1
|
Xu Y, Yang Y, Shi Y, Li B, Xie Y, Le G. Dietary methionine supplementation improves cognitive dysfunction associated with transsulfuration pathway upregulation in subacute aging mice. NPJ Sci Food 2024; 8:104. [PMID: 39702349 DOI: 10.1038/s41538-024-00348-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 11/25/2024] [Indexed: 12/21/2024] Open
Abstract
To explore the effects of methionine (Met) supplementation on cognitive dysfunction and the associated mechanisms in aging mice. The mice were administrated 0.15 g/kg/day D-galactose subcutaneously and fed a normal (0.86% Met) or a Met-supplemented diet (1.72% Met) for 11 weeks. Behavioral experiments were conducted, and we measured the plasma metabolite levels, hippocampal and plasma redox and inflammatory states, and hippocampal transsulfuration pathway-related parameters. Met supplementation prevented aging-induced anxiety and cognitive deficiencies, and normalized the plasma levels of multiple systemic metabolites (e.g., betaine, taurine, and choline). Furthermore, dietary Met supplementation abolished oxidative stress and inflammation, selectively modulated the expression of multiple cognition-related genes and proteins, and increased flux via the transsulfuration pathway in the hippocampi of aging mice, with significant increase in H2S and glutathione production. Our findings suggest that dietary Met supplementation prevented cognitive deficiencies in aging mice, probably because of increased flux via the transsulfuration pathway.
Collapse
Affiliation(s)
- Yuncong Xu
- Henan Key Laboratory of cereal and Oil Food Safety Inspection and Control, College of Food Science and Engineering, Henan University of Technology, Zhengzhou, Henan, China
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, China
| | - Yuhui Yang
- Henan Key Laboratory of cereal and Oil Food Safety Inspection and Control, College of Food Science and Engineering, Henan University of Technology, Zhengzhou, Henan, China.
| | - Yonghui Shi
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, China
| | - Bowen Li
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, China
| | - Yanli Xie
- Henan Key Laboratory of cereal and Oil Food Safety Inspection and Control, College of Food Science and Engineering, Henan University of Technology, Zhengzhou, Henan, China
| | - Guowei Le
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
2
|
Ruan H, Huang Y, Yue B, Zhang Y, Lv J, Miao K, Zhang D, Luo J, Yang M. Insights into the intestinal toxicity of foodborne mycotoxins through gut microbiota: A comprehensive review. Compr Rev Food Sci Food Saf 2023; 22:4758-4785. [PMID: 37755064 DOI: 10.1111/1541-4337.13242] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 08/24/2023] [Accepted: 08/25/2023] [Indexed: 09/28/2023]
Abstract
Mycotoxins, which are fungal metabolites, pose a significant global food safety concern by extensively contaminating food and feed, thereby seriously threatening public health and economic development. Many foodborne mycotoxins exhibit potent intestinal toxicity. However, the mechanisms underlying mycotoxin-induced intestinal toxicity are diverse and complex, and effective prevention or treatment methods for this condition have not yet been established in clinical and animal husbandry practices. In recent years, there has been increasing attention to the role of gut microbiota in the occurrence and development of intestinal diseases. Hence, this review aims to provide a comprehensive summary of the intestinal toxicity mechanisms of six common foodborne mycotoxins. It also explores novel toxicity mechanisms through the "key gut microbiota-key metabolites-key targets" axis, utilizing multiomics and precision toxicology studies with a specific focus on gut microbiota. Additionally, we examine the potential beneficial effects of probiotic supplementation on mycotoxin-induced toxicity based on initial gut microbiota-mediated mycotoxicity. This review offers a systematic description of how mycotoxins impact gut microbiota, metabolites, and genes or proteins, providing valuable insights for subsequent toxicity studies of mycotoxins. Furthermore, it lays a theoretical foundation for preventing and treating intestinal toxicity caused by mycotoxins and advancing food safety practices.
Collapse
Affiliation(s)
- Haonan Ruan
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Key Laboratory of Reproductive Genetics (Ministry of Education) and Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Zhejiang, China
| | - Ying Huang
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Binyang Yue
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yuanyuan Zhang
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Jianxin Lv
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Kun Miao
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Dan Zhang
- Key Laboratory of Reproductive Genetics (Ministry of Education) and Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Zhejiang, China
| | - Jiaoyang Luo
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Meihua Yang
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| |
Collapse
|
3
|
Ruan H, Wang Y, Zhang J, Huang Y, Yang Y, Wu C, Guo M, Luo J, Yang M. Zearalenone-14-glucoside specifically promotes dysplasia of Gut-Associated Lymphoid Tissue: A natural product for constructing intestinal nodular lymphatic hyperplasia model. J Adv Res 2023; 52:135-150. [PMID: 37230382 PMCID: PMC10555928 DOI: 10.1016/j.jare.2023.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 05/15/2023] [Accepted: 05/20/2023] [Indexed: 05/27/2023] Open
Abstract
INTRODUCTION Zearalenone-14-glucoside (Z14G) is a modified mycotoxin that widely contaminates food across the world. Our preliminary experiment showed that Z14G degrades to zearalenone (ZEN) in the intestine exerting toxicity. Notably, oral administration of Z14G in rats induces intestinal nodular lymphatic hyperplasia. OBJECTIVES To investigate the mechanism of Z14G intestinal toxicity and how it differs from ZEN toxicity. We conducted a precise toxicology study on the intestine of rats exposed to Z14G and ZEN using multi-omics technology. METHODS Rats were exposed to ZEN (5 mg/kg), Z14G-L (5 mg/kg), Z14G-H (10 mg/kg), and pseudo germ free (PGF)-Z14G-H (10 mg/kg) for 14 days. Histopathological studies were performed on intestines from each group and compared. Metagenomic, metabolomic, and proteomic analyses were performed on rat feces, serum, and intestines, respectively. RESULTS Histopathological studies showed that Z14G exposure resulted in dysplasia of gut-associated lymphoid tissue (GALT) compared to ZEN exposure. The elimination of gut microbes in the PGF-Z14G-H group alleviated or eliminated Z14G-induced intestinal toxicity and GALT dysplasia. Metagenomic analysis revealed that Z14G exposure significantly promoted the proliferation of Bifidobacterium and Bacteroides compared to ZEN. Metabolomic analysis showed that Z14G exposure significantly reduced bile acid, while proteomic analysis found that Z14G exposure significantly reduced the expression of C-type lectins compared to ZEN. CONCLUSIONS Our experimental results and previous research suggest that Z14G is hydrolyzed to ZEN by Bifidobacterium and Bacteroides promoting their co-trophic proliferation. This leads to inactivation of lectins by hyperproliferative Bacteroides when ZEN caused intestinal involvement, resulting in abnormal lymphocyte homing and ultimately GALT dysplasia. It is noteworthy that Z14G is a promising model drug to establish rat models of intestinal nodular lymphatic hyperplasia (INLH), which is of great significance for studying the pathogenesis, drug screening and clinical application of INLH.
Collapse
Affiliation(s)
- Haonan Ruan
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development Chinese Academy of Medical Sciences &Peking Union Medical College, Beijing 100193, China
| | - Yunyun Wang
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development Chinese Academy of Medical Sciences &Peking Union Medical College, Beijing 100193, China
| | - Jing Zhang
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development Chinese Academy of Medical Sciences &Peking Union Medical College, Beijing 100193, China
| | - Ying Huang
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development Chinese Academy of Medical Sciences &Peking Union Medical College, Beijing 100193, China
| | - Yanan Yang
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development Chinese Academy of Medical Sciences &Peking Union Medical College, Beijing 100193, China
| | - Chongming Wu
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development Chinese Academy of Medical Sciences &Peking Union Medical College, Beijing 100193, China
| | - Mengyue Guo
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development Chinese Academy of Medical Sciences &Peking Union Medical College, Beijing 100193, China
| | - Jiaoyang Luo
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development Chinese Academy of Medical Sciences &Peking Union Medical College, Beijing 100193, China.
| | - Meihua Yang
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development Chinese Academy of Medical Sciences &Peking Union Medical College, Beijing 100193, China.
| |
Collapse
|
4
|
Song Y, Wang H, Sun R, Chang J, Tang J, Bai Y, Xia C. Serum Metabolic Characterization of Vitamin E Deficiency in Holstein Cows during the Transition Period Based on Proton Nuclear Magnetic Resonance Spectroscopy. Animals (Basel) 2023; 13:2957. [PMID: 37760357 PMCID: PMC10525730 DOI: 10.3390/ani13182957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 09/03/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023] Open
Abstract
Vitamin E, a potent antioxidant, is a necessary and complex micronutrient for cows. During the transition period, vitamin E deficiency (VED) is among the highest prevalent micronutrient deficits in dairy cows. It may eventually result in oxidative stress and immunological malfunction, and it increases the risk of peripartum disorders. At present, detailed data on blood metabolites in VED cows are limited. Consequently, the purpose of this research was to examine the alterations in the serum metabolic profile of VED cows throughout the early postpartum period. Using comprehensive 1H nuclear magnetic resonance (1H NMR), the alterations in serum metabolic activities of VED cows were analyzed. In total, 28 multiparous Holstein cows were assigned according to serum α-tocopherol (α-Toc) concentrations into normal (α-Toc ≥ 4 μg/mL, n = 14) and VED (α-Toc < 3 μg/mL, n = 14) groups at 21 days postpartum, and their blood samples were collected for biochemical and 1H NMR analyses. A t-test on independent samples as well as multivariate statistics were used to assess the findings. In comparison with normal cows, VED cows showed significantly worse body condition scores, milk yield, and dry matter intake (p < 0.05). Significantly higher levels of serum non-esterified fatty acids, aspartate aminotransferase, low-density lipoprotein, and malonaldehyde were found in VED-affected cows, as well as lesser concentrations of serum albumin, high-density lipoprotein, and total antioxidant capacity in comparison with normal cows (p < 0.01), while other vitamins and minerals concentrations showed no distinction between the groups (p > 0.05). Furthermore, 24 upregulated serum metabolites were identified under VED conditions. The metabolomics pathway analysis of these metabolites demonstrated that a global metabolic response to VED in cows was represented by changes in 11 metabolic pathways, comprising energy, carbohydrate, and amino acid metabolism. From these results, we conclude that VED cows were more likely to experience a negative energy balance characterized by alterations of common systemic metabolic processes and develop oxidative stress, inflammation, and ultimately liver injury. This study provides the first evidence of metabolic changes in cows with VED.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Cheng Xia
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China; (Y.S.); (H.W.); (R.S.); (J.C.); (J.T.); (Y.B.)
