1
|
Zhao L, Liu C, Wang T, Sun L, Wu F, Yu D. Combined multispectral analysis and molecular docking to research the interaction of soybean isolate protein with different kinds of phospholipid liposomes and its effect on liposome properties. Food Chem 2025; 474:143160. [PMID: 39899963 DOI: 10.1016/j.foodchem.2025.143160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 01/28/2025] [Accepted: 01/29/2025] [Indexed: 02/05/2025]
Abstract
Liposomes were modified due to suboptimal stability. Soybean lecithin liposomes (SLip), hydrogenated soybean lecithin liposomes (HLip), and egg yolk lecithin liposomes (ELip) were modified with different concentrations of soybean isolate protein (SPI) to form SLip-SPI, HLip-SPI, and ELip-SPI. The physical properties, interactions, and stability of liposomes were investigated. The vesicle size of SPI-liposomes was increased, SLip-SPI5.0, HLip-SPI2.5, and ELip-SPI5.0 had the best micromorphology and lowest surface roughness. The binding of both was dominated by hydrogen bonding and hydrophobic interactions, and SLip exhibited the strongest binding affinity. SPI modification enhanced liposome stability, denser liposome membrane structure, and effective retardation of lipid oxidation during storage. Simulation of digestion showed the release rate of proanthocyanidins from SLip-SPI (43.91 %), HLip-SPI (36.96 %), and ELip-SPI (41.44 %) were less than unmodified liposomes, effectively delayed the release of proanthocyanidins. The above findings contributed to design different types of liposome delivery systems while enhancing the application of SPI.
Collapse
Affiliation(s)
- Linwei Zhao
- School of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Chunlei Liu
- College of Marine Sciences, Ningde Normal University, Fujian 352000, China
| | - Tong Wang
- School of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Libin Sun
- School of Food Science, Northeast Agricultural University, Harbin 150030, China.
| | - Fei Wu
- School of Food Science, Northeast Agricultural University, Harbin 150030, China.
| | - Dianyu Yu
- School of Food Science, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
2
|
Singh I, Kumar S, Singh S, Wani MY. Overcoming resistance: Chitosan-modified liposomes as targeted drug carriers in the fight against multidrug resistant bacteria-a review. Int J Biol Macromol 2024; 278:135022. [PMID: 39182895 DOI: 10.1016/j.ijbiomac.2024.135022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 07/21/2024] [Accepted: 08/22/2024] [Indexed: 08/27/2024]
Abstract
Antimicrobial resistance (AMR) poses a significant global health threat, rendering standard antibiotics ineffective against multi-drug resistant bacteria. To tackle this urgent issue, innovative approaches are essential. Liposomes, small spherical vesicles made of a phospholipid bilayer, present a promising solution. These vesicles can encapsulate various medicines and are both biocompatible and biodegradable. Their ability to be modified for targeted tissue or cell uptake makes them an ideal drug delivery system. By delivering antibiotics directly to infection sites, liposomes minimize side effects and reduce the development of resistance. However, challenges such as poor stability and rapid drug leakage limit their biological application. Chitosan, a biocompatible polymer, enhances liposome interaction with specific tissues or cells, enabling selective drug release at infection sites. Incorporating chitosan into liposome formulations alters and diversifies their surface characteristics through electrostatic interactions, resulting in improved stability and pH-sensitive drug release. These interactions are crucial for enhancing drug retention and targeted delivery, especially in varying pH environments like tumor sites or infection areas, thereby improving therapeutic outcomes and reducing systemic side effects. This review discusses recent advancements, challenges, and the need for further research to optimize liposome formulations and enhance targeted drug delivery for effective AMR treatment. Chitosan-modified liposomes offer a promising strategy to overcome AMR and improve antimicrobial therapies.
Collapse
Affiliation(s)
- Ira Singh
- Functional Polymer Material Lab, Department of Chemistry, Harcourt Butler Technical University, Kanpur 208002, Uttar Pradesh, India
| | - Santosh Kumar
- Functional Polymer Material Lab, Department of Chemistry, Harcourt Butler Technical University, Kanpur 208002, Uttar Pradesh, India.
| | - Shalinee Singh
- Functional Polymer Material Lab, Department of Chemistry, Harcourt Butler Technical University, Kanpur 208002, Uttar Pradesh, India
| | - Mohmmad Younus Wani
- Department of Chemistry, College of Science, University of Jeddah, 21589 Jeddah, Saudi Arabia
| |
Collapse
|
3
|
Lin S, Pan MH, Chiou YS, Wei S, Ding B. Stability enhancement of proanthocyanidin-loaded liposomes via surface decoration with oxidized konjac glucomannan. Int J Biol Macromol 2024; 275:133230. [PMID: 38945704 DOI: 10.1016/j.ijbiomac.2024.133230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 06/10/2024] [Accepted: 06/15/2024] [Indexed: 07/02/2024]
Abstract
The stability enhancement of proanthocyanidin-loaded liposomes (PC-Lip) via surface decoration with oxidized konjac glucomannan (OKGM) was investigated. The encapsulation efficiency and drug loading capacity of OKGM-coated PC-Lip (OKGM-PC-Lip) rose significantly. The average size and PDI of OKGM-PC-Lip increased, while the zeta potential decreased compared to those of PC-Lip. PC-Lip membrane fluidity reduced after coating with OKGM. The morphology of OKGM-PC-Lip showed that OKGM "halo layer" was formed on the liposome surface. Hydrogen bonding played an indispensable role in the combination between OKGM and PC-Lip, and the phase transition temperature of PC-Lip slightly increased after coating with OKGM. The retention rate of OKGM-PC-Lip was higher than that of PC-Lip at extreme pH. In vitro release, no significant difference in cumulative release was detected between OKGM-PC-Lip and PC-Lip at gastric stage, while the cumulative release rate of OKGM-PC-Lip was remarkably lower than that of PC-Lip at intestinal stage. The antioxidant activity of OKGM-PC-Lip was notably higher than that of PC-Lip. These results suggested that the resistance of PC-Lip to external influences was fruitfully enhanced after coating with OKGM. Compared with other polysaccharides, OKGM-coated liposomes may be more promising and advantageous in functional foods due to the polysaccharide's benefits to human health.
Collapse
Affiliation(s)
- Shouyan Lin
- College of Life Science, Yangtze University, Jingzhou, Hubei 434025, PR China
| | - Min-Hsiung Pan
- Institute of Food Sciences and Technology, National Taiwan University, Taipei 10617, Taiwan, ROC
| | - Yi-Shiou Chiou
- Master Degree Program in Toxicology, College of Pharmacy, Kaohsiung Medical University, Kaohsiung City 80708, Taiwan, ROC
| | - Shudong Wei
- College of Life Science, Yangtze University, Jingzhou, Hubei 434025, PR China
| | - Baomiao Ding
- College of Life Science, Yangtze University, Jingzhou, Hubei 434025, PR China.
| |
Collapse
|
4
|
Han J, Meade J, Devine D, Sadeghpour A, Rappolt M, Goycoolea FM. Chitosan-coated liposomal systems for delivery of antibacterial peptide LL17-32 to Porphyromonas gingivalis. Heliyon 2024; 10:e34554. [PMID: 39149035 PMCID: PMC11325287 DOI: 10.1016/j.heliyon.2024.e34554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 05/29/2024] [Accepted: 07/11/2024] [Indexed: 08/17/2024] Open
Abstract
Periodontal disease is triggered by surface bacterial biofilms where bacteria are less susceptible to antibiotic treatment. The development of liposome-based delivery mechanisms for the therapeutic use of antimicrobial peptides is an attractive alternative in this regard. The cationic antimicrobial peptide LL-37 (human cathelicidin) is well-known to exert antibacterial activity against P orphyromonas gingivalis, a keystone oral pathogen. However, the antibacterial activity of the 16-amino acid fragment (LL17-32) of LL-37, is unknown. In addition, there are still gaps in studies using liposomal formulations as delivery vehicles of antibacterial peptides against this pathogen. This study was designed to examine the influence of the different types of liposomal formulations to associate and deliver LL17-32 to act against P. gingivalis. Chitosans of varying Mw and degree of acetylation (DA) were adsorbed at the surface of soya lecithin (SL) liposomes. Their bulk (average hydrodynamic size, ζ-potential and membrane fluidity) and ultrastructural (d-spacing, half-bilayer thickness and the water layer thickness) biophysical properties were investigated by a panel of techniques (DLS, SAXS, M3-PALS, fluorescence spectroscopy and TEM imaging). Their association efficiency, in vitro release, stability, and efficacy in killing the periodontal pathogen P. gingivalis were also investigated. All liposomal systems possessed spherical morphologies and good shelf-life stabilities. Under physiological conditions, chitosan formulations with a high DA demonstrated enhanced stability in comparison to low DA-chitosan formulations. Chitosans and LL17-32 both decreased SL-liposomal membrane fluidity. LL17-32 exhibited a high degree of association with SL-liposomes without in vitro release. In biological studies, free LL17-32 or chitosans alone, demonstrated microbicidal activity against P. gingivalis, however this was attenuated when LL17-32 was loaded onto the SL-liposome delivery system, presumably due to the restrained release of the peptide. A property that could be harnessed in future studies (e.g., oral mucoadhesive slow-release formulations).
