1
|
Costa ASG, Peixoto JAB, Machado S, Espírito Santo L, Soares TF, Andrade N, Azevedo R, Almeida A, Costa HS, Oliveira MBPP, Martel F, Simal-Gandara J, Alves RC. Coffee Pulp from Azores: A Novel Phytochemical-Rich Food with Potential Anti-Diabetic Properties. Foods 2025; 14:306. [PMID: 39856971 PMCID: PMC11765408 DOI: 10.3390/foods14020306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Revised: 01/13/2025] [Accepted: 01/15/2025] [Indexed: 01/27/2025] Open
Abstract
Coffee pulp, a by-product of wet coffee processing, shows significant potential in the food and health domains, but its real applications remain underexplored. This work investigated the chemical composition and bioactive properties of coffee pulp from São Miguel Island (Azores, Portugal). The studied coffee pulp exhibited high fiber content (52% dw), mostly insoluble; notable mineral levels (10.6%), mainly K, Ca, and Mg; and 6% dw of total amino acids, with hydroxyproline, aspartic acid, glutamic acid, and leucine in higher amounts. Despite containing low fat (1.6% dw), mainly saturated, it also showed considerable amounts of polyunsaturated fatty acids with a favorable n6/n3 ratio (1.40) and vitamin E (α-, β-, and γ-tocopherols). Its antioxidant capacity can be partially explained by the chlorogenic acid content (9.2 mg/g dw), and caffeine (0.98%) was present in similar amounts to those observed in some arabica coffee beans. A decrease in glucose uptake in Caco-2 cells was found, but not in fructose, suggesting selective inhibition of SGLT1 and potential antidiabetic effects. These results show that Azorean coffee pulp has potential as a sustainable and bioactive ingredient for incorporation into functional foods or dietary supplements.
Collapse
Affiliation(s)
- Anabela S. G. Costa
- Network of Chemistry and Technology/Associated Laboratory for Green Chemistry (REQUIMTE/LAQV), Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (A.S.G.C.); (J.A.B.P.); (S.M.); (L.E.S.); (T.F.S.); (N.A.); (R.A.); (A.A.); (H.S.C.); (M.B.P.P.O.)
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, University of Vigo, E-32004 Ourense, Spain;
| | - Juliana A. Barreto Peixoto
- Network of Chemistry and Technology/Associated Laboratory for Green Chemistry (REQUIMTE/LAQV), Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (A.S.G.C.); (J.A.B.P.); (S.M.); (L.E.S.); (T.F.S.); (N.A.); (R.A.); (A.A.); (H.S.C.); (M.B.P.P.O.)
| | - Susana Machado
- Network of Chemistry and Technology/Associated Laboratory for Green Chemistry (REQUIMTE/LAQV), Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (A.S.G.C.); (J.A.B.P.); (S.M.); (L.E.S.); (T.F.S.); (N.A.); (R.A.); (A.A.); (H.S.C.); (M.B.P.P.O.)
| | - Liliana Espírito Santo
- Network of Chemistry and Technology/Associated Laboratory for Green Chemistry (REQUIMTE/LAQV), Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (A.S.G.C.); (J.A.B.P.); (S.M.); (L.E.S.); (T.F.S.); (N.A.); (R.A.); (A.A.); (H.S.C.); (M.B.P.P.O.)
| | - Thiago F. Soares
- Network of Chemistry and Technology/Associated Laboratory for Green Chemistry (REQUIMTE/LAQV), Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (A.S.G.C.); (J.A.B.P.); (S.M.); (L.E.S.); (T.F.S.); (N.A.); (R.A.); (A.A.); (H.S.C.); (M.B.P.P.O.)
| | - Nelson Andrade
- Network of Chemistry and Technology/Associated Laboratory for Green Chemistry (REQUIMTE/LAQV), Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (A.S.G.C.); (J.A.B.P.); (S.M.); (L.E.S.); (T.F.S.); (N.A.); (R.A.); (A.A.); (H.S.C.); (M.B.P.P.O.)
- Unit of Biochemistry, Department of Biomedicine, Faculty of Medicine of Porto, University of Porto, 4200-319 Porto, Portugal;
| | - Rui Azevedo
- Network of Chemistry and Technology/Associated Laboratory for Green Chemistry (REQUIMTE/LAQV), Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (A.S.G.C.); (J.A.B.P.); (S.M.); (L.E.S.); (T.F.S.); (N.A.); (R.A.); (A.A.); (H.S.C.); (M.B.P.P.O.)
| | - Agostinho Almeida
- Network of Chemistry and Technology/Associated Laboratory for Green Chemistry (REQUIMTE/LAQV), Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (A.S.G.C.); (J.A.B.P.); (S.M.); (L.E.S.); (T.F.S.); (N.A.); (R.A.); (A.A.); (H.S.C.); (M.B.P.P.O.)
| | - Helena S. Costa
- Network of Chemistry and Technology/Associated Laboratory for Green Chemistry (REQUIMTE/LAQV), Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (A.S.G.C.); (J.A.B.P.); (S.M.); (L.E.S.); (T.F.S.); (N.A.); (R.A.); (A.A.); (H.S.C.); (M.B.P.P.O.)