| |
Collapse
|
5
|
Priyo TW, Uno S, Kokushi E, Toda K, Hasunuma H, Matsumoto D, Yamato O, Ohtani M, Widodo OS, Pambudi D, Taniguchi M, Takagi M. Measurement of serum short-chain fatty acid concentrations in cattle after oral administration of difructose anhydride III. Vet World 2023; 16:1505-1511. [PMID: 37621546 PMCID: PMC10446710 DOI: 10.14202/vetworld.2023.1505-1511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 06/14/2023] [Indexed: 08/26/2023] Open
Abstract
Background and Aim We previously reported the mitigation effects of difructose anhydride III (DFA III) on mycotoxins, such as zearalenon and sterigmatocystin, based on the urinary concentrations of these molecules in calves. This study was aimed at evaluating the effects of dietary supplementation of DFA III and the fermented status of DFA III in the intestine by comparing serum levels of short-chain fatty acid (SCFAs) in DFA III-supplemented cattle with those in non-supplemented control cattle. Materials and Methods Serum SCFA concentrations were measured in 30 Japanese Black heifers, aged 9-10 months, from two herds, using gas chromatography on days 0 (before DFA III supplementation), 9, and 14 after DFA III supplementation. Results A notably different trend was observed for isobutyric acid and enanthic acid, which may reflect the different fermentation status of supplementary DFA III in the intestine. Our results indicate the possibility that this trend observed in the intestinal tract following DFA III administration is associated with changes in the environment of intestinal bacterial flora, which may partially reflect the effects of DFA III supplementation on cattle. Conclusion Difructose anhydride III supplementation for at least 2 weeks affects the trend of blood SCFA concentrations in cattle. Our results provide evidence supporting the effects of DFA III on the intestinal environment and intestinal barrier function.
Collapse
Affiliation(s)
- Topas Wicaksono Priyo
- Department of Clinical Veterinary Science, Joint Graduate School of Veterinary Sciences, Yamaguchi University, Yamaguchi 753-8515, Japan
- Department of Reproduction and Obstetric, Faculty of Veterinary Medicine, Universitas Gadjah Mada, Indonesia
| | - Seiichi Uno
- Education and Research Center for Marine Resource and Environment Faculty of Fisheries, Kagoshima University, Kagoshima 890-0056, Japan
| | - Emiko Kokushi
- Education and Research Center for Marine Resource and Environment Faculty of Fisheries, Kagoshima University, Kagoshima 890-0056, Japan
| | - Katsuki Toda
- Shepherd Central Livestock Clinic, Kagoshima 899-1611, Japan
| | | | | | - Osamu Yamato
- Department of Veterinary Clinical Science, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima 890-0062, Japan
| | - Masayuki Ohtani
- Nippon Beet Sugar Manufacturing Co., Ltd., Obihiro 080-0835, Japan
| | - Oky Setyo Widodo
- Division of Animal Husbandry, Faculty of Veterinary Medicine, Universitas Airlangga, Indonesia
| | - Dhidhi Pambudi
- Department of Mathematics Education, Faculty of Teacher Training and Education, Sebelas Maret University, Indonesia
| | - Masayasu Taniguchi
- Department of Clinical Veterinary Science, Joint Graduate School of Veterinary Sciences, Yamaguchi University, Yamaguchi 753-8515, Japan
- Department of Veterinary Clinical Science , Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi 753-8515, Japan
| | - Mitsuhiro Takagi
- Department of Clinical Veterinary Science, Joint Graduate School of Veterinary Sciences, Yamaguchi University, Yamaguchi 753-8515, Japan
- Division of Animal Husbandry, Faculty of Veterinary Medicine, Universitas Airlangga, Indonesia
- Department of Veterinary Clinical Science , Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi 753-8515, Japan
| |
Collapse
|
6
|
Annunziato M, Bashirova N, Eeza MNH, Lawson A, Benetti D, Stieglitz JD, Matysik J, Alia A, Berry JP. High-Resolution Magic Angle Spinning (HRMAS) NMR Identifies Oxidative Stress and Impairment of Energy Metabolism by Zearalenone in Embryonic Stages of Zebrafish ( Danio rerio), Olive Flounder ( Paralichthys olivaceus) and Yellowtail Snapper ( Ocyurus chrysurus). Toxins (Basel) 2023; 15:397. [PMID: 37368698 DOI: 10.3390/toxins15060397] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 05/29/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023] Open
Abstract
Zearalenone (ZEA) is a mycotoxin, commonly found in agricultural products, linked to adverse health impacts in humans and livestock. However, less is known regarding effects on fish as both ecological receptors and economically relevant "receptors" through contamination of aquaculture feeds. In the present study, a metabolomics approach utilizing high-resolution magic angle spinning nuclear magnetic resonance (HRMAS NMR) was applied to intact embryos of zebrafish (Danio rerio), and two marine fish species, olive flounder (Paralichthys olivaceus) and yellowtail snapper (Ocyurus chrysurus), to investigate the biochemical pathways altered by ZEA exposure. Following the assessment of embryotoxicity, metabolic profiling of embryos exposed to sub-lethal concentrations showed significant overlap between the three species and, specifically, identified metabolites linked to hepatocytes, oxidative stress, membrane disruption, mitochondrial dysfunction, and impaired energy metabolism. These findings were further supported by analyses of tissue-specific production of reactive oxygen species (ROS) and lipidomics profiling and enabled an integrated model of ZEA toxicity in the early life stages of marine and freshwater fish species. The metabolic pathways and targets identified may, furthermore, serve as potential biomarkers for monitoring ZEA exposure and effects in fish in relation to ecotoxicology and aquaculture.
Collapse
Affiliation(s)
- Mark Annunziato
- Institute of Environment, Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33181, USA
| | - Narmin Bashirova
- Institute for Analytical Chemistry, University of Leipzig, 04103 Leipzig, Germany
- Institute for Medical Physics and Biophysics, University of Leipzig, 04107 Leipzig, Germany
| | - Muhamed N H Eeza
- Institute for Analytical Chemistry, University of Leipzig, 04103 Leipzig, Germany
- Institute for Medical Physics and Biophysics, University of Leipzig, 04107 Leipzig, Germany
| | - Ariel Lawson
- Institute of Environment, Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33181, USA
| | - Daniel Benetti
- Department of Marine Biology and Ecology, Rosenstiel School of Marine, Atmospheric & Earth Science, University of Miami, Miami, FL 33149, USA
| | - John D Stieglitz
- Department of Marine Biology and Ecology, Rosenstiel School of Marine, Atmospheric & Earth Science, University of Miami, Miami, FL 33149, USA
| | - Jörg Matysik
- Institute for Analytical Chemistry, University of Leipzig, 04103 Leipzig, Germany
| | - A Alia
- Institute for Medical Physics and Biophysics, University of Leipzig, 04107 Leipzig, Germany
- Leiden Institute of Chemistry, Leiden University, 2333 Leiden, The Netherlands
| | - John P Berry
- Institute of Environment, Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33181, USA
| |
Collapse
|
7
|
Ruan H, Wu J, Zhang F, Jin Z, Tian J, Xia J, Luo J, Yang M. Zearalenone Exposure Disrupts STAT-ISG15 in Rat Colon: A Potential Linkage between Zearalenone and Inflammatory Bowel Disease. Toxins (Basel) 2023; 15:392. [PMID: 37368693 DOI: 10.3390/toxins15060392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 06/01/2023] [Accepted: 06/02/2023] [Indexed: 06/29/2023] Open
Abstract
Zearalenone (ZEN), a prevalent mycotoxin contaminating food and known for its intestinal toxicity, has been suggested as a potential risk factor for inflammatory bowel disease (IBD), although the exact relationship between ZEN exposure and IBD remains unclear. In this study, we established a rat model of colon toxicity induced by ZEN exposure to investigate the key targets of ZEN-induced colon toxicity and explore the underlying connection between ZEN exposure and IBD. Histological staining of the rat colon revealed significant pathological changes resulting from ZEN exposure (p < 0.01). Furthermore, the proteomic analysis demonstrated a notable upregulation of protein expression levels, specifically STAT2 (0.12 ± 0.0186), STAT6 (0.36 ± 0.0475) and ISG15 (0.43 ± 0.0226) in the rat colon (p < 0.05). Utilizing bioinformatics analysis, we combined ZEN exposure and IBD clinical sample databases to reveal that ZEN exposure may increase the risk of IBD through activation of the STAT-ISG15 pathway. This study identified novel targets for ZEN-induced intestinal toxicity, providing the basis for further study of ZEN exposure to IBD.
