1
|
Lama S, Pappa M, Brandão Watanabe N, Formosa-Dague C, Marchal W, Adriaensens P, Vandamme D. Interference of extracellular soluble algal organic matter on flocculation-sedimentation harvesting of Chlorella sp. BIORESOURCE TECHNOLOGY 2024; 411:131290. [PMID: 39153690 DOI: 10.1016/j.biortech.2024.131290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 08/06/2024] [Accepted: 08/14/2024] [Indexed: 08/19/2024]
Abstract
Extracellular soluble algal organic matter (AOM) significantly interferes with microalgae flocculation. This study investigated the effects of various AOM fractions on Chlorella sp. flocculation using ferric chloride (FeCl3), sodium hydroxide (NaOH), and chitosan. All flocculants achieved high separation efficiency (87-99 %), but higher dosages were required in the presence of AOM. High molecular weight (>50 kDa) AOM fraction was identified as the primary inhibitor of flocculation across different pH levels, whereas low/medium molecular weight (<3 and <50 kDa) AOM had minimal impact. Compositional analysis revealed that the inhibitory AOM fraction is a glycoprotein rich in carbohydrates, including neutral, amino, and acidic sugars. The significance of this study is in identifying carboxyl groups (-COOH) from acidic monomers in >50 kDa AOM that inhibit flocculation. Understanding AOM composition and the interaction dynamics between AOM, cells, and flocculants is crucial for enhancing the techno-economics and sustainability of flocculation-based microalgae harvesting.
Collapse
Affiliation(s)
- Sanjaya Lama
- Analytical and Circular Chemistry, Institute for Materials Research (imo-imomec), Hasselt University, Agoralaan Building D, 3590 Diepenbeek, Belgium.
| | - Michaela Pappa
- Analytical and Circular Chemistry, Institute for Materials Research (imo-imomec), Hasselt University, Agoralaan Building D, 3590 Diepenbeek, Belgium.
| | - Nathalia Brandão Watanabe
- Analytical and Circular Chemistry, Institute for Materials Research (imo-imomec), Hasselt University, Agoralaan Building D, 3590 Diepenbeek, Belgium; Chemical Engineering Department, Escola Politécnica of the University of São Paulo, São Paulo, Brazil.
| | - Cécile Formosa-Dague
- Toulouse Biotechnology Institute, Université de Toulouse, INSA, INRAE, CNRS, Toulouse, France.
| | - Wouter Marchal
- Analytical and Circular Chemistry, Institute for Materials Research (imo-imomec), Hasselt University, Agoralaan Building D, 3590 Diepenbeek, Belgium.
| | - Peter Adriaensens
- Analytical and Circular Chemistry, Institute for Materials Research (imo-imomec), Hasselt University, Agoralaan Building D, 3590 Diepenbeek, Belgium.
| | - Dries Vandamme
- Analytical and Circular Chemistry, Institute for Materials Research (imo-imomec), Hasselt University, Agoralaan Building D, 3590 Diepenbeek, Belgium.
| |
Collapse
|
2
|
Ma X, Li C, Zhang J, Xin J, Mosongo I, Yang J, Hu K. Monosaccharide composition analysis by 2D quantitative gsHSQC i. Carbohydr Res 2024; 541:109168. [PMID: 38833821 DOI: 10.1016/j.carres.2024.109168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 05/13/2024] [Accepted: 05/27/2024] [Indexed: 06/06/2024]
Abstract
The physicochemical properties and biological activities of polysaccharides depend on their structures. Monosaccharide composition analysis is indispensable for the structural characterization of polysaccharides and is helpful in the quality control of polysaccharide preparation. Here, using a model mixture and tamarind seed polysaccharide as examples, we demonstrated that a quantitative 2D NMR method, gsHSQCi (three gradient-selective Heteronuclear Single Quantum Coherence spectra acquired with incremented repetition times, i = 1, 2, 3) can directly quantify a variety of monosaccharides in solution with adequate precision and accuracy, requiring no derivatization, postprocessing steps and column separation. Both anomeric and non-anomeric signals of monosaccharides can be utilized for content determination. More accurate quantification of fructose in a mixture containing nine monosaccharides is obtained, which is difficult to achieve by quantitative 1D 1HNMR and the common PMP-HPLC method (high-performance liquid chromatography through pre-column derivatization with 1-phenyl-3-methyl-5-pyrazolone) due to the peak overlapping and the poor derivatization efficiency, respectively. The results also revealed that Na[Fe(EDTA)] can serve as a proper relaxation-enhancing agent for saccharide samples to save experimental time. We expect that this approach can be applied as an alternative to analyzing the monosaccharide composition and be helpful in interpreting the structure of polysaccharides.
Collapse
Affiliation(s)
- Xiaofang Ma
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China; Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China.
| | - Caihong Li
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China
| | - Junyin Zhang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China
| | - Jiang Xin
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China
| | - Isidore Mosongo
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China
| | - Jiahui Yang
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China.
| | - Kaifeng Hu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China; Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China.
| |
Collapse
|
3
|
Alahmed A, Simsek S. Improving Biodegradable Films from Corn Bran Arabinoxylan for Hydrophobic Material and Green Food Packaging. Foods 2024; 13:1914. [PMID: 38928856 PMCID: PMC11202524 DOI: 10.3390/foods13121914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/07/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
Non-biodegradable plastic materials pose environmental hazards and contribute to pollution. Arabinoxylan (AX) films have been created for applications in food packaging to replace these materials. The water interaction characteristics of biodegradable AX films were assessed following the extraction of AX from dry-milled corn bran (DCB), wet-milled corn bran (WCB), and dried distiller's grains with solubles (DDGS). Films were prepared with laccase and sorbitol before surface modification with lipase-vinyl acetate. Water solubility of the modified DCB films was significantly reduced (p < 0.05); however, the water solubility of modified WCB films decreased insignificantly (p > 0.05) compared to unmodified films. Water vapor permeability of the modified AX films from WCB and DDGS was significantly reduced (p < 0.05), unlike their unmodified counterparts. The biodegradation rates of the modified WCB AX and DDGS films increased after 63 and 99 days, respectively, compared to the unmodified films. The hydrophilic nature of AX polymers from WCB and DDGS enhances the biodegradability of the films. This study found that the modified WCB AX film was more hydrophobic, and the modified DDGS AX film was more biodegradable than the modified DCB AX film. Overall, surface modifications have potential for improving hydrophobicity of biopolymer films.