Collapse
Affiliation(s)
- Jinyang Han
- School of Food Science and Nutrition, University of Leeds, Woodhouse Ln, Leeds, LS2 9JT, United Kingdom
| | - Josephine Meade
- School of Dentistry, University of Leeds, Woodhouse Ln, Leeds, LS2 9JT, United Kingdom
| | - Deirdre Devine
- School of Dentistry, University of Leeds, Woodhouse Ln, Leeds, LS2 9JT, United Kingdom
| | - Amin Sadeghpour
- School of Food Science and Nutrition, University of Leeds, Woodhouse Ln, Leeds, LS2 9JT, United Kingdom
| | - Michael Rappolt
- School of Food Science and Nutrition, University of Leeds, Woodhouse Ln, Leeds, LS2 9JT, United Kingdom
| | - Francisco M Goycoolea
- School of Food Science and Nutrition, University of Leeds, Woodhouse Ln, Leeds, LS2 9JT, United Kingdom
- Department of Cell Biology and Histology, University of Murcia, Campus de Espinardo, Murcia, 30100, Spain
| |
Collapse
|
5
|
Sun Y, Shen X, Yang J, Tan C. Hyaluronic Acid-Coated Nanoliposomes as Delivery Systems for Fisetin: Stability, Membrane Fluidity, and Bioavailability. Foods 2024; 13:2406. [PMID: 39123596 PMCID: PMC11311619 DOI: 10.3390/foods13152406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/22/2024] [Accepted: 06/25/2024] [Indexed: 08/12/2024] Open
Abstract
Fisetin has shown numerous health benefits, whereas its food application is constrained by water insolubility, poor stability, and low bioaccessibility. This work investigated the potential of hyaluronic acid (HA)-coated nanoliposomes for the encapsulation and delivery of fisetin. It was observed that HA can adsorb onto the liposomal membrane through hydrogen bonding and maintain the spherical shape of nanoliposomes. Fluorescence analysis suggested that the HA coating restricted the motion and freedom of phospholipid molecules in the headgroup region and reduced the interior micropolarity of the nanoliposomes but did not affect the fluidity of the hydrophobic core. These effects were more pronounced for the HA with a low molecular weight (35 kDa) and moderate concentration (0.4%). The HA coating improved the storage and thermal stability of the nanoliposomes, as well as the digestive stability and bioaccessibility of the encapsulated fisetin. These findings could guide the development of HA-coated nanoliposomes for the controlled delivery of hydrophobic bioactives such as fisetin in functional foods.
Collapse
Affiliation(s)
| | | | | | - Chen Tan
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, China-Canada Joint Lab of Food Nutrition and Health (Beijing), School of Food and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China; (Y.S.); (X.S.); (J.Y.)
| |
Collapse
|
6
|
Ren K, Cao X, Zheng L, Liu S, Li L, Cheng L, Tian T, Tong X, Wang H, Jiang L. Liposomes decorated with β-conglycinin and glycinin: Construction, structure and in vitro digestive stability. Int J Biol Macromol 2024; 269:131900. [PMID: 38677675 DOI: 10.1016/j.ijbiomac.2024.131900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 04/23/2024] [Accepted: 04/24/2024] [Indexed: 04/29/2024]
Abstract
Liposomes were modified with different proportions of β-conglycinin (7S) and glycinin (11S) to form Lip-7S and Lip-11S. The morphology, interaction and in vitro simulated digestion of liposomes were studied. The particle size of Lip-7S was smaller than that of Lip-11S. When the values of Lip-7S and Lip-11S were 1:1 and 1:0.75, respectively, the ζ-potential had the maximum absolute value and the dispersion of the system was good. The results of multispectral analysis showed that hydrogen-bond and hydrophobic interaction dominated protein-modified liposomes, the protein structure adsorbed on the surface of liposomes changed, the content of α-helix decreased, and the structure of protein-modified liposomes became denser. The surface hydrophobicity and micropolarity of liposomes decreased with the increase of protein ratio, and tended to be stable after Lip-7S (1:1) and Lip-11S (1:0.75). Differential scanning calorimetry showed that Lip-7S had higher phase transition temperature (≥170.5 °C) and better rigid structure. During simulated digestion, Lip-7S (22.5 %) released less Morin than Lip (40.6 %) and Lip-11S (26.2 %), and effectively delayed the release of FFAs. The environmental stability of liposomes was effectively improved by protein modification, and 7S had better modification effect than 11S. This provides a theoretical basis for 7S and 11S modified liposomes, and also provides a data reference for searching for new materials for stabilization of liposomes.
Collapse
Affiliation(s)
- Kunyu Ren
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Xinru Cao
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Lexi Zheng
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Shi Liu
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Lanxin Li
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Lin Cheng
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Tian Tian
- College of Food Science and Engineering, Hainan University, Haikou, Hainan 570228, China
| | - Xiaohong Tong
- College of Agricultural, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| | - Huan Wang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| | - Lianzhou Jiang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| |
Collapse
|
7
|
Dong Y, Wu T, Jiang T, Zhu W, Chen L, Cao Y, Xiao Y, Peng Y, Wang L, Yu X, Zhong T. Chitosan-coated liposome with lysozyme-responsive properties for on-demand release of levofloxacin. Int J Biol Macromol 2024; 269:132271. [PMID: 38734330 DOI: 10.1016/j.ijbiomac.2024.132271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 02/09/2024] [Accepted: 05/08/2024] [Indexed: 05/13/2024]
Abstract
As an anti-infection antibiotic delivery route, a drug-controlled release system based on a specific condition stimulus response can enhance drug stability and bioavailability, reduce antibiotic resistance, achieve on-demand release and improve targeting and utilization efficiency. In this study, chitosan-coated liposomes containing levofloxacin (Lef@Lip@CS) were prepared with lysozyme in body fluids serving as an intelligent "switch" to enable accurate delivery of antibiotics through the catalytic degradation ability of chitosan. Good liposome encapsulation efficacy (64.89 ± 1.86 %) and loading capacity (5.28 ± 0.18 %) were achieved. The controlled-release behavior and morphological characterization before and after enzymatic hydrolysis confirmed that the levofloxacin release rate depended on the lysozyme concentration and the degrees of deacetylation of chitosan. In vitro bacteriostatic experiments showed significant differences in the effects of Lef@Lip@CS before and after enzyme addition, with 6-h inhibition rate of 72.46 % and 100 %, and biofilm removal rates of 51 % and 71 %, respectively. These findings show that chitosan-coated liposomes are a feasible drug delivery system responsive to lysozyme stimulation.
Collapse
Affiliation(s)
- Yuhe Dong
- School of Pharmacy, Faculty of Medicine, Macau University of Science and Technology, Macau
| | - Tong Wu
- Faculty of Chinese Medicine, Macau University of Science and Technology, Macau
| | - Tao Jiang
- School of Pharmacy, Faculty of Medicine, Macau University of Science and Technology, Macau
| | - Wanying Zhu
- Faculty of Chinese Medicine, Macau University of Science and Technology, Macau
| | - Linyan Chen
- Faculty of Medicine, Macau University of Science and Technology, Macau
| | - Yuantong Cao
- Faculty of Medicine, Macau University of Science and Technology, Macau
| | - Ying Xiao
- Faculty of Medicine, Macau University of Science and Technology, Macau
| | - Ye Peng
- Faculty of Medicine, Macau University of Science and Technology, Macau
| | - Ling Wang
- Faculty of Medicine, Macau University of Science and Technology, Macau
| | - Xi Yu
- Faculty of Medicine, Macau University of Science and Technology, Macau.
| | - Tian Zhong
- Faculty of Medicine, Macau University of Science and Technology, Macau.