Collapse
Affiliation(s)
- Haonan Ruan
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Jiashuo Wu
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100091, China
| | - Fangqing Zhang
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100091, China
| | - Ziyue Jin
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Jiao Tian
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Jing Xia
- School of Basic Medical Science, Peking University, Beijing 100191, China
| | - Jiaoyang Luo
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Meihua Yang
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| |
Collapse
|
8
|
Mandal P, Lanaridi O, Warth B, Ansari KM. Metabolomics as an emerging approach for deciphering the biological impact and toxicity of food contaminants: the case of mycotoxins. Crit Rev Food Sci Nutr 2023; 64:9859-9883. [PMID: 37283072 DOI: 10.1080/10408398.2023.2217451] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Exposure to mycotoxins through the dietary route occurs on a daily basis while their deleterious effects are exhibited in the form of ailments, such as inflammation, cancer, and hormonal imbalance. The negative impact of mycotoxins can be attributed to their interaction with various biomolecules and their interference in metabolic pathways. The activity of biomolecules, such as enzymes/receptors, which engage the intricate mechanism of endogenous metabolism, is more susceptible to disruption by metabolites of high toxicity, which gives rise to adverse health effects. Metabolomics is a useful analytical approach that can assist in unraveling such information. It can simultaneously and comprehensively analyze a large number of endogenous and exogenous molecules present in biofluids and can, thus, reveal biologically relevant perturbations following mycotoxin exposure. Information provided by genome, transcriptome and proteome analyses, which have been utilized for the elucidation of biological mechanisms so far, are further complemented by the addition of metabolomics in the available bioanalytics toolbox. Metabolomics can offer insight into complex biological processes and their respective response to several (co-)exposures. This review focuses on the most extensively studied mycotoxins reported in literature and their respective impact on the metabolome upon exposure.
Collapse
Affiliation(s)
- Payal Mandal
- Food Toxicology Laboratory, Food, Drug and Chemical Toxicology Group, CSIR-Indian Institute of Toxicology Research, Lucknow, Uttar Pradesh, India
| | - Olga Lanaridi
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Benedikt Warth
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Kausar M Ansari
- Food Toxicology Laboratory, Food, Drug and Chemical Toxicology Group, CSIR-Indian Institute of Toxicology Research, Lucknow, Uttar Pradesh, India
| |
Collapse
|
9
|
Effects of Exposure to Low Zearalenone Concentrations Close to the EU Recommended Value on Weaned Piglets’ Colon. Toxins (Basel) 2023; 15:toxins15030206. [PMID: 36977097 PMCID: PMC10055674 DOI: 10.3390/toxins15030206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/07/2023] [Accepted: 03/07/2023] [Indexed: 03/11/2023] Open
Abstract
Pigs are the most sensitive animal to zearalenone (ZEN) contamination, especially after weaning, with acute deleterious effects on different health parameters. Although recommendations not to exceed 100 µg/kg in piglets feed exists (2006/576/EC), there are no clear regulations concerning the maximum limit in feed for piglets, which means that more investigations are necessary to establish a guidance value. Due to these reasons, the present study aims to investigate if ZEN, at a concentration lower than the EC recommendation for piglets, might affect the microbiota or induce changes in SCFA synthesis and can trigger modifications of nutritional, physiological, and immunological markers in the colon (intestinal integrity through junction protein analysis and local immunity through IgA production). Consequently, the effect of two concentrations of zearalenone were tested, one below the limit recommended by the EC (75 µg/kg) and a higher one (290 µg/kg) for comparison reasons. Although exposure to contaminated feed with 75 µg ZEN/kg feed did not significantly affect the observed parameters, the 290 µg/kg feed altered several microbiota population abundances and the secretory IgA levels. The obtained results contribute to a better understanding of the adverse effects that ZEN can have in the colon of young pigs in a dose-dependent manner.
Collapse
|
10
|
Lo EKK, Wang X, Lee PK, Wong HC, Lee JCY, Gómez-Gallego C, Zhao D, El-Nezami H, Li J. Mechanistic insights into zearalenone-accelerated colorectal cancer in mice using integrative multi-omics approaches. Comput Struct Biotechnol J 2023; 21:1785-1796. [PMID: 36915382 PMCID: PMC10006464 DOI: 10.1016/j.csbj.2023.02.048] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 02/24/2023] [Accepted: 02/24/2023] [Indexed: 03/04/2023] Open
Abstract
Zearalenone (ZEA), a secondary metabolite of Fusarium fungi found in cereal-based foods, promotes the growth of colon, breast, and prostate cancer cells in vitro. However, the lack of animal studies hinders a deeper mechanistic understanding of the cancer-promoting effects of ZEA. This study aimed to determine the effect of ZEA on colon cancer progression and its underlying mechanisms. Through integrative analyses of transcriptomics, metabolomics, metagenomics, and host phenotypes, we investigated the impact of a 4-week ZEA intervention on colorectal cancer in xenograft mice. Our results showed a twofold increase in tumor weight with the 4-week ZEA intervention. ZEA exposure significantly increased the mRNA and protein levels of BEST4, DGKB, and Ki67 and the phosphorylation levels of ERK1/2 and AKT. Serum metabolomic analysis revealed that the levels of amino acids, including histidine, arginine, citrulline, and glycine, decreased significantly in the ZEA group. Furthermore, ZEA lowered the alpha diversity of the gut microbiota and reduced the abundance of nine genera, including Tuzzerella and Rikenella. Further association analysis indicated that Tuzzerella was negatively associated with the expression of BEST4 and DGKB genes, serum uric acid levels, and tumor weight. Additionally, circulatory hippuric acid levels positively correlated with tumor weight and the expression of oncogenic genes, including ROBO3, JAK3, and BEST4. Altogether, our results indicated that ZEA promotes colon cancer progression by enhancing the BEST4/AKT/ERK1/2 pathway, lowering circulatory amino acid concentrations, altering gut microbiota composition, and suppressing short chain fatty acids production.
Collapse
Affiliation(s)
- Emily Kwun Kwan Lo
- School of Biological Sciences, University of Hong Kong, Pokfulam 999077, Hong Kong, China
| | - Xiuwan Wang
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong, China
| | - Pui-Kei Lee
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, China
| | - Ho-Ching Wong
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, China
| | - Jetty Chung-Yung Lee
- School of Biological Sciences, University of Hong Kong, Pokfulam 999077, Hong Kong, China
| | - Carlos Gómez-Gallego
- Institute of Public Health and Clinical Nutrition, School of Medicine, University of Eastern Finland, FI-70211 Kuopio, Finland
| | - Danyue Zhao
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, China.,Research Institute for Future Food, The Hong Kong Polytechnic University, Hong Kong, China.,Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hong Kong, China
| | - Hani El-Nezami
- School of Biological Sciences, University of Hong Kong, Pokfulam 999077, Hong Kong, China.,Institute of Public Health and Clinical Nutrition, School of Medicine, University of Eastern Finland, FI-70211 Kuopio, Finland
| | - Jun Li
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong, China.,School of Data Science, City University of Hong Kong, Hong Kong, China
| |
Collapse
|
11
|
Wang H, Xiao Y, Xu C, Cao Y, Jing P, Wu S, Liu J, Bao W. Integrated Metabolomics and Transcriptomics Analyses Reveal Metabolic Mechanisms in Porcine Intestinal Epithelial Cells under Zearalenone Stress. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:6561-6572. [PMID: 35583463 DOI: 10.1021/acs.jafc.2c01107] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Zearalenone (ZEA) is a mycotoxin that frequently occurs in agricultural crops and related products and seriously threatens both animal feed and human food safety. To identify key metabolites and regulators involved in ZEA toxicological processes, we performed metabolomic and transcriptomic analyses of porcine IPEC-J2 intestinal epithelial cells upon ZEA exposure using liquid chromatography-mass spectrometry (LC-MS)/MS and RNA-seq techniques. A total of 325 differential metabolites and 5646 differentially expressed genes were detected. Integrated analyses of metabolomic and transcriptomic data indicated that metabolic processes including lipid metabolism, amino acid metabolism, and carbohydrate metabolism were most affected. Exogenous addition of the key metabolite l-arginine significantly facilitated ZEA metabolism and ameliorated ZEA-induced reactive oxygen species levels and cell apoptosis. Furthermore, l -arginine contributed to the expression of phase II detoxification genes (SULT2B1, GSTA1, GSTM3, and GPX4). l-Arginine addition also increased the protein levels of LC3-II and Beclin 1, and downregulated p62/SQSTM1 levels, indicating its regulatory roles in autophagic flux activation upon ZEA exposure. This study provided global insights into metabolic and transcriptional changes as well as key metabolites and regulators underlying the cellular response to ZEA exposure, and paved the way for the identification of metabolic and molecular targets for biomonitoring and controlling contamination by ZEA.