Collapse
Affiliation(s)
- Abdulrahman Alahmed
- Department of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh 11451, Saudi Arabia;
- Cereal Science Graduate Program, Peltier Complex, Department of Plant Sciences, North Dakota State University, Fargo, ND 58102, USA
| | - Senay Simsek
- Whistler Center for Carbohydrate Research, Department of Food Science, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
4
|
Kotani Y, Shibata N, Lin MI, Nakazawa M, Ueda M, Sakamoto T. Fractionation of cassava pectins and their detailed structural analyses using various pectinolytic enzymes. Int J Biol Macromol 2024; 269:132054. [PMID: 38704063 DOI: 10.1016/j.ijbiomac.2024.132054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 04/16/2024] [Accepted: 05/01/2024] [Indexed: 05/06/2024]
Abstract
In this study, we analyzed the pectin structure within the pulp of cassava. Cassava pectin, derived from cassava pulp treatment at 120 °C for 90 min, was separated into four fractions (CP-P, CP-SD1, CP-SD2F, and CP-SD2R) based on variations in water solubility, electrical properties, and molecular weights. Sugar composition analysis demonstrated an abundance of homogalacturonan (HG) in CP-P and CP-SD2F, rhamnogalacturonan I (RG-I) in CP-SD2R, and neutral sugars in CP-SD1. Because RG-I possesses a complex structure, we analyzed CP-SD2R using various pectinolytic enzymes. Galactose was the major sugar in CP-SD2R accounting for 49 %, of which 65 % originated from arabinogalactan I, 9 % from galactose and galactooligosaccharides, 5 % from arabinogalactan II, and 11 % from galactoarabinan. Seventy-four percent of arabinose in CP-SD2R was present as galactoarabinan. The methylation (DM) and acetylation (DAc) degrees of cassava pectin were 11 and 15 %, respectively. The HG and RG-I regions exhibited DAc values of 5 and 44 %, respectively, signifying the high DAc of RG-I compared to HG. Information derived from the structural analysis of cassava pectin will enable efficient degradation of pectin and cellulose, leading to the use of cassava pulp as a raw material for biorefineries.
Collapse
Affiliation(s)
- Yuka Kotani
- Department of Applied Biological Chemistry, Graduate School of Agriculture, Osaka Metropolitan University, Sakai, Osaka 599-8531, Japan
| | - Nozomu Shibata
- Biological Science Research, Kao Corporation, Wakayama, Wakayama 640-8580, Japan
| | - Meng-I Lin
- Biological Science Research, Kao Corporation, Wakayama, Wakayama 640-8580, Japan
| | - Masami Nakazawa
- Department of Applied Biological Chemistry, Graduate School of Agriculture, Osaka Metropolitan University, Sakai, Osaka 599-8531, Japan
| | - Mitsuhiro Ueda
- Department of Applied Biological Chemistry, Graduate School of Agriculture, Osaka Metropolitan University, Sakai, Osaka 599-8531, Japan
| | - Tatsuji Sakamoto
- Department of Applied Biological Chemistry, Graduate School of Agriculture, Osaka Metropolitan University, Sakai, Osaka 599-8531, Japan.
| |
Collapse
|
5
|
Alahmed A, Simsek S. Enhancing Mechanical Properties of Corn Bran Arabinoxylan Films for Sustainable Food Packaging. Foods 2024; 13:1314. [PMID: 38731684 PMCID: PMC11083293 DOI: 10.3390/foods13091314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/07/2024] [Accepted: 04/13/2024] [Indexed: 05/13/2024] Open
Abstract
Arabinoxylan (AX)-based films can improve the mechanical characteristics of biodegradable materials when utilized for food packaging. However, the mechanical properties of AX films for food packaging applications require thorough investigation to establish their viability. In this study, AX was extracted from corn bran coproducts of dry-milling (DCB), wet-milling (WCB), and dried distiller's grains with solubles (DDGS) using an acid-alkali method. Packaging materials were produced using these AX extracts, each combined with laccase and sorbitol, forming the basis for three different films. These films were then modified by immersing the surface in a lipase-acetate solution. We evaluated their mechanical characteristics, including thickness, tensile properties, tear resistance, and puncture resistance. The thickness and tensile properties of the modified AX films derived from DCB and DDGS showed significant improvements (p < 0.05) compared to the unmodified AX films. In contrast, the modified AX films from WCB showed no significant changes (p > 0.05) in thickness and tensile properties compared to the unmodified WCB AX films. A significant increase in tear resistance (p < 0.05) was observed in all modified AX films after immersion in the lipase-acetate mixture. While puncture resistance was enhanced in the modified AX films, the improvement was not statistically significant (p > 0.05) compared to the unmodified films. The presence of hydroxyl (OH) and carbonyl (CO) groups on the surfaces of AX films from DCB and DDGS, modified by the lipase-acetate solution, suggests excellent biodegradability properties. The modification process positively affected the AX films, rendering them more bendable, flexible, and resistant to deformation when stretched, compared to the unmodified AX films.
Collapse
Affiliation(s)
- Abdulrahman Alahmed
- Department of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh 11451, Saudi Arabia;
- Cereal Science Graduate Program, Peltier Complex, Department of Plant Sciences, North Dakota State University, Fargo, ND 58102, USA
| | - Senay Simsek
- Whistler Center for Carbohydrate Research, Department of Food Science, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
6
|
Yao RA, Reyre JL, Tamburrini KC, Haon M, Tranquet O, Nalubothula A, Mukherjee S, Le Gall S, Grisel S, Longhi S, Madhuprakash J, Bissaro B, Berrin JG. The Ustilago maydis AA10 LPMO is active on fungal cell wall chitin. Appl Environ Microbiol 2023; 89:e0057323. [PMID: 37702503 PMCID: PMC10617569 DOI: 10.1128/aem.00573-23] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 07/14/2023] [Indexed: 09/14/2023] Open
Abstract
Lytic polysaccharide monooxygenases (LPMOs) can perform oxidative cleavage of glycosidic bonds in carbohydrate polymers (e.g., cellulose, chitin), making them more accessible to hydrolytic enzymes. While most studies have so far mainly explored the role of LPMOs in a (plant) biomass conversion context, alternative roles and paradigms begin to emerge. The AA10 LPMOs are active on chitin and/or cellulose and mostly found in bacteria and in some viruses and archaea. Interestingly, AA10-encoding genes are also encountered in some pathogenic fungi of the Ustilaginomycetes class, such as Ustilago maydis, responsible for corn smut disease. Transcriptomic studies have shown the overexpression of the AA10 gene during the infectious cycle of U. maydis. In fact, U. maydis has a unique AA10 gene that codes for a catalytic domain appended with a C-terminal disordered region. To date, there is no public report on fungal AA10 LPMOs. In this study, we successfully produced the catalytic domain of this LPMO (UmAA10_cd) in Pichia pastoris and carried out its biochemical characterization. Our results show that UmAA10_cd oxidatively cleaves α- and β-chitin with C1 regioselectivity and boosts chitin hydrolysis by a GH18 chitinase from U. maydis (UmGH18A). Using a biologically relevant substrate, we show that UmAA10_cd exhibits enzymatic activity on U. maydis fungal cell wall chitin and promotes its hydrolysis by UmGH18A. These results represent an important step toward the understanding of the role of LPMOs in the fungal cell wall remodeling process during the fungal life cycle.IMPORTANCELytic polysaccharide monooxygenases (LPMOs) have been mainly studied in a biotechnological context for the efficient degradation of recalcitrant polysaccharides. Only recently, alternative roles and paradigms begin to emerge. In this study, we provide evidence that the AA10 LPMO from the phytopathogen Ustilago maydis is active against fungal cell wall chitin. Given that chitin-active LPMOs are commonly found in microbes, it is important to consider fungal cell wall as a potential target for this enigmatic class of enzymes.
