell viability and migration, which may be due to arrest of the cell cycle and downregulation of relevant metabolic enzymes.
Collapse
Affiliation(s)
- Huan Lu
- Department of Respiratory Medicine, Huadong Hospital, Fudan University, Shanghai 200040, P.R. China
| | - Huili Zhu
- Department of Respiratory Medicine, Huadong Hospital, Fudan University, Shanghai 200040, P.R. China
| |
Collapse
|
21
|
Mier-Giraldo H, Díaz-Barrera LE, Delgado-Murcia LG, Valero-Valdivieso MF, Cáez-Ramírez G. Cytotoxic and Immunomodulatory Potential Activity of Physalis peruviana Fruit Extracts on Cervical Cancer (HeLa) and Fibroblast (L929) Cells. J Evid Based Complementary Altern Med 2017; 22:777-787. [PMID: 28719984 PMCID: PMC5871299 DOI: 10.1177/2156587217718751] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
It was purposed to evaluate the biological potential of ethanol and isopropanol crude
extracts of ripe Physalis peruviana fruits. Cytotoxic and
immunomodulatory effects of the expression of interleukin-6, interleukin-8, and monocyte
chemoattractant protein-1 (MCP-1) were evaluated on human cervical cancer (HeLa) and
murine fibroblast (L929) cells. The composition was evaluated by high-performance liquid
chromatography diode-array detection and high-performance liquid chromatography
ultraviolet/visible detection. The presence of ursolic acid and rosmarinic acid was found
in both solvents. However, gallic acid, quercetin, and epicatechin were higher in
isopropanol extracts (P < .05). The results indicated a relationship
among the total polyphenol content, antioxidant activity, and cytotoxic activity that was
dependent on the solvent used. Isopropanol extracts presented a half-maximal inhibition
concentration value (IC50) of 60.48 ± 3.8 μg/mL for HeLa cells and 66.62 ± 2.67
μg/mL for L929 fibroblasts. The extracts reduced the release of interleukin-6,
interleukin-8, and MCP-1 in a dose-dependent manner. Extracts showed anticancer and
immunomodulatory potential for new complementary pharmaceutical products development.
Collapse
Affiliation(s)
- Helen Mier-Giraldo
- 1 Universidad de La Sabana, Campus Puente del Común, Cundinamarca, Colombia
| | | | | | | | | |
Collapse
|
22
|
Battini S, Faitot F, Imperiale A, Cicek AE, Heimburger C, Averous G, Bachellier P, Namer IJ. Metabolomics approaches in pancreatic adenocarcinoma: tumor metabolism profiling predicts clinical outcome of patients. BMC Med 2017; 15:56. [PMID: 28298227 PMCID: PMC5353864 DOI: 10.1186/s12916-017-0810-z] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 02/07/2017] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Pancreatic adenocarcinomas (PAs) have very poor prognoses even when surgery is possible. Currently, there are no tissular biomarkers to predict long-term survival in patients with PA. The aims of this study were to (1) describe the metabolome of pancreatic parenchyma (PP) and PA, (2) determine the impact of neoadjuvant chemotherapy on PP and PA, and (3) find tissue metabolic biomarkers associated with long-term survivors, using metabolomics analysis. METHODS 1H high-resolution magic angle spinning (HRMAS) nuclear magnetic resonance (NMR) spectroscopy using intact tissues was applied to analyze metabolites in PP tissue samples (n = 17) and intact tumor samples (n = 106), obtained from 106 patients undergoing surgical resection for PA. RESULTS An orthogonal partial least square-discriminant analysis (OPLS-DA) showed a clear distinction between PP and PA. Higher concentrations of myo-inositol and glycerol were shown in PP, whereas higher levels of glucose, ascorbate, ethanolamine, lactate, and taurine were revealed in PA. Among those metabolites, one of them was particularly obvious in the distinction between long-term and short-term survivors. A high ethanolamine level was associated with worse survival. The impact of neoadjuvant chemotherapy was higher on PA than on PP. CONCLUSIONS This study shows that HRMAS NMR spectroscopy using intact tissue provides important and solid information in the characterization of PA. Metabolomics profiling can also predict long-term survival: the assessment of ethanolamine concentration can be clinically relevant as a single metabolic biomarker. This information can be obtained in 20 min, during surgery, to distinguish long-term from short-term survival.