- Department of Food and Nutrition, National Institute of Health Dr. Ricardo Jorge, I.P., Av. Padre Cruz, 1649-016 Lisbon, Portugal
| | - Maria Beatriz Prior Pinto Oliveira
- Network of Chemistry and Technology/Associated Laboratory for Green Chemistry (REQUIMTE/LAQV), Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (A.S.G.C.); (J.A.B.P.); (S.M.); (L.E.S.); (T.F.S.); (N.A.); (R.A.); (A.A.); (H.S.C.); (M.B.P.P.O.)
| | - Fátima Martel
- Unit of Biochemistry, Department of Biomedicine, Faculty of Medicine of Porto, University of Porto, 4200-319 Porto, Portugal;
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, 4200-135 Porto, Portugal
| | - Jesus Simal-Gandara
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, University of Vigo, E-32004 Ourense, Spain;
| | - Rita C. Alves
- Network of Chemistry and Technology/Associated Laboratory for Green Chemistry (REQUIMTE/LAQV), Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (A.S.G.C.); (J.A.B.P.); (S.M.); (L.E.S.); (T.F.S.); (N.A.); (R.A.); (A.A.); (H.S.C.); (M.B.P.P.O.)
| |
Collapse
|
2
|
Preedalikit W, Chittasupho C, Leelapornpisid P, Potprommanee S, Kiattisin K. Comparison of Biological Activities and Protective Effects on PAH-Induced Oxidative Damage of Different Coffee Cherry Pulp Extracts. Foods 2023; 12:4292. [PMID: 38231740 DOI: 10.3390/foods12234292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/24/2023] [Accepted: 11/25/2023] [Indexed: 01/19/2024] Open
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are the main toxic components of ambient air particulate matter (PM), causing oxidative damage to the skin and ultimately resulting in skin aging. This study was conducted to determine the anti-oxidant, anti-aging properties and protective effects of the extracts of coffee cherry pulp (Coffea arabica L.), which is a by-product of the coffee industry, against the oxidative damage induced by PAH exposure in human epidermal keratinocytes (HaCaT). Three different techniques were used to extract the coffee cherry pulp: maceration, Soxhlet and ultrasonication to obtain CCM, CCS and CCU extract, respectively, which were then compared to investigate the total phenolic content (TPC) and total flavonoid content (TFC). The chemical compositions were identified and quantified using high-performance liquid chromatography (HPLC). The results demonstrated that Soxhlet could extract the highest content of chlorogenic acid, caffeine and theophylline. CCS showed the significantly highest TPC (324.6 ± 1.2 mg GAE/g extract), TFC (296.8 ± 1.2 mg QE/g extract), anti-radical activity against DPPH free radicals (98.2 ± 0.8 µM Trolox/g extract) and lipid peroxidation inhibition (136.6 ± 6.2 µM Trolox/g extract). CCS also showed the strongest anti-aging effects based on collagenase, elastase, hyaluronidase and tyrosinase inhibitory enzymes. In addition, CCS can protect human keratinocyte cells from PAH toxicity by increasing the cellular anti-oxidant capacity. This study suggests that CCS has the potential to be used as a cosmetic material that helps alleviate skin damage caused by air pollution.
Collapse
Affiliation(s)
- Weeraya Preedalikit
- Doctor of Philosophy Program in Pharmacy, Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
- Department of Cosmetic Sciences, School of Pharmaceutical Sciences, University of Phayao, Phayao 56000, Thailand
| | - Chuda Chittasupho
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| | | | | | - Kanokwan Kiattisin
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
3
|
Behne S, Franke H, Schwarz S, Lachenmeier DW. Risk Assessment of Chlorogenic and Isochlorogenic Acids in Coffee By-Products. Molecules 2023; 28:5540. [PMID: 37513412 PMCID: PMC10385244 DOI: 10.3390/molecules28145540] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/03/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023] Open
Abstract
Chlorogenic and isochlorogenic acids are naturally occurring antioxidant dietary polyphenolic compounds found in high concentrations in plants, fruits, vegetables, coffee, and coffee by-products. The objective of this review was to assess the potential health risks associated with the oral consumption of coffee by-products containing chlorogenic and isochlorogenic acids, considering both acute and chronic exposure. An electronic literature search was conducted, revealing that 5-caffeoylquinic acid (5-CQA) and 3,5-dicaffeoylquinic acid (3,5-DCQA) are the major chlorogenic acids found in coffee by-products. Toxicological, pharmacokinetic, and clinical data from animal and human studies were available for the assessment, which indicated no significant evidence of toxic or adverse effects following acute oral exposure. The current state of knowledge suggests that long-term exposure to chlorogenic and isochlorogenic acids by daily consumption does not appear to pose a risk to human health when observed at doses within the normal range of dietary exposure. As a result, the intake of CQAs from coffee by-products can be considered reasonably safe.