Collapse
Affiliation(s)
- Roseline Assiah Yao
- INRAE, Aix Marseille Univ, UMR 1163 Biodiversité et Biotechnologie Fongiques (BBF), Marseille, France
| | - Jean-Lou Reyre
- INRAE, Aix Marseille Univ, UMR 1163 Biodiversité et Biotechnologie Fongiques (BBF), Marseille, France
- IFP Energies Nouvelles, Rueil-Malmaison, France
| | - Ketty C. Tamburrini
- INRAE, Aix Marseille Univ, UMR 1163 Biodiversité et Biotechnologie Fongiques (BBF), Marseille, France
- CNRS, Aix Marseille Univ, UMR 7257 Architecture et Fonction des Macromolécules Biologiques (AFMB), Marseille, France
| | - Mireille Haon
- INRAE, Aix Marseille Univ, UMR 1163 Biodiversité et Biotechnologie Fongiques (BBF), Marseille, France
- INRAE, Aix Marseille Univ, 3PE Platform, Marseille, France
| | - Olivier Tranquet
- INRAE, Aix Marseille Univ, UMR 1163 Biodiversité et Biotechnologie Fongiques (BBF), Marseille, France
| | - Akshay Nalubothula
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, India
| | - Saumashish Mukherjee
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, India
| | - Sophie Le Gall
- INRAE, UR1268 BIA, Nantes, France
- INRAE, PROBE Research Infrastructure, BIBS Facility, Nantes, France
| | - Sacha Grisel
- INRAE, Aix Marseille Univ, UMR 1163 Biodiversité et Biotechnologie Fongiques (BBF), Marseille, France
- INRAE, Aix Marseille Univ, 3PE Platform, Marseille, France
| | - Sonia Longhi
- CNRS, Aix Marseille Univ, UMR 7257 Architecture et Fonction des Macromolécules Biologiques (AFMB), Marseille, France
| | - Jogi Madhuprakash
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, India
| | - Bastien Bissaro
- INRAE, Aix Marseille Univ, UMR 1163 Biodiversité et Biotechnologie Fongiques (BBF), Marseille, France
| | - Jean-Guy Berrin
- INRAE, Aix Marseille Univ, UMR 1163 Biodiversité et Biotechnologie Fongiques (BBF), Marseille, France
- INRAE, Aix Marseille Univ, 3PE Platform, Marseille, France
| |
Collapse
|
7
|
Zheng Y, Yan J, Cao C, Liu Y, Yu D, Liang X. Application of chromatography in purification and structural analysis of natural polysaccharides: A review. J Sep Sci 2023; 46:e2300368. [PMID: 37480171 DOI: 10.1002/jssc.202300368] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/11/2023] [Accepted: 07/14/2023] [Indexed: 07/23/2023]
Abstract
Polysaccharides are widely distributed in natural sources from monocytic microorganisms to higher animals, and are found in a variety of biological activities in recent decades. Natural polysaccharides have the characteristics of large molecular weight, diverse composition, and complex structure, so their purification and structural analysis are difficult issues in research. Chromatography as a powerful separation technique, plays an irreplaceable role in the separation and structural analysis of natural polysaccharides, especially in the purification of polysaccharides, the separation of hydrolysates, and the analysis of monosaccharide composition. The separation mechanisms and application of different chromatographic methods in the studies of polysaccharides were summarized in this review. Moreover, the advantages and drawbacks of various chromatography methods were discussed as well.
Collapse
Affiliation(s)
- Yi Zheng
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
- Ganjiang Chinese Medicine Innovation Center, Nanchang, China
| | - Jingyu Yan
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
- Ganjiang Chinese Medicine Innovation Center, Nanchang, China
| | - Cuiyan Cao
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
- Ganjiang Chinese Medicine Innovation Center, Nanchang, China
| | - Yanfang Liu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
- Ganjiang Chinese Medicine Innovation Center, Nanchang, China
| | - Dongping Yu
- Ganjiang Chinese Medicine Innovation Center, Nanchang, China
| | - Xinmiao Liang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
- Ganjiang Chinese Medicine Innovation Center, Nanchang, China
| |
Collapse
|
8
|
Warner J, Pöhnl T, Steingass CB, Bogarín D, Carle R, Jiménez VM. Pectins, hemicellulose and lignocellulose profiles vary in leaves among different aromatic Vanilla species (Orchidaceae). CARBOHYDRATE POLYMER TECHNOLOGIES AND APPLICATIONS 2023. [DOI: 10.1016/j.carpta.2023.100289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
|
9
|
Costa KPB, Reichembach LH, de Oliveira Petkowicz CL. Pectins with commercial features and gelling ability from peels of Hylocereus spp. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107583] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
10
|
Přerovská T, Jindřichová B, Henke S, Yvin JC, Ferrieres V, Burketová L, Lipovová P, Nguema-Ona E. Arabinogalactan Protein-Like Proteins From Ulva lactuca Activate Immune Responses and Plant Resistance in an Oilseed Crop. FRONTIERS IN PLANT SCIENCE 2022; 13:893858. [PMID: 35668790 PMCID: PMC9164130 DOI: 10.3389/fpls.2022.893858] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 04/22/2022] [Indexed: 06/15/2023]
Abstract
Natural compounds isolated from macroalgae are promising, ecofriendly, and multifunctional bioinoculants, which have been tested and used in agriculture. Ulvans, for instance, one of the major polysaccharides present in Ulva spp. cell walls, have been tested for their plant growth-promoting properties as well as their ability to activate plant immune defense, on a large variety of crops. Recently, we have characterized for the first time an arabinogalactan protein-like (AGP-like) from Ulva lactuca, which exhibits several features associated to land plant AGPs. In land plant, AGPs were shown to play a role in several plant biological functions, including cell morphogenesis, reproduction, and plant-microbe interactions. Thus, isolated AGP-like proteins may be good candidates for either the plant growth-promoting properties or the activation of plant immune defense. Here, we have isolated an AGP-like enriched fraction from Ulva lactuca and we have evaluated its ability to (i) protect oilseed rape (Brassica napus) cotyledons against Leptosphaeria maculans, and (ii) its ability to activate immune responses. Preventive application of the Ulva AGP-like enriched fraction on oilseed rape, followed by cotyledon inoculation with the fungal hemibiotroph L. maculans, resulted in a major reduction of infection propagation. The noticed reduction correlated with an accumulation of H2O2 in treated cotyledons and with the activation of SA and ET signaling pathways in oilseed rape cotyledons. In parallel, an ulvan was also isolated from Ulva lactuca. Preventive application of ulvan also enhanced plant resistance against L. maculans. Surprisingly, reduction of infection severity was only observed at high concentration of ulvan. Here, no such significant changes in gene expression and H2O2 production were observed. Together, this study indicates that U. lactuca AGP-like glycoproteins exhibit promising elicitor activity and that plant eliciting properties of Ulva extract, might result not only from an ulvan-originated eliciting activities, but also AGP-like originated.
