1
|
Irankunda R, Bjørlie M, Yesiltas B, Muhr L, Canabady-Rochelle L, Jacobsen C. Evaluation of primary and secondary oxidation products in fish oil-in-water emulsions: Effect of metal-complexing peptides and protein hydrolysates. Food Chem 2024; 439:138042. [PMID: 38100881 DOI: 10.1016/j.foodchem.2023.138042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 10/10/2023] [Accepted: 11/17/2023] [Indexed: 12/17/2023]
Abstract
A novel approach consisting of preselection of peptides using bioinformatics tool followed by final selection using Surface Plasmon Resonance (SPR) - an efficient technique to investigate metal complexing properties of peptides/hydrolysates - was developed. Selected pea hydrolysates and synthetic metal chelating peptides potentially present in pea hydrolysates were investigated for their ability to inhibit the lipid oxidation in emulsions composed of 5 % w/w fish oil and stabilized with Tween® 20. Results indicated that addition of peptides/hydrolysates did not impact the physical stability of emulsions and led to lower level of lipid hydroperoxides. Moreover, peptide KGKSR inhibited the generation of 1-penten-3-ol and hexanal to the same level as ethylenediaminetetraacetic acid (EDTA) did and the formation of 2 ethyl-furan was lower than when EDTA was added. Peptide GRHRQKHS showed same concentration of hexanal as EDTA thus confirming efficacy of using SPR for selecting peptides/hydrolysates to use as antioxidants in emulsions.
Collapse
Affiliation(s)
| | - Mads Bjørlie
- Technical University of Denmark, Lyngby, Denmark.
| | | | - Laurence Muhr
- Université de Lorraine, CNRS, LRGP, F-54000 Nancy, France.
| | | | | |
Collapse
|
2
|
Ji X, Wang L, Zhao J, Jiang J. Possible role of polypeptide-chlorogenic acid interaction in the physicochemical and sensory characteristics of quinoa-modified coffee beverage. Food Chem 2023; 425:136359. [PMID: 37244236 DOI: 10.1016/j.foodchem.2023.136359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 04/26/2023] [Accepted: 05/08/2023] [Indexed: 05/29/2023]
Abstract
The effect of quinoa protein hydrolysate (QPH) beverage on the physicochemical and sensory characteristics of coffee was investigated. The scores of sensory properties of coffee-quinoa beverage revealed that the unpleasant sensory characteristics, such as extreme bitterness and astringency, were covered up by the addition of quinoa beverage; while smooth mouthfeel and sweetness were enhanced. On the other hand, the introduction of coffee into quinoa beverage significantly retarded oxidation characterized by TBARS. When treated with chlorogenic acid (CGA), significant structural changes and improved functionalities of QPH were detected. CGA induced the unfolding structure of QPH and decreased surface hydrophobicity. The interaction between QPH and CGA was shown by the changes of sulfydryl content and the pattern of SDS-PAGE. Besides, neutral protease treatment increased the equilibrium oil-water interfacial pressure value of QPH, revealing improved stability of emulsions. Synergistic antioxidant effect between QPH and CGA was revealed by increased ABTS+· scavenging rate.
Collapse
Affiliation(s)
- Xin Ji
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Li Wang
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Jing Zhao
- School of Exercise and Nutritional Sciences, San Diego State University, San Diego, CA 92128, United States.
| | - Jiang Jiang
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
3
|
Song F, Chen J, Zhang Z, Tian S. Preparation, characterization, and evaluation of flaxseed oil liposomes coated with chitosan and pea protein isolate hydrolysates. Food Chem 2023; 404:134547. [PMID: 36240554 DOI: 10.1016/j.foodchem.2022.134547] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 09/05/2022] [Accepted: 10/05/2022] [Indexed: 11/06/2022]
Abstract
The effect of layer-by-layer coating of liposomes with chitosan and pea protein isolate hydrolysates (PPIH) was evaluated. Traditional flaxseed oil liposomes (FL Lipo) were used as a model for comparison to liposomes coated with chitosan and PPIH (FL LipoCP). The potential of PPIH as a coating material was evaluated. Additionally, the influence of chitosan and PPIH on vesicle size and zeta potential of liposomes was investigated. The chitosan layer of liposomes exhibited a loose structure. After the second layer of coating with PPIH, chitosan molecules were rearranged on the liposome surface, leading to a more compact and dense shell structure of liposomes. Electrostatic interactions, hydrogen bonds, and hydrophobic interactions favored the stability of FL LipoCP. Compared to FL Lipo, FL LipoCP displayed higher oxidation stability during storage and a slower release of flaxseed oil during in vitro digestion.