Collapse
Affiliation(s)
- Sascha Behne
- Postgraduate Study of Toxicology and Environmental Protection, Rudolf-Boehm-Institut für Pharmakologie und Toxikologie, Universität Leipzig, Härtelstrasse 16-18, 04107 Leipzig, Germany; (S.B.); (H.F.)
- Fachbereich II (Fachgruppe Chemie), Berliner Hochschule für Technik (BHT), Luxemburger Strasse 10, 13353 Berlin, Germany
- Chemisches und Veterinäruntersuchungsamt (CVUA) Karlsruhe, Weissenburger Strasse 3, 76187 Karlsruhe, Germany
| | - Heike Franke
- Postgraduate Study of Toxicology and Environmental Protection, Rudolf-Boehm-Institut für Pharmakologie und Toxikologie, Universität Leipzig, Härtelstrasse 16-18, 04107 Leipzig, Germany; (S.B.); (H.F.)
| | - Steffen Schwarz
- Coffee Consulate, Hans-Thoma-Strasse 20, 68163 Mannheim, Germany;
| | - Dirk W. Lachenmeier
- Chemisches und Veterinäruntersuchungsamt (CVUA) Karlsruhe, Weissenburger Strasse 3, 76187 Karlsruhe, Germany
| |
Collapse
|
4
|
Wang ZY, Yin Y, Li DN, Zhao DY, Huang JQ. Biological Activities of p-Hydroxycinnamic Acids in Maintaining Gut Barrier Integrity and Function. Foods 2023; 12:2636. [PMID: 37444374 DOI: 10.3390/foods12132636] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 07/02/2023] [Accepted: 07/05/2023] [Indexed: 07/15/2023] Open
Abstract
It is well established that p-Hydroxycinnamic acids (HCAs), including ferulic, caffeic, sinapic, and p-coumaric acids, possess a characteristic phenylpropanoid C6-C3 backbone and account for about one-third of the phenolic compounds in our diet. HCAs are typically associated with various plant cell wall components, including mono-, di-, and polysaccharides, sterols, polyamines, glycoproteins, and lignins. Interestingly, enzymes produced by intestinal microbes liberate HCAs from these associations. HCAs are completely absorbed in their free form upon ingestion and undergo specific reactions upon absorption in the small intestine or liver. The gut epithelium, composed of intestinal epithelial cells (IECs), acts as a physical barrier against harmful bacteria and a site for regulated interactions between bacteria and the gut lumen. Thus, maintaining the integrity of the epithelial barrier is essential for establishing a physiochemical environment conducive to homeostasis. This review summarizes the protective effects of HCAs on the intestinal barrier, achieved through four mechanisms: preserving tight junction proteins (TJPs), modulating pro-inflammatory cytokines, exerting antioxidant activity, and regulating the intestinal microbiota.
Collapse
Affiliation(s)
- Zi-Ying Wang
- Interdisciplinary Institute for Personalized Medicine in Brain Disorders, School of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, China
| | - Ying Yin
- Guangzhou Key Laboratory of Formula-Pattern of Traditional Chinese Medicine, Formula-Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, China
| | - Dong-Ni Li
- Interdisciplinary Institute for Personalized Medicine in Brain Disorders, School of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, China
| | - Dan-Yue Zhao
- Department of Food Science and Nutrition, Faculty of Science, The Hong Kong Polytechnic University, Hong Kong SAR, China
- Research Institute for Future Food, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Jun-Qing Huang
- Guangzhou Key Laboratory of Formula-Pattern of Traditional Chinese Medicine, Formula-Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, China
| |
Collapse
|
5
|
Hu S, Gil-Ramírez A, Martín-Trueba M, Benítez V, Aguilera Y, Martín-Cabrejas MA. Valorization of coffee pulp as bioactive food ingredient by sustainable extraction methodologies. Curr Res Food Sci 2023; 6:100475. [PMID: 36935849 PMCID: PMC10017359 DOI: 10.1016/j.crfs.2023.100475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/22/2023] [Accepted: 02/28/2023] [Indexed: 03/05/2023] Open
Abstract
Coffee pulp is an underutilized by-product of coffee industrial production rich in bioactive compounds such as phenolic compounds, caffeine, and dietary fiber. The widely known antioxidant, anti-inflammatory, anti-aging, antimicrobial and hepatoprotective health-promoting properties attributed to mentioned compounds enhance the use of coffee pulp as a bioactive food ingredient. Furthermore, the application of green sustainable extraction techniques pursuing highly efficient and selective extraction processes promotes this by-product exploitation in food science. Hence, this review gathers the available information relative to the impact of the extraction processes on the bioactive compound's recovery from coffee pulp, providing an overview of the most recent advances. An in-depth comparison workout between conventional and alternative extraction methods was performed to identify the most suitable techniques for coffee pulp valorization as functional ingredient until date. A critical discussion focused on advantages and drawbacks of the extraction methods applied to coffee pulp was included together a prospective of emerging extraction techniques.