Collapse
Affiliation(s)
- Tereza Přerovská
- Ecole Nationale Supérieure de Chimie de Rennes, CNRS, ISCR-UMR 6226, Univ Rennes, Rennes, France
| | - Barbora Jindřichová
- Laboratory of Pathological Plant Physiology, Institute of Experimental Botany of the Czech Academy of Sciences, Prague, Czechia
| | - Svatopluk Henke
- Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, Prague, Czechia
| | - Jean-Claude Yvin
- Agro Innovation International TIMAC AGRO, Laboratoire de Nutrition Végétale, Pôle Stress Biotique, Saint Malo, France
| | - Vincent Ferrieres
- Ecole Nationale Supérieure de Chimie de Rennes, CNRS, ISCR-UMR 6226, Univ Rennes, Rennes, France
| | - Lenka Burketová
- Laboratory of Pathological Plant Physiology, Institute of Experimental Botany of the Czech Academy of Sciences, Prague, Czechia
| | - Petra Lipovová
- Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, Prague, Czechia
| | - Eric Nguema-Ona
- Agro Innovation International TIMAC AGRO, Laboratoire de Nutrition Végétale, Pôle Stress Biotique, Saint Malo, France
| |
Collapse
|
11
|
Development and Validation of HPLC-DAD Method with Pre-Column PMP Derivatization for Monomeric Profile Analysis of Polysaccharides from Agro-Industrial Wastes. Polymers (Basel) 2022; 14:polym14030544. [PMID: 35160536 PMCID: PMC8838364 DOI: 10.3390/polym14030544] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 01/12/2022] [Accepted: 01/25/2022] [Indexed: 01/19/2023] Open
Abstract
The instrumental analysis of complex mixtures of sugars often requires derivatization to enhance the method’s selectivity and sensitivity. 1-Phenyl-3-methyl-5-pyrazolone (PMP) is a common sugar derivatization agent used in high-performance liquid chromatography (HPLC). Although many C18 column applications for PMP–sugar derivative analysis have been developed, their transferability is not straightforward due to variations in column chemistry and preparation technology. The aim of this study was to develop and validate an application for Zorbax Extend C18 columns for the analysis of 8 neutral and 2 acidic sugars commonly found in plant polysaccharides. The method was further compared to well-established alditol acetates and m-hydroxydiphenyl methods and employed for sugar profiling of selected agro-industrial wastes. The most influential separation factors were the mobile-phase pH and acetonitrile content, optimized at 8.0 and a 12–17% gradient, respectively. The method showed excellent linearity, repeatability and intermediate precision. High sensitivity was achieved, especially for neutral sugars, with an accuracy error range of 5–10% relative standard deviation. The sugar profiling results were highly correlated to the reference method for neutral sugars. The HPLC method was highly applicable for the evaluation of polysaccharides in selected wastes and showed advantages in terms of simplicity, accuracy in acidic sugar determination and suitability for their simultaneous analysis with neutral sugars.
Collapse
|
12
|
Abstract
Food carbohydrates are macronutrients that are found in fruits, grains, vegetables, and milk products. These organic compounds are present in foods in the form of sugars, starches, and fibers and are composed of carbon, hydrogen, and oxygen. These wide ranging macromolecules can be classified according to their chemical structure into three major groups: low molecular weight mono- and disaccharides, intermediate molecular weight oligosaccharides, and high molecular weight polysaccharides. Notably, the digestibility of specific carbohydrate components differ and nondigestible carbohydrates can reach the large intestine intact where they act as food sources for beneficial bacteria. In this review, we give an overview of advances made in food carbohydrate analysis. Overall, this review indicates the importance of carbohydrate analytical techniques in the quest to identify and isolate health-promoting carbohydrates to be used as additives in the functional foods industry.
Collapse
Affiliation(s)
- Leonie J Kiely
- Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, Ireland
| | - Rita M Hickey
- Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, Ireland.
| |
Collapse
|
13
|
Extraction, characterization and gelling ability of pectins from Araçá (Psidium cattleianum Sabine) fruits. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.106845] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
14
|
Dalonso N, Petkowicz CLO, Lugones LG, Silveira MLL, Gern RMM. Comparison of cell wall polysaccharides in Schizophyllum commune after changing phenotype by mutation. AN ACAD BRAS CIENC 2021; 93:e20210047. [PMID: 34730621 DOI: 10.1590/0001-3765202120210047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 07/28/2021] [Indexed: 11/22/2022] Open
Abstract
The Agaricomycetes fungi produce various compounds with pharmaceutical, medicinal, cosmetic, environmental and biotechnological properties. In addition, some polysaccharides extracted from the fungal cell wall have antitumor and immunomodulatory actions. The aim of this study was to use genetic modification to transform Schizophyllum commune and identify if the phenotype observed (different from the wild type) resulted in changes of the cell wall polysaccharides. The plasmid pUCHYG-GPDGLS, which contains the Pleurotus ostreatus glucan synthase gene, was used in S. commune transformations. Polysaccharides from cell wall of wild (ScW) and mutants were compared in this study. Polysaccharides from the biomass and culture broth were extracted with hot water. One of the mutants (ScT4) was selected for further studies and, after hydrolysis/acetylation, the GLC analysis showed galactose as the major component in polysaccharide fraction from the mutant and glucose as the major monomer in the wild type. Differences were also found in the elution profiles from HPSEC and NMR analyses. From the monosaccharide composition it was proposed that mannogalactans are components of S. commune cell wall for both, wild and mutant, but in different proportions. To our knowledge, this is the first time that mannogalactans are isolated from S. commune liquid culture.