Collapse
Affiliation(s)
- Haifei Wang
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Yeyi Xiao
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Chao Xu
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Yue Cao
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Pengfei Jing
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Shenglong Wu
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Jianfeng Liu
- National Engineering Laboratory for Animal Breeding and MOA Key Laboratory of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100093, China
| | - Wenbin Bao
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
12
|
Bechynska K, Kosek V, Fenclova M, Muchova L, Smid V, Suk J, Chalupsky K, Sticova E, Hurkova K, Hajslova J, Vitek L, Stranska M. The Effect of Mycotoxins and Silymarin on Liver Lipidome of Mice with Non-Alcoholic Fatty Liver Disease. Biomolecules 2021; 11:1723. [PMID: 34827721 PMCID: PMC8615755 DOI: 10.3390/biom11111723] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 11/03/2021] [Accepted: 11/16/2021] [Indexed: 01/18/2023] Open
Abstract
Milk thistle-based dietary supplements have become increasingly popular. The extract from milk thistle (Silybum marianum) is often used for the treatment of liver diseases because of the presence of its active component, silymarin. However, the co-occurrence of toxic mycotoxins in these preparations is quite frequent as well. The objective of this study was to investigate the changes in composition of liver lipidome and other clinical characteristics of experimental mice fed by a high-fat methionine-choline deficient diet inducing non-alcoholic fatty liver disease. The mice were exposed to (i) silymarin, (ii) mycotoxins (trichothecenes, enniatins, beauvericin, and altertoxins) and (iii) both silymarin and mycotoxins, and results were compared to the controls. The liver tissue extracts were analyzed by ultra-high performance liquid chromatography coupled with high-resolution tandem mass spectrometry. Using tools of univariate and multivariate statistical analysis, we were able to identify 48 lipid species from the classes of diacylglycerols, triacylglycerols, free fatty acids, fatty acid esters of hydroxy fatty acids and phospholipids clearly reflecting the dysregulation of lipid metabolism upon exposure to mycotoxin and/or silymarin.
Collapse
Affiliation(s)
- Kamila Bechynska
- Department of Food Chemistry and Analysis, University of Chemistry and Technology, 166 28 Prague, Czech Republic; (K.B.); (V.K.); (M.F.); (K.H.); (J.H.)
| | - Vit Kosek
- Department of Food Chemistry and Analysis, University of Chemistry and Technology, 166 28 Prague, Czech Republic; (K.B.); (V.K.); (M.F.); (K.H.); (J.H.)
| | - Marie Fenclova
- Department of Food Chemistry and Analysis, University of Chemistry and Technology, 166 28 Prague, Czech Republic; (K.B.); (V.K.); (M.F.); (K.H.); (J.H.)
| | - Lucie Muchova
- Institute of Medical Biochemistry and Laboratory Diagnostics, General University Hospital and 1st Faculty of Medicine, Charles University, 128 08 Prague, Czech Republic; (L.M.); (J.S.); (L.V.)
| | - Vaclav Smid
- 4th Department of Internal Medicine, General University Hospital and 1st Faculty of Medicine, Charles University, 128 00 Prague, Czech Republic;
| | - Jakub Suk
- Institute of Medical Biochemistry and Laboratory Diagnostics, General University Hospital and 1st Faculty of Medicine, Charles University, 128 08 Prague, Czech Republic; (L.M.); (J.S.); (L.V.)
| | - Karel Chalupsky
- Institute of Molecular Genetics of the Czech Academy of Sciences, 142 20 Prague, Czech Republic;
| | - Eva Sticova
- Institute for Clinical and Experimental Medicine, 140 21 Prague, Czech Republic;
| | - Kamila Hurkova
- Department of Food Chemistry and Analysis, University of Chemistry and Technology, 166 28 Prague, Czech Republic; (K.B.); (V.K.); (M.F.); (K.H.); (J.H.)
| | - Jana Hajslova
- Department of Food Chemistry and Analysis, University of Chemistry and Technology, 166 28 Prague, Czech Republic; (K.B.); (V.K.); (M.F.); (K.H.); (J.H.)
| | - Libor Vitek
- Institute of Medical Biochemistry and Laboratory Diagnostics, General University Hospital and 1st Faculty of Medicine, Charles University, 128 08 Prague, Czech Republic; (L.M.); (J.S.); (L.V.)
- 4th Department of Internal Medicine, General University Hospital and 1st Faculty of Medicine, Charles University, 128 00 Prague, Czech Republic;
| | - Milena Stranska
- Department of Food Chemistry and Analysis, University of Chemistry and Technology, 166 28 Prague, Czech Republic; (K.B.); (V.K.); (M.F.); (K.H.); (J.H.)
| |
Collapse
|
13
|
Nagl V, Grenier B, Pinton P, Ruczizka U, Dippel M, Bünger M, Oswald IP, Soler L. Exposure to Zearalenone Leads to Metabolic Disruption and Changes in Circulating Adipokines Concentrations in Pigs. Toxins (Basel) 2021; 13:toxins13110790. [PMID: 34822574 PMCID: PMC8618343 DOI: 10.3390/toxins13110790] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 10/26/2021] [Accepted: 11/04/2021] [Indexed: 11/16/2022] Open
Abstract
Zearalenone (ZEN) is a mycotoxin classified as an endocrine disruptor. Many endocrine disruptors are also metabolic disruptors able to modulate energy balance and inflammatory processes in a process often involving a family of protein hormones known as adipokines. The aim of our study was to elucidate the role of ZEN as metabolic disruptor in pigs by investigating the changes in energy balance and adipokines levels in response to different treatment diets. To this end, weaned piglets (n = 10/group) were exposed to either basal feed or feed contaminated with 680 and 1620 µg/kg ZEN for 28 days. Serum samples collected at days 7 and 21 were subjected to biochemistry analysis, followed by determination of adipokine levels using a combined approach of protein array and ELISA. Results indicate that ZEN has an impact on lipid and glucose metabolism that was different depending on the dose and time of exposure. In agreement with these changes, ZEN altered circulating adipokines concentrations, inducing significant changes in adiponectin, resistin, and fetuin B. Our results suggest that ZEN may function as a natural metabolism-disrupting chemical.
Collapse
Affiliation(s)
- Veronika Nagl
- BIOMIN Research Center, BIOMIN Holding GmbH, Technopark 1, 3430 Tulln, Austria; (V.N.); (B.G.)
| | - Bertrand Grenier
- BIOMIN Research Center, BIOMIN Holding GmbH, Technopark 1, 3430 Tulln, Austria; (V.N.); (B.G.)
| | - Philippe Pinton
- Toxalim (Research Centre in Food Toxicology), INRAE, ENVT, INP-Purpan, University of Toulouse, UPS, 31027 Toulouse, France; (P.P.); (I.P.O.)
| | - Ursula Ruczizka
- University Clinic for Swine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, Veterinärplatz 1, 1210 Vienna, Austria; (U.R.); (M.D.); (M.B.)
| | - Maximiliane Dippel
- University Clinic for Swine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, Veterinärplatz 1, 1210 Vienna, Austria; (U.R.); (M.D.); (M.B.)
| | - Moritz Bünger
- University Clinic for Swine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, Veterinärplatz 1, 1210 Vienna, Austria; (U.R.); (M.D.); (M.B.)
| | - Isabelle P. Oswald
- Toxalim (Research Centre in Food Toxicology), INRAE, ENVT, INP-Purpan, University of Toulouse, UPS, 31027 Toulouse, France; (P.P.); (I.P.O.)
| | - Laura Soler
- Toxalim (Research Centre in Food Toxicology), INRAE, ENVT, INP-Purpan, University of Toulouse, UPS, 31027 Toulouse, France; (P.P.); (I.P.O.)
- Correspondence: ; Tel.: +33-582-066-403
| |
Collapse
|
14
|
Zhang W, Zhang S, Wang J, Shan A, Xu L. Changes in intestinal barrier functions and gut microbiota in rats exposed to zearalenone. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 204:111072. [PMID: 32758694 DOI: 10.1016/j.ecoenv.2020.111072] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 07/22/2020] [Accepted: 07/24/2020] [Indexed: 05/10/2023]
Abstract
Zearalenone (ZEN) is a mycotoxin that causes serious health problems in humans and animals. However, few studies have focused on the destruction of the intestinal barrier caused by ZEN. In this study, rats were exposed to different dosages of ZEN (0, 0.2, 1.0 and 5.0 mg/kg bw) by gavage for 4 weeks. The results showed that 1.0 and 5.0 mg/kg ZEN impaired gut morphology, induced the inflammatory response, reduced mucin expression, increased intestinal permeability, decreased the expression of TJ proteins and activated the RhoA/ROCK pathway. However, 0.2 mg/kg ZEN had no significant effect on intestinal barrier except for reducing the expression of some TJ proteins and mucins. Moreover, exposure to ZEN led to slight imbalance in microbiota. In conclusion, ZEN exposure resulted in intestinal barrier dysfunction by inducing intestinal microbiota dysbiosis, decreasing the expression of TJ proteins, activating the RhoA/ROCK pathway, and inducing the inflammatory response.
Collapse
Affiliation(s)
- Wei Zhang
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, 150030, PR China.
| | - Shihua Zhang
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, 150030, PR China.
| | - Jingjing Wang
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, 150030, PR China.
| | - Anshan Shan
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, 150030, PR China.
| | - Li Xu
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin, 150030, PR China.
| |
Collapse
|
15
|
Wang Q, Zhang Y, Zheng N, Zhao S, Li S, Wang J. The biochemical and metabolic profiles of dairy cows with mycotoxins-contaminated diets. PeerJ 2020; 8:e8742. [PMID: 32257637 PMCID: PMC7103205 DOI: 10.7717/peerj.8742] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 02/13/2020] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Previous studies on the effects of mycotoxins have solely focused on their biochemical profiles or products in dairy ruminants. Changes in metabolism that occur after exposure to mycotoxins, as well as biochemical changes, have not been explored. METHODS We measured the biochemical and metabolic changes in dairy cows after exposure to mycotoxins using biochemical analyses and nuclear magnetic resonance. Twenty-four dairy cows were randomly assigned to three different treatment groups. Control cows received diets with 2 kg uncontaminated cottonseed. Cows in the 50% replacement group received the same diet as the control group, but with 1 kg of uncontaminated cottonseed and 1 kg of cottonseed contaminated with mycotoxins. Cows in the 100% replacement group received the same diet as the control, but with 2 kg contaminated cottonseed. RESULTS The results showed that serum γ-glutamyl transpeptidase and total antioxidant capacities were significantly affected by cottonseed contaminated with mycotoxins. There were also significant differences in isovalerate and NH3-N levels, and significant differences in the eight plasma metabolites among the three groups. These metabolites are mainly involved in amino acid metabolism pathways. Therefore, the results suggest that amino acid metabolism pathways may be affected by mycotoxins exposure.