Collapse
Affiliation(s)
- Fanfan Song
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Jie Chen
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China; Henan Province Wheat-flour Staple Food Engineering Technology Research Centre, China
| | - Zhengquan Zhang
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Shaojun Tian
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China.
| |
Collapse
|
4
|
Lin D, Sun LC, Chen YL, Liu GM, Miao S, Cao MJ. Peptide/protein hydrolysate and their derivatives: Their role as emulsifying agents for enhancement physical and oxidative stability of emulsions. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.08.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
5
|
Liu R, Xu Y, Zhang T, Gong M, Liu R, Chang M, Wang X. Interactions between liposoluble antioxidants: A critical review. Food Res Int 2022; 155:111104. [DOI: 10.1016/j.foodres.2022.111104] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 03/03/2022] [Accepted: 03/04/2022] [Indexed: 11/04/2022]
|
6
|
Santos MA, Okuro PK, Fonseca LR, Cunha RL. Protein-based colloidal structures tailoring techno- and bio-functionality of emulsions. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107384] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
7
|
Cheng C, Yu X, Geng F, Wang L, Yang J, Huang F, Deng Q. Review on the Regulation of Plant Polyphenols on the Stability of Polyunsaturated-Fatty-Acid-Enriched Emulsions: Partitioning Kinetic and Interfacial Engineering. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:3569-3584. [PMID: 35306817 DOI: 10.1021/acs.jafc.1c05335] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The plant polyphenols are normally presented as natural functional antioxidants, which also possess the potential ability to improve the physicochemical stability of polyunsaturated fatty acid (PUFA)-enriched emulsions by interface engineering. This review discussed the potential effects of polyphenols on the stability of PUFA-enriched emulsions from the perspective of the molecular thermodynamic antioxidative analysis, the kinetic of interfacial partitioning, and the covalent and non-covalent interactions with emulsifiers. Recently, research studies have proven that the interfacial structure of emulsions can be concurrently optimized via promoting interfacial partitioning of polyphenols and further increasing interfacial thickness and strength. Moreover, the applied limitations of polyphenols in PUFA-enriched emulsions were summarized, and then some valuable and constructive viewpoints were put forward in this review to provide guidance for the use of polyphenols in constructing PUFA-enriched emulsions.
