1
|
Koltun KJ, Strock NCA, Weaver C, Lee H, Williams NI, Rogers CJ, Damani J, Ferruzzi MG, Nakatsu CH, De Souza MJ. Prunes preserve cortical density and estimated strength of the tibia in a 12-month randomized controlled trial in postmenopausal women: The Prune Study. Osteoporos Int 2024; 35:863-875. [PMID: 38349471 DOI: 10.1007/s00198-024-07031-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 01/19/2024] [Indexed: 04/20/2024]
Abstract
Non-pharmacological therapies, such as whole-food interventions, are gaining interest as potential approaches to prevent and/or treat low bone mineral density (BMD) in postmenopausal women. Previously, prune consumption preserved two-dimensional BMD at the total hip. Here we demonstrate that prune consumption preserved three-dimensional BMD and estimated strength at the tibia. PURPOSE Dietary consumption of prunes has favorable impacts on areal bone mineral density (aBMD); however, more research is necessary to understand the influence on volumetric BMD (vBMD), bone geometry, and estimated bone strength. METHODS This investigation was a single center, parallel arm 12-month randomized controlled trial (RCT; NCT02822378) to evaluate the effects of 50 g and 100 g of prunes vs. a Control group on vBMD, bone geometry, and estimated strength of the radius and tibia via peripheral quantitative computed tomography (pQCT) in postmenopausal women. Women (age 62.1 ± 5.0yrs) were randomized into Control (n = 78), 50 g Prune (n = 79), or 100 g Prune (n = 78) groups. General linear mixed effects (LME) modeling was used to assess changes over time and percent change from baseline was compared between groups. RESULTS The most notable effects were observed at the 14% diaphyseal tibia in the Pooled (50 g + 100 g) Prune group, in which group × time interactions were observed for cortical vBMD (p = 0.012) and estimated bone strength (SSI; p = 0.024); all of which decreased in the Control vs. no change in the Pooled Prune group from baseline to 12 months/post. CONCLUSION Prune consumption for 12 months preserved cortical bone structure and estimated bone strength at the weight-bearing tibia in postmenopausal women.
Collapse
Affiliation(s)
- Kristen J Koltun
- Department of Kinesiology, Pennsylvania State University, 104 Noll Laboratory, University Park, PA, 16802, USA
| | - Nicole C A Strock
- Department of Kinesiology, Pennsylvania State University, 104 Noll Laboratory, University Park, PA, 16802, USA
| | - Connie Weaver
- School of Exercise and Nutritional Sciences, San Diego State University, San Diego, USA
| | - Hang Lee
- Biostatistics Center, Massachusetts General Hospital and Harvard Medical School, Boston, USA
| | - Nancy I Williams
- Department of Kinesiology, Pennsylvania State University, 104 Noll Laboratory, University Park, PA, 16802, USA
| | - Connie J Rogers
- Intercollege Graduate Degree Program in Integrative and Biomedical Physiology, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, USA
| | - Janhavi Damani
- Intercollege Graduate Degree Program in Integrative and Biomedical Physiology, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, USA
| | - Mario G Ferruzzi
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, USA
| | - Cindy H Nakatsu
- Department of Agronomy, Purdue University, West Lafayette, USA
| | - Mary Jane De Souza
- Department of Kinesiology, Pennsylvania State University, 104 Noll Laboratory, University Park, PA, 16802, USA.
| |
Collapse
|
2
|
Pirvu LC, Rusu N, Bazdoaca C, Androne E, Neagu G, Albulescu A. A View on the Chemical and Biological Attributes of Five Edible Fruits after Finishing Their Shelf Life: Studies on Caco-2 Cells. Int J Mol Sci 2024; 25:4848. [PMID: 38732066 PMCID: PMC11084482 DOI: 10.3390/ijms25094848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 04/26/2024] [Accepted: 04/27/2024] [Indexed: 05/13/2024] Open
Abstract
We studied five common perishable fruits in terms of their polyphenols dynamic, minerals distribution, scavenger activity and the effects of 50% ethanolic extracts on the viability of Caco-2 cells in vitro, over a period of time between T = 0 and T = 5/7 days, typically the end of their shelf life. Altogether, there were few changes found, consisting of either an increase or a decrease in their chemical and biological attributes. A slow decrease was found in the antioxidant activity in apricot (-11%), plum (-6%) and strawberry (-4%) extracts, while cherry and green seedless table grape extracts gained 7% and 2% antioxidant potency, respectively; IC50 values ranged from 1.67 to 5.93 μg GAE/μL test extract. The cytotoxicity MTS assay at 24 h revealed the ability of all 50% ethanol fruit extracts to inhibit the Caco-2 cell viability; the inhibitory effects ranged from 49% to 83% and were measured at 28 µg GAE for strawberry extracts/EES, from 22 µg to 45 µg GAE for cherry extracts/EEC, from 7.58 to 15.16 µg GAE for apricot extracts/EEA, from 12.50 to 25.70 µg GAE for plum extracts/EEP and from 21.51 to 28.68 µg GAE for green table grape extracts/EEG. The MTS anti-proliferative assay (72 h) also revealed a stimulatory potency upon the Caco-2 viability, from 34% (EEA, EEG) and 48% (EEC) to 350% (EES) and 690% (EEP); therefore fruit juices can influence intestinal tumorigenesis in humans.