Collapse
Affiliation(s)
- Qian Wang
- Chinese Academy of Agricultural Sciences, State Key Laboratory of Animal Nutrition, Institute of Animal Science, Beijing, People’s Republic of China
- Chinese Academy of Agricultural Sciences, Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Beijing, People’s Republic of China
- Chinese Academy of Agricultural Sciences, Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Beijing, People’s Republic of China
| | - Yangdong Zhang
- Chinese Academy of Agricultural Sciences, State Key Laboratory of Animal Nutrition, Institute of Animal Science, Beijing, People’s Republic of China
- Chinese Academy of Agricultural Sciences, Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Beijing, People’s Republic of China
- Chinese Academy of Agricultural Sciences, Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Beijing, People’s Republic of China
| | - Nan Zheng
- Chinese Academy of Agricultural Sciences, State Key Laboratory of Animal Nutrition, Institute of Animal Science, Beijing, People’s Republic of China
- Chinese Academy of Agricultural Sciences, Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Beijing, People’s Republic of China
- Chinese Academy of Agricultural Sciences, Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Beijing, People’s Republic of China
| | - Shengguo Zhao
- Chinese Academy of Agricultural Sciences, State Key Laboratory of Animal Nutrition, Institute of Animal Science, Beijing, People’s Republic of China
- Chinese Academy of Agricultural Sciences, Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Beijing, People’s Republic of China
- Chinese Academy of Agricultural Sciences, Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Beijing, People’s Republic of China
| | - Songli Li
- Chinese Academy of Agricultural Sciences, State Key Laboratory of Animal Nutrition, Institute of Animal Science, Beijing, People’s Republic of China
- Chinese Academy of Agricultural Sciences, Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Beijing, People’s Republic of China
- Chinese Academy of Agricultural Sciences, Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Beijing, People’s Republic of China
| | - Jiaqi Wang
- Chinese Academy of Agricultural Sciences, State Key Laboratory of Animal Nutrition, Institute of Animal Science, Beijing, People’s Republic of China
- Chinese Academy of Agricultural Sciences, Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Beijing, People’s Republic of China
- Chinese Academy of Agricultural Sciences, Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Beijing, People’s Republic of China
| |
Collapse
|
16
|
Wang Y, Zhao G, Wang H, Zhang Y, Zhang N, Wei D, Feng R, Wei Q. Label-free electrochemical immunosensor based on biocompatible nanoporous Fe3O4and biotin–streptavidin system for sensitive detection of zearalenone. Analyst 2020; 145:1368-1375. [DOI: 10.1039/c9an02543j] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In this study, a sensitive label-free electrochemical immunosensor was designed based on nanoporous Fe3O4and a biotin–streptavidin system to specifically detect zearalenone (ZEN).
Collapse
Affiliation(s)
- Yaoguang Wang
- Shandong Provincial Key Laboratory of Molecular Engineering
- School of Chemistry and Pharmaceutical Engineering
- Qilu University of Technology (Shandong Academy of Sciences)
- Jinan 250353
- China
| | - Guanhui Zhao
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong
- School of Chemistry and Chemical Engineering
- University of Jinan
- Jinan 250022
| | - Huan Wang
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong
- School of Chemistry and Chemical Engineering
- University of Jinan
- Jinan 250022
| | - Yong Zhang
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong
- School of Chemistry and Chemical Engineering
- University of Jinan
- Jinan 250022
| | - Nuo Zhang
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong
- School of Chemistry and Chemical Engineering
- University of Jinan
- Jinan 250022
| | - Dong Wei
- School of Water Conservancy and Environment
- University of Jinan
- Jinan 250022
- China
| | - Rui Feng
- School of Water Conservancy and Environment
- University of Jinan
- Jinan 250022
- China
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection
| | - Qin Wei
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong
- School of Chemistry and Chemical Engineering
- University of Jinan
- Jinan 250022
| |
Collapse
|
17
|
Cheng Q, Jiang S, Huang L, Ge J, Wang Y, Yang W. Zearalenone induced oxidative stress in the jejunum in postweaning gilts through modulation of the Keap1-Nrf2 signaling pathway and relevant genes1. J Anim Sci 2019; 97:1722-1733. [PMID: 30753491 DOI: 10.1093/jas/skz051] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 02/01/2019] [Indexed: 12/17/2022] Open
Abstract
Researches have shown that dietary zearalenone (ZEA) caused oxidative stress in the liver and reproductive organs of postweaning gilts. However, information on the effects of ZEA on oxidative stress of the small intestine in the piglets is limited. The objective of this study was to determine the effects of ZEA exposure on oxidative stress, the Kelch-like erythroid cell-derived protein with CNC homology (ECH)-associated protein 1 (Keap1)-nuclear factor erythroid 2-related factor 2 (Nrf2) signaling pathway and on immunohistochemistry of the jejunum in postweaning gilts. A 35-d feeding experiment using 40 postweaning gilts (Landrace × Yorkshire × Duroc) with an average BW of 14.01 ± 0.86 kg in 4 groups fed corn-soybean meal-based diets containing 0, 0.5, 1.0, and 1.5 mg ZEA/kg was conducted. The jejunum was obtained at the end of the experiment and used for analyses. The results showed that the activities of total superoxide dismutase and glutathione peroxidase and the relative expressions of Keap1 mRNA and protein in the jejunum linearly and quadratically decreased (P < 0.05) with increasing concentrations of ZEA in the diets. The malondialdehyde content, the integrated optical density of Nrf2 and glutathione peroxidase 1 (GPX1), and the relative expressions of Nrf2, GPX1, quinone oxidoreductase 1 (NQO1), and modifier subunit of glutamate-cysteine ligase (GCLM) mRNA and proteins linearly and quadratically increased (P < 0.05) with increasing levels of ZEA. Immunohistochemical analysis showed that Nrf2 and GPX1 immunoreactivity was enhanced by the ZEA treatments, and block localization of yellow and brown immunoreactive substances in the jejunum was observed with increasing levels of ZEA. The results suggest that ingested ZEA induced oxidative stress in the jejunum in postweaning gilts through upregulation of the Keap1-Nrf2 signaling pathway and downstream target genes NQO1, HO1, and GCLM, indicating the important role of the Keap1-Nrf2 signaling pathway in oxidative stress induced by ZEA in the jejunum of the postweaning piglets.
Collapse
Affiliation(s)
- Qun Cheng
- College of Animal Sciences and Technology and Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai'an, Shandong, P.R. China
| | - Shuzhen Jiang
- College of Animal Sciences and Technology and Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai'an, Shandong, P.R. China
| | - Libo Huang
- College of Animal Sciences and Technology and Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai'an, Shandong, P.R. China
| | - Jinshan Ge
- Shandong Zhongcheng Feed Technology Co., Ltd., Feicheng, Shandong, P.R. China
| | - Yuxi Wang
- Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, Lethbridge, Canada
| | - Weiren Yang
- College of Animal Sciences and Technology and Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai'an, Shandong, P.R. China
| |
Collapse
|
18
|
Bin P, Azad MAK, Liu G, Zhu D, Kim SW, Yin Y. Effects of different levels of methionine on sow health and plasma metabolomics during late gestation. Food Funct 2019; 9:4979-4988. [PMID: 30187897 DOI: 10.1039/c8fo01477a] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Fetal growth, survival, and development are benchmarks for the production performance of sows, and methionine has been shown to impact fetal protein mass and the transport of nutrients through the uteroplacental vasculature. This study evaluated the effects of dietary methionine, administered during the late gestation period, on the production performance of sows. Specifically, it measured the effect of methionine on biochemical indicators in the plasma, plasma metabolites, and fecal bacterial communities. Thirty Landrace × Large White sows at day 90 of gestation were randomly assigned to three groups and fed the following diets: (1) a basal diet containing 0.36% methionine; (2) a basal diet + 0.12% methionine (0.48% methionine); and (3) a basal diet + 0.24% methionine (0.60% methionine). The results showed that the 0.48% methionine diet significantly (P < 0.05) increased piglets' birth weight, and the 0.60% methionine diet significantly (P < 0.05) improved the survival ratio. Dietary methionine lowered the triglyceride (TG) levels (P < 0.05), total bilirubin (BILT3) (P < 0.001) concentration, and gamma-glutamyl transferase (GGT) (P < 0.05) enzyme activity in the plasma at farrowing. In the plasma metabolomics, dietary methionine increased plasma pyroglutamic acid and decreased 2-pyrrolidinone, hypotaurine, and anyl-histidine in both the 0.48% methionine and 0.60% methionine groups. In addition, the bacteria richness (Chao1 and ACE) and diversity (Shannon) were reduced in the 0.48% methionine group. For the microbiota composition, at the family level, the 0.48% methionine group had a significant increase (P < 0.05) in the relative abundance of Methanobacteriaceae compared to the other two groups, but a decrease in the relative abundance of Enterobacteriaceae, Ruminococcaceae and Erysipelotrichaceae compared to the 0.60% methionine group. In conclusion, a diet consisting of 0.48% methionine administered during the late gestation period can improve the production performance of sows and maintain their health.
