1
|
Wang S, Sun Z, Zhao X, Li K, Wang Y, Zhang X. N-C QDs coated with a molecularly imprinted polymer as a fluorescent probe for detection of penicillin. Dalton Trans 2024; 53:6965-6973. [PMID: 38546786 DOI: 10.1039/d3dt04297a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/24/2024]
Abstract
Many diseases are due to bacterial infections, which are treated by penicillin. Existing methods for penicillin detection have relatively high requirements for sample storage and processing, personnel professionalism, and instruments. Herein, water-soluble N-C quantum dots (QDs) from wheat straw were synthesized in a green way by using an efficient and simple method. The N-C QDs were modified with an imprinted layer by a gel-sol method. Penicillin selectively quenched the fluorescence emission of N-C QDs@MIP, and a linear relationship was obtained in the concentration range of 1.0 × 10-6-15.2 × 10-6 mol L-1. The reliability of the sensor in real sample analysis was satisfactory with results in the range of 93.6%-100%, and the sensor showed good reproducibility and long-term stability. The study provides a simple strategy to fabricate N-C QDs@MIP with a highly selective recognition ability and opens an avenue to develop highly efficient sensing probes for the detection of antibiotics in biological applications.
Collapse
Affiliation(s)
- Shan Wang
- School of Chemistry and Chemical Engineering, Xianyang Normal University, Xianyang, 712000, China.
| | - Zhihui Sun
- School of Chemistry and Chemical Engineering, Xianyang Normal University, Xianyang, 712000, China.
| | - Xuyang Zhao
- Xianyang Institute of Cultural Relics and Archaeology, Xianyang, 712000, China
| | - Kunhua Li
- Xianyang Institute of Cultural Relics and Archaeology, Xianyang, 712000, China
| | - Yafei Wang
- Xianyang Institute of Cultural Relics and Archaeology, Xianyang, 712000, China
| | - Xijing Zhang
- School of Chemistry and Chemical Engineering, Xianyang Normal University, Xianyang, 712000, China.
| |
Collapse
|
2
|
Huang L, Yang J, Liang Z, Liang R, Luo H, Sun Z, Han D, Niu L. Ternary Heterojunction Graphitic Carbon Nitride/Cupric Sulfide/Titanium Dioxide Photoelectrochemical Sensor for Sesamol Quantification and Antioxidant Synergism. BIOSENSORS 2023; 13:859. [PMID: 37754093 PMCID: PMC10526488 DOI: 10.3390/bios13090859] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 08/27/2023] [Accepted: 08/28/2023] [Indexed: 09/28/2023]
Abstract
Sesamol (SM) is a potent natural antioxidant that can quench free radicals and modulate the cholinergic system in the brain, thereby ameliorating memory and cognitive impairment in Alzheimer's disease patients. Moreover, the total antioxidant capacity can be amplified by synergistic interactions between different antioxidants. Here, we constructed a ternary heterojunction graphitic carbon nitride/cupric sulfide/titanium dioxide (g-C3N4/CuS/TiO2) photoelectrochemical (PEC) sensor for the quantification of SM and its synergistic interactions with other antioxidants. Crucially, the Schottky barrier in ternary semiconductors considerably enhances electron transfer. The PEC sensor showed a wide linear range for SM detection, ranging from 2 to 1277 μmol L-1, and had a limit of detection of 1.8 μmol L-1. Remarkably, this sensing platform could evaluate the synergism between SM and five typical lipid-soluble antioxidants: tert-butyl hydroquinone, vitamin E, butyl hydroxyanisole, propyl gallate, and butylated hydroxytoluene. Owing to its low redox potential, SM could reduce antioxidant radicals and promote their regeneration, which increased the overall antioxidant performance. The g-C3N4/CuS/TiO2 PEC sensor exhibited high sensitivity, satisfactory selectivity, and stability, and was successfully applied for SM determination in both soybean and peanut oils. The findings of this study provide guidance for the development of nutritional foods, nutrition analysis, and the treatment of diseases caused by free radicals.
Collapse
Affiliation(s)
- Likun Huang
- Guangzhou Key Laboratory of Sensing Materials & Devices, Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China; (L.H.); (J.Y.); (Z.L.); (R.L.); (H.L.); (Z.S.); (L.N.)
| | - Jingshi Yang
- Guangzhou Key Laboratory of Sensing Materials & Devices, Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China; (L.H.); (J.Y.); (Z.L.); (R.L.); (H.L.); (Z.S.); (L.N.)
| | - Zhishan Liang
- Guangzhou Key Laboratory of Sensing Materials & Devices, Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China; (L.H.); (J.Y.); (Z.L.); (R.L.); (H.L.); (Z.S.); (L.N.)
| | - Ruilian Liang
- Guangzhou Key Laboratory of Sensing Materials & Devices, Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China; (L.H.); (J.Y.); (Z.L.); (R.L.); (H.L.); (Z.S.); (L.N.)
| | - Hui Luo
- Guangzhou Key Laboratory of Sensing Materials & Devices, Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China; (L.H.); (J.Y.); (Z.L.); (R.L.); (H.L.); (Z.S.); (L.N.)
| | - Zhonghui Sun
- Guangzhou Key Laboratory of Sensing Materials & Devices, Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China; (L.H.); (J.Y.); (Z.L.); (R.L.); (H.L.); (Z.S.); (L.N.)
| | - Dongxue Han
- Guangzhou Key Laboratory of Sensing Materials & Devices, Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China; (L.H.); (J.Y.); (Z.L.); (R.L.); (H.L.); (Z.S.); (L.N.)