Collapse
Affiliation(s)
- Lucia Camelia Pirvu
- Department of Pharmaceutical Biotechnologies, National Institute of Chemical Pharmaceutical Research and Development, 112 Vitan Av., 031299 Bucharest, Romania
| | - Nicoleta Rusu
- Department of Chemical Analysis and Drug Control, National Institute of Chemical Pharmaceutical Research and Development, 112 Vitan Av., 031299 Bucharest, Romania; (N.R.); (C.B.); (E.A.)
| | - Cristina Bazdoaca
- Department of Chemical Analysis and Drug Control, National Institute of Chemical Pharmaceutical Research and Development, 112 Vitan Av., 031299 Bucharest, Romania; (N.R.); (C.B.); (E.A.)
| | - Elena Androne
- Department of Chemical Analysis and Drug Control, National Institute of Chemical Pharmaceutical Research and Development, 112 Vitan Av., 031299 Bucharest, Romania; (N.R.); (C.B.); (E.A.)
| | - Georgeta Neagu
- Department of Pharmacology, National Institute of Chemical Pharmaceutical Research and Development, 112 Vitan Av., 031299 Bucharest, Romania;
| | - Adrian Albulescu
- Department of Pharmacology, National Institute of Chemical Pharmaceutical Research and Development, 112 Vitan Av., 031299 Bucharest, Romania;
- Stefan S. Nicolau Institute of Virology, 285 Mihai Bravu Av., 030304 Bucharest, Romania
| |
Collapse
|
3
|
De Souza MJ, Strock NCA, Williams NI, Lee H, Koltun KJ, Rogers C, Ferruzzi MG, Nakatsu CH, Weaver C. Prunes preserve hip bone mineral density in a 12-month randomized controlled trial in postmenopausal women: the Prune Study. Am J Clin Nutr 2022; 116:897-910. [PMID: 35798020 DOI: 10.1093/ajcn/nqac189] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 04/04/2022] [Accepted: 07/05/2022] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND Dietary consumption of prunes has favorable impacts on bone health, but more research is necessary to improve upon study designs and refine our understandings. OBJECTIVES We evaluated the effects of prunes (50 g or 100 g/d) on bone mineral density (BMD) in postmenopausal women during a 12-mo dietary intervention. Secondary outcomes include effects on bone biomarkers. METHODS The single-center, parallel-arm 12-mo randomized controlled trial tested the effects of 50 g and 100 g prunes compared with a control group on BMD (every 6 mo) and bone biomarkers in postmenopausal women. RESULTS In total, 235 women (age 62.1 ± 5.0 y) were randomly allocated into control (n = 78), 50-g prune (n = 79), or 100-g prune (n = 78) groups. Compliance was 90.2 ± 1.8% and 87.1 ± 2.1% in the 50-g and 100-g prune groups. Dropout was 22%; however, the dropout rate was 41% for the 100-g prune group (compared with other groups: 10%, control; 15%, 50 g prune; P < 0.001). A group × time interaction for total hip BMD was observed in control compared with 50-g prune groups (P < 0.05) but not in control compared with 100-g prune groups (P > 0.05). Total hip BMD decreased -1.1 ± 0.2% in the control group at 12 mo, whereas the 50-g prune group preserved BMD (-0.3 ± 0.2%) at 12 mo (P < 0.05). Although hip fracture risk (FRAX) worsened in the control group at 6 mo compared with baseline (10.3 ± 0.5% compared with 9.8 ± 0.5%, P < 0.05), FRAX score was maintained in the pooled (50 g + 100 g) prune groups. CONCLUSIONS A 50-g daily dose of prunes can prevent loss of total hip BMD in postmenopausal women after 6 mo, which persisted for 12 mo. Given that there was high compliance and retention at the 50-g dosage over 12 mo, we propose that the 50-g dose represents a valuable nonpharmacologic treatment strategy that can be used to preserve hip BMD in postmenopausal women and possibly reduce hip fracture risk. This trial was registered at clinicaltrials.gov as NCT02822378.
Collapse
Affiliation(s)
- Mary Jane De Souza
- Department of Kinesiology, Pennsylvania State University, University Park, PA, USA
| | - Nicole C A Strock
- Department of Kinesiology, Pennsylvania State University, University Park, PA, USA
| | - Nancy I Williams
- Department of Kinesiology, Pennsylvania State University, University Park, PA, USA
| | - Hang Lee
- Biostatistics Center, Massachusetts General Hospital, Boston, MA, USA
| | - Kristen J Koltun
- Department of Kinesiology, Pennsylvania State University, University Park, PA, USA.,School of Health and Rehabilitation Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Connie Rogers
- Department of Nutritional Sciences, Pennsylvania State University, University Park, PA, USA
| | - Mario G Ferruzzi
- Department of Pediatrics, University of Arkansas for Medical Science, Little Rock, AR, USA
| | - Cindy H Nakatsu
- Department of Agronomy, Purdue University, West Lafayette, IN, USA
| | - Connie Weaver
- Department of Exercise and Nutritional Sciences, San Diego State University, San Diego, CA, USA
| |
Collapse
|
4
|
Damani JJ, De Souza MJ, VanEvery HL, Strock NCA, Rogers CJ. The Role of Prunes in Modulating Inflammatory Pathways to Improve Bone Health in Postmenopausal Women. Adv Nutr 2022; 13:1476-1492. [PMID: 34978320 PMCID: PMC9526830 DOI: 10.1093/advances/nmab162] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 10/31/2021] [Accepted: 12/30/2021] [Indexed: 01/28/2023] Open
Abstract
The prevalence of osteoporosis among women aged 50 y and older is expected to reach 13.6 million by 2030. Alternative nonpharmaceutical agents for osteoporosis, including nutritional interventions, are becoming increasingly popular. Prunes (dried plums; Prunus domestica L.) have been studied as a potential whole-food dietary intervention to mitigate bone loss in preclinical models of osteoporosis and in osteopenic postmenopausal women. Sixteen preclinical studies using in vivo rodent models of osteopenia or osteoporosis have established that dietary supplementation with prunes confers osteoprotective effects both by preventing and reversing bone loss. Increasing evidence from 10 studies suggests that, in addition to antiresorptive effects, prunes exert anti-inflammatory and antioxidant effects. Ten preclinical studies have found that prunes and/or their polyphenol extracts decrease malondialdehyde and NO secretion, increase antioxidant enzyme expression, or suppress NF-κB activation and proinflammatory cytokine production. Two clinical trials have investigated the impact of dried plum consumption (50-100 g/d for 6-12 mo) on bone health in postmenopausal women and demonstrated promising effects on bone mineral density and bone biomarkers. However, less is known about the impact of prune consumption on oxidative stress and inflammatory mediators in humans and their possible role in modulating bone outcomes. In this review, the current state of knowledge on the relation between inflammation and bone health is outlined. Findings from preclinical and clinical studies that have assessed the effect of prunes on oxidative stress, inflammatory mediators, and bone outcomes are summarized, and evidence supporting a potential role of prunes in modulating inflammatory and immune pathways is highlighted. Key future directions to bridge the knowledge gap in the field are proposed.