Collapse
Affiliation(s)
- Chen Cheng
- Oil Crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Ministry of Agriculture, Hubei Key Laboratory of Lipid Chemistry and Nutrition and Key Laboratory of Oilseeds Processing, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, Hubei 430062, People's Republic of China
| | - Xiao Yu
- Oil Crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Ministry of Agriculture, Hubei Key Laboratory of Lipid Chemistry and Nutrition and Key Laboratory of Oilseeds Processing, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, Hubei 430062, People's Republic of China
- College of Food and Bioengineering, Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Henan Collaborative Innovation Center for Food Production and Safety, Zhengzhou University of Light Industry, Zhengzhou, Henan 450002, People's Republic of China
| | - Fang Geng
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), School of Food and Biological Engineering, Chengdu University, 2025 Chengluo Avenue, Chengdu, Sichuan 610106, People's Republic of China
| | - Lei Wang
- Oil Crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Ministry of Agriculture, Hubei Key Laboratory of Lipid Chemistry and Nutrition and Key Laboratory of Oilseeds Processing, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, Hubei 430062, People's Republic of China
| | - Jing Yang
- Oil Crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Ministry of Agriculture, Hubei Key Laboratory of Lipid Chemistry and Nutrition and Key Laboratory of Oilseeds Processing, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, Hubei 430062, People's Republic of China
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, People's Republic of China
| | - Fenghong Huang
- Oil Crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Ministry of Agriculture, Hubei Key Laboratory of Lipid Chemistry and Nutrition and Key Laboratory of Oilseeds Processing, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, Hubei 430062, People's Republic of China
| | - Qianchun Deng
- Oil Crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Ministry of Agriculture, Hubei Key Laboratory of Lipid Chemistry and Nutrition and Key Laboratory of Oilseeds Processing, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, Hubei 430062, People's Republic of China
| |
Collapse
|
8
|
Antioxidant Activity of Lactobacillus plantarum DY-1 Fermented Wheat Germ Extract and Its Influence on Lipid Oxidation and Texture Properties of Emulsified Sausages. J FOOD QUALITY 2020. [DOI: 10.1155/2020/8885886] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The nutrient compositions and in vitro antioxidant activities of water-soluble extract from Lactobacillus plantarum DY-1 fermented wheat germ and its effect on the lipid oxidation and texture properties of emulsified sausages were investigated. The optimal hydroxyl radical scavenging capacity of 72.8 ± 2.9% was demonstrated for fermented wheat germ extract (FWGE) by terms of the fermentation conditions as follows: fermentation time of 26 h, fermentation temperature of 35°C, initial pH of 3.0, solid to liquid ratio of 1/10, and inoculum amount of 0.48 g. The enhancement in FWGE content could improve the oxidation stability of emulsified sausages by retarding the formation of thiobarbituric acid-reactive substances (TBARSs) during 7 days of storage at 4°C. However, a higher FWGE content (2.14%) resulted in 78% of increase in cooking loss (p<0.05) and 41.4% of decrease in hardness (p<0.05) of emulsified sausages. It was suggested that the biotransformation of wheat germ with lactic acid bacteria could improve its nutritional quality and functional properties.
Collapse
|
9
|
Ge J, Sun CX, Corke H, Gul K, Gan RY, Fang Y. The health benefits, functional properties, modifications, and applications of pea (Pisum sativum L.) protein: Current status, challenges, and perspectives. Compr Rev Food Sci Food Saf 2020; 19:1835-1876. [PMID: 33337084 DOI: 10.1111/1541-4337.12573] [Citation(s) in RCA: 122] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 03/31/2020] [Accepted: 05/03/2020] [Indexed: 01/23/2023]
Abstract
In recent years, the development and application of plant proteins have drawn increasing scientific and industrial interests. Pea (Pisum sativum L.) is an important source of high-quality vegetable protein in the human diet. Its protein components are generally considered hypoallergenic, and many studies have highlighted the health benefits associated with the consumption of pea protein. Pea protein and its hydrolysates (pea protein hydrolysates [PPH]) possess health benefits such as antioxidant, antihypertensive, and modulating intestinal bacteria activities, as well as various functional properties, including solubility, water- and oil-holding capacities, and emulsifying, foaming, and gelling properties. However, the application of pea protein in the food system is limited due to its poor functional performances. Several frequently applied modification methods, including physical, chemical, enzymatic, and combined treatments, have been used for pea protein to improve its functional properties and expand its food applications. To date, different applications of pea protein in the food system have been extensively studied, for example, encapsulation for bioactive ingredients, edible films, extruded products and substitution for cereal flours, fats, and animal proteins. This article reviews the current status of the knowledge regarding pea protein, focusing on its health benefits, functional properties, and structural modifications, and comprehensively summarizes its potential applications in the food industry.