| |
Collapse
|
8
|
Sun L, Wang H, Du J, Wang T, Yu D. Ultrasonic-assisted extraction of grape seed procyanidins, preparation of liposomes, and evaluation of their antioxidant capacity. ULTRASONICS SONOCHEMISTRY 2024; 105:106856. [PMID: 38554530 PMCID: PMC10995857 DOI: 10.1016/j.ultsonch.2024.106856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 03/18/2024] [Accepted: 03/23/2024] [Indexed: 04/01/2024]
Abstract
The residue remaining after oil extraction from grape seed contain abundant procyanidins. An ultrasonic-assisted enzyme method was performed to achieve a high extraction efficiency of procyanidins when the optimal extraction conditions were 8 U/g of cellulase, ultrasound power of 200 W, ultrasonic temperature of 50 ℃, and ultrasonic reaction time of 40 min. The effects of free procyanidins on both radical scavenging activity and thermal stability at 40, 60, and 80 ℃ of the procyanidins-loaded liposomal systems prepared by the ultrasonic-assisted method were discussed. The presence of procyanidins at concentrations ranging from 0.02 to 0.10 mg/mL was observed to be effective at inhibiting lipid oxidation by 15.15 % to 69.70 % in a linoleic acid model system during reaction for 168 h, as measured using the ferric thiocyanate method. The procyanidins-loaded liposomal systems prepared by the ultrasonic-assisted method were characterized by measuring the mean particle size and encapsulation efficiency. Moreover, the holographic plots showed that the effect-response points of procyanidins combined with α-tocopherol in liposomes were lower than the addition line and 95 % confidence interval limits. At the same time, there were significant differences between the theoretical IC50add value and the experimental IC50mix value. The interaction index (γ) of all combinations was observed to be less than 1. These results indicated that there was a synergistic antioxidant effect between procyanidins combined with α-tocopherol, which will show promising prospects in practical applications. In addition, particle size differentiation and morphology agglomeration were observed at different time points of antioxidant activity determination (0, 48, 96 h).
Collapse
Affiliation(s)
- Libin Sun
- School of Food Science, Northeast Agricultural University, Harbin 150030, China; School of Grain Science and Technology, Jilin Business And Technology College, Changchun 130507, China
| | - Hong Wang
- School of Grain Science and Technology, Jilin Business And Technology College, Changchun 130507, China
| | - Jing Du
- School of Food Science, Northeast Agricultural University, Harbin 150030, China.
| | - Tong Wang
- School of Food Science, Northeast Agricultural University, Harbin 150030, China.
| | - Dianyu Yu
- School of Food Science, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
9
|
Forte J, Hanieh PN, Poerio N, Olimpieri T, Ammendolia MG, Fraziano M, Fabiano MG, Marianecci C, Carafa M, Bordi F, Sennato S, Rinaldi F. Mucoadhesive Rifampicin-Liposomes for the Treatment of Pulmonary Infection by Mycobacterium abscessus: Chitosan or ε-Poly-L-Lysine Decoration. Biomolecules 2023; 13:924. [PMID: 37371504 PMCID: PMC10296137 DOI: 10.3390/biom13060924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/26/2023] [Accepted: 05/29/2023] [Indexed: 06/29/2023] Open
Abstract
Mycobacterium abscessus (Mabs) is a dangerous non-tubercular mycobacterium responsible for severe pulmonary infections in immunologically vulnerable patients, due to its wide resistance to many different antibiotics which make its therapeutic management extremely difficult. Drug nanocarriers as liposomes may represent a promising delivery strategy against pulmonary Mabs infection, due to the possibility to be aerosolically administrated and to tune their properties in order to increase nebulization resistance and retainment of encapsulated drug. In fact, liposome surface can be modified by decoration with mucoadhesive polymers to enhance its stability, mucus penetration and prolong its residence time in the lung. The aim of this work is to employ Chitosan or ε-poly-L-lysine decoration for improving the properties of a novel liposomes composed by hydrogenated phosphatidyl-choline from soybean (HSPC) and anionic 1,2-Dipalmitoyl-sn-glycero-3-phosphorylglycerol sodium salt (DPPG) able to entrap Rifampicin. A deep physicochemical characterization of polymer-decorated liposomes shows that both polymers improve mucoadhesion without affecting liposome features and Rifampicin entrapment efficiency. Therapeutic activity on Mabs-infected macrophages demonstrates an effective antibacterial effect of ε-poly-L-lysine liposomes with respect to chitosan-decorated ones. Altogether, these results suggest a possible use of ε-PLL liposomes to improve antibiotic delivery in the lung.
Collapse
Affiliation(s)
- Jacopo Forte
- Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza Università di Roma, Piazzale Aldo Moro 5, 00185 Rome, Italy; (J.F.); (P.N.H.); (M.G.F.); (C.M.); (M.C.); (F.R.)
| | - Patrizia Nadia Hanieh
- Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza Università di Roma, Piazzale Aldo Moro 5, 00185 Rome, Italy; (J.F.); (P.N.H.); (M.G.F.); (C.M.); (M.C.); (F.R.)
| | - Noemi Poerio
- Dipartimento di Biologia Università di Roma “Tor Vergata”, Via della Ricerca Scientifica, 00133 Rome, Italy; (N.P.); (T.O.); (M.F.)
| | - Tommaso Olimpieri
- Dipartimento di Biologia Università di Roma “Tor Vergata”, Via della Ricerca Scientifica, 00133 Rome, Italy; (N.P.); (T.O.); (M.F.)
| | - Maria Grazia Ammendolia
- Centro Nazionale Tecnologie Innovative in Sanità Pubblica, Istituto Superiore di Sanità, Viale Regina Elena, 299, 00161 Rome, Italy;
| | - Maurizio Fraziano
- Dipartimento di Biologia Università di Roma “Tor Vergata”, Via della Ricerca Scientifica, 00133 Rome, Italy; (N.P.); (T.O.); (M.F.)
| | - Maria Gioia Fabiano
- Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza Università di Roma, Piazzale Aldo Moro 5, 00185 Rome, Italy; (J.F.); (P.N.H.); (M.G.F.); (C.M.); (M.C.); (F.R.)
| | - Carlotta Marianecci
- Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza Università di Roma, Piazzale Aldo Moro 5, 00185 Rome, Italy; (J.F.); (P.N.H.); (M.G.F.); (C.M.); (M.C.); (F.R.)
| | - Maria Carafa
- Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza Università di Roma, Piazzale Aldo Moro 5, 00185 Rome, Italy; (J.F.); (P.N.H.); (M.G.F.); (C.M.); (M.C.); (F.R.)
| | - Federico Bordi
- Istituto dei Sistemi Complessi (ISC)-CNR, sede “Sapienza” and Dipartimento di Fisica, Sapienza Università di Roma, 00185 Rome, Italy;
| | - Simona Sennato
- Istituto dei Sistemi Complessi (ISC)-CNR, sede “Sapienza” and Dipartimento di Fisica, Sapienza Università di Roma, 00185 Rome, Italy;
| | - Federica Rinaldi
- Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza Università di Roma, Piazzale Aldo Moro 5, 00185 Rome, Italy; (J.F.); (P.N.H.); (M.G.F.); (C.M.); (M.C.); (F.R.)
| |
Collapse
|
10
|
Cong L, Wang J, Lu H, Tian M, Ying R, Huang M. Influence of different anionic polysaccharide coating on the properties and delivery performance of nanoliposomes for quercetin. Food Chem 2023; 409:135270. [PMID: 36580701 DOI: 10.1016/j.foodchem.2022.135270] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 12/04/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022]
Abstract
Nanoliposome is an effective delivery system for polyphenols, whereas it always suffers from low electrostatic stability and oxidation of lipid membranes. Here, different charged anionic polysaccharides including carrageenan (-62.67 ± 1.85 mV), trehalose (-20.73 ± 1.42 mV), and pectin (-4.47 ± 0.38 mV) were used as coating material to improve the stability of nanoliposomes. Results showed that carrageenan coating greatly inhibited aggregation and fusion of nanoliposome. The coating of the higher charged polysaccharides produced the more hydrogen bonds and made the inner chains of lipid molecules more compact, thus improving the rigidity of the membrane and thermal stability. In addition, the polysaccharide coating effectively reduced the lateral diffusion within the membrane and the propagation rate of oxidation reaction. The aim of this study is to investigate the effect of anionic polysaccharides with different charges on coated nanoliposomes, provide reference for the delivery of quercetin.