Collapse
Affiliation(s)
- Janhavi J Damani
- Intercollege Graduate Degree Program in Integrative and Biomedical Physiology, Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Mary Jane De Souza
- Department of Kinesiology, The Pennsylvania State University, University Park, PA, USA
| | - Hannah L VanEvery
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Nicole C A Strock
- Department of Kinesiology, The Pennsylvania State University, University Park, PA, USA
| | - Connie J Rogers
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA, USA
- Center for Molecular Immunology and Infectious Disease, Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, USA
| |
Collapse
|
5
|
De Souza MJ, Strock NC, Rogers CJ, Williams NI, Ferruzzi MG, Nakatsu CH, Simpson AM, Weaver C. Rationale and study design of Randomized Controlled Trial of Dietary Supplementation with prune (dried plums) on bone density, geometry, and estimated bone strength in postmenopausal women: The Prune study. Contemp Clin Trials Commun 2022; 28:100941. [PMID: 35669487 PMCID: PMC9163423 DOI: 10.1016/j.conctc.2022.100941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 04/24/2022] [Accepted: 05/25/2022] [Indexed: 11/24/2022] Open
Abstract
The use of non-pharmacological alternatives to pharmacological interventions, e.g., nutritional therapy, to improve or maintain bone mineral density (BMD) in postmenopausal women has gained traction over the past decade, but limited data exist regarding its efficacy. This paper describes the design of the Prune Study, a randomized controlled trial (RCT) that explored the effectiveness of a 12-month intervention of daily prune consumption on bone density, bone structure and strength estimates, bone turnover, various biomarkers of immune function, inflammation, and cardiovascular health, as well as phenolic and gut microbiota analyses. Postmenopausal women between the ages of 55-75 years were randomized into either control group (no prune consumption; n = 78), 50g prune (50g prune/day; n = 79), or 100g prune (100g prune/day; n = 78). All participants received 1200 mg calcium +800 IU vitamin D3 daily as standard of care. The Prune Study is the largest and most comprehensive investigation of a dose response of prune consumption on bone health, biomarkers of immune function, inflammation, and cardiovascular health, as well as detailed phenolic and gut microbiota analyses in postmenopausal women. 235 women were randomized and 183 women completed the entire study. The findings of this study will help expand our current understanding of clinical implications and mechanisms underlying the resultant health effects of prune as a functional food therapy.
Collapse
Affiliation(s)
- Mary Jane De Souza
- Department of Kinesiology, Pennsylvania State University, University Park, PA, USA
| | - Nicole C.A. Strock
- Department of Kinesiology, Pennsylvania State University, University Park, PA, USA
| | - Connie J. Rogers
- Department of Nutritional Sciences, Pennsylvania State University, University Park, PA, USA
| | - Nancy I. Williams
- Department of Kinesiology, Pennsylvania State University, University Park, PA, USA
| | - Mario G. Ferruzzi
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Cindy H. Nakatsu
- Department of Agronomy, Purdue University, West Lafayette, IN, USA
| | | | | |
Collapse
|
6
|
Undenatured Type II Collagen Relieves Bone Impairment through Improving Inflammation and Oxidative Stress in Ageing db/db Mice. Molecules 2021; 26:molecules26164942. [PMID: 34443530 PMCID: PMC8400234 DOI: 10.3390/molecules26164942] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/03/2021] [Accepted: 08/09/2021] [Indexed: 12/26/2022] Open
Abstract
Ageing-related bone impairment due to exposure to hyperglycemic environment is scarcely researched. The aim was to confirm the improvement effects of undenatured type II collagen (UC II) on bone impairment in ageing db/db mice, and the ageing model was established by normal feeding for 48-week-old. Then, the ageing db/db mice were randomly assigned to UC II intervention, the ageing model, and the chondroitin sulfate + glucosamine hydrochloride control groups. After 12 weeks of treatment, femoral microarchitecture and biomechanical parameters were observed, biomarkers including bone metabolism, inflammatory cytokines, and oxidative stress were measured, and the gastrocnemius function and expressions of interleukin (IL) 1β, receptor activator of nuclear factor (NF)-κB ligand (RANKL), and tartrate-resistant acid phosphatase (TRAP) were analyzed. The results showed that the mice in the UC II intervention group showed significantly superior bone and gastrocnemius properties than those in the ageing model group, including bone mineral density (287.65 ± 72.77 vs. 186.97 ± 32.2 mg/cm3), gastrocnemius index (0.46 ± 0.07 vs. 0.18 ± 0.01%), muscle fiber diameter (0.0415 ± 0.005 vs. 0.0330 ± 0.002 mm), and cross-sectional area (0.0011 ± 0.00007 vs. 0.00038 ± 0.00004 mm2). The UC II intervention elevated bone mineralization and formation and decreased bone resorption, inflammatory cytokines, and the oxidative stress. In addition, lower protein expression of IL-1β, RANKL, and TRAP in the UC II intervention group was observed. These findings suggested that UC II improved bones impaired by T2DM during ageing, and the likely mechanism was partly due to inhibition of inflammation and oxidative stress.
Collapse
|
7
|
Strock NCA, Koltun KJ, Weaver C, De Souza MJ. Dried plum consumption improves bone mineral density in osteopenic postmenopausal woman: A case report. Bone Rep 2021; 14:101094. [PMID: 34095361 PMCID: PMC8166764 DOI: 10.1016/j.bonr.2021.101094] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 04/28/2021] [Accepted: 05/14/2021] [Indexed: 12/25/2022] Open
Abstract
The use of non-pharmacological alternatives to pharmacological interventions, e.g., nutritional therapy, to improve or maintain bone mineral density (BMD) in postmenopausal women has gained traction over the past decade, but limited data exist regarding its efficacy. The purpose of this case report was to compare changes in BMD of an osteopenic postmenopausal woman over the course of 28 months, including an abrupt change in diet. For the first 12 months, a participant assigned to the control arm of a randomized controlled trial (RCT) only took calcium and vitamin D3 supplements, but in the following 16 months after completing the RCT, she introduced and maintained daily consumption of 50 g of dried plums in addition to calcium and vitamin D3 supplements. This case report provides a unique opportunity to follow the trajectory of distinct changes in bone in response to one dietary modification.