Collapse
Affiliation(s)
- Jiao Ge
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Cui-Xia Sun
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Harold Corke
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Khalid Gul
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Ren-You Gan
- Research Center for Plants and Human Health, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, People's Republic of China
| | - Yapeng Fang
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| |
Collapse
|
10
|
Jiang B, Wang X, Wang L, Wu S, Li D, Liu C, Feng Z. Fabrication and Characterization of a Microemulsion Stabilized by Integrated Phosvitin and Gallic Acid. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:5437-5447. [PMID: 32320610 DOI: 10.1021/acs.jafc.0c00945] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The purpose of this work was to conjugate phosvitin (Pv) with gallic acid (GA) to explore a new emulsifier that had both good emulsifying properties and antioxidant activity. The Pv-GA complex was prepared at a GA concentration of 1.5 mg/mL with pH 9.0. The Pv-GA complex obtained was identified by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and characterized with infrared, ultraviolet, and fluorescence spectra. The emulsifying activity and stability of the Pv-GA complex were slightly improved, and antioxidant activities was significantly enhanced. Furthermore, the Pv-GA complex was used to load conjugated linoleic acid (CLA) for microemulsion preparation. Results showed that the Pv-GA complex could increase the viscosity and lipid antioxidant capacity of Pv-GA/CLA microemulsion. The Pv-GA/CLA microemulsion had remarkable emulsifying activity, emulsifying stability, pH, and thermal stability and poor salt stability.
Collapse
Affiliation(s)
- Bin Jiang
- Department of Applied Chemistry, Northeast Agricultural University, Harbin, Heilongjiang 150030, People's Republic of China
| | - Xiaojing Wang
- Department of Applied Chemistry, Northeast Agricultural University, Harbin, Heilongjiang 150030, People's Republic of China
| | - Linlin Wang
- Department of Applied Chemistry, Northeast Agricultural University, Harbin, Heilongjiang 150030, People's Republic of China
| | - Shuang Wu
- Heilongjiang Eco-meteorology Center, Harbin, Heilongjiang 150030, People's Republic of China
| | - Dongmei Li
- Department of Applied Chemistry, Northeast Agricultural University, Harbin, Heilongjiang 150030, People's Republic of China
| | - Chunhong Liu
- Department of Applied Chemistry, Northeast Agricultural University, Harbin, Heilongjiang 150030, People's Republic of China
| | - Zhibiao Feng
- Department of Applied Chemistry, Northeast Agricultural University, Harbin, Heilongjiang 150030, People's Republic of China
| |
Collapse
|
11
|
Niu H, Chen W, Chen W, Yun Y, Zhong Q, Fu X, Chen H, Liu G. Preparation and Characterization of a Modified-β-Cyclodextrin/β-Carotene Inclusion Complex and Its Application in Pickering Emulsions. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:12875-12884. [PMID: 31644278 DOI: 10.1021/acs.jafc.9b05467] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
β-Cyclodextrin (β-CD) was modified using octenyl succinic anhydride (OSA) to introduce amphiphilic groups (hydrophilic carboxyl and lipophilic octenyl chains) by esterification under alkaline conditions. The FT-IR results indicated that the OSA-modified β-CD (OCD) showed new absorption peaks of an ester bond and a carboxylate (RCOO-) at 1724 and 1570 cm-1, respectively, confirming the successful preparation of OCD. Then the embedding effects of β-CD and OCD on β-carotene and the emulsifying and antioxidant properties of their inclusion complexes were evaluated. The results of XRD showed that the β-CD (or OCD)/β-carotene inclusion complexes were converted from a cage-type structure to a channel-type structure. AFM and SEM showed that the crystal characteristics and surface morphologies of the inclusion complexes were different from those of the physical mixture. The emulsion stabilized by OCD exhibited smaller droplet sizes and larger zeta-potentials than that stabilized by β-CD. In addition, the inclusion complexes-prepared emulsion exhibited lower POV values and TBARS contents than did the physical mixture. OCD/β-carotene inclusion complexes can improve the physical and oxidative stability of the emulsion, which is of great significance to the food industry.