Collapse
Affiliation(s)
- Lixia Cong
- Department of Food Science and Technology, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Jin Wang
- Department of Food Science and Technology, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Hui Lu
- Department of Food Science and Technology, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Mengwei Tian
- Department of Food Science and Technology, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Ruifeng Ying
- Department of Food Science and Technology, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Meigui Huang
- Department of Food Science and Technology, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
11
|
Peng P, Chen Z, Wang M, Wen B, Deng X. Polysaccharide-modified liposomes and their application in cancer research. Chem Biol Drug Des 2023; 101:998-1011. [PMID: 36597375 DOI: 10.1111/cbdd.14201] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 11/25/2022] [Accepted: 12/12/2022] [Indexed: 01/05/2023]
Abstract
Nanodrug delivery systems have been widely used in cancer treatment. Among these, liposomal drug carriers have gained considerable attention due to their biocompatibility, biodegradability, and low toxicity. However, conventional liposomes have several shortcomings, such as poor stability, rapid clearance, aggregation, fusion, degradation, hydrolysis, and oxidation of phospholipids. Polysaccharides are natural polymers of biological origin that exhibit structural stability, excellent biocompatibility and biodegradability, flexibility, non-immunogenicity, low toxicity, and targetability. Therefore, they represent a promising class of polymers for the modification of the surface properties of liposomes to overcome their shortcomings. In addition, polysaccharides can be readily combined with other materials to develop new composite materials. Hence, they represent the optimal choice for liposomal modification to improve pharmacokinetics and clinical utility. Polysaccharide-coated liposomes exhibit better stability, drug release kinetics, and cellular uptake than conventional liposomes. The oncologic application of polysaccharide-coated liposomes has become a research hotspot. We summarize the preparation, physicochemical properties, and antineoplastic effects of polysaccharide-coated liposomes to facilitate antitumor drug development.
Collapse
Affiliation(s)
- Peichun Peng
- International Zhuang Medical Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, China
| | - Zeshan Chen
- Department of Traditional Chinese Medicine, Guangxi Academy of Medical Sciences, Nanning, China
| | - Miaodong Wang
- Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, China
| | - Bin Wen
- Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, China
| | - Xin Deng
- Department of Basic Medical Science College, Guangxi University of Chinese Medicine, Nanning, China
| |
Collapse
|
12
|
Song F, Chen J, Zhang Z, Tian S. Preparation, characterization, and evaluation of flaxseed oil liposomes coated with chitosan and pea protein isolate hydrolysates. Food Chem 2023; 404:134547. [PMID: 36240554 DOI: 10.1016/j.foodchem.2022.134547] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 09/05/2022] [Accepted: 10/05/2022] [Indexed: 11/06/2022]
Abstract
The effect of layer-by-layer coating of liposomes with chitosan and pea protein isolate hydrolysates (PPIH) was evaluated. Traditional flaxseed oil liposomes (FL Lipo) were used as a model for comparison to liposomes coated with chitosan and PPIH (FL LipoCP). The potential of PPIH as a coating material was evaluated. Additionally, the influence of chitosan and PPIH on vesicle size and zeta potential of liposomes was investigated. The chitosan layer of liposomes exhibited a loose structure. After the second layer of coating with PPIH, chitosan molecules were rearranged on the liposome surface, leading to a more compact and dense shell structure of liposomes. Electrostatic interactions, hydrogen bonds, and hydrophobic interactions favored the stability of FL LipoCP. Compared to FL Lipo, FL LipoCP displayed higher oxidation stability during storage and a slower release of flaxseed oil during in vitro digestion.
Collapse
Affiliation(s)
- Fanfan Song
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Jie Chen
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China; Henan Province Wheat-flour Staple Food Engineering Technology Research Centre, China
| | - Zhengquan Zhang
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Shaojun Tian
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China.
| |
Collapse
|
13
|
Zarif B, Shabbir S, Rahman A, Sherazi TA, Shahid R, Noor T, Imran M. Milk phospholipids and buttermilk based composite nanosystems for enhanced stability and bioaccessibility of β-carotene. Int Dairy J 2023. [DOI: 10.1016/j.idairyj.2023.105668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
14
|
Recent advances in emerging pectin-derived nanocarriers for controlled delivery of bioactive compounds. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2023.108682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/15/2023]
|
15
|
Chitosan/bacterial cellulose films incorporated with tea polyphenol nanoliposomes for silver carp preservation. Carbohydr Polym 2022; 297:120048. [DOI: 10.1016/j.carbpol.2022.120048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/05/2022] [Accepted: 08/25/2022] [Indexed: 12/25/2022]
|
16
|
Li R, Pu C, Sun Y, Sun Q, Tang W. Interaction between soybean oleosome-associated proteins and phospholipid bilayer and its influence on environmental stability of luteolin-loaded liposomes. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107721] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
17
|
Cordelier S, Crouzet J, Gilliard G, Dorey S, Deleu M, Dhondt-Cordelier S. Deciphering the role of plant plasma membrane lipids in response to invasion patterns: how could biology and biophysics help? JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:2765-2784. [PMID: 35560208 DOI: 10.1093/jxb/erab517] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 11/25/2021] [Indexed: 06/15/2023]
Abstract
Plants have to constantly face pathogen attacks. To cope with diseases, they have to detect the invading pathogen as early as possible via the sensing of conserved motifs called invasion patterns. The first step of perception occurs at the plasma membrane. While many invasion patterns are perceived by specific proteinaceous immune receptors, several studies have highlighted the influence of the lipid composition and dynamics of the plasma membrane in the sensing of invasion patterns. In this review, we summarize current knowledge on how some microbial invasion patterns could interact with the lipids of the plasma membrane, leading to a plant immune response. Depending on the invasion pattern, different mechanisms are involved. This review outlines the potential of combining biological with biophysical approaches to decipher how plasma membrane lipids are involved in the perception of microbial invasion patterns.
Collapse
Affiliation(s)
- Sylvain Cordelier
- Université de Reims Champagne Ardenne, RIBP EA 4707, USC INRAE 1488, SFR Condorcet FR CNRS 3417, 51100 Reims, France
| | - Jérôme Crouzet
- Université de Reims Champagne Ardenne, RIBP EA 4707, USC INRAE 1488, SFR Condorcet FR CNRS 3417, 51100 Reims, France
| | - Guillaume Gilliard
- Laboratoire de Biophysique Moléculaire aux Interfaces, SFR Condorcet FR CNRS 3417, TERRA Research Center, Gembloux Agro-Bio Tech, Université de Liège, 2 Passage des Déportés, B-5030 Gembloux, Belgium
| | - Stéphan Dorey
- Université de Reims Champagne Ardenne, RIBP EA 4707, USC INRAE 1488, SFR Condorcet FR CNRS 3417, 51100 Reims, France
| | - Magali Deleu
- Laboratoire de Biophysique Moléculaire aux Interfaces, SFR Condorcet FR CNRS 3417, TERRA Research Center, Gembloux Agro-Bio Tech, Université de Liège, 2 Passage des Déportés, B-5030 Gembloux, Belgium
| | - Sandrine Dhondt-Cordelier
- Université de Reims Champagne Ardenne, RIBP EA 4707, USC INRAE 1488, SFR Condorcet FR CNRS 3417, 51100 Reims, France
| |
Collapse
|
18
|
Fathi M, Emam-Djomeh Z, Aliabbasi N. Developing two new types of nanostructured vehicles to improve biological activity and functionality of curcumin. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.101386] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
19
|
Salarbashi D, Tafaghodi M, Fathi M, aboutorabzade SM, Sabbagh F. Development of curcumin-loaded Prunus armeniaca gum nanoparticles: Synthesis, characterization, control release behavior, and evaluation of anticancer and antimicrobial properties. Food Sci Nutr 2021; 9:6109-6119. [PMID: 34760242 PMCID: PMC8565235 DOI: 10.1002/fsn3.2562] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 07/23/2021] [Accepted: 08/09/2021] [Indexed: 12/21/2022] Open
Abstract
The present work was conducted to develop a new polysaccharide-based encapsulation system via electrostatic interactions between Prunus armeniaca gum exudates (PAGE) and Ca2+ ions to enhance the biological activity and bioavailability of curcumin. The effects of different levels of pH (6, 7, and 8) and ion concentrations (1, 3, and 5) on the particle diameter and surface charge of the samples were examined. The encapsulation efficiency in the PAGE-based nanoparticles was realized to be 86.1%, indicating the encapsulation technique applied in this study was effective to entrap most of the curcumin within the PAGE matrix. The nanoparticles showed a smooth surface with spherical shape. Fourier transform infrared spectroscopy (FT-IR) and X-ray diffraction (X-ray) studies confirmed the formation of polyelectrolyte complexation. The cumulative release of curcumin in simulated gastrointestinal tract was less than 75%, revealing a gradual release trend. Both pure curcumin and curcumin-loaded nanoparticles were toxic to the cancer cell lines.