Collapse
|
8
|
Cladis DP, Simpson AMR, Cooper KJ, Nakatsu CH, Ferruzzi MG, Weaver CM. Blueberry polyphenols alter gut microbiota & phenolic metabolism in rats. Food Funct 2021; 12:2442-2456. [PMID: 33629093 PMCID: PMC8011555 DOI: 10.1039/d0fo03457f] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Consuming polyphenol-rich fruits and vegetables, including blueberries, is associated with beneficial health outcomes. Interest in enhancing polyphenol intakes via dietary supplements has grown, though differences in fruit versus supplement matrix on gut microbiota and ultimate phenolic metabolism to bioactive metabolites are unknown. To evaluate this, 5-month-old, ovariectomized, Sprague-Dawley rats were gavaged for 90 d with a purified extract of blueberry polyphenols (0, 50, 250, or 1000 mg total polyphenols per kg bw per d) or lyophilized blueberries (50 mg total polyphenols per kg bw per d, equivalent to 150 g fresh blueberries per day in humans). Urine, feces, and tissues were assessed for gut microbiota and phenolic metabolism. Significant dose- and food matrix-dependent effects were observed at all endpoints measured. Gut microbial populations showed increased diversity at moderate doses but decreased diversity at high doses. Urinary phenolic metabolites were primarily observed as microbially derived metabolites and underwent extensive host xenobiotic phase II metabolism. Thus, blueberry polyphenols in fruit and supplements induce differences in gut microbial communities and phenolic metabolism, which may alter intended health effects.
Collapse
Affiliation(s)
- Dennis P Cladis
- Dept. of Food Science, Purdue University, 745 Agriculture Mall Dr, W Lafayette, IN 47907, USA.
| | | | | | | | | | | |
Collapse
|
9
|
Redan BW, Jackson L. Overview of the American Chemical Society Symposium on Metals and Trace Elements in Food Safety, Health, and Food Quality. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:12773-12775. [PMID: 32301611 PMCID: PMC9087294 DOI: 10.1021/acs.jafc.0c01763] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
A symposium was held at the 2019 American Chemical Society (ACS) Fall National Meeting in San Diego, CA, U.S.A., entitled "Metals Trace Elements in Food Safety, Health, and Food Quality". The 2 day symposium was sponsored by the Division of Agricultural and Food Chemistry (AGFD) and co-sponsored by the Division of Agrochemicals (AGRO). This symposium was convened to broadly cover advances in the detection of metals/trace elements in food and our understanding of how metals and trace elements impact food safety, food quality, toxicology, and human nutrition. There were 21 presentations from speakers from academia, government, and industry. This introduction provides a brief summary of the presentations and serves as a record of the symposium proceedings.
Collapse
Affiliation(s)
- Benjamin W. Redan
- To whom correspondence should be addressed: Tel: 708-924-0601; Fax: 708-924-0690;
| | | |
Collapse
|
10
|
Abstract
Prunus is a large genus in the Rosaceae family of flowering plants, comprising over 340 species inhabiting variable landscapes in the world. Over 500 listed phytochemicals have been isolated from this single genus so far. The present study focused four Chinese Prunus species, viz., Prunus cerasifera, Prunus domestica, Prunus salicina, and Prunus spinosa, due to their uses, demand, nutritional value, medicinal importance, and diverse biological potential. The current review article highlights the details about the active phytochemicals and various pharmacological activities already reported. Almost 212 compounds, the majority of which are flavonoids, phenolic acids, anthocyanins, and their derivatives, which have been isolated from these four Prunus species fall in different categories and are helpful to evade chronic oxidative stress-mediated diseases. A huge variation exists in the total phytochemicals composition in different Prunus species, making these species to have different biological activities in multiple disease conditions, and even the same variety growing under different edaphic conditions may have different antioxidant capacities. It is suggested to perform extensive and indepth studies to find new phytochemicals from these four Chinese Prunus species which could boost the local industry to fulfill the increasing demands.
Collapse
|
11
|
Sakaki JR, Melough MM, Chun OK. Anthocyanins and anthocyanin-rich food as antioxidants in bone pathology. Pathology 2020. [DOI: 10.1016/b978-0-12-815972-9.00014-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
12
|
Martínez-Esplá A, Serrano M, Martínez-Romero D, Valero D, Zapata PJ. Oxalic acid preharvest treatment increases antioxidant systems and improves plum quality at harvest and during postharvest storage. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2019; 99:235-243. [PMID: 29851071 DOI: 10.1002/jsfa.9165] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 05/18/2018] [Accepted: 05/25/2018] [Indexed: 05/23/2023]
Abstract
BACKGROUND Plums are much appreciated by consumers as fresh fruit but have a limited storage life. Since reactive oxygen species (ROS) are associated with fruit ripening, an increase in ROS scavenging antioxidant systems could lead to a delay in postharvest plum ripening and in maintaining fruit quality after long cold storage. RESULTS Results showed that crop yield (kg per tree) and fruit weight were enhanced by preharvest oxalic acid (OA) treatment of plum cultivars ('Black Splendor' and 'Royal Rosa'), although the on-tree ripening process was delayed. In addition, the ripening process during cold storage was delayed in plums from OA-treated tress, manifested by lower firmness and acidity losses and reduced ethylene production, as compared with fruits from control trees. Antioxidant compounds (phenolics, anthocyanins and carotenoids) and the activity of antioxidant enzymes were higher in plums from OA-treated trees than in controls, at harvest and during 50 days of cold storage. CONCLUSION OA preharvest treatment could be a useful tool to maintain plum quality properties during long-term storage, by delaying the postharvest ripening process through a delay in ethylene production, with an additional effect on increasing bioactive compounds with health beneficial effects. © 2018 Society of Chemical Industry.