Collapse
Affiliation(s)
- Peng Bin
- Hunan Province Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Changsha, Hunan 410125, China.
| | | | | | | | | | | |
Collapse
|
19
|
Gao X, Xiao ZH, Liu M, Zhang NY, Khalil MM, Gu CQ, Qi DS, Sun LH. Dietary Silymarin Supplementation Alleviates Zearalenone-Induced Hepatotoxicity and Reproductive Toxicity in Rats. J Nutr 2018; 148:1209-1216. [PMID: 30137478 DOI: 10.1093/jn/nxy114] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 05/01/2018] [Indexed: 12/22/2022] Open
Abstract
Background Zearalenone (ZEN) can cause serious defects in development and reproduction in humans and animals. Silymarin shows antioxidant and estrogenic effects. Objective This study was conducted to determine if silymarin can antagonize ZEN-induced hepatic and reproductive toxicities. Methods Thirty-five 21-d-old female Sprague-Dawley rats (n = 7/diet) were fed a control diet (Ctrl) or Ctrl plus 20 mg ZEN/kg or Ctrl plus 20 mg ZEN/kg with 100, 200, or 500 mg silymarin/kg for 6 wk. Serum, livers, ovaries, and uterus were collected at week 6 for biochemistry, hormone, and redox status and selected gene and protein assays. Results The consumption of ZEN decreased (P < 0.05) the final body weight by 17.9%, induced liver injury, increased (P < 0.05) aspartate aminotransferase and alkaline phosphatase activities, and decreased (P < 0.05) total protein and albumin concentrations in serum by 16.7-40.6%. ZEN also caused reproductive toxicity, including decreased (P < 0.05) 17β-estradiol and increased (P < 0.05) follicle-stimulating hormone concentrations in serum by 12.7-46.3% and induced histopathologic alterations in the liver, ovaries, and uterus. Interestingly, these alterations induced by ZEN were alleviated (P < 0.05) by silymarin supplementation at 100, 200, and 500 mg/kg. Moreover, silymarin supplementation at the 3 doses mitigated (P < 0.05) ZEN-induced impairment in hepatic glutathione peroxidase activity, total antioxidant capacity, and malondialdehyde concentration by 17.6-100%. Meanwhile, silymarin supplementation at all doses upregulated (P < 0.05) phospho-ribosomal protein S6 kinase 1 (p-RPS6KB1) and 3β-hydroxysteroid dehydrogenase (HSD3B) by 43.0-121% but downregulated (P < 0.05) AMP-activated protein kinase (AMPK) and 3α-hydroxysteroid dehydrogenase (HSD3A) in the liver relative to the ZEN group by 11.2-40.6%. In addition, silymarin supplementation at all doses elevated (P < 0.05) HSD3B by 1.8- to 2.5-fold and decreased (P < 0.05) estrogen receptor 1 (ESR1), ATP binding cassette (ABC) c1, and Abcc5 in ovaries and the uterus by 10.7-63.2%. Conclusion Dietary silymarin supplementation at 100, 200, and 500 mg/kg protected rats from ZEN-induced hepatotoxicity and reproductive toxicity, potentially through improvement in the antioxidant capacity and regulation in the genes related to protein synthesis, ZEN metabolism, hormone synthesis, and ABC transporters in the tissues.
Collapse
Affiliation(s)
- Xin Gao
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
- Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, China
| | - Zhuo-Hui Xiao
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
- Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, China
| | - Meng Liu
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
- Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, China
| | - Ni-Ya Zhang
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
- Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, China
| | - Mahmoud Mohamed Khalil
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
- Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, China
| | - Chang-Qin Gu
- Department of Veterinary Pathology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, China
| | - De-Sheng Qi
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
- Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, China
| | - Lv-Hui Sun
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
- Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, China
| |
Collapse
|
20
|
Yang Y, Zhang J, Wu G, Sun J, Wang Y, Guo H, Shi Y, Cheng X, Tang X, Le G. Dietary methionine restriction regulated energy and protein homeostasis by improving thyroid function in high fat diet mice. Food Funct 2018; 9:3718-3731. [PMID: 29978874 DOI: 10.1039/c8fo00685g] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Methionine-restricted diets (MRD) show an integrated series of beneficial health effects, including improving insulin sensitivity, limiting fat deposition, and decreasing oxidative stress, and inflammation responses. We aimed to explore the systemic responses to a MRD in mice fed with a high fat (HFD) and clarify the possible mechanism. Mice were fed with a control diet (0.86% methionine + 4% fat, CON), HFD (0.86% methionine + 20% fat), or MRD (0.17% methionine + 20% fat) for 22 consecutive weeks. HFD-fed mice showed widespread systemic metabolic disorders and thyroid dysfunction. A MRD significantly increased energy expenditure (e.g. fatty acid oxidation, glycolysis, and tricarboxylic acid cycle metabolism), regulated protein homeostasis, improved gut microbiota functions, prevented thyroid dysfunction, increased plasma thyroxine and triiodothyronine levels, decreased plasma thyroid stimulating hormone levels, increased type 2 deiodinase (DIO2) activity, and up-regulated mRNA and protein expression levels of DIO2 and thyroid hormone receptor α1 in the skeletal muscle. These results suggest that a MRD can improve the metabolic disorders induced by a HFD, and especially regulate energy and protein homeostasis likely through improved thyroid function. Thus, reducing methionine intake (e.g. through a vegan diet) may improve metabolic health in animals and humans.
Collapse
Affiliation(s)
- Yuhui Yang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Fructo-Oligosaccharide (DFA III) Feed Supplementation for Mitigation of Mycotoxin Exposure in Cattle-Clinical Evaluation by a Urinary Zearalenone Monitoring System. Toxins (Basel) 2018; 10:toxins10060223. [PMID: 29857569 PMCID: PMC6024752 DOI: 10.3390/toxins10060223] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 05/23/2018] [Accepted: 05/30/2018] [Indexed: 12/13/2022] Open
Abstract
The potential effect of difructose anhydride III (DFA III) supplementation in cattle feed was evaluated using a previously developed urinary-zearalenone (ZEN) monitoring system. Japanese Black cattle from two beef herds aged 9⁻10 months were used. DFA III was supplemented for two weeks. ZEN concentrations in feed were similar in both herds (0.27 and 0.22 mg/kg in roughage and concentrates, respectively), and below the maximum allowance in Japan. ZEN, α-zearalenol (α-ZOL), and β-ZOL concentrations in urine were measured using LC/MS/MS the day before DFA III administration, 9 and 14 days thereafter, and 9 days after supplementation ceased. Significant differences in ZEN, α-ZOL, β-ZOL, and total ZEN were recorded on different sampling dates. The concentration of inorganic phosphate in DFA III-supplemented animals was significantly higher than in controls on day 23 (8.4 vs. 7.7 mg/dL), suggesting a possible role of DFA III in tight junction of intestinal epithelial cells. This is the first evidence that DFA III reduces mycotoxin levels reaching the systemic circulation and excreted in urine. This preventive effect may involve an improved tight-junction-dependent intestinal barrier function. Additionally, our practical approach confirmed that monitoring of urinary mycotoxin is useful for evaluating the effects of dietary supplements to prevent mycotoxin adsorption.
Collapse
|
22
|
Rychlik M, Kanawati B, Schmitt-Kopplin P. Foodomics as a promising tool to investigate the mycobolome. Trends Analyt Chem 2017. [DOI: 10.1016/j.trac.2017.05.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
23
|
Gas Chromatography-Mass Spectrometry for Metabolite Profiling of Japanese Black Cattle Naturally Contaminated with Zearalenone and Sterigmatocystin. Toxins (Basel) 2017; 9:toxins9100294. [PMID: 28934162 PMCID: PMC5666341 DOI: 10.3390/toxins9100294] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 09/14/2017] [Accepted: 09/18/2017] [Indexed: 12/11/2022] Open
Abstract
The objective of this study was to evaluate the metabolic profile of cattle fed with or without zearalenone (ZEN) and sterigmatocystin (STC)-contaminated diets using a gas chromatography-mass spectrometry metabolomics approach. Urinary samples were collected from individual animals (n = 6 per herd) from fattening female Japanese Black (JB) cattle herds (23 months old, 550–600 kg). Herd 1 had persistently high urinary ZEN and STC concentrations due to the presence of contaminated rice straw. Herd 2, the second female JB fattening herd (23 months old, 550–600 kg), received the same dietary feed as Herd 1, with non-contaminated rice straw. Urine samples were collected from Herd 1, two weeks after the contaminated rice straw was replaced with uncontaminated rice straw (Herd 1N). Identified metabolites were subjected to principal component analysis (PCA) and ANOVA. The PCA revealed that the effects on cattle metabolites depended on ZEN and STC concentrations. The contamination of cattle feed with multiple mycotoxins may alter systemic metabolic processes, including metabolites associated with ATP generation, amino acids, glycine-conjugates, organic acids, and purine bases. The results obtained from Herd 1N indicate that a two-week remedy period was not sufficient to improve the levels of urinary metabolites, suggesting that chronic contamination with mycotoxins may have long-term harmful effects on the systemic metabolism of cattle.