Collapse
Affiliation(s)
- Nicole Dalonso
- Programa de Pós-Graduação em Saúde e Meio Ambiente, Universidade da Região de Joinville/UNIVILLE, Rua Paulo Malschitzki, 10, Zona Industrial Norte, 89201-972 Joinville, SC, Brazil
| | - Carmen L O Petkowicz
- Universidade Federal do Paraná, Departamento de Bioquímica e Biologia Molecular, Centro Politécnico, Av. Coronel Francisco H. dos Santos, 100, Caixa Postal 19046, Jardim das Américas, 81531-980 Curitiba, PR, Brazil
| | - Luis G Lugones
- Utrecht University, Molecular Microbiology Department, Padualaan n° 8, Utrecht Science Park, 3584 CH, Utrecht, The Netherlands
| | - Marcia L L Silveira
- Programa de Pós-Graduação em Saúde e Meio Ambiente, Universidade da Região de Joinville/UNIVILLE, Rua Paulo Malschitzki, 10, Zona Industrial Norte, 89201-972 Joinville, SC, Brazil
| | - Regina M M Gern
- Programa de Pós-Graduação em Saúde e Meio Ambiente, Universidade da Região de Joinville/UNIVILLE, Rua Paulo Malschitzki, 10, Zona Industrial Norte, 89201-972 Joinville, SC, Brazil
| |
Collapse
|
15
|
Liu D, Tang W, Yin JY, Nie SP, Xie MY. Monosaccharide composition analysis of polysaccharides from natural sources: Hydrolysis condition and detection method development. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.106641] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
16
|
Fruit Characteristics, Peel Nutritional Compositions, and Their Relationships with Mango Peel Pectin Quality. PLANTS 2021; 10:plants10061148. [PMID: 34200110 PMCID: PMC8226707 DOI: 10.3390/plants10061148] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 05/27/2021] [Accepted: 05/31/2021] [Indexed: 12/11/2022]
Abstract
Mango peel, a byproduct from the mango processing industry, is a potential source of food-grade mango peel pectin (MPP). Nonetheless, the influence of fruit physical characteristics and phytochemicals of peels on their correspondent pectin level has never been examined, particularly when high-quality food additives are of commercial need. Subsequently, the ultimate aim of the present study was to comprehend their relationship using chemometric data analyses as part of raw material sourcing criteria. Principal component analysis (PCA) advised that mangoes of 'mahachanok' and 'nam dok mai' could be distinguished from 'chok anan' and 'kaew' on the basis of physiology, peel morphology, and phytochemical characteristics. Only pectin extracted from mango var. 'chok anan' was classified as low-methoxyl type (Mox value ~4%). Using the partial least-squares (PLS) regression, the multivariate correlation between the fruit and peel properties and the degree of esterification (DE) value was reported at R2 > 0.9 and Q2 > 0.8. The coefficient factors illustrated that yields of byproducts such as seed and total biomass negatively influenced DE values, while they were positively correlated with crude fiber and xylose contents of the peels. Overall, it is interesting to highlight that, regardless of the differences in fruit varieties, the amount of biomass and peel proximate properties can be proficiently applied to establish classification of desirable properties of the industrial MPP.
Collapse
|
17
|
Pectins from food waste: Characterization and functional properties of a pectin extracted from broccoli stalk. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2020.105930] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
18
|
Optimization of acid-extraction of pectic fraction from grape (Vitis vinifera cv. Chardonnay) pomace, a Winery Waste. Int J Biol Macromol 2020; 161:204-213. [PMID: 32522547 DOI: 10.1016/j.ijbiomac.2020.05.272] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 05/17/2020] [Accepted: 05/18/2020] [Indexed: 11/24/2022]
Abstract
Chardonnay grape pomace was evaluated as a source of pectin. A central composite design was used in order to determine the effect of pH, extraction time (Et) and liquid: solid ratio (LS) on the yield and uronic acid (UA) content of the pectins extracted using boiling HNO3 solution. The optimized extraction condition to reach the maximum yield and UA was pH = 2.08, Et = 135.23 min and LS = 35.11 ml/g, resulting in theoretical yield of 12.8% and UA of 64.4%. The experimental yield of the pectic fraction obtained under the optimized conditions (GPOP) was 11.1% and the UA was 56.8%. GPOP had ~25% glucose. It was treated with α-amylase and amyloglucosidase, resulting in the fraction α-GPOP. The starch-free pectic fraction was composed of 63.5% UA, 7.8% rhamnose, 6.0% arabinose, 13.6% galactose and minor amounts of other neutral monosaccharides. It contained a low-methoxyl pectin (degree of methyl-esterification 18.1%) and had an average molar mass of 154,100 g/mol. It consisted of 55.7% homogalacturonan and 35.2% rhamnogalacturonan I (RG-I). NMR analyses suggest that RG-I portion of α-GPOP is highly branched by short chains or single residues of arabinose and galactose.
Collapse
|
19
|
Wongkaew M, Sommano SR, Tangpao T, Rachtanapun P, Jantanasakulwong K. Mango Peel Pectin by Microwave-Assisted Extraction and its Use as Fat Replacement in Dried Chinese Sausage. Foods 2020; 9:foods9040450. [PMID: 32272742 PMCID: PMC7231197 DOI: 10.3390/foods9040450] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 04/02/2020] [Accepted: 04/03/2020] [Indexed: 01/30/2023] Open
Abstract
In this research, low-fat dried Chinese sausage was formulated with mango peel pectin (MPP; 0%, 5%, 10%, and 15% (w/w)) extracted by microwave assisted extraction (MAE). The extractable yield of pectin attained from peel of Nam Dok Mai variety was achieved at 13.85% using 700-watt power. The extracted MPP were of high equivalent weight (1485.78 mg/mol), degree esterification (77.19%) and methoxyl content (19.33%) with a structure of greater porosity as compared to that of the conventional method. Spectrum scans by Fourier transform infrared spectrophotometer (FT-IR) indicated that the extracted MPP gave similar wave number profiles as the commercial pectin. Quality attributes of the Chinese sausages were assessed and compared with the control formula (CTRL). At higher concentrations of MPP, the intensity of redness and yellowness in sausage increased. The texture profile of the sausage illustrated that only the hardness value was comparable with the CTRL, while springiness, cohesiveness, gumminess and chewiness were statistically lower (p < 0.05). Furthermore, the sensory evaluation by experienced panellists (n = 12) indicated that 5% MPP similarly represented overall acceptability with the CTRL. Consequently, MPP can be effectively incorporated in the formula at low level to replace fat in Chinese sausage, allowing colour improvement and production of a healthier option.
Collapse
Affiliation(s)
- Malaiporn Wongkaew
- Major of Biotechnology, Graduate School, Chiang Mai University, Chiang Mai 50200, Thailand;
- Programme of Food Production and Innovation, Faculty of Integrated of Science and Technology, Rajamangala University of Technology Lanna, Chiang Mai 50300, Thailand
- Plant Bioactive Compound Laboratory, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Sarana Rose Sommano
- Plant Bioactive Compound Laboratory, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand;
- Department of Plant and Soil Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand
- Cluster of Agro Bio-Circular-Green Industry (Agro BCG), Chiang Mai University, Chiang Mai 50200, Thailand; (P.R.); (K.J.)
- Correspondence:
| | - Tibet Tangpao
- Plant Bioactive Compound Laboratory, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Pornchai Rachtanapun
- Cluster of Agro Bio-Circular-Green Industry (Agro BCG), Chiang Mai University, Chiang Mai 50200, Thailand; (P.R.); (K.J.)
- School of Agro-Industry, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Kittisak Jantanasakulwong
- Cluster of Agro Bio-Circular-Green Industry (Agro BCG), Chiang Mai University, Chiang Mai 50200, Thailand; (P.R.); (K.J.)