Collapse
Affiliation(s)
| | - María Serrano
- Department of Applied Biology, EPSO, University Miguel Hernández, Orihuela, Spain
| | | | - Daniel Valero
- Department of Food Technology, EPSO, University Miguel Hernández, Orihuela, Spain
| | - Pedro J Zapata
- Department of Food Technology, EPSO, University Miguel Hernández, Orihuela, Spain
| |
Collapse
|
13
|
Bone-Protective Effects of Dried Plum in Postmenopausal Women: Efficacy and Possible Mechanisms. Nutrients 2017; 9:nu9050496. [PMID: 28505102 PMCID: PMC5452226 DOI: 10.3390/nu9050496] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2017] [Revised: 05/11/2017] [Accepted: 05/12/2017] [Indexed: 12/12/2022] Open
Abstract
Osteoporosis is an age-related chronic disease characterized by a loss of bone mass and quality, and is associated with an increased risk of fragility fractures. Postmenopausal women are at the greatest risk of developing osteoporosis due to the cessation in ovarian hormone production, which causes accelerated bone loss. As the demographic shifts to a more aged population, a growing number of postmenopausal women will be afflicted with osteoporosis. Certain lifestyle factors, including nutrition and exercise, are known to reduce the risk of developing osteoporosis and therefore play an important role in bone health. In terms of nutrition, accumulating evidence suggests that dried plum (Prunus domestica L.) is potentially an efficacious intervention for preventing and reversing bone mass and structural loss in an ovariectomized rat model of osteoporosis, as well as in osteopenic postmenopausal women. Here, we provide evidence supporting the efficacy of dried plum in preventing and reversing bone loss associated with ovarian hormone deficiency in rodent models and in humans. We end with the results of a recent follow-up study demonstrating that postmenopausal women who previously consumed 100 g dried plum per day during our one-year clinical trial conducted five years earlier retained bone mineral density to a greater extent than those receiving a comparative control. Additionally, we highlight the possible mechanisms of action by which bioactive compounds in dried plum exert bone-protective effects. Overall, the findings of our studies and others strongly suggest that dried plum in its whole form is a promising and efficacious functional food therapy for preventing bone loss in postmenopausal women, with the potential for long-lasting bone-protective effects.
Collapse
|
14
|
Wallace TC. Dried Plums, Prunes and Bone Health: A Comprehensive Review. Nutrients 2017; 9:nu9040401. [PMID: 28422064 PMCID: PMC5409740 DOI: 10.3390/nu9040401] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 04/13/2017] [Accepted: 04/17/2017] [Indexed: 01/23/2023] Open
Abstract
The 2015–2020 Dietary Guidelines for Americans advocate for increasing fruit intake and replacing energy-dense foods with those that are nutrient-dense. Nutrition across the lifespan is pivotal for the healthy development and maintenance of bone. The National Osteoporosis Foundation estimates that over half of Americans age 50+ have either osteoporosis or low bone mass. Dried plums, also commonly referred to as prunes, have a unique nutrient and dietary bioactive profile and are suggested to exert beneficial effects on bone. To further elucidate and summarize the potential mechanisms and effects of dried plums on bone health, a comprehensive review of the scientific literature was conducted. The PubMed database was searched through 24 January 2017 for all cell, animal, population and clinical studies that examined the effects of dried plums and/or extracts of the former on markers of bone health. Twenty-four studies were included in the review and summarized in table form. The beneficial effects of dried plums on bone health may be in part due to the variety of phenolics present in the fruit. Animal and cell studies suggest that dried plums and/or their extracts enhance bone formation and inhibit bone resorption through their actions on cell signaling pathways that influence osteoblast and osteoclast differentiation. These studies are consistent with clinical studies that show that dried plums may exert beneficial effects on bone mineral density (BMD). Long-term prospective cohort studies using fractures and BMD as primary endpoints are needed to confirm the effects of smaller clinical, animal and mechanistic studies. Clinical and prospective cohort studies in men are also needed, since they represent roughly 29% of fractures, and likewise, diverse race and ethnic groups. No adverse effects were noted among any of the studies included in this comprehensive review. While the data are not completely consistent, this review suggests that postmenopausal women may safely consume dried plums as part of their fruit intake recommendations given their potential to have protective effects on bone loss.
Collapse
Affiliation(s)
- Taylor C Wallace
- Department of Nutrition and Food Studies, George Mason University, Fairfax, VA 22030, USA.
- Think Healthy Group, Inc., Washington, DC 20001, USA.
| |
Collapse
|
15
|
Weaver CM, Martin BR, Jackson GS, McCabe GP, Peacock M, Wastney M. Calcium-41: a technology for monitoring changes in bone mineral. Osteoporos Int 2017; 28:1215-1223. [PMID: 27928628 DOI: 10.1007/s00198-016-3849-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 11/18/2016] [Indexed: 10/20/2022]
Abstract
The rare, long-lived radiotracer, 41Ca, measured by accelerator mass spectrometry in the urine or serum following incorporation into the bone provides an ultra-sensitive tool to assess changes in bone calcium balance in response to an intervention. Changes in bone balance can be followed for years with one small dose that is both radiologically and biologically non-invasive. Sequential interventions can be compared, with greater precision than they can with biochemical markers of bone turnover and with greater power than with bone densitometry. This method is especially useful to screen interventions over a period of weeks. The development and validation of this tool and its applications are reviewed. Mini abstract: Use of 41Ca measured in the urine or blood by accelerator mass spectrometry to assess bone balance provides a tool to compare the relative efficacy of multiple interventions. This perspective provides insights in the use of this novel method and comparisons with more traditional methods for evaluating the efficacy of interventions.