Collapse
Affiliation(s)
- Hui Niu
- College of Food Sciences , South China University of Technology , 381 Wushan Road , Guangzhou , Guangdong 510640 , PR China
- College of Food Sciences & Engineering , Hainan University , 58 People Road , Haikou , Hainan 570228 , PR China
| | - Weijun Chen
- College of Food Sciences & Engineering , Hainan University , 58 People Road , Haikou , Hainan 570228 , PR China
| | - Wenxue Chen
- College of Food Sciences & Engineering , Hainan University , 58 People Road , Haikou , Hainan 570228 , PR China
| | - Yonghuan Yun
- College of Food Sciences & Engineering , Hainan University , 58 People Road , Haikou , Hainan 570228 , PR China
| | - Qiuping Zhong
- College of Food Sciences & Engineering , Hainan University , 58 People Road , Haikou , Hainan 570228 , PR China
| | - Xiong Fu
- College of Food Sciences , South China University of Technology , 381 Wushan Road , Guangzhou , Guangdong 510640 , PR China
| | - Haiming Chen
- College of Food Sciences & Engineering , Hainan University , 58 People Road , Haikou , Hainan 570228 , PR China
| | - Gang Liu
- College of Food Science and Engineering , Wuhan Polytechnic University , Wuhan , Hubei 430023 , China
| |
Collapse
|
12
|
Feng H, Jin H, Gao Y, Zhu X, Zhao Q, Liu C, Xu J. The Effect of (-)-Epigallocatechin-3-Gallate Non-Covalent Interaction with the Glycosylated Protein on the Emulsion Property. Polymers (Basel) 2019; 11:polym11101688. [PMID: 31618966 PMCID: PMC6835514 DOI: 10.3390/polym11101688] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 10/09/2019] [Accepted: 10/12/2019] [Indexed: 11/21/2022] Open
Abstract
The effect of (−)-epigallocatechin-3-gallate (EGCG) on protein structure and emulsion properties of glycosylated black bean protein isolate (BBPI-G) were studied and compared to native black bean protein isolate (BBPI). The binding affinity of BBPI and BBPI-G with EGCG belonged to non-covalent interaction, which was determined by fluorescence quenching. EGCG attachment caused more disordered protein conformation, leading to a higher emulsification property. Among the different EGCG concentrations (0.10, 0.25, 0.50 mg/mL), the result revealed that the highest level of the emulsification property was obtained with 0.25 mg/mL EGCG. Therefore, the BBPI-EGCG and BBPI-G-EGCG prepared by 0.25 mg/mL EGCG were selected to fabricate oil-in-water (O/W) emulsions. After the addition of EGCG, the mean particle size of emulsions decreased with the increasing absolute value of zeta-potential, and more compact interfacial film was formed due to the higher percentage of interfacial protein adsorption (AP%). Meanwhile, EGCG also significantly reduced the lipid oxidation of emulsions.
Collapse
Affiliation(s)
- Haiying Feng
- College of Science, Northeast Agricultural University, Harbin 150030, Heilongjiang, China.
| | - Hua Jin
- College of Science, Northeast Agricultural University, Harbin 150030, Heilongjiang, China.
| | - Yu Gao
- College of Science, Northeast Agricultural University, Harbin 150030, Heilongjiang, China.
| | - Xiuqing Zhu
- College of Food Engineering, Harbin University of Commerce, Key Laboratory of Grain Food and Comprehensive Processing of Grain Resource, Harbin 150076, Heilongjiang, China.
| | - Qingshan Zhao
- Laboratory Management Office, Northeast Agricultural University, Harbin 150030, Heilongjiang, China.
| | - Chunhong Liu
- College of Science, Northeast Agricultural University, Harbin 150030, Heilongjiang, China.
| | - Jing Xu
- College of Science, Northeast Agricultural University, Harbin 150030, Heilongjiang, China.