Collapse
Affiliation(s)
- Shuai Hu
- Department of Agricultural Chemistry and Food Science, Faculty of Science, C/ Francisco Tomás y Valiente, 7, Universidad Autónoma de Madrid, 28049, Madrid, Spain
- Institute of Food Science Research, CIAL, UAM-CSIC, C/ Nicolás Cabrera, 9, Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - Alicia Gil-Ramírez
- Department of Agricultural Chemistry and Food Science, Faculty of Science, C/ Francisco Tomás y Valiente, 7, Universidad Autónoma de Madrid, 28049, Madrid, Spain
- Institute of Food Science Research, CIAL, UAM-CSIC, C/ Nicolás Cabrera, 9, Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - María Martín-Trueba
- Department of Agricultural Chemistry and Food Science, Faculty of Science, C/ Francisco Tomás y Valiente, 7, Universidad Autónoma de Madrid, 28049, Madrid, Spain
- Institute of Food Science Research, CIAL, UAM-CSIC, C/ Nicolás Cabrera, 9, Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - Vanesa Benítez
- Department of Agricultural Chemistry and Food Science, Faculty of Science, C/ Francisco Tomás y Valiente, 7, Universidad Autónoma de Madrid, 28049, Madrid, Spain
- Institute of Food Science Research, CIAL, UAM-CSIC, C/ Nicolás Cabrera, 9, Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - Yolanda Aguilera
- Department of Agricultural Chemistry and Food Science, Faculty of Science, C/ Francisco Tomás y Valiente, 7, Universidad Autónoma de Madrid, 28049, Madrid, Spain
- Institute of Food Science Research, CIAL, UAM-CSIC, C/ Nicolás Cabrera, 9, Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - María A. Martín-Cabrejas
- Department of Agricultural Chemistry and Food Science, Faculty of Science, C/ Francisco Tomás y Valiente, 7, Universidad Autónoma de Madrid, 28049, Madrid, Spain
- Institute of Food Science Research, CIAL, UAM-CSIC, C/ Nicolás Cabrera, 9, Universidad Autónoma de Madrid, 28049, Madrid, Spain
| |
Collapse
|
6
|
Myo H, Khat-Udomkiri N. Optimization of ultrasound-assisted extraction of bioactive compounds from coffee pulp using propylene glycol as a solvent and their antioxidant activities. ULTRASONICS SONOCHEMISTRY 2022; 89:106127. [PMID: 36007328 PMCID: PMC9424582 DOI: 10.1016/j.ultsonch.2022.106127] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/31/2022] [Accepted: 08/14/2022] [Indexed: 06/15/2023]
Abstract
In the cosmetic and pharmaceutical industries, it has been increasingly popular to use alternative solvents in the extraction of bioactive compounds from plants. Coffee pulp, a by-product of coffee production, contains different phenolic compounds with antioxidant properties. The effects of polyols, amplitude, extraction time, solvent concentration, and liquid-solid ratio on total phenolic content (TPC) using ultrasound-assisted extraction (UAE) were examined by single-factor studies. Three main factors that impact TPC were selected to optimize the extraction conditions for total phenolic content (TPC), total flavonoid content (TFC), total tannin content (TTC), and their antioxidant activities using the Box-Behnken design. Different extraction methods were compared, the bioactive compounds were identified and quantified by liquid chromatography triple quadrupole mass spectrometer (LC-QQQ), and the cytotoxicity and cellular antioxidant activities of the extract were studied. According to the response model, the optimal conditions for the extraction of antioxidants from coffee pulp were as follows: extraction time of 7.65 min, liquid-solid ratio of 22.22 mL/g, and solvent concentration of 46.71 %. Under optimized conditions, the values of TPC, TFC, TTC, 1,1-diphenyl-2-picryl-hydrazil (DPPH) radical scavenging assay, 2,2'-azino-bis-3-ethylbenzthiazoline-6-sulphonic acid (ABTS) radical scavenging assay, and Ferric reducing antioxidant power assay (FRAP) were 9.29 ± 0.02 mg GAE/g sample, 58.82 ± 1.38 mg QE/g sample, 8.69 ± 0.25 mg TAE/g sample, 7.56 ± 0.27 mg TEAC/g sample, 13.59 ± 0.25 mg TEAC/g sample, and 10.90 ± 0.24 mg FeSO4/g sample, respectively. Compared with other extraction conditions, UAE with propylene glycol extract (PG-UAE) was significantlyhigher in TPC, TFC, TTC, DPPH, ABTS, and FRAP response values than UAE with ethanol (EtOH-UAE), maceration with propylene glycol (PG-maceration), and maceration with ethanol (EtOH -maceration) (p < 0.05). Major bioactive compounds detected by LC-QQQ included chlorogenic acid, caffeine, and trigonelline. At higher concentrations starting from 5 mg/ml, PG-UAE extract showed higher cell viability than EtOH-UAE in both cytotoxicity and cellular antioxidant assays. The researcher expects that this new extraction technique developed in this work could produce a higher yield of bioactive compounds with higher biological activity. Therefore, they can be used as active ingredients in cosmetics (anti-aging products) and pharmaceutical applications (food supplements, treatment for oxidative stress-related diseases) with minimal use of chemicals and energy.