Collapse
|
24
|
De Pascali SA, Gambacorta L, Oswald IP, Del Coco L, Solfrizzo M, Fanizzi FP. 1H NMR and MVA metabolomic profiles of urines from piglets fed with boluses contaminated with a mixture of five mycotoxins. Biochem Biophys Rep 2017; 11:9-18. [PMID: 28955762 PMCID: PMC5614695 DOI: 10.1016/j.bbrep.2017.05.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 03/28/2017] [Accepted: 05/24/2017] [Indexed: 01/03/2023] Open
Abstract
Metabolic profile of urine from piglets administered with single boluses contaminated with mycotoxin mixture (deoxynivalenol, aflatoxin B1, fumonisin B1, zearalenone, and ochratoxin A) were studied by 1H NMR spectroscopy and chemometrics (PCA, PLS-DA, and OPLS-DA). The mycotoxin levels were close to the established maximum and guidance levels for animal feed (2003/100/EC and 2006/576/EC). Urine samples were obtained from four groups of four piglets before (control, C) or within 24 h (treated, T) after receiving a contaminated boluses with increasing doses of mycotoxins (boluses 1-4). For the two highest dose groups, the urines were collected also after one week of wash out (W). For the two lowest doses groups no significant differences between the C and T samples were observed. By contrast, for the two highest doses groups the T urines separated from the controls for a higher relative content of creatinine, p-cresol glucuronide and phenyl acetyl glycine and lower concentration of betaine and TMAO. Interestingly, a similar profile was found for both W and T urines suggesting, at least for the highest doses used, serious alteration after a single bolus of mycotoxin mixture.
Collapse
Affiliation(s)
- Sandra A. De Pascali
- University of Salento, Di.S.Te.B.A., Campus Ecotekne, via Provle Lecce-Monteroni, 73100, Lecce, Italy
| | - Lucia Gambacorta
- Institute of Sciences of Food Production (ISPA), National Research Council of Italy (CNR), Via Amendola 122/O, 70126 Bari, Italy
| | - Isabelle P. Oswald
- UMR 1331 Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRA, ENVT, INP-Purpan, UPS, 180 Chemin de Tournefeuille, F-31027 Toulouse, Cedex, France
| | - Laura Del Coco
- University of Salento, Di.S.Te.B.A., Campus Ecotekne, via Provle Lecce-Monteroni, 73100, Lecce, Italy
| | - Michele Solfrizzo
- Institute of Sciences of Food Production (ISPA), National Research Council of Italy (CNR), Via Amendola 122/O, 70126 Bari, Italy
| | - Francesco Paolo Fanizzi
- University of Salento, Di.S.Te.B.A., Campus Ecotekne, via Provle Lecce-Monteroni, 73100, Lecce, Italy
| |
Collapse
|
25
|
Yang Y, Zhang H, Yan B, Zhang T, Gao Y, Shi Y, Le G. Health Effects of Dietary Oxidized Tyrosine and Dityrosine Administration in Mice with Nutrimetabolomic Strategies. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:6957-6971. [PMID: 28742334 DOI: 10.1021/acs.jafc.7b02003] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
This study aims to investigate the health effects of long-term dietary oxidized tyrosine (O-Tyr) and its main product (dityrosine) administration on mice metabolism. Mice received daily intragastric administration of either O-Tyr (320 μg/kg body weight), dityrosine (Dityr, 320 μg/kg body weight), or saline for consecutive 6 weeks. Urine and plasma samples were analyzed by NMR-based metabolomics strategies. Body weight, clinical chemistry, oxidative damage indexes, and histopathological data were obtained as complementary information. O-Tyr and Dityr exposure changed many systemic metabolic processes, including reduced choline bioavailability, led to fat accumulation in liver, induced hepatic injury, and renal dysfunction, resulted in changes in gut microbiota functions, elevated risk factor for cardiovascular disease, altered amino acid metabolism, induced oxidative stress responses, and inhibited energy metabolism. These findings implied that it is absolutely essential to reduce the generation of oxidation protein products in food system through improving modern food processing methods.
Collapse
Affiliation(s)
- Yuhui Yang
- The Laboratory of Food Nutrition and Functional Factors, School of Food Science and Technology, Jiangnan University , Wuxi, Jiangsu 214122, China
| | - Hui Zhang
- The Laboratory of Food Nutrition and Functional Factors, School of Food Science and Technology, Jiangnan University , Wuxi, Jiangsu 214122, China
| | - Biao Yan
- The Laboratory of Food Nutrition and Functional Factors, School of Food Science and Technology, Jiangnan University , Wuxi, Jiangsu 214122, China
| | - Tianyu Zhang
- The Laboratory of Food Nutrition and Functional Factors, School of Food Science and Technology, Jiangnan University , Wuxi, Jiangsu 214122, China
| | - Ying Gao
- The Laboratory of Food Nutrition and Functional Factors, School of Food Science and Technology, Jiangnan University , Wuxi, Jiangsu 214122, China
| | - Yonghui Shi
- The Laboratory of Food Nutrition and Functional Factors, School of Food Science and Technology, Jiangnan University , Wuxi, Jiangsu 214122, China
- The State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University , Wuxi, Jiangsu 214122, China
| | - Guowei Le
- The Laboratory of Food Nutrition and Functional Factors, School of Food Science and Technology, Jiangnan University , Wuxi, Jiangsu 214122, China
- The State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University , Wuxi, Jiangsu 214122, China
| |
Collapse
|
26
|
Bugáňová M, Pelantová H, Holubová M, Šedivá B, Maletínská L, Železná B, Kuneš J, Kačer P, Kuzma M, Haluzík M. The effects of liraglutide in mice with diet-induced obesity studied by metabolomics. J Endocrinol 2017; 233:93-104. [PMID: 28138003 DOI: 10.1530/joe-16-0478] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 01/30/2017] [Indexed: 01/09/2023]
Abstract
Liraglutide is the glucagon-like peptide-1 receptor agonist widely used for the treatment of type 2 diabetes mellitus. Recently, it has been demonstrated to decrease cardiovascular morbidity and mortality in patients with type 2 diabetes and high cardiovascular risk. Although the major modes of liraglutide action are well-known, its detailed action at the metabolic level has not been studied. To this end, we explored the effect of 2-week liraglutide treatment in C57BL/6 male mice with obesity and diabetes induced by 13 weeks of high-fat diet using NMR spectroscopy to capture the changes in urine metabolic profile induced by the therapy. The liraglutide treatment decreased body and fat pads weight along with blood glucose and triglyceride levels. NMR spectroscopy identified 11 metabolites significantly affected by liraglutide treatment as compared to high-fat diet-fed control group. These metabolites included ones involved in nicotinamide adenine dinucleotide metabolism, β-oxidation of fatty acids and microbiome changes. Although majority of the metabolites changed after liraglutide treatment were similar as the ones previously identified after vildagliptin administration in a similar mouse model, the changes in creatinine, taurine and trigonelline were specific for liraglutide administration. The significance of these changes and its possible use in the personalization of antidiabetic therapy in humans requires further research.
Collapse
Affiliation(s)
- Martina Bugáňová
- Institute of MicrobiologyAcademy of Sciences of the Czech Republic, Prague, Czech Republic
- Faculty of Chemical TechnologyUniversity of Chemistry and Technology Prague, Prague, Czech Republic
| | - Helena Pelantová
- Institute of MicrobiologyAcademy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Martina Holubová
- Institute of Organic Chemistry and BiochemistryAcademy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Blanka Šedivá
- Faculty of Applied SciencesUniversity of West Bohemia, Plzeň, Czech Republic
| | - Lenka Maletínská
- Institute of Organic Chemistry and BiochemistryAcademy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Blanka Železná
- Institute of Organic Chemistry and BiochemistryAcademy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Jaroslav Kuneš
- Institute of Organic Chemistry and BiochemistryAcademy of Sciences of the Czech Republic, Prague, Czech Republic
- Institute of PhysiologyAcademy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Petr Kačer
- Institute of MicrobiologyAcademy of Sciences of the Czech Republic, Prague, Czech Republic
- Faculty of Chemical TechnologyUniversity of Chemistry and Technology Prague, Prague, Czech Republic
| | - Marek Kuzma
- Institute of MicrobiologyAcademy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Martin Haluzík
- Centre for Experimental Medicine and Diabetes CentreInstitute for Clinical and Experimental Medicine, Prague, Czech Republic
- Institute of Medical Biochemistry and Laboratory Diagnostics1st Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| |
Collapse
|
27
|
Yang Y, Yan B, Cheng X, Ding Y, Tian X, Shi Y, Le G. Metabolomic studies on the systemic responses of mice with oxidative stress induced by short-term oxidized tyrosine administration. RSC Adv 2017. [DOI: 10.1039/c7ra02665j] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Oxidized tyrosine (O-Tyr) has attracted more interest in recent years because many researchers have discovered that it and its product (dityrosine) are associated with pathological conditions, especially various age-related disorders in biological systems.