Collapse
Affiliation(s)
- C M Weaver
- Department of Nutrition Science, Purdue University, 700 W State Street, West Lafayette, IN, 47907, USA.
| | - B R Martin
- Department of Nutrition Science, Purdue University, 700 W State Street, West Lafayette, IN, 47907, USA
| | - G S Jackson
- Department of Physics, Purdue University, 525 Northwestern Ave., West Lafayette, IN, 47907-2036, USA
| | - G P McCabe
- Department of Statistics, Purdue University, 250 N University Street, West Lafayette, IN, 47907, USA
| | - M Peacock
- Indiana University School of Medicine, Indianapolis, IN, 46223, USA
| | - M Wastney
- Department of Nutrition Science, Purdue University, 700 W State Street, West Lafayette, IN, 47907, USA
| |
Collapse
|
16
|
Odle B, Dennison N, Al-Nakkash L, Broderick TL, Plochocki JH. Genistein treatment improves fracture resistance in obese diabetic mice. BMC Endocr Disord 2017; 17:1. [PMID: 28183304 PMCID: PMC5299772 DOI: 10.1186/s12902-016-0144-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2016] [Accepted: 10/27/2016] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND Obese, type two diabetics are at an increased risk for fracturing their limb bones in comparison to the general population. Phytoestrogens like as the soy isoflavone genistein have been shown to protect against bone loss. In this study, we tested the effects of genistein treatment on femurs of ob/ob mice, a model for obesity and type two diabetes mellitus. METHODS Twenty six-week-old female mice were divided into obese (ob/ob) control, obese genistein-treated, lean (ob/+) control, and lean genistein-treated groups (n = 5 each). Treatment with genistein consisted of 600 mg genistein/kg diet. Control mice were given standard rodent chow. At the end of a four-week treatment period, bone histomorphometric and three-point bending properties were compared among groups. RESULTS Obese mice had larger bone areas (B.Ar.; P < 0.05) and total areas (Tt.Ar.; P < 0.05), but similar bone volume (B.Ar./Tt.Ar.; P > 0.05) of the proximal femoral epiphysis in comparison to lean mice. Treatment with genistein decreased Tt.Ar. and femur length, and increased ultimate force required to fracture the femur and the maximum deformation to failure (P < 0.05). CONCLUSIONS Genistein improves resistance to fracture from bending loads.
Collapse
Affiliation(s)
- Britton Odle
- Arizona College of Osteopathic Medicine, Midwestern University, Glendale, AZ USA
| | - Nathan Dennison
- Arizona College of Osteopathic Medicine, Midwestern University, Glendale, AZ USA
| | - Layla Al-Nakkash
- Department of Physiology, Arizona College of Osteopathic Medicine, Midwestern University, Glendale, AZ USA
| | - Tom L. Broderick
- Department of Physiology, Laboratory of Diabetes and Exercise Metabolism, Arizona College of Osteopathic Medicine, Midwestern University, Glendale, AZ USA
| | - Jeffrey H. Plochocki
- Department of Anatomy, Arizona College of Osteopathic Medicine, Midwestern University, Glendale, AZ 85308 USA
| |
Collapse
|
17
|
Pellegrini GG, Morales CC, Wallace TC, Plotkin LI, Bellido T. Avenanthramides Prevent Osteoblast and Osteocyte Apoptosis and Induce Osteoclast Apoptosis in Vitro in an Nrf2-Independent Manner. Nutrients 2016; 8:E423. [PMID: 27409635 PMCID: PMC4963899 DOI: 10.3390/nu8070423] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 06/30/2016] [Accepted: 07/06/2016] [Indexed: 01/11/2023] Open
Abstract
Oats contain unique bioactive compounds known as avenanthramides (AVAs) with antioxidant properties. AVAs might enhance the endogenous antioxidant cellular response by activation of the transcription factor Nrf2. Accumulation of reactive oxygen species plays a critical role in many chronic and degenerative diseases, including osteoporosis. In this disease, there is an imbalance between bone formation by osteoblasts and bone resorption by osteoclasts, which is accompanied by increased osteoblast/osteocyte apoptosis and decreased osteoclast apoptosis. We investigated the ability of the synthethic AVAs 2c, 2f and 2p, to 1-regulate gene expression in bone cells, 2-affect the viability of osteoblasts, osteocytes and osteoclasts, and the generation of osteoclasts from their precursors, and 3-examine the potential involvement of the transcription factor Nrf2 in these actions. All doses of AVA 2c and 1 and 5 µM dose of 2p up-regulated collagen 1A expression. Lower doses of AVAs up-regulated OPG (osteoprotegerin) in OB-6 osteoblastic cells, whereas 100 μM dose of 2f and all concentrations of 2c down-regulated RANKL gene expression in MLO-Y4 osteocytic cells. AVAs did not affect apoptosis of OB-6 osteoblastic cells or MLO-Y4 osteocytic cells; however, they prevented apoptosis induced by the DNA topoisomerase inhibitor etoposide, the glucocorticoid dexamethasone, and hydrogen peroxide. AVAs prevented apoptosis of both wild type (WT) and Nrf2 Knockout (KO) osteoblasts, demonstrating that AVAs-induced survival does not require Nrf2 expression. Further, KO osteoclast precursors produced more mature osteoclasts than WT; and KO cultures exhibited less apoptotic osteoclasts than WT cultures. Although AVAs did not affect WT osteoclasts, AVA 2p reversed the low apoptosis of KO osteoclasts. These in vitro results demonstrate that AVAs regulate, in part, the function of osteoblasts and osteocytes and prevent osteoblast/osteocyte apoptosis and increase osteoclast apoptosis; further, these regulatory actions are independent of Nrf2.
Collapse
Affiliation(s)
- Gretel G Pellegrini
- Department of Anatomy & Cell Biology, School of Medicine, Indiana University, Indianapolis, IN 46202, USA.
- Roudebush Veterans Administration Medical Center, Indianapolis, IN 46202, USA.
| | - Cynthya C Morales
- Department of Anatomy & Cell Biology, School of Medicine, Indiana University, Indianapolis, IN 46202, USA.
| | - Taylor C Wallace
- Department of Nutrition and Food Studies, George Mason University, Fairfax, VA 22030, USA.