- School of Agro-Industry, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
20
|
Dias IP, Barbieri SF, Fetzer DEL, Corazza ML, Silveira JLM. Effects of pressurized hot water extraction on the yield and chemical characterization of pectins from Campomanesia xanthocarpa Berg fruits. Int J Biol Macromol 2020; 146:431-443. [DOI: 10.1016/j.ijbiomac.2019.12.261] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 12/18/2019] [Accepted: 12/30/2019] [Indexed: 01/11/2023]
|
21
|
Noguchi M, Hasegawa Y, Suzuki S, Nakazawa M, Ueda M, Sakamoto T. Determination of chemical structure of pea pectin by using pectinolytic enzymes. Carbohydr Polym 2020; 231:115738. [PMID: 31888846 DOI: 10.1016/j.carbpol.2019.115738] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 12/11/2019] [Accepted: 12/12/2019] [Indexed: 12/21/2022]
Abstract
The chemical structure of pea pectin was delineated using pectin-degrading enzymes and biochemical methods. The molecular weight of the pea pectin preparation was 488,000, with 50 % arabinose content, and neutral sugar side chains attached to approximately 60 % of the rhamnose residues in rhamnogalacturonan-I (RG-I). Arabinan, an RG-I side chain, was highly branched, and the main chain was comprised of α-1,5-l-arabinan. Galactose and galactooligosaccharides were attached to approximately 35 % of the rhamnose residues in RG-I. Long chain β-1,4-galactan was also present. The xylose substitution rate in xylogalacturonan (XGA) was 63 %. The molar ratio of RG-I/homogalacturonan (HG)/XGA in the backbone of the pea pectin was approximately 3:3:4. When considering neutral sugar side chain content (arabinose, galactose, and xylose), the molar ratio of RG-I/HG/XGA regions in the pea pectin was 7:1:2. These data will help understand the properties of pea pectin.
Collapse
Affiliation(s)
- Misaki Noguchi
- Division of Applied Life Sciences, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Osaka 599-8531, Japan.
| | | | - Shiho Suzuki
- Center for Research and Development of Bioresources, Organization for Research Promotion, Osaka Prefecture University, Sakai, Osaka 599-8570, Japan.
| | - Masami Nakazawa
- Division of Applied Life Sciences, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Osaka 599-8531, Japan.
| | - Mitsuhiro Ueda
- Division of Applied Life Sciences, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Osaka 599-8531, Japan.
| | - Tatsuji Sakamoto
- Division of Applied Life Sciences, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Osaka 599-8531, Japan.
| |
Collapse
|
22
|
Amaral SDC, Barbieri SF, Ruthes AC, Bark JM, Brochado Winnischofer SM, Silveira JLM. Cytotoxic effect of crude and purified pectins from Campomanesia xanthocarpa Berg on human glioblastoma cells. Carbohydr Polym 2019; 224:115140. [PMID: 31472853 DOI: 10.1016/j.carbpol.2019.115140] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 07/26/2019] [Accepted: 07/27/2019] [Indexed: 01/08/2023]
Abstract
A new source of pectin with a cytotoxic effect on glioblastoma cells is presented. A homogeneous GWP-FP-S fraction (Mw of 29,170 g mol-1) was obtained by fractionating the crude pectin extract (GW) from Campomanesia xanthocarpa pulp. According to the monosaccharide composition, the GWP-FP-S was composed of galacturonic acid (58.8%), arabinose (28.5%), galactose (11.3%) and rhamnose (1.1%), comprising 57.7% of homogalacturonans (HG) and 42.0% of type I rhamnogalacturonans (RG-I). These structures were characterized by chromatographic and spectroscopic methods; GW and GWP-FP-S fractions were evaluated by MTT and crystal violet assays for their cytotoxic effects. Both fractions induced cytotoxicity (15.55-37.65%) with concomitant increase in the cellular ROS levels in human glioblastoma cells at 25-400 μg mL-1, after 48 h of treatment, whereas no cytotoxicity was observed for normal NIH 3T3 cells. This is the first report of in vitro bioactivity and the first investigation of the antitumor potential of gabiroba pectins.
Collapse
Affiliation(s)
- Sarah da Costa Amaral
- Postgraduate Program in Biochemistry Sciences, Sector of Biological Sciences, Federal University of Paraná, Curitiba, PR, 81531-990, Brazil
| | - Shayla Fernanda Barbieri
- Postgraduate Program in Biochemistry Sciences, Sector of Biological Sciences, Federal University of Paraná, Curitiba, PR, 81531-990, Brazil
| | - Andrea Caroline Ruthes
- Division of Glycoscience, Royal Institute of Technology - KTH, Sweden; Department of Entomology and Nematology, University of Florida, Gulf Coast Research and Education Center (GCREC-UF), Wimauma, USA
| | - Juliana Müller Bark
- Postgraduate Program in Biochemistry Sciences, Sector of Biological Sciences, Federal University of Paraná, Curitiba, PR, 81531-990, Brazil
| | - Sheila Maria Brochado Winnischofer
- Postgraduate Program in Biochemistry Sciences, Sector of Biological Sciences, Federal University of Paraná, Curitiba, PR, 81531-990, Brazil; Department of Biochemistry and Molecular Biology, Federal University of Paraná, CEP 81.531-980, Curitiba-PR, Brazil; Postgraduate Program in Cellular and Molecular Biology, Federal University of Paraná, CEP 81.531-980, Curitiba-PR, Brazil
| | - Joana Léa Meira Silveira
- Postgraduate Program in Biochemistry Sciences, Sector of Biological Sciences, Federal University of Paraná, Curitiba, PR, 81531-990, Brazil; Department of Biochemistry and Molecular Biology, Federal University of Paraná, CEP 81.531-980, Curitiba-PR, Brazil.