Collapse
Affiliation(s)
- Hla Myo
- School of Cosmetic Science, Mae Fah Luang University, Chiang Rai 57100, Thailand.
| | | |
Collapse
|
7
|
Kristanti D, Setiaboma W, ratnawati L, Sagita D. Robusta coffee cherry fermentation: Physicochemical and sensory evaluation of fermented cascara tea. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.17054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Dita Kristanti
- Research Center for Appropriate Technology, National Research and Innovation Agency Subang Indonesia
| | - Woro Setiaboma
- Research Center for Appropriate Technology, National Research and Innovation Agency Subang Indonesia
| | - Lia ratnawati
- Research Center for Appropriate Technology, National Research and Innovation Agency Subang Indonesia
| | - Diang Sagita
- Research Center for Appropriate Technology, National Research and Innovation Agency Subang Indonesia
| |
Collapse
|
8
|
Jiamjariyatam R, Samosorn S, Dolsophon K, Tantayotai P, Lorliam W, Krajangsang S. Effects of drying processes on the quality of coffee pulp. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Rossaporn Jiamjariyatam
- Department of Chemistry, Faculty of Science Srinakharinwirot University 114 Sukhumvit 23 Bangkok 10110 Thailand
| | - Siritron Samosorn
- Department of Chemistry, Faculty of Science Srinakharinwirot University 114 Sukhumvit 23 Bangkok 10110 Thailand
| | - Kulvadee Dolsophon
- Department of Chemistry, Faculty of Science Srinakharinwirot University 114 Sukhumvit 23 Bangkok 10110 Thailand
| | - Prapakorn Tantayotai
- Department of Microbiology, Faculty of Science Srinakharinwirot University 114 Sukhumvit 23 Bangkok 10110 Thailand
| | - Wanlapa Lorliam
- Department of Microbiology, Faculty of Science Srinakharinwirot University 114 Sukhumvit 23 Bangkok 10110 Thailand
| | - Sukhumaporn Krajangsang
- Department of Microbiology, Faculty of Science Srinakharinwirot University 114 Sukhumvit 23 Bangkok 10110 Thailand
| |
Collapse
|
9
|
Hall RD, Trevisan F, de Vos RCH. Coffee berry and green bean chemistry - Opportunities for improving cup quality and crop circularity. Food Res Int 2022; 151:110825. [PMID: 34980376 DOI: 10.1016/j.foodres.2021.110825] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 11/21/2021] [Accepted: 11/23/2021] [Indexed: 11/04/2022]
Abstract
Coffee cup quality is primarily determined by the type and variety of green beans chosen and the roasting regime used. Furthermore, green coffee beans are not only the starting point for the production of all coffee beverages but also are a major source of revenue for many sub-tropical countries. Green bean quality is directly related to its biochemical composition which is influenced by genetic and environmental factors. Post-harvest, on-farm processing methods are now particularly recognised as being influential to bean chemistry and final cup quality. However, research on green coffee has been limited and results are fragmented. Despite this, there are already indications that multiple factors play a role in determining green coffee chemistry - including plant cultivation/fruit ripening issues and ending with farmer practices and post-harvest storage conditions. Here, we provide the first overview of the knowledge determined so far specifically for pre-factory, green coffee composition. In addition, the potential of coffee waste biomass in a biobased economy context for the delivery of useful bioactives is described as this is becoming a topic of growing relevance within the coffee industry. We draw attention to a general lack of consistency in experimentation and reporting and call for a more intensive and united effort to build up our knowledge both of green bean composition and also how perturbations in genetic and environmental factors impact bean chemistry, crop sustainability and ultimately, cup quality.
Collapse
Affiliation(s)
- Robert D Hall
- Laboratory of Plant Physiology, Wageningen University & Research, P.O. Box 16, 6700 AA Wageningen, the Netherlands; Business Unit Bioscience, Wageningen University & Research, P.O. Box 16, 6700 AA Wageningen, the Netherlands.