Collapse
Affiliation(s)
- Davoud Salarbashi
- Nanomedicine Research CenterSchool of MedicineGonabad University of Medical SciencesGonabadIran
- Department of food science and nutritionSchool of MedicineGonabad University of Medical SciencesGonabadIran
| | - Mohsen Tafaghodi
- Nanotechnology Research CenterPharmaceutical Technology InstituteMashhad University of Medical SciencesMashhadIran
- Pharmaceutics DepartmentSchool of PharmacyMashhad University of Medical SciencesMashhadIran
| | - Morteza Fathi
- Health Research CenterLife Style InstituteBaqiyatallah University of Medical SciencesTehranIran
| | | | - Farzaneh Sabbagh
- Department of Chemical EngineeringChungbuk National UniversityCheongjuKorea
| |
Collapse
|
20
|
Bockuviene A, Zalneravicius R, Sereikaite J. Preparation, characterization and stability investigation of lycopene-chitooligosaccharides complexes. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2020.100854] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
21
|
Tan C, Wang J, Sun B. Polysaccharide dual coating of yeast capsules for stabilization of anthocyanins. Food Chem 2021; 357:129652. [PMID: 33865001 DOI: 10.1016/j.foodchem.2021.129652] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 02/05/2021] [Accepted: 03/16/2021] [Indexed: 02/07/2023]
Abstract
The dual coated yeast capsules for anthocyanin encapsulation and stabilization were fabricated. Anthocyanins were preloaded in hollow yeast capsules, and then the dual coating was performed by deposition of opposite charged polysaccharides using layer-by-layer technique. The combination of positively charged chitosan and negatively charged chondroitin sulfate was found to confer the yeast capsules with the highest encapsulation efficiency and retention rate of anthocyanins. Additionally, the coated yeast capsules featured high tolerance to environmental stresses (i.e., oxygen, ascorbic acid, and heat) and therefore effectively inhibited the degradation of anthocyanins. These stabilizing effects were related to the formation of high penetration barrier provided by the double layers of polysaccharides, as well as the enhanced hydrophobic microenvironment in the capsules. Further development of the polysaccharide-coated yeast capsules may hold promise for the controlled delivery of other water-soluble bioactive components.
Collapse
Affiliation(s)
- Chen Tan
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Technology and Business University (BTBU), Beijing 100048, China; School of Food and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Jing Wang
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Technology and Business University (BTBU), Beijing 100048, China; School of Food and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China.
| | - Baoguo Sun
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology & Business University (BTBU), Beijing 100048, China
| |
Collapse
|
22
|
Tan C, Wang J, Sun B. Biopolymer-liposome hybrid systems for controlled delivery of bioactive compounds: Recent advances. Biotechnol Adv 2021; 48:107727. [PMID: 33677025 DOI: 10.1016/j.biotechadv.2021.107727] [Citation(s) in RCA: 110] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 02/04/2021] [Accepted: 02/27/2021] [Indexed: 12/16/2022]
Abstract
Conventional liposomes still face many challenges associated with the poor physical and chemical stability, considerable loss of encapsulated cargo, lack of stimulus responsiveness, and rapid elimination from blood circulation. Integration of versatile functional biopolymers has emerged as an attractive strategy to overcome the limitation of usage of liposomes. This review comprehensively summarizes the most recent studies (2015-2020) and their challenges aiming at the exploration of biopolymer-liposome hybrid systems, including surface-modified liposomes, biopolymer-incorporated liposomes, guest-in-cyclodextrin-in-liposome, liposome-in-hydrogel, liposome-in-film, and liposome-in-nanofiber. The physicochemical principles and key technical information underlying the combined strategies for the fabrication of polymeric liposomes, the advantages and limitations of each of the systems, and the stabilization mechanisms are discussed through various case studies. Special emphasis is directed toward the synergistic efficiencies of biopolymers and phospholipid bilayers on encapsulation, protection, and controlled delivery of bioactives (e.g., vitamins, carotenoids, phenolics, peptides, and other health-related compounds) for the biomedical, pharmaceutical, cosmetic, and functional food applications. The major challenges, opportunities, and possible further developments for future studies are also highlighted.
Collapse
Affiliation(s)
- Chen Tan
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Technology and Business University (BTBU), Beijing 100048, China; School of Food and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Jing Wang
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Beijing Technology and Business University (BTBU), Beijing 100048, China; School of Food and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China.
| | - Baoguo Sun
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology & Business University (BTBU), Beijing 100048, China
| |
Collapse
|
23
|
The stabilization and antioxidant performances of coenzyme Q10-loaded niosomes coated by PEG and chitosan. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2020.115194] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
24
|
Engineered liposomes targeting the gut-CNS Axis for comprehensive therapy of spinal cord injury. J Control Release 2021; 331:390-403. [PMID: 33485884 DOI: 10.1016/j.jconrel.2021.01.032] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 12/17/2020] [Accepted: 01/19/2021] [Indexed: 02/08/2023]
Abstract
Effective curative therapies for spinal cord injury (SCI), which is often accompanied by intestinal complications, are lacking. Potential therapeutic targets include astrocytes and their enteric nervous system counterpart, enteric glial cells (EGCs). Based on shared biomarkers and similar functions of both cell types, we designed an orally administered targeted delivery system in which the neuropeptide apamin, stabilized by sulfur replacement with selenium, was adopted as a targeting moiety, and the liposome surface was protected with a non-covalent cross-linked chitosan oligosaccharide lactate layer. The system effectively permeated through oral absorption barriers, targeted local EGCs and astrocytes after systemic circulation, allowing for comprehensive SCI therapy. Given the involvement of the gut-organ axis in a growing number of diseases, our research may shed light on new aspects of the oral administration route as a bypass for multiple interventions and targeted therapy.
Collapse
|
25
|
Chitosan decoration improves the rapid and long-term antibacterial activities of cinnamaldehyde-loaded liposomes. Int J Biol Macromol 2020; 168:59-66. [PMID: 33279567 DOI: 10.1016/j.ijbiomac.2020.12.003] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 11/21/2020] [Accepted: 12/01/2020] [Indexed: 12/16/2022]
Abstract
In this work, cinnamaldehyde-loaded liposomes decorated with different concentrations of chitosan (0, 0.25, 0.5, 1, 2, 3, and 4 mg/mL) were prepared and their physical and antibacterial properties were evaluated. The results showed that the physical decoration of chitosan improved the encapsulation efficiency and storage stability of the liposomes. Liposomes decorated with chitosan at the concentration of 0.25 to 4 mg/mL were able to achieve an obvious antibacterial efficiency against Staphylococcus aureus after only 10 min of incubation. The antibacterial efficiency of chitosan-decorated liposomes was still higher than 90% after being stored for 28 d when the chitosan concentration was greater than 1 mg/mL. Besides, increasing the chitosan concentration significantly decreased the minimum inhibitory concentration of the liposomes. The comparison of the antibacterial activities and mechanisms of cinnamaldehyde-loaded liposomes decorated with chitosan at a concentration of 4 mg/mL (CH-CL), cinnamaldehyde-loaded liposomes (CL), cinnamaldehyde, and chitosan revealed that chitosan and cinnamaldehyde exerted a cumulative and synergistic bacteriostatic effect in the liposomes. This led to damage to the cell membrane integrity, causing cell death by inducing leakage of intracellular components. These results can potentially provide guidance for the preparation and application of natural preservatives with rapid and long-term bacteriostatic effects.