| |
Collapse
|
13
|
Chen H, Niu H, Zhang H, Yun Y, Chen W, Zhong Q, Chen W, Fu X. Preparation and properties of ferulic acid-sugar beet pulp pectin ester and its application as a physical and antioxidative stabilizer in a fish oil-water emulsion. Int J Biol Macromol 2019; 139:290-297. [DOI: 10.1016/j.ijbiomac.2019.07.222] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Revised: 07/10/2019] [Accepted: 07/31/2019] [Indexed: 11/30/2022]
|
14
|
Li R, Peng S, Zhang R, Dai T, Fu G, Wan Y, Liu C, McClements DJ. Formation and characterization of oil-in-water emulsions stabilized by polyphenol-polysaccharide complexes: Tannic acid and β-glucan. Food Res Int 2019; 123:266-275. [DOI: 10.1016/j.foodres.2019.05.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 04/29/2019] [Accepted: 05/02/2019] [Indexed: 11/28/2022]
|
15
|
Li Y, Liu H, Liu Q, Kong B, Diao X. Effects of zein hydrolysates coupled with sage (salvia officinalis) extract on the emulsifying and oxidative stability of myofibrillar protein prepared oil-in-water emulsions. Food Hydrocoll 2019. [DOI: 10.1016/j.foodhyd.2018.07.052] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
16
|
Xiong T, Xiong W, Ge M, Xia J, Li B, Chen Y. Effect of high intensity ultrasound on structure and foaming properties of pea protein isolate. Food Res Int 2018; 109:260-267. [PMID: 29803449 DOI: 10.1016/j.foodres.2018.04.044] [Citation(s) in RCA: 209] [Impact Index Per Article: 29.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 04/19/2018] [Accepted: 04/20/2018] [Indexed: 10/17/2022]
Abstract
The effects of high intensity ultrasound (HIUS, 20 kHz, at varying amplitude 30%, 60%, 90% for 30 min) on structure and foaming properties of pea protein isolate (PPI) were investigated. No significant change was observed from the electrophoresis profiles and circular dichroism (CD) spectrum. Analyses of fluorescence spectroscopy and the amount of free sulfhydryl groups showed that HIUS induced protein molecular partial unfolding. Furthermore, HIUS decreased particle size of PPI and increased exposed hydrophobicity, resulting in a reduction of the surface tension at the air-water interface. Therefore, the foaming ability of PPI increased from 145.6% to 200.0%. The foaming stability increased from 58.0% to 73.3% with the increasing amplitude after 10 min though all reduced to 50.0% with the extension of time. That suggested that HIUS treatment has a potential to be implemented to modify foaming properties of PPI.
Collapse
Affiliation(s)
- Ting Xiong
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China; Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, China
| | - Wenfei Xiong
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China; Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, China
| | - Mengting Ge
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Junhao Xia
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Bin Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China; Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, China
| | - Yijie Chen
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China; Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, China.
| |
Collapse
|
17
|
Asadollahi S, Sari M, Erafanimajd N, Kiani A, Ponnampalam E. Supplementation of sugar beet pulp and roasted canola seed in a concentrate diet altered carcass traits, muscle ( longissimus dorsi ) composition and meat sensory properties of Arabian fattening lambs. Small Rumin Res 2017. [DOI: 10.1016/j.smallrumres.2017.05.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
18
|
Wang MP, Lu W, Yang J, Wang JM, Yang XQ. Preparation and characterisation of isoflavone aglycone-rich calcium-binding soy protein hydrolysates. Int J Food Sci Technol 2017. [DOI: 10.1111/ijfs.13502] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Meng-Ping Wang
- National Engineering Laboratory of Wheat and Corn Further Processing; School of Food Science and Engineering; South China University of Technology; Guangzhou 510640 China
| | - Wei Lu
- School of Biological Engineering and Food Science; Hubei University of Technology; Wuhan 430064 China
| | - Juan Yang