| | - Fabio Trevisan
- Laboratory of Plant Physiology, Wageningen University & Research, P.O. Box 16, 6700 AA Wageningen, the Netherlands
| | - Ric C H de Vos
- Business Unit Bioscience, Wageningen University & Research, P.O. Box 16, 6700 AA Wageningen, the Netherlands
| |
Collapse
|
10
|
Changes in Bioactive Compounds of Coffee Pulp through Fermentation-Based Biotransformation Using Lactobacillus plantarum TISTR 543 and Its Antioxidant Activities. FERMENTATION-BASEL 2021. [DOI: 10.3390/fermentation7040292] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The use of biotransformation has become a popular trend in the food and cosmetic industry. Lactic acid bacteria (LAB) are widely used due to their safety and beneficial effects on human health. Coffee pulp, a by-product obtained from coffee production, has antioxidant activity because it contains different classes of phenolic compounds. To investigate the factors affecting the biotransformation process of coffee pulp using L. plantarum TISTR 543, a systematic study using 23 factorial designs in a completely randomized design (CRD) was done. After the coffee pulp was bio-transformed, its bacterial count, pH, phenol contents, flavonoid contents, tannin contents, changes in bioactive compounds by LC-QQQ, and antioxidant properties were studied. The highest phenolic content was obtained in the sample containing the substrate, water, and sugar in the ratio of 3:10:3 with a 5% starter. After the fermentation was done, for 24–72 h, total bacteria count, total phenol contents, and antioxidant activities significantly increased compared to their initial values. Protocatechuic acid also markedly increased after 24 h of the biotransformation process. Hence, the fermentation of coffee pulp with L. plantarum TISTR 543 can produce substances with a higher biological activity which can be further studied and used as functional foods or active ingredients in cosmetic application.
Collapse
|
11
|
Bae HM, Haile M, Kang WH. Evaluation of antioxidant, organic acid, and volatile compounds in coffee pulp wine fermented with native yeasts isolated from coffee cherries. FOOD SCI TECHNOL INT 2021; 28:716-727. [PMID: 34713752 DOI: 10.1177/10820132211051874] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In this study, coffee pulp was examined as a starting material to make alcoholic beverages (coffee pulp wine) and yeast fermentation ability. We have evaluated five yeasts, three of which were previously isolated from the coffee cherry, and the other two were commercial yeasts. The pH, °Brix, viable yeast cells, and color parameters of coffee pulp wines were measured. The antioxidant activity of coffee pulp wine were measured using the 2,2-diphenyl-1-picrylhydrazyl and ferric reducing antioxidant power assays. Relatively, the 2,2-diphenyl-1-picrylhydrazyl inhibition percentage of Saccharomycopsis fibuligera (strain KNU18Y4) fermented coffee pulp wine was higher than that of other yeasts. Coffee pulp wine fermented with Saccharomyces cerevisiae (strain Fermivin) had higher ferric reducing antioxidant power values. Coffee pulp wine fermented with S. fibuligera (strain KNU18Y4) produced higher total phenolic content and total flavonoid content. Coffee pulp wine fermented with S. cerevisiae (strain KNU18Y12) had lower total tannin content compared to other treatments. The citric and malic acid contents were higher in coffee pulp wine fermented with S. cerevisiae (strain Fermivin). On the other hand, high lactic and acetic acid produced, with coffee pulp wine fermented with S. fibuligera (strain KNU18Y4). Ethyl alcohol was the most abundant volatile compound found in all treatments.
Collapse
Affiliation(s)
- Hyung Min Bae
- Department of Horticulture, 98410Kangwon National University, Republic of Korea
| | - Mesfin Haile
- Department of Horticulture, 98410Kangwon National University, Republic of Korea
| | - Won Hee Kang
- Department of Horticulture, 98410Kangwon National University, Republic of Korea.,Convergence Program of Coffee Science, Kangwon National University, Republic of Korea
| |
Collapse
|
12
|
|
13
|
Hejna A. Potential applications of by-products from the coffee industry in polymer technology - Current state and perspectives. WASTE MANAGEMENT (NEW YORK, N.Y.) 2021; 121:296-330. [PMID: 33406477 DOI: 10.1016/j.wasman.2020.12.018] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 12/09/2020] [Accepted: 12/12/2020] [Indexed: 06/12/2023]
Abstract
Coffee is one of the most popular beverages in the world, and its popularity is continuously growing, which can be expressed by almost doubling production over the last three decades. Cultivation, processing, roasting, and brewing coffee are known for many years. These processes generate significant amounts of by-products since coffee bean stands for around 50% of the coffee cherry. Therefore, considering the current pro-ecological trends, it is essential to develop the utilization methods for the other 50% of the coffee cherry. Among the possibilities, much attention is drawn to polymer chemistry and technology. This industry branch may efficiently consume different types of lignocellulosic materials to use them as fillers for polymer composites or as intermediate sources of particular chemical compounds. Moreover, due to their chemical composition, coffee industry by-products may be used as additives modifying the oxidation resistance, antimicrobial, or antifungal properties of polymeric materials. These issues should be considered especially important in the case of biodegradable polymers, whose popularity is growing over the last years. This paper summarizes the literature reports related to the generation and composition of the coffee industry by-products, as well as the attempts of their incorporation into polymer technology. Moreover, potential directions of research based on the possibilities offered by the coffee industry by-products are presented.