Collapse
Affiliation(s)
- Yuhui Yang
- The Laboratory of Food Nutrition and Functional Factors
- School of Food Science and Technology
- Jiangnan University
- Wuxi 214122
- China
| | - Biao Yan
- The Laboratory of Food Nutrition and Functional Factors
- School of Food Science and Technology
- Jiangnan University
- Wuxi 214122
- China
| | - Xiangrong Cheng
- The Laboratory of Food Nutrition and Functional Factors
- School of Food Science and Technology
- Jiangnan University
- Wuxi 214122
- China
| | - Yinyi Ding
- The Laboratory of Food Nutrition and Functional Factors
- School of Food Science and Technology
- Jiangnan University
- Wuxi 214122
- China
| | - Xu Tian
- The Laboratory of Food Nutrition and Functional Factors
- School of Food Science and Technology
- Jiangnan University
- Wuxi 214122
- China
| | - Yonghui Shi
- The Laboratory of Food Nutrition and Functional Factors
- School of Food Science and Technology
- Jiangnan University
- Wuxi 214122
- China
| | - Guowei Le
- The Laboratory of Food Nutrition and Functional Factors
- School of Food Science and Technology
- Jiangnan University
- Wuxi 214122
- China
| |
Collapse
|
28
|
Competitive immunochromatographic assay for leptosperin as a plausible authentication marker of manuka honey. Food Chem 2016; 194:362-5. [DOI: 10.1016/j.foodchem.2015.08.040] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Revised: 07/18/2015] [Accepted: 08/11/2015] [Indexed: 11/22/2022]
|
29
|
Liu G, Wu X, Jia G, Zhao H, Chen X, Wu C, Wang J. Effects of glutamine against oxidative stress in the metabolome of rats—new insight. RSC Adv 2016. [DOI: 10.1039/c6ra14469a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Glutamine exerts potential functions against the harmful effects of oxidative stress on animals.
Collapse
Affiliation(s)
- Guangmang Liu
- Institute of Animal Nutrition
- Sichuan Agricultural University
- Chengdu 611130
- China
- Key Laboratory for Animal Disease-Resistance Nutrition of China
| | - XianJian Wu
- Institute of Animal Nutrition
- Sichuan Agricultural University
- Chengdu 611130
- China
- Key Laboratory for Animal Disease-Resistance Nutrition of China
| | - Gang Jia
- Institute of Animal Nutrition
- Sichuan Agricultural University
- Chengdu 611130
- China
- Key Laboratory for Animal Disease-Resistance Nutrition of China
| | - Hua Zhao
- Institute of Animal Nutrition
- Sichuan Agricultural University
- Chengdu 611130
- China
- Key Laboratory for Animal Disease-Resistance Nutrition of China
| | - Xiaoling Chen
- Institute of Animal Nutrition
- Sichuan Agricultural University
- Chengdu 611130
- China
- Key Laboratory for Animal Disease-Resistance Nutrition of China
| | - Caimei Wu
- Institute of Animal Nutrition
- Sichuan Agricultural University
- Chengdu 611130
- China
- Key Laboratory for Animal Disease-Resistance Nutrition of China
| | - Jing Wang
- Maize Research Institute
- Sichuan Agricultural University
- Chengdu 611130
- China
| |
Collapse
|
30
|
Pea fiber and wheat bran fiber show distinct metabolic profiles in rats as investigated by a 1H NMR-based metabolomic approach. PLoS One 2014; 10:e0119117. [PMID: 25742634 PMCID: PMC4351085 DOI: 10.1371/journal.pone.0119117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
31
|
Liu G, Xiao L, Fang T, Cai Y, Jia G, Zhao H, Wang J, Chen X, Wu C. Pea fiber and wheat bran fiber show distinct metabolic profiles in rats as investigated by a 1H NMR-based metabolomic approach. PLoS One 2014; 9:e115561. [PMID: 25541729 PMCID: PMC4277351 DOI: 10.1371/journal.pone.0115561] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Accepted: 11/25/2014] [Indexed: 01/01/2023] Open
Abstract
This study aimed to examine the effect of pea fiber (PF) and wheat bran fiber (WF) supplementation in rat metabolism. Rats were assigned randomly to one of three dietary groups and were given a basal diet containing 15% PF, 15% WF, or no supplemental fiber. Urine and plasma samples were analyzed by NMR-based metabolomics. PF significantly increased the plasma levels of 3-hydroxybutyrate, and myo-inositol as well as the urine levels of alanine, hydroxyphenylacetate, phenylacetyglycine, and α-ketoglutarate. However, PF significantly decreased the plasma levels of isoleucine, leucine, lactate, and pyruvate as well as the urine levels of allantoin, bile acids, and trigonelline. WF significantly increased the plasma levels of acetone, isobutyrate, lactate, myo-inositol, and lipids as well as the urine levels of alanine, lactate, dimethylglycine, N-methylniconamide, and α-ketoglutarate. However, WF significantly decreased the plasma levels of amino acids, and glucose as well as the urine levels of acetate, allantoin, citrate, creatine, hippurate, hydroxyphenylacetate, and trigonelline. Results suggest that PF and WF exposure can promote antioxidant activity and can exhibit common systemic metabolic changes, including lipid metabolism, energy metabolism, glycogenolysis and glycolysis metabolism, protein biosynthesis, and gut microbiota metabolism. PF can also decrease bile acid metabolism. These findings indicate that different fiber diet may cause differences in the biofluid profile in rats.
Collapse
Affiliation(s)
- Guangmang Liu
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Chengdu, 611130, Sichuan, China
| | - Liang Xiao
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Chengdu, 611130, Sichuan, China
| | - Tingting Fang
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Chengdu, 611130, Sichuan, China
| | - Yimin Cai
- Japan International Research Center for Agricultural Sciences, 1-1 sukuba, Ohwashi, TIbaragi, 305-8686, Japan
| | - Gang Jia
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Chengdu, 611130, Sichuan, China
| | - Hua Zhao
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Chengdu, 611130, Sichuan, China
| | - Jing Wang
- Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Xiaoling Chen
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Chengdu, 611130, Sichuan, China
| | - Caimei Wu
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Chengdu, 611130, Sichuan, China
| |
Collapse
|
32
|
Liu G, Fang T, Yan T, Jia G, Zhao H, Chen X, Wu C, Wang J. Systemic responses of weaned rats to spermine against oxidative stress revealed by a metabolomic strategy. RSC Adv 2014. [DOI: 10.1039/c4ra09975c] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
33
|
Taranu I, Braicu C, Marin DE, Pistol GC, Motiu M, Balacescu L, Beridan Neagoe I, Burlacu R. Exposure to zearalenone mycotoxin alters in vitro porcine intestinal epithelial cells by differential gene expression. Toxicol Lett 2014; 232:310-25. [PMID: 25455459 DOI: 10.1016/j.toxlet.2014.10.022] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Revised: 10/10/2014] [Accepted: 10/13/2014] [Indexed: 12/21/2022]
Abstract
The gut represents the main route of intoxication with mycotoxins. To evaluate the effect and the underlying molecular changes that occurred when the intestine is exposed to zearalenone, a Fusarium sp mycotoxin, porcine epithelial cells (IPEC-1) were treated with 10μM of ZEA for 24h and analysed by microarray using Gene Spring GX v.11.5. Our results showed that 10μM of ZEA did not affect cell viability, but can increase the expression of toll like receptors (TLR1-10) and of certain cytokines involved in inflammation (TNF-α, IL-1β, IL-6, IL-8, MCP-1, IL-12p40, CCL20) or responsible for the recruitment of immune cells (IL-10, IL-18). Microarray results identified 190 genes significantly and differentially expressed, of which 70% were up-regulated. ZEA determined the over expression of ITGB5 gene, essential against the attachment and adhesion of ETEC to porcine jejunal cells and of TFF2 implicated in mucosal protection. An up-regulation of glutathione peroxidase enzymes (GPx6, GPx2, GPx1) was also observed. Upon ZEA challenge, genes like GTF3C4 responsible for the recruitment of polymerase III and initiation of tRNA transcription in eukaryotes and STAT5B were significantly higher induced. The up-regulation of CD97 gene and the down-regulation of tumour suppressor genes (DKK-1, PCDH11X and TC531386) demonstrates the carcinogenic potential of ZEA.
Collapse
Affiliation(s)
- Ionelia Taranu
- Laboratory of Animal Biology, National Institute for Research and Development for Biology and Animal Nutrition, Calea Bucuresti No. 1, Balotesti, Ilfov 077015, Romania.
| | - Cornelia Braicu
- National Institute for Research and Development for Oncology "Prof. Dr. Ion Chiricuta", Str. Republicii, No. 34-36, Cluj-Napoca, Romania
| | - Daniela Eliza Marin
- Laboratory of Animal Biology, National Institute for Research and Development for Biology and Animal Nutrition, Calea Bucuresti No. 1, Balotesti, Ilfov 077015, Romania
| | - Gina Cecilia Pistol
- Laboratory of Animal Biology, National Institute for Research and Development for Biology and Animal Nutrition, Calea Bucuresti No. 1, Balotesti, Ilfov 077015, Romania
| | - Monica Motiu
- Laboratory of Animal Biology, National Institute for Research and Development for Biology and Animal Nutrition, Calea Bucuresti No. 1, Balotesti, Ilfov 077015, Romania
| | - Loredana Balacescu
- National Institute for Research and Development for Oncology "Prof. Dr. Ion Chiricuta", Str. Republicii, No. 34-36, Cluj-Napoca, Romania
| | - Ioana Beridan Neagoe
- National Institute for Research and Development for Oncology "Prof. Dr. Ion Chiricuta", Str. Republicii, No. 34-36, Cluj-Napoca, Romania
| | - Radu Burlacu
- Mathematics and Physics Department, University of Agriculture and Veterinary Medicine, Bulevardul Marasti No. 59, Bucharest 011464, Romania
| |
Collapse
|
34
|
Liu G, Yang G, Fang T, Cai Y, Wu C, Wang J, Huang Z, Chen X. NMR-based metabolomic studies reveal changes in biochemical profile of urine and plasma from rats fed with sweet potato fiber or sweet potato residue. RSC Adv 2014. [DOI: 10.1039/c4ra02421d] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|