Collapse
|
26
|
James HP, Jadhav S. Mechanical and transport properties of chitosan-zwitterionic phospholipid vesicles. Colloids Surf B Biointerfaces 2020; 188:110782. [DOI: 10.1016/j.colsurfb.2020.110782] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Revised: 12/19/2019] [Accepted: 01/07/2020] [Indexed: 10/25/2022]
|
27
|
Tai K, Rappolt M, Mao L, Gao Y, Li X, Yuan F. The stabilization and release performances of curcumin-loaded liposomes coated by high and low molecular weight chitosan. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2019.105355] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
28
|
Dalmoro A, Bochicchio S, Lamberti G, Bertoncin P, Janssens B, Barba AA. Micronutrients encapsulation in enhanced nanoliposomal carriers by a novel preparative technology. RSC Adv 2019; 9:19800-19812. [PMID: 35519406 PMCID: PMC9065329 DOI: 10.1039/c9ra03022k] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 06/14/2019] [Indexed: 12/20/2022] Open
Abstract
Micronutrients administration by fortification of staple and complementary foods is a followed strategy to fight malnutrition and micronutrient deficiencies and related pathologies. There is a great industrial interest in preparation of formulations for joint administration of vitamin D3 and vitamin K2 for providing bone support, promoting heart health and helping boost immunity. To respond to this topic, in this work, uncoated nanoliposomes loaded with vitamin D3 and K2 were successfully prepared, by using a novel, high-yield and semi continuous technique based on simil-microfluidic principles. By the same technique, to promote and to enhance mucoadhesiveness and stability of the produced liposomal structures, chitosan was tested as covering material. By this way polymer–lipid hybrid nanoparticles, encapsulating vitamin D3 and vitamin K2, with improved features in terms of stability, loading and mucoadhesiveness were produced for potential nutraceutical and pharmaceutical applications. Micronutrients administration by liposomal vectors is a growing strategy in fortification processes of staple and complementary foods to fight malnutrition and micronutrient deficiencies and related pathologies.![]()
Collapse
Affiliation(s)
- Annalisa Dalmoro
- Eng4Life Srl
- Spin-off Accademico
- Italy
- Dipartimento di Farmacia
- Università degli Studi di Salerno
| | | | - Gaetano Lamberti
- Eng4Life Srl
- Spin-off Accademico
- Italy
- Dipartimento di Ingegneria Industriale
- Università degli Studi di Salerno
| | - Paolo Bertoncin
- Dipartimento di Scienze della Vita – Centro Microscopia Elettronica
- Università degli Studi di Trieste
- 34127 Trieste
- Italy
| | | | - Anna Angela Barba
- Eng4Life Srl
- Spin-off Accademico
- Italy
- Dipartimento di Farmacia
- Università degli Studi di Salerno
| |
Collapse
|
29
|
Chen L, Liang R, Wang Y, Yokoyama W, Chen M, Zhong F. Characterizations on the Stability and Release Properties of β-ionone Loaded Thermosensitive Liposomes (TSLs). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:8336-8345. [PMID: 29847116 DOI: 10.1021/acs.jafc.7b06130] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Liposomes with phase transition temperatures, Tm, near pathogenic site temperature are potential chemoprophylactic delivery vehicles. We prepared and characterized the thermal properties of liposomes composed of 1,2-dipalmitoyl- sn-glycero-3-phosphocholine (DPPC) and hydrogenated soy phosphatidylcholine (HSPC) incorporating β-ionone with Tm at 42 °C. Liposomes with β-ionone/lipid ratio (w/w) of 1:20 and 1:8 had the necessary stability and released most of the β-ionone. The molecular architecture surrounding Tm was studied by fluorescent probes, Raman spectroscopy, and differential scanning calorimeter (DSC). β-Ionone was found to be preferentially located in the deep regions of the lipid bilayer (toward the long chain alkyl of the lipid) at moderate loading. The results showed that β-ionone encapsulated liposomes have a superior release at higher loading amount. Increasing β-ionone leads to disorder in the liquid crystalline state and accelerates the release rate. These studies provide information on the membrane structural properties of β-ionone loaded liposomes that guide rational bioactive molecular delivery systems design for health products.
Collapse
Affiliation(s)
- Ling Chen
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education , Jiangnan University , Wuxi 214122 , P.R. China
- School of Food Science and Technology , Jiangnan University , Wuxi 214122 , P.R. China
| | - Rong Liang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering , Jiangnan University , Wuxi 214122 , P.R. China
| | - Yihan Wang
- Zhejiang Institute for Food and Drug Control , Zhejiang 310000 , P.R. China
| | - Wallace Yokoyama
- Western Regional Research Center, ARS , USDA , Albany , California 94710 , United States
| | - Maoshen Chen
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education , Jiangnan University , Wuxi 214122 , P.R. China
- School of Food Science and Technology , Jiangnan University , Wuxi 214122 , P.R. China
| | - Fang Zhong
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education , Jiangnan University , Wuxi 214122 , P.R. China
- School of Food Science and Technology , Jiangnan University , Wuxi 214122 , P.R. China
| |
Collapse
|
30
|
Pu C, Tang W. The antibacterial and antibiofilm efficacies of a liposomal peptide originating from rice bran protein against Listeria monocytogenes. Food Funct 2018; 8:4159-4169. [PMID: 29022979 DOI: 10.1039/c7fo00994a] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
With the aim of exploring a natural antilisterial peptide from food-derived origin, an antibacterial peptide named as Alpep7 was purified from the bromelain hydrolysate of rice bran protein (RBP) in this study. The resulting amino acid consequence was identified as KVDHFPL (Lys-Val-Asp-His-Phe-Pro-Leu) by ultraperformance liquid chromatography tandem matrix-assisted laser desorption/ionisation quadrupole time-of-flight mass spectrometry (MALDI Q-TOF MS). In addition, to assess the probability of the targeted delivery of liposome encapsulation of the peptide to Listeria biofilm, Alpep7-loaded liposomes were further prepared from a mixture of dipalmitoylphosphatidylcholine, stearylamine and cholesterol in a molar ratio of 10 : 3 : 2 and characterised by the analysis of particle size, zeta potential, microtopography and storage stability. The results showed that the liposomes exhibited a well-defined spherical shape, with an average diameter below 200 nm. The liposomes maintained favourable stability after storage at 4 °C for 4 weeks. Comparisons between the activities of free and liposomal Alpep7 via microbroth dilution, regrowth analysis and confocal scanning laser microscopy suggested that liposomal delivery was more effective during the initial exposure of the liposomes to the biofilms. The thermodynamic analysis indicated that the adsorption of liposomal Alpep7 to the listerial biofilm was a spontaneous, exothermic process. The results may provide a natural means for the treatment of listerial contamination and guide the potential application of liposomes for the targeted delivery of antimicrobials to pathogenic biofilms in the food industry.
Collapse
Affiliation(s)
- Chuanfen Pu
- School of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China.
| | | |
Collapse
|
31
|
Preparation of astaxanthin-loaded liposomes: characterization, storage stability and antioxidant activity. CYTA - JOURNAL OF FOOD 2018. [DOI: 10.1080/19476337.2018.1437080] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
32
|
Pu C, Tang W. A chitosan-coated liposome encapsulating antibacterial peptide, Apep10: characterisation, triggered-release effects and antilisterial activity in thaw water of frozen chicken. Food Funct 2018; 7:4310-4322. [PMID: 27713959 DOI: 10.1039/c6fo00858e] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Contamination of Listeria monocytogenes in food and their processing environment is a focus of attention in the food industry. To achieve the controlled release of antibacterial agents to a food processing environment contaminated by L. monocytogenes, chitosan-stabilised liposomes encapsulating Apep10 (GLARCLAGTL), an antibacterial peptide derived from boiled-dried anchovies, were prepared by utilising listeria toxins to activate the peptide release. Characteristics including the particle size, polydispersity index (PDI), encapsulation efficiency (EE), and morphology of the chitosan-coated Apep10 liposomes were investigated. The chitosan liposomes were more stable than their uncoated counterparts, which indicated that the coating of chitosan on the surface of the liposomes inhibited undesirable vesicle fusion and payload release during storage. However, once the chitosan-stabilised liposomes encountered L. monocytogenes, which secretes pore-forming toxins, the encapsulated antibacterial peptide was released and it exerted antimicrobial effects on the strain. The results of time-kill inhibition, scanning electron microscopy (SEM), crystal violet staining and confocal laser scanning microscopy (CLSM) images demonstrated that these liposomes have favourable antibacterial and anti-biofilm activities against L. monocytogenes in the thaw water of frozen chicken. This bacterial toxin-enabled release of the encapsulated antibacterial peptide from chitosan-coated liposomes provides an effective approach for the control of listerial contamination. This technique can be broadly applied to treat contamination by a variety of pathogens that secrete pore-forming toxins.
Collapse
Affiliation(s)
- Chuanfen Pu
- School of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China.
| | - Wenting Tang
- School of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China.
| |
Collapse
|
33
|
Bochicchio S, Dalmoro A, Bertoncin P, Lamberti G, Moustafine RI, Barba AA. Design and production of hybrid nanoparticles with polymeric-lipid shell–core structures: conventional and next-generation approaches. RSC Adv 2018; 8:34614-34624. [PMID: 35548606 PMCID: PMC9087338 DOI: 10.1039/c8ra07069e] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 09/27/2018] [Indexed: 11/21/2022] Open
Abstract
An innovative, simil-microfluidic, nanoliposome-covering method operating continuously with massive production yield overcoming the disadvantages of conventional methods is proposed.