Collapse
Affiliation(s)
- Aleksander Hejna
- Department of Polymer Technology, Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland.
| |
Collapse
|
14
|
Esquivel P, Viñas M, Steingass CB, Gruschwitz M, Guevara E, Carle R, Schweiggert RM, Jiménez VM. Coffee (Coffea arabica L.) by-Products as a Source of Carotenoids and Phenolic Compounds—Evaluation of Varieties With Different Peel Color. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2020. [DOI: 10.3389/fsufs.2020.590597] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
15
|
Wong-Paz JE, Guyot S, Aguilar-Zárate P, Muñiz-Márquez DB, Contreras-Esquivel JC, Aguilar CN. Structural characterization of native and oxidized procyanidins (condensed tannins) from coffee pulp (Coffea arabica) using phloroglucinolysis and thioglycolysis-HPLC-ESI-MS. Food Chem 2020; 340:127830. [PMID: 32919355 DOI: 10.1016/j.foodchem.2020.127830] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 07/20/2020] [Accepted: 08/11/2020] [Indexed: 01/23/2023]
Abstract
Procyanidins from coffee pulp are responsible from the limited valorization of this by-product. Information about procyanidin structure is still scarce and imprecise. The aim of this work was to study the native and oxidized procyanidins from coffee pulp with respect to composition and structure. An aqueous acetone extract from coffee pulp was purified using Sephadex LH-20. Butanolysis, phloroglucinolysis and thioglycolysis coupled to HLPC-ESI-MS were applied for the characterization of the native and oxidized procyanidins. The purification allowed to recovery three fractions (aqueous, ethanolic and acetonic) and only acetone fraction showed a high concentration of procyanidins (98%, w/w). HPLC-ESI-MS of procyanidins-rich fraction without any reaction resulted in a UV-Vis chromatogram unresolved typical of the presence of procyanidins. The extracted ion chromatogram and MS2 analysis revealed the presence from dimers to pentamers of native procyanidins. Interestingly, by first time an A-type trimeric procyanidin (m/z of 863) was observed in coffee pulp. In our study, (-)-epicatechin was the constitutive unit of procyanidins with an aDP of 6.8 (oligomeric native procyanidins) according to the phloroglucinolysis assay. Two oxidation markers useful to characterization of oxidized procyanidins were observed in the procyanidins-rich fraction after thioglycolysis, a dimer A2-ext and a molecule that corresponds to a linkage between an extension and a terminal unit. Coffee pulp procyanidins were presented with only a minor class of oxidized procyanidins. As far as we know, this is the first study about characterization of the oxidized procyanidins from coffee pulp.
Collapse
Affiliation(s)
- Jorge E Wong-Paz
- Group of Bioprocesses and Bioproducts. Food Research Department, Universidad Autónoma de Coahuila, 25280 Saltillo, Coah, Mexico; Engineering Department, Instituto Tecnológico de Ciudad Valles, Tecnológico Nacional de México, Ciudad Valles, SLP, Mexico
| | - Sylvain Guyot
- INRA, UR1268 BIA, Team Polyphenol, Reactivity & Processing (PRP), BP 35327, 35653 Le Rheu, France
| | - Pedro Aguilar-Zárate
- Group of Bioprocesses and Bioproducts. Food Research Department, Universidad Autónoma de Coahuila, 25280 Saltillo, Coah, Mexico; Engineering Department, Instituto Tecnológico de Ciudad Valles, Tecnológico Nacional de México, Ciudad Valles, SLP, Mexico
| | - Diana B Muñiz-Márquez
- Group of Bioprocesses and Bioproducts. Food Research Department, Universidad Autónoma de Coahuila, 25280 Saltillo, Coah, Mexico; Engineering Department, Instituto Tecnológico de Ciudad Valles, Tecnológico Nacional de México, Ciudad Valles, SLP, Mexico
| | - Juan C Contreras-Esquivel
- Group of Bioprocesses and Bioproducts. Food Research Department, Universidad Autónoma de Coahuila, 25280 Saltillo, Coah, Mexico
| | - Cristóbal N Aguilar
- Group of Bioprocesses and Bioproducts. Food Research Department, Universidad Autónoma de Coahuila, 25280 Saltillo, Coah, Mexico.