- Think Healthy Group, LLC, Washington, DC 20001, USA.
- National Osteoporosis Foundation, Arlington, VA 22202, USA.
| | - Lilian I Plotkin
- Department of Anatomy & Cell Biology, School of Medicine, Indiana University, Indianapolis, IN 46202, USA.
- Roudebush Veterans Administration Medical Center, Indianapolis, IN 46202, USA.
| | - Teresita Bellido
- Department of Anatomy & Cell Biology, School of Medicine, Indiana University, Indianapolis, IN 46202, USA.
- Roudebush Veterans Administration Medical Center, Indianapolis, IN 46202, USA.
- Department of Medicine, Division of Endocrinology, School of Medicine, Indiana University, Indianapolis, IN 46202, USA.
| |
Collapse
|
18
|
Igwe EO, Charlton KE. A Systematic Review on the Health Effects of Plums (Prunus domestica and Prunus salicina). Phytother Res 2016; 30:701-31. [PMID: 26992121 DOI: 10.1002/ptr.5581] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Revised: 11/30/2015] [Accepted: 01/09/2016] [Indexed: 12/16/2022]
Abstract
In recent times, plums have been described as foods with health-promoting properties. Research on the health effects of plum continue to show promising results on its antiinflammatory, antioxidant and memory-improving characteristics. The increased interest in plum research has been attributed to its high phenolic content, mostly the anthocyanins, which are known to be natural antioxidants. A systematic review of literature was carried out to summarize the available evidence on the impact of plums (Prunus species; domestica and salicina) on disease risk factors and health outcomes. A number of databases were searched according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines for relevant studies on plum health effects in vitro, animal studies and clinical trials. A total of 73 relevant peer-reviewed journal articles were included in this review. The level of evidence remains low. Of the 25 human studies, 6 were confirmatory studies of moderate quality, while 19 were exploratory. Plums have been shown to possess antioxidant and antiallergic properties, and consumption is associated with improved cognitive function, bone health parameters and cardiovascular risk factors. Most of the human trials used the dried version of plums rather than fresh fruit, thus limiting translation to dietary messages of the positioning of plums in a healthy diet. Evidence on the health effect of plums has not been extensively studied, and the available evidence needs further confirmation. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Ezinne O Igwe
- School of Medicine, University of Wollongong, Northfields Avenue, Wollongong, New South Wales, 2522, Australia
| | - Karen E Charlton
- School of Medicine, University of Wollongong, Northfields Avenue, Wollongong, New South Wales, 2522, Australia
| |
Collapse
|
19
|
Xia G, Zhao Y, Yu Z, Tian Y, Wang Y, Wang S, Wang J, Xue C. Phosphorylated Peptides from Antarctic Krill (Euphausia superba) Prevent Estrogen Deficiency Induced Osteoporosis by Inhibiting Bone Resorption in Ovariectomized Rats. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015; 63:9550-9557. [PMID: 26456758 DOI: 10.1021/acs.jafc.5b04263] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
In the current study, we investigated the improvement of phosphorylated peptides from Antarctic krill Euphausia superba (PP-AKP) on osteoporosis in ovariectomized rats. PP-AKP was supplemented to ovariectomized Sprague-Dawley rats for 90 days. The results showed that PP-AKP treatment remarkably prevented the reduction of bone mass and improved cancellous bone structure and biochemical properties. PP-AKP also significantly decreased serum contents of tartrate-resistant acid phosphatase (TRACP), cathepsin K (Cath-k), matrix metalloproteinases-9 (MMP-9), deoxypyridinoline (DPD), C-terminal telopeptide of collagen I (CTX-1), Ca, and P. Mechanism investigation revealed that PP-AKP significantly increased the osteoprotegerin (OPG)/receptor activator of nuclear factor κB ligand (RANKL) ratio in mRNA expression, protein expression, and serum content. Further research suggested that NF-κB signaling pathways were inhibited by suppressing the mRNA and protein expressions of nuclear factor of activated T-cells (NFATc1) and tumor necrosis factor receptor-associated factor 6 (TRAF6), diminishing the mRNA expression and phosphorylation of nuclear factor κB p65 (NF-κB p65), three key transcription factors in NF-κB pathways. These results suggest that PP-AKP can improve osteoporosis by inhibiting bone resorption via suppressing the activation of osteoclastogenesis related NF-κB pathways.
Collapse
Affiliation(s)
- Guanghua Xia
- College of Food Science and Engineering, Ocean University of China , Qingdao, Shandong Province 266003, China
| | - Yanlei Zhao
- College of Food Science and Engineering, Ocean University of China , Qingdao, Shandong Province 266003, China
| | - Zhe Yu
- College of Food Science and Engineering, Ocean University of China , Qingdao, Shandong Province 266003, China
| | - Yingying Tian
- College of Food Science and Engineering, Ocean University of China , Qingdao, Shandong Province 266003, China
| | - Yiming Wang
- College of Food Science and Engineering, Ocean University of China , Qingdao, Shandong Province 266003, China
| | - Shanshan Wang
- College of Food Science and Engineering, Ocean University of China , Qingdao, Shandong Province 266003, China
| | - Jingfeng Wang
- College of Food Science and Engineering, Ocean University of China , Qingdao, Shandong Province 266003, China
| | - Changhu Xue
- College of Food Science and Engineering, Ocean University of China , Qingdao, Shandong Province 266003, China
| |
Collapse
|
20
|
Chen CH, Kang L, Lo HC, Hsu TH, Lin FY, Lin YS, Wang ZJ, Chen ST, Shen CL. Polysaccharides of Trametes versicolor Improve Bone Properties in Diabetic Rats. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015; 63:9232-9238. [PMID: 26308886 DOI: 10.1021/acs.jafc.5b02668] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
This study investigates the effects of Trametes versicolor (L.:Fr.) Pilát (TVP, also known as Yunzhi) on bone properties in diabetic rats. Forty-five male Wistar rats (8 weeks old) were fed either a chow diet (control) or a high-fat diet throughout the study period of 28 days. Animals in the high-fat-diet group were injected with nicotinamide and streptozotocin to induce diabetes mellitus (DM). The DM rats were divided into a group receiving distilled water (vehicle) and another group receiving TVP at 0.1 g/kg weight by gavage. Relative to the vehicle group, TVP gavage lowered postprandial blood sugar (225 ± 18 mg/dL for TVP vs 292 ± 15 mg/dL for vehicle, p < 0.001) on day 26. Compared to the vehicle group, TVP mitigated DM-induced bone deterioration as determined by increasing bone volume of proximal tibia (22.8 ± 1.4% for TVP vs 16.8 ± 1.3% for vehicle, p = 0.003), trabecular number (p = 0.011), and femoral bone strength (11% in maximal load, 22% in stiffness, 14% in modulus, p < 0.001), and by reducing loss of femoral cortical porosity by 25% (p < 0.001). Our study demonstrates the protective effect of TVP on bone properties was mediated through, in part, the improvement of hyperglycemic control in DM animals.