Collapse
Affiliation(s)
- Sabrina Bochicchio
- Dipartimento di Farmacia
- Università degli Studi di Salerno
- Italy
- Eng4Life Srl
- Spin-off Accademico
| | - Annalisa Dalmoro
- Dipartimento di Farmacia
- Università degli Studi di Salerno
- Italy
- Eng4Life Srl
- Spin-off Accademico
| | - Paolo Bertoncin
- Dipartimento di Scienze della Vita
- Centro Microscopia Elettronica
- Università degli Studi di Trieste
- 34127 Trieste
- Italy
| | - Gaetano Lamberti
- Eng4Life Srl
- Spin-off Accademico
- Italy
- Dipartimento di Ingegneria Industriale
- Università degli Studi di Salerno
| | - Rouslan I. Moustafine
- Department of Pharmaceutical
- Analytical and Toxicological Chemistry
- Kazan State Medical University
- 420012 Kazan
- Russian Federation
| | - Anna Angela Barba
- Dipartimento di Farmacia
- Università degli Studi di Salerno
- Italy
- Eng4Life Srl
- Spin-off Accademico
| |
Collapse
|
34
|
Yang N, Ashton J, Gorczyca E, Kasapis S. In-vitro starch hydrolysis of chitosan incorporating whey protein and wheat starch composite gels. Heliyon 2017; 3:e00421. [PMID: 29159316 PMCID: PMC5680984 DOI: 10.1016/j.heliyon.2017.e00421] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 09/15/2017] [Accepted: 09/26/2017] [Indexed: 12/05/2022] Open
Abstract
The study examined the influence of chitosan, incorporated into whey protein and wheat starch thermo gels, on the in-vitro hydrolysis of the polysaccharide. Gels were subjected to the following external conditions containing α-amylase at constant incubation temperature of 37 °C: In the first procedure, they were immersed in phosphate buffer (0.05 M) and maintained at pH 6.9 throughout the entire digestion. In the second instance, they were introduced into a salt solution, with pH and total volume adjusted at times in sync with the human gastrointestinal tract. Results indicate that low and medium molecular weight chitosan, in combination with whey protein, were effective at enhancing the protective barrier against starch degradation. Less maltose was liberated from gels containing medium molecular weight chitosan, as opposed to the low molecular weight counterpart, and results compare favorably with the outcome of the in-vitro digestion of binary whey protein and wheat starch composites.
Collapse
Affiliation(s)
- Natasha Yang
- School of Science, RMIT University, City Campus, Melbourne, Vic 3001, Australia
| | - John Ashton
- Sanitarium Development and Innovation, Sanitarium Health Food Company, Cooranbong, NSW 2265, Australia
| | - Elisabeth Gorczyca
- School of Science, RMIT University, City Campus, Melbourne, Vic 3001, Australia
| | - Stefan Kasapis
- School of Science, RMIT University, City Campus, Melbourne, Vic 3001, Australia
| |
Collapse
|
35
|
Alavi S, Haeri A, Dadashzadeh S. Utilization of chitosan-caged liposomes to push the boundaries of therapeutic delivery. Carbohydr Polym 2017; 157:991-1012. [DOI: 10.1016/j.carbpol.2016.10.063] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 10/19/2016] [Accepted: 10/20/2016] [Indexed: 11/25/2022]
|
36
|
Haeri A, Sadeghian S, Rabbani S, Anvari MS, Ghassemi S, Radfar F, Dadashzadeh S. Effective attenuation of vascular restenosis following local delivery of chitosan decorated sirolimus liposomes. Carbohydr Polym 2017; 157:1461-1469. [DOI: 10.1016/j.carbpol.2016.11.021] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 10/27/2016] [Accepted: 11/07/2016] [Indexed: 12/11/2022]
|
37
|
Tan C, Xie J, Zhang X, Cai J, Xia S. Polysaccharide-based nanoparticles by chitosan and gum arabic polyelectrolyte complexation as carriers for curcumin. Food Hydrocoll 2016. [DOI: 10.1016/j.foodhyd.2016.01.021] [Citation(s) in RCA: 192] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
38
|
Koirala S, Roy B, Guha P, Bhattarai R, Sapkota M, Nahak P, Karmakar G, Mandal AK, Kumar A, Panda AK. Effect of double tailed cationic surfactants on the physicochemical behavior of hybrid vesicles. RSC Adv 2016. [DOI: 10.1039/c5ra17774j] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Hydrodynamic and thermal behavior of vesicles along with the proposed models.
Collapse
Affiliation(s)
- Suraj Koirala
- Department of Pharmaceutics
- Himalayan Pharmacy Institute
- India
| | - Biplab Roy
- Department of Chemistry
- University of North Bengal
- Darjeeling-734013
- India
| | - Pritam Guha
- Department of Microbiology
- Vidyasagar University
- Midnapore-721102
- India
| | - Ravi Bhattarai
- Department of Pharmaceutics
- Himalayan Pharmacy Institute
- India
| | - Manish Sapkota
- Department of Pharmaceutics
- Himalayan Pharmacy Institute
- India
| | - Prasant Nahak
- Department of Chemistry
- University of North Bengal
- Darjeeling-734013
- India
| | - Gourab Karmakar
- Department of Chemistry
- University of North Bengal
- Darjeeling-734013
- India
| | - Amit Kumar Mandal
- Department of Microbiology
- Vidyasagar University
- Midnapore-721102
- India
| | - Anoop Kumar
- Department of Biotechnology
- University of North Bengal
- Darjeeling-734013
- India
| | - Amiya Kumar Panda
- Department of Chemistry
- University of North Bengal
- Darjeeling-734013
- India
- Department of Chemistry and Chemical Technology
| |
Collapse
|
39
|
Biopolymer-coated liposomes by electrostatic adsorption of chitosan (chitosomes) as novel delivery systems for carotenoids. Food Hydrocoll 2016. [DOI: 10.1016/j.foodhyd.2015.08.016] [Citation(s) in RCA: 169] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
40
|
Tan C, Zhang Y, Abbas S, Feng B, Zhang X, Xia W, Xia S. Biopolymer-Lipid Bilayer Interaction Modulates the Physical Properties of Liposomes: Mechanism and Structure. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015; 63:7277-7285. [PMID: 26173584 DOI: 10.1021/acs.jafc.5b01422] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
This study was conducted to elucidate the conformational dependence of the modulating ability of chitosan, a positively charged biopolymer, on a new type of liposome composed of mixed lipids including egg yolk phosphatidylcholine (EYPC) and nonionic surfactant (Tween 80). Analysis of the dynamic and structure of bilayer membrane upon interaction with chitosan by fluorescence and electron paramagnetic resonance techniques demonstrated that, in addition to providing a physical barrier for the membrane surface, the adsorption of chitosan extended and crimped chains rigidified the lipid membrane. However, the decrease in relative microviscosity and order parameter suggested that the presence of chitosan coils disturbed the membrane organization. It was also noted that the increase of fluidity in the lipid bilayer center was not pronounced, indicating the shallow penetration of coils into the hydrophobic interior of bilayer. Microscopic observations revealed that chitosan adsorption not only affected the morphology of liposomes but also modulated the particle aggregation and fusion. Especially, a number of very heterogeneous particles were visualized, which tended to confirm the role of chitosan coils as a "polymeric surfactant". In addition to particle deformation, the membrane permeability was also tuned. These findings may provide a new perspective to understand the physiological functionality of biopolymer and design biopolymer-liposome composite structures as delivery systems for bioactive components.
Collapse
Affiliation(s)
- Chen Tan
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Lihu Road 1800, Wuxi, Jiangsu 214122, China
| | - Yating Zhang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Lihu Road 1800, Wuxi, Jiangsu 214122, China
| | - Shabbar Abbas
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Lihu Road 1800, Wuxi, Jiangsu 214122, China
| | - Biao Feng
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Lihu Road 1800, Wuxi, Jiangsu 214122, China
| | - Xiaoming Zhang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Lihu Road 1800, Wuxi, Jiangsu 214122, China
| | - Wenshui Xia
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Lihu Road 1800, Wuxi, Jiangsu 214122, China
| | - Shuqin Xia
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Lihu Road 1800, Wuxi, Jiangsu 214122, China
| |
Collapse
|
41
|
Chiappisi L, Gradzielski M. Co-assembly in chitosan-surfactant mixtures: thermodynamics, structures, interfacial properties and applications. Adv Colloid Interface Sci 2015; 220:92-107. [PMID: 25865361 DOI: 10.1016/j.cis.2015.03.003] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Revised: 03/23/2015] [Accepted: 03/23/2015] [Indexed: 01/23/2023]
Abstract
In this review, different aspects characterizing chitosan-surfactant mixtures are summarized and compared. Chitosan is a bioderived cationic polysaccharide that finds wide-ranged applications in various field, e.g., medical or food industry, in which synergistic effects with surfactant can play a fundamental role. In particular, the behavior of chitosan interacting with strong and weak anionic, nonionic as well as cationic surfactants is reviewed. We put a focus on oppositely charged systems, as they exhibit the most interesting features. In that context, we discuss the thermodynamic description of the interaction and in particular the structural changes as they occur as a function of the mixed systems and external parameters. Moreover, peculiar properties of chitosan coated phospholipid vesicles are summarized. Finally, their co-assembly at interfaces is briefly reviewed. Despite the behavior of the mentioned systems might strongly differ, resulting in a high variety of properties, few general rules can be pointed out which improve the understanding of such complex systems.