| |
Collapse
|
16
|
Oktaviani L, Astuti DI, Rosmiati M, Abduh MY. Fermentation of coffee pulp using indigenous lactic acid bacteria with simultaneous aeration to produce cascara with a high antioxidant activity. Heliyon 2020; 6:e04462. [PMID: 32743093 PMCID: PMC7387815 DOI: 10.1016/j.heliyon.2020.e04462] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 06/08/2020] [Accepted: 07/10/2020] [Indexed: 11/17/2022] Open
Abstract
Coffee pulp which is a by-product of coffee production contains considerable amounts of phenolic compounds that can be valorised to produce cascara as an antioxidant beverage. The fermentation and drying conditions of the coffee pulp have a great influence on the bioactive compounds in the cascara. This study aimed to investigate the effect of natural fermentation with simultaneous aeration on the phenolic content and antioxidant activity of cascara. A systematic study was carried out using a response surface methodology with a face-centered central composite design to determine the effect of fermentation time (0-8 h) and temperature (27-37 °C) on the number of bacteria in the coffee pulp after natural fermentation with simultaneous aeration (an air flowrate of 4 m/s) as well as phenolic content and antioxidant activity of cascara. The experimental dataset was modelled with an empirical model using multi-variable non-linear regression. A good agreement between model and experimental data was obtained. At the optimum conditions (4.2 h, 31.8 °C), the phenolic content was 6.72% whereas the antioxidant activity was 27.6%. Indigenous lactic acid bacteria were also isolated from the coffee pulp and determined as Leuconostoc pseudomesenteroides. The isolated bacteria can be used as a starter for controlled fermentation of coffee pulp as it increased the antioxidant activity up to 15% higher than the antioxidant activity of cascara obtained at the optimum conditions for natural fermentation with simultaneous aeration and 30% higher from the fresh coffee pulp.
Collapse
Affiliation(s)
- Lina Oktaviani
- School of Life Sciences and Technology, Institut Teknologi Bandung, Jalan Ganesha 10, 40132 Bandung, Indonesia
| | - Dea Indriani Astuti
- School of Life Sciences and Technology, Institut Teknologi Bandung, Jalan Ganesha 10, 40132 Bandung, Indonesia
| | - Mia Rosmiati
- School of Life Sciences and Technology, Institut Teknologi Bandung, Jalan Ganesha 10, 40132 Bandung, Indonesia
| | - Muhammad Yusuf Abduh
- School of Life Sciences and Technology, Institut Teknologi Bandung, Jalan Ganesha 10, 40132 Bandung, Indonesia
- Center of Excellence for Nutraceuticals, Bioscience and Biotechnology Research Center, Institut Teknologi Bandung, Jalan Ganesha 10, 40132 Bandung, Indonesia
- Corresponding author.
| |
Collapse
|
17
|
Alcoholic fermentation as a potential tool for coffee pulp detoxification and reuse: Analysis of phenolic composition and caffeine content by HPLC-DAD-MS/MS. Food Chem 2020; 319:126600. [DOI: 10.1016/j.foodchem.2020.126600] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 03/09/2020] [Accepted: 03/10/2020] [Indexed: 11/21/2022]
|
18
|
Solid-state fermentation as a sustainable method for coffee pulp treatment and production of an extract rich in chlorogenic acids. FOOD AND BIOPRODUCTS PROCESSING 2019. [DOI: 10.1016/j.fbp.2019.04.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
19
|
Heeger A, Kosińska-Cagnazzo A, Cantergiani E, Andlauer W. Bioactives of coffee cherry pulp and its utilisation for production of Cascara beverage. Food Chem 2016; 221:969-975. [PMID: 27979301 DOI: 10.1016/j.foodchem.2016.11.067] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 11/15/2016] [Accepted: 11/15/2016] [Indexed: 11/17/2022]
Abstract
Coffee cherry pulp is a by-product obtained during coffee production. Coffee cherry pulp contains considerable amounts of phenolic compounds and caffeine. An attempt to produce Cascara, a refreshing beverage, has been made. Six dried coffee pulp samples and a beverage called Cascara produced in Switzerland out of one of those samples were investigated. Aqueous extraction of coffee pulps revealed a content of total polyphenols between 4.9 and 9.2mg gallic acid equivalents (GAE)/gDM. The antioxidant capacity was between 51 and 92μmol Trolox equivalents (TE)/gDM as measured by the assay with ABTS radical. Bourbon variety from Congo and maragogype variety showed highest caffeine contents with 6.5 and 6.8mg/gDM. In all samples chlorogenic acid, protocatechuic acid, gallic acid and rutin were present. The beverage Cascara contained 226mg/L of caffeine and 283mgGAE/L of total polyphenols whereas antioxidant capacity amounted to 8.9mmol TE/L.
Collapse
Affiliation(s)
- Andrea Heeger
- Institute of Life Technologies, HES-SO Valais Wallis, University of Applied Sciences and Arts Western Switzerland, Route du Rawyl 47, CH-1950 Sion, Switzerland; Department of Nutrition and Food Sciences, University of Bonn, Endenicher Allee 11-13, D-53115 Bonn, Germany.
| | - Agnieszka Kosińska-Cagnazzo
- Institute of Life Technologies, HES-SO Valais Wallis, University of Applied Sciences and Arts Western Switzerland, Route du Rawyl 47, CH-1950 Sion, Switzerland.
| | - Ennio Cantergiani
- Carasso-Bossert SA, Rue des Sablières 4-6, CH-1217 Meyrin, Switzerland.
| | - Wilfried Andlauer
- Institute of Life Technologies, HES-SO Valais Wallis, University of Applied Sciences and Arts Western Switzerland, Route du Rawyl 47, CH-1950 Sion, Switzerland.
| |
Collapse
|