Collapse
Affiliation(s)
- S Battini
- ICube, UMR 7357 University of Strasbourg/CNRS, Strasbourg, France
| | - F Faitot
- ICube, UMR 7357 University of Strasbourg/CNRS, Strasbourg, France
- Department of Visceral Surgery and Transplantation, Hautepierre Hospital, University Hospitals of Strasbourg, Strasbourg, France
- FMTS, Faculty of Medicine, Strasbourg, France
| | - A Imperiale
- ICube, UMR 7357 University of Strasbourg/CNRS, Strasbourg, France
- FMTS, Faculty of Medicine, Strasbourg, France
- Department of Biophysics and Nuclear Medicine, Hautepierre Hospital, University Hospitals of Strasbourg, 1, Avenue Molière, Strasbourg, Cedex, 67098, France
| | - A E Cicek
- Computational Biology Department, Carnegie Mellon University, Pittsburgh, PA, USA
- Computer Engineering Department, Bilkent University, Ankara, Turkey
| | - C Heimburger
- ICube, UMR 7357 University of Strasbourg/CNRS, Strasbourg, France
- FMTS, Faculty of Medicine, Strasbourg, France
- Department of Biophysics and Nuclear Medicine, Hautepierre Hospital, University Hospitals of Strasbourg, 1, Avenue Molière, Strasbourg, Cedex, 67098, France
| | - G Averous
- Department of Pathology, Hautepierre Hospital, University Hospitals of Strasbourg, Strasbourg, France
| | - P Bachellier
- Department of Visceral Surgery and Transplantation, Hautepierre Hospital, University Hospitals of Strasbourg, Strasbourg, France
| | - I J Namer
- ICube, UMR 7357 University of Strasbourg/CNRS, Strasbourg, France.
- FMTS, Faculty of Medicine, Strasbourg, France.
- Department of Biophysics and Nuclear Medicine, Hautepierre Hospital, University Hospitals of Strasbourg, 1, Avenue Molière, Strasbourg, Cedex, 67098, France.
| |
Collapse
|
23
|
Kuss S, Trinh D, Mauzeroll J. High-Speed Scanning Electrochemical Microscopy Method for Substrate Kinetic Determination: Application to Live Cell Imaging in Human Cancer. Anal Chem 2015; 87:8102-6. [DOI: 10.1021/acs.analchem.5b01269] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Sabine Kuss
- McGill University, Chemistry Department, 801 Sherbrooke Street W., Montreal, Québec H3A 2A7, Canada
| | - Dao Trinh
- Université de la Rochelle, Laboratoire des Sciences
de l’Ingénieur Pour l’Environnement UMR-7536
CNRS, Avenue Michel Crépeau, 17042 La Rochelle, France
| | - Janine Mauzeroll
- McGill University, Chemistry Department, 801 Sherbrooke Street W., Montreal, Québec H3A 2A7, Canada
| |
Collapse
|
24
|
Lu QY, Zhang L, Yee JK, Go VLW, Lee WN. Metabolic Consequences of LDHA inhibition by Epigallocatechin Gallate and Oxamate in MIA PaCa-2 Pancreatic Cancer Cells. Metabolomics 2015; 11:71-80. [PMID: 26246802 PMCID: PMC4523095 DOI: 10.1007/s11306-014-0672-8] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Lactate dehydrogenase A (LDHA) is the enzyme that converts pyruvate to lactate and oxidizes the reduced form of nicotinamide adenine dinucleotide (NADH) to NAD+. Several human cancers including the pancreas display elevated expression of LDHA. Because of its essential role in cancer metabolism, LDHA has been considered to be a potential target for cancer therapy. Recently, we have shown that a green tea extract significantly down-regulated LDHA in HPAF-II pancreatic cancer cells using global proteomics profiling. The present study is to investigate how EGCG, a major biological active constituent of green tea, targets the metabolism of human pancreatic adenocarcinoma MIA PaCa-2 cells. We compared the effect of EGCG to that of oxamate, an inhibitor of LDHA, on the multiple metabolic pathways as measured by extracellular lactate production, glucose consumption, as well as intracellular aspartate and glutamate production, fatty acid synthesis, acetyl-CoA, RNA ribose and deoxyribose. Specific metabolic pathways were studied using [1, 2-13C2]-d-glucose as the single precursor metabolic tracer. Isotope incorporations in metabolites were analyzed using gas chromatography/mass spectrometry (GC/MS) and stable isotope-based dynamic metabolic profiling (SiDMAP). We found that the EGCG treatment of MIA PaCa-2 cells significantly reduced lactate production, anaerobic glycolysis, glucose consumption and glycolytic rate that are comparable to the inhibition of LDHA by oxamate treatment. Significant changes in intracellular glucose carbon re-distribution among major glucose-utilizing macromolecule biosynthesis pathways in response to EGCG and oxamate treatment were observed. The inhibition of LDHA by EGCG or oxamate impacts on various pathways of the cellular metabolic network and significantly modifies the cancer metabolic phenotype. These results suggest that phytochemical EGCG and LDHA inhibitor oxamate confer their anti-cancer activities by disrupting the balance of flux throughout the cellular metabolic network.