| |
Collapse
|
23
|
Marenda FRB, Colodel C, Canteri MHG, de Olivera Müller CM, Amante ER, de Oliveira Petkowicz CL, de Mello Castanho Amboni RD. Investigation of cell wall polysaccharides from flour made with waste peel from unripe banana (Musa sapientum) biomass. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2019; 99:4363-4372. [PMID: 30843211 DOI: 10.1002/jsfa.9670] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 01/08/2019] [Accepted: 03/01/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND The peel from unripe banana biomass is an agroindustrial waste. The present study aimed: (i) to extract pectin from enzymatically-treated waste peel from unripe banana biomass (WPUBB) using a Box-Behnken design to optimize the extraction conditions (temperature, pH and extraction time) and obtain a maximum yield and (ii) to fractionate the polysaccharides from WPUBB employing sequential extractions using different solvents. RESULTS The optimized product was obtained at 86 °C, pH 2.00, for 6 h and it presented a yield of 11.63%. The optimized product had low galacturonic acid content and a high amount of glucose (82.3%), suggesting the presence of starch (as confirmed by the bi-dimensional heteronuclear single quantum coherence NMR spectrum). All of the fractionated polysaccharides had a high glucose content. Low amounts of pectin were found in the water, chelating and diluted alkali-soluble fractions. The fractions extracted using NaOH indicated the presence of glucuronoarabinoxylans. CONCLUSION Glucose was the main monosaccharide found in all the fractions extracted from the WPUBB. Although the present study suggests that WPUBB is still not suitable for pectin extraction using current technologies, other compounds, such as resistant starch and glucuronoarabinoxylans, were found, suggesting that WPUBB could be used in the development of food formulations. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Flávia Roberta B Marenda
- Department of Food Science and Technology, Federal University of Santa Catarina, Florianopolis, Brazil
| | - Cristiane Colodel
- Department of Biochemistry and Molecular Biology, Federal University of Parana, Curitiba, Brazil
| | - Maria Helene G Canteri
- Department of Chemistry and Biology, Federal University of Technology-Parana, Francisco Beltrão, Brazil
| | | | - Edna R Amante
- Department of Food Science and Technology, Federal University of Santa Catarina, Florianopolis, Brazil
| | | | | |
Collapse
|
24
|
Barbieri SF, da Costa Amaral S, Ruthes AC, de Oliveira Petkowicz CL, Kerkhoven NC, da Silva ERA, Silveira JLM. Pectins from the pulp of gabiroba (Campomanesia xanthocarpa Berg): Structural characterization and rheological behavior. Carbohydr Polym 2019; 214:250-258. [DOI: 10.1016/j.carbpol.2019.03.045] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 02/23/2019] [Accepted: 03/13/2019] [Indexed: 11/28/2022]
|
25
|
Acid extraction and physicochemical characterization of pectin from cubiu (Solanum sessiliflorum D.) fruit peel. Food Hydrocoll 2019. [DOI: 10.1016/j.foodhyd.2018.06.013] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
26
|
Colodel C, Vriesmann LC, Teófilo RF, de Oliveira Petkowicz CL. Extraction of pectin from ponkan (Citrus reticulata Blanco cv. Ponkan) peel: Optimization and structural characterization. Int J Biol Macromol 2018; 117:385-391. [DOI: 10.1016/j.ijbiomac.2018.05.048] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Revised: 04/12/2018] [Accepted: 05/10/2018] [Indexed: 11/15/2022]
|
27
|
Cell wall polysaccharides from Ponkan mandarin (Citrus reticulata Blanco cv. Ponkan) peel. Carbohydr Polym 2018; 195:120-127. [DOI: 10.1016/j.carbpol.2018.04.066] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 04/12/2018] [Accepted: 04/16/2018] [Indexed: 11/22/2022]
|
28
|
Unravelling the structure of serum pectin originating from thermally and mechanically processed carrot-based suspensions. Food Hydrocoll 2018. [DOI: 10.1016/j.foodhyd.2017.10.026] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
29
|
Ogutu FO, Mu TH, Sun H, Zhang M. Ultrasonic Modified Sweet Potato Pectin Induces Apoptosis like Cell Death in Colon Cancer (HT-29) Cell Line. Nutr Cancer 2017; 70:136-145. [PMID: 29227691 DOI: 10.1080/01635581.2018.1406123] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND Pectin and especially modified citrus pectin possesses anticancer activity. Hence, the current study investigated anticancer activity of ultrasonic-modified sweet potato pectin (SPP) on HT-29 cells to assess its potential as a cancer therapeutic agent. METHOD The effect of ultrasonic treatment on SPP molecular weight, galacturonic acid content, degree of methoxylation, and neutral sugar was investigated. Moreover, the effect of sonicated variant on human HT-29 cell proliferation was assessed by MTT assay, cell cytotoxicity, and apoptosis by Annexin V/PI flow cytometer and caspase-3 activity was studied. RESULTS AND DISCUSSION Sonication led up to seven-fold decrease in molecular weight. The degree of methoxylation (DM) decreased more than two-fold. Moreover, the galacturonic acid (GalA) content increased up to 92%, arabinose and galactose content increased. The SSPP inhibited cell proliferation with the IC50 values 0.5 mg/ml and 0.75 mg/ml for 400 W and 200 W SSPP, respectively. Moreover, 14.41 ± 1.64% cell cytotoxicity was elicited by 400 W SSPP and 6.83 ± 0.80% by 200 W SSPP. Both SSPPs induced apoptosis with 400 W SSPP eliciting 19.42% and 42.21% apoptosis at 0.1 and 0.5 mg/ml, while 200 W SSPP induced 13.79% and 39.50% apoptosis at 0.1 and 0.5 mg/ml, respectively. SSPP activity increased with both increased concentration and sonication intensity.
Collapse
Affiliation(s)
- Fredrick Onyango Ogutu
- a Laboratory of Fruit and Vegetable Processing , Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Ministry of Agriculture , Beijing , P.R. China.,b Food Technology Division , Kenya Industrial Research and Development Institute , Nairobi , Kenya
| | - Tai-Hua Mu
- a Laboratory of Fruit and Vegetable Processing , Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Ministry of Agriculture , Beijing , P.R. China
| | - Hongnan Sun
- a Laboratory of Fruit and Vegetable Processing , Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Ministry of Agriculture , Beijing , P.R. China
| | - Miao Zhang
- a Laboratory of Fruit and Vegetable Processing , Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Ministry of Agriculture , Beijing , P.R. China
| |
Collapse
|
30
|
Colodel C, Bagatin RMDG, Tavares TM, Petkowicz CLDO. Cell wall polysaccharides from pulp and peel of cubiu: A pectin-rich fruit. Carbohydr Polym 2017; 174:226-234. [DOI: 10.1016/j.carbpol.2017.06.052] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 06/13/2017] [Accepted: 06/13/2017] [Indexed: 11/28/2022]
|
31
|
Ogutu FO, Mu TH. Ultrasonic degradation of sweet potato pectin and its antioxidant activity. ULTRASONICS SONOCHEMISTRY 2017; 38:726-734. [PMID: 27617769 DOI: 10.1016/j.ultsonch.2016.08.014] [Citation(s) in RCA: 105] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 07/19/2016] [Accepted: 08/11/2016] [Indexed: 06/06/2023]
Abstract
The effect of ultrasound factors (time, power, and duty cycle) on sweet potato pectin molecular weight, neutral sugar composition, pectin structure, and antioxidant activity was investigated. Sweet potato pectin dispersions (0.0025, 0.005 and 0.01g/mL) in deionized water were sonolyzed for 5, 10 and 20min to assess effect of sonication time and pectin concentration on sonolysis. For further experiments 0.0025g/mL was sonicated under varying ultrasonic power and duty cycle levels, subsequently the molecular weight, galacturonic acid content, degree of methoxylation and antioxidant activity of sonicated pectin products were investigated. Results showed that ultrasound treatment reduced pectin molecular weight, while polydispersity did not show clear trend which characterized random pectin scission, increasing duty cycle from 20% to 80% resulted in approximately threefold reduction in pectin molecular weight, increased sonication power from 100W to 400W led to significant increase in galacturonic acid content from 72.0±1.2% in native pectin to between 85.0±3.2% and 92.0±2.7%, the degree of methoxylation significantly reduced from 12.0±3.0% to between 5.25% and 6.28%, sonication led to increase in galactose and decrease in rhamnose consistent with debranching of pectin. Moreover, sonication lead to increased antioxidant capacity, both 200W and 400W sonicated pectin having higher ORAC and FRAP values, with highest pectin concentration 4mg/mL in ORAC and 0.8mg/ml in FRAP giving substantially high antioxidant activity than native and 100W treated pectin. The ORAC value of 400W sonicated pectin increased five hold above the native pectin, while it's FRAP value was almost three fold higher than native pectin. However, ultrasound did not alter pectin primary structure as showed by FTIR and HPAEC results. The results indicated that ultrasound offers effective and green process for pectin transformation and creation of antioxidant potent pectin products.