Collapse
Affiliation(s)
| | - Lin Kang
- Department of Obstetrics and Gynecology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University , Tainan 701, Taiwan
| | - Hui-Chen Lo
- Department of Nutritional Science, Fu Jen Catholic University , New Taipei City 510, Taiwan, Republic of China
| | - Tai-Hao Hsu
- Department of Bioindustry Technology and Department of Medicinal Botanicals and Health Care, Da-Yeh University , Dacun 515, Taiwan, Republic of China
| | - Fang-Yi Lin
- Department of Bioindustry Technology and Department of Medicinal Botanicals and Health Care, Da-Yeh University , Dacun 515, Taiwan, Republic of China
| | | | | | - Shih-Tse Chen
- Department of Psychiatry, National Taiwan University Hospital Hsin-Chu Branch , Hsin Chu 300, Taiwan, Republic of China
| | - Chwan-Li Shen
- Department of Pathology, Texas Tech University Health Sciences Center , 1A096B, 3601 4th Street, Lubbock, Texas 79430-8115, United States
| |
Collapse
|
21
|
The phenolic acids of Agen prunes (dried plums) or Agen prune juice concentrates do not account for the protective action on bone in a rat model of postmenopausal osteoporosis. Nutr Res 2015; 36:161-73. [PMID: 26574736 DOI: 10.1016/j.nutres.2015.10.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Revised: 10/12/2015] [Accepted: 10/15/2015] [Indexed: 12/20/2022]
Abstract
Dietary supplementation with dried plum (DP) has been shown to protect against and reverse established osteopenia in ovariectomized rodents. Based on in vitro studies, we hypothesized that DP polyphenols may be responsible for that bone-sparing effect. This study was designed to (1) analyze whether the main phenolic acids of DP control preosteoblast proliferation and activity in vitro; (2) determine if the polyphenolic content of DP or DP juice concentrate is the main component improving bone health in vivo; and (3) analyze whether DP metabolites directly modulate preosteoblast physiology ex vivo. In vitro, we found that neochlorogenic, chlorogenic, and caffeic acids induce the proliferation and repress the alkaline phosphatase activity of primary preosteoblasts in a dose-dependent manner. In vivo, low-chlorogenic acid Agen prunes (AP) enriched with a high-fiber diet and low-chlorogenic acid AP juice concentrate prevented the decrease of total femoral bone mineral density induced by estrogen deficiency in 5-month-old female rats and positively restored the variations of the bone markers osteocalcin and deoxypyridinoline. Ex vivo, we demonstrated that serum from rats fed with low-chlorogenic acid AP enriched with a high-fiber diet showed repressed proliferation and stimulated alkaline phosphatase activity of primary preosteoblasts. Overall, the beneficial action of AP on bone health was not dependent on its polyphenolic content.
Collapse
|
22
|
Hohman EE, Weaver CM. A grape-enriched diet increases bone calcium retention and cortical bone properties in ovariectomized rats. J Nutr 2015; 145:253-9. [PMID: 25644345 DOI: 10.3945/jn.114.198598] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Grapes and their associated phytochemicals have been investigated for beneficial effects on cardiovascular health, cancer prevention, and other chronic diseases, but the effect of grape consumption on bone health has not been fully determined. We previously found short-term benefits of grape products on reducing bone turnover in ovariectomized rats. OBJECTIVE The objective of this study was to determine the long-term benefits of a grape-enriched diet on bone in ovariectomized rats. METHODS Rats were ovariectomized at 3 mo of age and were administered a single dose of (45)Ca to prelabel bones at 4 mo of age. After a 1-mo equilibration period, baseline urinary (45)Ca excretion was determined. Rats (n = 22/group) were then randomly assigned to a modified AIN93M diet containing 25% freeze-dried grape powder or to a control diet for 8 wk. Urinary (45)Ca excretion was monitored throughout the study to determine changes in bone (45)Ca retention. Calcium balance was assessed after 1 and 8 wk of consuming the experimental diets, and a calcium kinetic study was performed at 8 wk. After 8 wk, femurs were collected for micro-computed tomographic imaging, 3-point bending, and reference point indentation. RESULTS Rats fed the grape-enriched diet had 44% greater net bone calcium retention than did rats fed the control diet. There were no differences in calcium balance due to diet at either week 1 or week 8, but there was a significant increase in net calcium absorption (10.6%) and retention (5.7%) from week 1 to week 8 in the grape-enriched diet group only. Grape-enriched diet-fed rats had 3% greater cortical thickness and 11% greater breaking strength. There were no differences in femur bone mineral density, trabecular microarchitecture, or reference point indentation variables due to diet. CONCLUSION This study of ovariectomized rats indicates that the consumption of grape products may improve calcium utilization and suppress bone turnover, resulting in improvements in bone quality.
Collapse
Affiliation(s)
- Emily E Hohman
- Department of Nutrition Science, Purdue University, West Lafayette, IN
| | - Connie M Weaver
- Department of Nutrition Science, Purdue University, West Lafayette, IN
| |
Collapse
|