Collapse
|
42
|
Tan C, Zhang Y, Abbas S, Feng B, Zhang X, Xia S, Chang D. Insights into chitosan multiple functional properties: the role of chitosan conformation in the behavior of liposomal membrane. Food Funct 2015; 6:3702-11. [DOI: 10.1039/c5fo00256g] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Interactions of chitosan with liposomes correlate with multiple functionalities. Chitosan chains can self-aggregate above a critical aggregation concentration. The physical properties of liposomes are affected by chitosan conformation. Chitosan displays “polymeric surfactant property” in the form of coils.
Collapse
Affiliation(s)
- Chen Tan
- State Key Laboratory of Food Science and Technology
- School of Food Science and Technology
- Jiangnan University
- Wuxi
- China
| | - Yating Zhang
- State Key Laboratory of Food Science and Technology
- School of Food Science and Technology
- Jiangnan University
- Wuxi
- China
| | - Shabbar Abbas
- State Key Laboratory of Food Science and Technology
- School of Food Science and Technology
- Jiangnan University
- Wuxi
- China
| | - Biao Feng
- State Key Laboratory of Food Science and Technology
- School of Food Science and Technology
- Jiangnan University
- Wuxi
- China
| | - Xiaoming Zhang
- State Key Laboratory of Food Science and Technology
- School of Food Science and Technology
- Jiangnan University
- Wuxi
- China
| | - Shuqin Xia
- State Key Laboratory of Food Science and Technology
- School of Food Science and Technology
- Jiangnan University
- Wuxi
- China
| | - Dawei Chang
- School of Food and Biological Engineering
- Shaanxi University of Science and Technology
- Xi'an
- China
| |
Collapse
|
43
|
Tan C, Xue J, Abbas S, Feng B, Zhang X, Xia S. Liposome as a delivery system for carotenoids: comparative antioxidant activity of carotenoids as measured by ferric reducing antioxidant power, DPPH assay and lipid peroxidation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2014; 62:6726-6735. [PMID: 24745755 DOI: 10.1021/jf405622f] [Citation(s) in RCA: 128] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
This study was conducted to understand how carotenoids exerted antioxidant activity after encapsulation in a liposome delivery system, for food application. Three assays were selected to achieve a wide range of technical principles, including 2,2-diphenyl-1-picrylhydrazyl (DPPH) scavenging, ferric reducing antioxidant powder (FRAP), and lipid peroxidation inhibition capacity (LPIC) during liposome preparation, auto-oxidation, or when induced by ferric iron/ascorbate. The antioxidant activity of carotenoids was measured either after they were mixed with preformed liposomes or after their incorporation into the liposomal system. Whatever the antioxidant model was, carotenoids displayed different antioxidant activities in suspension and in liposomes. The encapsulation could enhance the DPPH scavenging and FRAP activities of carotenoids. The strongest antioxidant activity was observed with lutein, followed by β-carotene, lycopene, and canthaxanthin. Furthermore, lipid peroxidation assay revealed a mutually protective relationship: the incorporation of either lutein or β-carotene not only exerts strong LPIC, but also protects them against pro-oxidation elements; however, the LPIC of lycopene and canthaxanthin on liposomes was weak or a pro-oxidation effect even appeared, concomitantly leading to the considerable depletion of these encapsulated carotenoids. The antioxidant activity of carotenoids after liposome encapsulation was not only related to their chemical reactivity, but also to their incorporation efficiencies into liposomal membrane and modulating effects on the membrane properties.
Collapse
Affiliation(s)
- Chen Tan
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University , Lihu Road 1800, Wuxi, Jiangsu 214122, People's Republic of China
| | | | | | | | | | | |
Collapse
|
44
|
Xue J, Tan C, Zhang X, Feng B, Xia S. Fabrication of epigallocatechin-3-gallate nanocarrier based on glycosylated casein: stability and interaction mechanism. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2014; 62:4677-4684. [PMID: 24670204 DOI: 10.1021/jf405157x] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Polyphenols normally have strong binding affinity with proteins, which may lead to protein precipitation. Glycosylation of protein via Maillard reaction in mild condition may inhibit the precipitation. This study prepared nanocomplexes of epigallocatechin-3-gallate (EGCG) and protein, and their stability against environmental stress was investigated. Subsequently, these findings were correlated with the interactions between EGCG and casein. Results showed that glycosylated casein displayed strong encapsulating and retaining capacity to EGCG, and no obvious aggregation or fusion appeared in the concentration range of 0.25-5.00 mg/mL during storage. The in vitro release demonstrated that casein, especially glycosylated casein, could effectively protect EGCG from degradation in alkaline pH and displayed a slow and sustained release in intestinal fluid, which may be attributed to the inhibiting effects of casein binding on the motion freedom of EGCG. Fluorescence quenching spectra demonstrated that the steric hindrance induced by dextran could inhibit the interaction between casein and EGCG. These findings demonstrated that glycosylated casein could be used as a promising and effective nanocarrier for EGCG.
Collapse
Affiliation(s)
- Jin Xue
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University , Lihu Road 1800, Wuxi, Jiangsu 214122, China
| | | | | | | | | |
Collapse
|
45
|
Tan C, Xue J, Lou X, Abbas S, Guan Y, Feng B, Zhang X, Xia S. Liposomes as delivery systems for carotenoids: comparative studies of loading ability, storage stability and in vitro release. Food Funct 2014; 5:1232-40. [DOI: 10.1039/c3fo60498e] [Citation(s) in RCA: 117] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
46
|
Xia S, Tan C, Xue J, Lou X, Zhang X, Feng B. Chitosan/tripolyphosphate-nanoliposomes core-shell nanocomplexes as vitamin E carriers: shelf-life and thermal properties. Int J Food Sci Technol 2013. [DOI: 10.1111/ijfs.12438] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Shuqin Xia
- State Key Laboratory of Food Science and Technology; School of Food Science and Technology; Jiangnan University; Lihu Road 1800 Wuxi Jiangsu 214122 China
| | - Chen Tan
- State Key Laboratory of Food Science and Technology; School of Food Science and Technology; Jiangnan University; Lihu Road 1800 Wuxi Jiangsu 214122 China
| | - Jin Xue
- State Key Laboratory of Food Science and Technology; School of Food Science and Technology; Jiangnan University; Lihu Road 1800 Wuxi Jiangsu 214122 China
| | - Xiaowei Lou
- State Key Laboratory of Food Science and Technology; School of Food Science and Technology; Jiangnan University; Lihu Road 1800 Wuxi Jiangsu 214122 China
| | - Xiaoming Zhang
- State Key Laboratory of Food Science and Technology; School of Food Science and Technology; Jiangnan University; Lihu Road 1800 Wuxi Jiangsu 214122 China
| | - Biao Feng
- State Key Laboratory of Food Science and Technology; School of Food Science and Technology; Jiangnan University; Lihu Road 1800 Wuxi Jiangsu 214122 China
| |
Collapse
|
47
|
Tan C, Xia S, Xue J, Xie J, Feng B, Zhang X. Liposomes as vehicles for lutein: preparation, stability, liposomal membrane dynamics, and structure. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2013; 61:8175-8184. [PMID: 23906192 DOI: 10.1021/jf402085f] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Lutein was loaded into liposomes, and their stability against environmental stress was investigated. Subsequently, these findings were correlated with the interactions between lutein and lipid bilayer. Results showed that the liposomes with loaded lutein at concentrations of 1 and 2% remained stable during preparation, heating, storage, and surfactant dissolution. However, with further increase in the loading concentration to 5 and 10%, the stabilization role of lutein on membrane was not pronounced or even opposite. Membrane fluidity demonstrated that at 1 and 2%, lutein displayed less fluidizing properties both in the headgroup region and in the hydrophobic core of the liposome, whereas this effect was not significant at 5 and 10%. Raman spectra demonstrated that lutein incorporation greatly affected the lateral packing order between acyl chains and longitudinal packing order of lipid acyl chains. These results may guide the potential application of liposomes as carriers for lutein in nutraceuticals and functional foods.
Collapse
Affiliation(s)
- Chen Tan
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Lihu Road 1800, Wuxi, Jiangsu 214122, China
| | | | | | | | | | | |
Collapse
|