Collapse
Affiliation(s)
- Fredrick Onyango Ogutu
- Laboratory of Fruit and Vegetable Processing, The Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, No. 2 Yuan Ming Yuan West Road, Haidian District, PO Box 5109, Beijing 100193, China; Food Technology Division of Kenya Industrial Research and Development Institute, South C - Popo Rd., Off Mombasa Rd., PO Box 30650-00100, Nairobi, Kenya
| | - Tai-Hua Mu
- Laboratory of Fruit and Vegetable Processing, The Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, No. 2 Yuan Ming Yuan West Road, Haidian District, PO Box 5109, Beijing 100193, China.
| |
Collapse
|
32
|
Nagel A, Winkler C, Carle R, Endress HU, Rentschler C, Neidhart S. Processes involving selective precipitation for the recovery of purified pectins from mango peel. Carbohydr Polym 2017; 174:1144-1155. [PMID: 28821039 DOI: 10.1016/j.carbpol.2017.07.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 06/23/2017] [Accepted: 07/02/2017] [Indexed: 10/19/2022]
Abstract
Three methods for the recovery of purified pectins from directly dried mango peel were developed, using selective precipitation of mango pectin in propan-2-ol (IPA) of adequate volume concentrations for purification. Yields, composition, macromolecular and gelling properties of the resultant pectins were compared. Effluent analyses proved postextractive removal of fruit exudate arabinogalactans. The recovery processes involved (A) washing of raw-pectin powder in IPA of defined volume concentration, (B) fractional alcoholic precipitation of dissolved raw pectin, or (C) selective pectin precipitation from the hot-acid extract of mango peel in adequately diluted IPA. High galacturonic acid contents (≥ 721g/kg) and intrinsic viscosities (≥ 320mL/g) enabled ∼2.2-fold gelling capacities compared to raw mango pectin, which resulted from the standard procedure mimicking industrial pectin recovery from established sources. Removal of the predominant impurities (coextractable exudate arabinogalactans, ash) diminished the yields to ∼49% of the raw-pectin yield. Technical feasibility of the proposed procedures was discussed.
Collapse
Affiliation(s)
- Andreas Nagel
- Institute of Food Science and Biotechnology, Chair of Plant Foodstuff Technology and Analysis, Hohenheim University, Garbenstrasse 25, 70599 Stuttgart, Germany.
| | - Carina Winkler
- Institute of Food Science and Biotechnology, Chair of Plant Foodstuff Technology and Analysis, Hohenheim University, Garbenstrasse 25, 70599 Stuttgart, Germany.
| | - Reinhold Carle
- Institute of Food Science and Biotechnology, Chair of Plant Foodstuff Technology and Analysis, Hohenheim University, Garbenstrasse 25, 70599 Stuttgart, Germany; Biological Science Department, King Abdulaziz University, P.O. Box 80257, Jeddah 21589, Saudi Arabia.
| | - Hans-Ulrich Endress
- Herbstreith & Fox KG Pektin-Fabriken, Turnstrasse 37, 75305 Neuenbürg, Germany.
| | | | - Sybille Neidhart
- Institute of Food Science and Biotechnology, Chair of Plant Foodstuff Technology and Analysis, Hohenheim University, Garbenstrasse 25, 70599 Stuttgart, Germany.
| |
Collapse
|
33
|
Petkowicz C, Vriesmann L, Williams P. Pectins from food waste: Extraction, characterization and properties of watermelon rind pectin. Food Hydrocoll 2017. [DOI: 10.1016/j.foodhyd.2016.10.040] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
34
|
Nagel A, Conrad J, Leitenberger M, Carle R, Neidhart S. Structural studies of the arabinogalactans in Mangifera indica L. fruit exudate. Food Hydrocoll 2016. [DOI: 10.1016/j.foodhyd.2016.05.038] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
35
|
Araújo TR, Petkowicz CLDO, Cardoso VL, Coutinho Filho U, Vieira PA. Biopolymer production using fungus Mucor racemosus Fresenius and glycerol as substrate. POLIMEROS 2016. [DOI: 10.1590/0104-1428.2294] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
36
|
|
37
|
Mango pectin quality as influenced by cultivar, ripeness, peel particle size, blanching, drying, and irradiation. Food Hydrocoll 2015. [DOI: 10.1016/j.foodhyd.2015.05.022] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
38
|
Nagel A, Mix K, Kuebler S, Bogner H, Kienzle S, Elstner P, Carle R, Neidhart S. The arabinogalactan of dried mango exudate and its co-extraction during pectin recovery from mango peel. Food Hydrocoll 2015. [DOI: 10.1016/j.foodhyd.2014.11.029] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
39
|
Improvement of sugar analysis sensitivity using anion-exchange chromatography-electrospray ionization mass spectrometry with sheath liquid interface. J Chromatogr A 2014; 1366:65-72. [PMID: 25246101 DOI: 10.1016/j.chroma.2014.09.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Revised: 09/01/2014] [Accepted: 09/08/2014] [Indexed: 12/25/2022]
Abstract
A novel interface that enables high-performance anion-exchange chromatography (HPAEC) to be coupled with electrospray ionization (ESI) mass spectrometry (MS) is reported. A sheath liquid consisting of 50mM NH4Ac in isopropanol with 0.05% acetic acid, infused at a flow rate of 3μL/min at the tip of the electrospray probe, requires less ESI source cleaning and promotes efficient ionization of mono- and di-carbohydrates. The results suggest that use of a sheath liquid interface rather than a T-joint allows volatile ammonium salts to replace non-volatile metal salts as modifiers for improving sugar ESI signals. The efficient ionization of mono- and di-carbohydrates in the ESI source is affected by the sheath liquid properties such as buffer concentration and type of organic solvent. HPAEC-ESI-MS was used for the analysis of monocarbohydrates in pectins, particularly co-eluted sugars, and the performance was evaluated. Addition of a make-up solution through the sheath liquid interface proved to be an efficient tool for enhancing the intensities of sugars analyzed using HPAEC-ESI-MS.
Collapse
|