Collapse
Affiliation(s)
- Qing-Yi Lu
- Department of Medicine, University of California, Los Angeles, CA, USA
| | - Lifeng Zhang
- Department of Medicine, University of California, Los Angeles, CA, USA
| | - Jennifer K Yee
- Department of Pediatrics, Los Angeles Biomedical Research Institute, Torrance, CA, USA
| | - Vay-Liang W Go
- Department of Medicine, University of California, Los Angeles, CA, USA
| | - Wai-Nang Lee
- Department of Pediatrics, Los Angeles Biomedical Research Institute, Torrance, CA, USA
| |
Collapse
|
25
|
Li XL, Zhou J, Chen ZR, Chng WJ. p53 mutations in colorectal cancer- molecular pathogenesis and pharmacological reactivation. World J Gastroenterol 2015; 21:84-93. [PMID: 25574081 PMCID: PMC4284363 DOI: 10.3748/wjg.v21.i1.84] [Citation(s) in RCA: 224] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Revised: 08/20/2014] [Accepted: 10/15/2014] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer (CRC) is one of the most common malignancies with high prevalence and low 5-year survival. CRC is a heterogeneous disease with a complex, genetic and biochemical background. It is now generally accepted that a few important intracellular signaling pathways, including Wnt/β-catenin signaling, Ras signaling, and p53 signaling are frequently dysregulated in CRC. Patients with mutant p53 gene are often resistant to current therapies, conferring poor prognosis. Tumor suppressor p53 protein is a transcription factor inducing cell cycle arrest, senescence, and apoptosis under cellular stress. Emerging evidence from laboratories and clinical trials shows that some small molecule inhibitors exert anti-cancer effect via reactivation and restoration of p53 function. In this review, we summarize the p53 function and characterize its mutations in CRC. The involvement of p53 mutations in pathogenesis of CRC and their clinical impacts will be highlighted. Moreover, we also describe the current achievements of using p53 modulators to reactivate this pathway in CRC, which may have great potential as novel anti-cancer therapy.
Collapse
|
26
|
Schneiderová K, Šmejkal K. Phytochemical profile of Paulownia tomentosa (Thunb). Steud. PHYTOCHEMISTRY REVIEWS : PROCEEDINGS OF THE PHYTOCHEMICAL SOCIETY OF EUROPE 2014; 14:799-833. [PMID: 32214918 PMCID: PMC7089068 DOI: 10.1007/s11101-014-9376-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Accepted: 08/02/2014] [Indexed: 06/04/2023]
Abstract
Paulownia tomentosa, a member of the plant family Paulowniaceae and a rich source of biologically active secondary metabolites, is traditionally used in Chinese herbal medicine. Flavonoids, lignans, phenolic glycosides, quinones, terpenoids, glycerides, phenolic acids, and miscellaneous other compounds have been isolated from different parts of P. tomentosa plant. Recent interest in this species has focused on isolating and identifying of prenylated flavonoids, that exhibit potent antioxidant, antibacterial, and antiphlogistic activities and inhibit severe acute respiratory syndrome coronavirus papain-like protease. They show cytotoxic activity against various human cancer cell lines and inhibit the effects of human cholinesterase, butyrylcholinesterase, and bacterial neuraminidases. Most of the compounds considered here have never been isolated from any other species of plant. This review summarizes the information about the isolated compounds that are active, their bioactivities, and the structure-activity relationships that have been worked out for them.
Collapse
Affiliation(s)
- Kristýna Schneiderová
- Department of Natural Drugs, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences Brno, Palackého 1/3, 612 42 Brno, Czech Republic
| | - Karel Šmejkal
- Department of Natural Drugs, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences Brno, Palackého 1/3, 612 42 Brno, Czech Republic
| |
Collapse
|
27
|
Alcarraz-Vizán G, Sánchez-Tena S, Moyer MP, Cascante M. Validation of NCM460 cell model as control in antitumor strategies targeting colon adenocarcinoma metabolic reprogramming: Trichostatin A as a case study. Biochim Biophys Acta Gen Subj 2014; 1840:1634-9. [DOI: 10.1016/j.bbagen.2013.12.024] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Revised: 11/18/2013] [Accepted: 12/17/2013] [Indexed: 12/22/2022]
|