- School of Chemistry and Chemical Engineering; Lingnan Normal University; Zhanjiang 524048 China
| | - Jin-Mei Wang
- National Engineering Laboratory of Wheat and Corn Further Processing; School of Food Science and Engineering; South China University of Technology; Guangzhou 510640 China
| | - Xiao-quan Yang
- National Engineering Laboratory of Wheat and Corn Further Processing; School of Food Science and Engineering; South China University of Technology; Guangzhou 510640 China
| |
Collapse
|
19
|
Li Y, Liu H, Han Q, Kong B, Liu Q. Cooperative antioxidative effects of zein hydrolysates with sage (Salvia officinalis) extract in a liposome system. Food Chem 2017; 222:74-83. [DOI: 10.1016/j.foodchem.2016.12.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 11/05/2016] [Accepted: 12/07/2016] [Indexed: 11/27/2022]
|
20
|
Improvement of the emulsifying and oxidative stability of myofibrillar protein prepared oil-in-water emulsions by addition of zein hydrolysates. Process Biochem 2017. [DOI: 10.1016/j.procbio.2016.11.010] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
21
|
Jiang J, Xiong YL. Natural antioxidants as food and feed additives to promote health benefits and quality of meat products: A review. Meat Sci 2016; 120:107-117. [DOI: 10.1016/j.meatsci.2016.04.005] [Citation(s) in RCA: 195] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 04/05/2016] [Accepted: 04/06/2016] [Indexed: 12/14/2022]
|
22
|
Duan X, Li M, Ma H, Xu X, Jin Z, Liu X. Physicochemical properties and antioxidant potential of phosvitin–resveratrol complexes in emulsion system. Food Chem 2016; 206:102-9. [DOI: 10.1016/j.foodchem.2016.03.055] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2016] [Revised: 03/15/2016] [Accepted: 03/16/2016] [Indexed: 10/22/2022]
|
23
|
Thamnarathip P, Jangchud K, Jangchud A, Vardhanabhuti B. Functional properties of protein hydrolysates from Riceberry rice bran. Int J Food Sci Technol 2016. [DOI: 10.1111/ijfs.13071] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Parichart Thamnarathip
- Department of Product Development; Faculty of Agro-Industry; Kasetsart University; 50 Ngam Wong Wan Road Chatuchak Bangkok 10900 Thailand
| | - Kamolwan Jangchud
- Department of Product Development; Faculty of Agro-Industry; Kasetsart University; 50 Ngam Wong Wan Road Chatuchak Bangkok 10900 Thailand
| | - Anuvat Jangchud
- Department of Product Development; Faculty of Agro-Industry; Kasetsart University; 50 Ngam Wong Wan Road Chatuchak Bangkok 10900 Thailand
| | - Bongkosh Vardhanabhuti
- Food Science Program; College of Agriculture, Food and Natural Resources; University of Missouri; Columbia MO 65211 USA
| |
Collapse
|
24
|
Abstract
Liquorice foliage
Collapse
|
25
|
Jiang J, Xiong YL. Role of interfacial protein membrane in oxidative stability of vegetable oil substitution emulsions applicable to nutritionally modified sausage. Meat Sci 2015; 109:56-65. [PMID: 26008711 DOI: 10.1016/j.meatsci.2015.05.011] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Revised: 05/13/2015] [Accepted: 05/15/2015] [Indexed: 11/24/2022]
Abstract
The potential health risk associated with excessive dietary intake of fat and cholesterol has led to a renewed interest in replacing animal fat with nutritionally-balanced unsaturated oil in processed meats. However, as oils are more fluid and unsaturated than fats, one must overcome the challenge of maintaining both physical and chemical (oxidative) stabilities of prepared emulsions. Apart from physical entrapments, an emulsion droplet to be incorporated into a meat protein gel matrix (batter) should be equipped with an interactive protein membrane rather than a small surfactant, and the classical DLVO stabilization theory becomes less applicable. This review paper describes the steric effects along with chemical roles (radical scavenging and metal ion chelation) of proteins and their structurally modified derivatives as potential interface-building materials for oxidatively stable meat emulsions.
Collapse
Affiliation(s)
- Jiang Jiang
- School of Food Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Youling L Xiong
- Department of Animal and Food Sciences, University of Kentucky, Lexington, KY 40546, United States.
| |
Collapse
|