- Guangzhou Provincial Key Laboratory of Psychoactive Substance Monitoring and Safety, Anti-Drug Technology Center of Guangdong Province, Guangzhou 510230, China
| | - Li Niu
- Guangzhou Key Laboratory of Sensing Materials & Devices, Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China; (L.H.); (J.Y.); (Z.L.); (R.L.); (H.L.); (Z.S.); (L.N.)
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China
| |
Collapse
|
3
|
Yang W, Fang Q, Zhang L, Yin H, Wu C, Zhang W, Huang W, Ni X. Synthesis and characterization of an innovative molecular imprinted polymers based on CdTe QDs fluorescence sensing for selective detection of sulfadimidine. JOURNAL OF POLYMER RESEARCH 2021. [DOI: 10.1007/s10965-021-02714-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
4
|
Kazemifard N, Ensafi AA, Dehkordi ZS. A review of the incorporation of QDs and imprinting technology in optical sensors – imprinting methods and sensing responses. NEW J CHEM 2021. [DOI: 10.1039/d1nj01104a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
This review aims to cover the simultaneous method of using molecularly imprinted technology and quantum dots (QDs) as well as its application in the field of optical sensors.
Collapse
Affiliation(s)
- Nafiseh Kazemifard
- Department of Chemistry
- Isfahan University of Technology
- Isfahan 84156-83111
- Iran
| | - Ali A. Ensafi
- Department of Chemistry
- Isfahan University of Technology
- Isfahan 84156-83111
- Iran
| | | |
Collapse
|
5
|
|
6
|
Gui R, Jin H. Recent advances in synthetic methods and applications of photo-luminescent molecularly imprinted polymers. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY C-PHOTOCHEMISTRY REVIEWS 2019. [DOI: 10.1016/j.jphotochemrev.2019.08.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
7
|
Rapid electroanalytical procedure for sesamol determination in real samples. Food Chem 2019; 309:125789. [PMID: 31704073 DOI: 10.1016/j.foodchem.2019.125789] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 10/22/2019] [Accepted: 10/22/2019] [Indexed: 12/17/2022]
Abstract
In this study, the development of an electroanalytical assay based on square wave voltammetry technique for determining sesamol (Ses) in sesame oil samples is described. The influence of various factors such as pH of the supporting electrolyte, its composition, and SW (square wave) parameters was studied. Linearity of the peak current depended on the concentration of Ses in the range from 3.0 to 140.0 μmol L-1 with a limit of detection of 0.71 μmol L-1. Furthermore, the cyclic voltammetric behavior of Ses and the effects of scan rate and pH on the peak current and peak potential of Ses were determined. Moreover, the electrode process was found to be diffusion-controlled. The proposed methodology was successfully applied for determining Ses in commercial sesame oil samples. The obtained results were in good agreement with the results from the HPLC-UV reference method.
Collapse
|
8
|
Aslışen B, Koçak ÇC, Koçak S. Electrochemical Determination of Sesamol in Foods by Square Wave Voltammetry at a Boron-Doped Diamond Electrode. ANAL LETT 2019. [DOI: 10.1080/00032719.2019.1650752] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Burak Aslışen
- Department of Chemistry, Science and Art Faculty, Manisa Celal Bayar University, Manisa, Turkey
| | - Çağrı C. Koçak
- Bergama Vocational School, Dokuz Eylul University, Izmir, Turkey
| | - Süleyman Koçak
- Department of Chemistry, Science and Art Faculty, Manisa Celal Bayar University, Manisa, Turkey
| |
Collapse
|
9
|
Sobiech M, Bujak P, Luliński P, Pron A. Semiconductor nanocrystal-polymer hybrid nanomaterials and their application in molecular imprinting. NANOSCALE 2019; 11:12030-12074. [PMID: 31204762 DOI: 10.1039/c9nr02585e] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Quantum dots (QDs) are attractive semiconductor fluorescent nanomaterials with remarkable optical and electrical properties. The broad absorption spectra and high stability of QD transducers are advantageous for sensing and bioimaging. Molecular imprinting is a technique for manufacturing synthetic polymeric materials with a high recognition ability towards a target analyte. The high selectivity of the molecularly imprinted polymers (MIPs) is a result of the fabrication process based on the template-tailored polymerization of functional monomers. The three-dimensional cavities formed in the polymer network can serve as the recognition elements of sensors because of their specificity and stability. Appending specific molecularly imprinted layers to QDs is a promising strategy to enhance the stability, sensitivity, and selective fluorescence response of the resulting sensors. By merging the benefits of MIPs and QDs, inventive optical sensors are constructed. In this review, the recent synthetic strategies used for the fabrication of QD nanocrystals emphasizing various approaches to effective functionalization in aqueous environments are discussed followed by a detailed presentation of current advances in QD conjugated MIPs (MIP-QDs). Frontiers in manufacturing of specific imprinted layers of these nanomaterials are presented and factors affecting the specific behaviour of an MIP shell are identified. Finally, current limitations of MIP-QDs are defined and prospects are outlined to amplify the capability of MIP-QDs in future sensing.
Collapse
Affiliation(s)
- Monika Sobiech
- Department of Organic Chemistry, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland
| | - Piotr Bujak
- Warsaw University of Technology, Faculty of Chemistry, Noakowskiego 3, 00-664 Warsaw, Poland.
| | - Piotr Luliński
- Department of Organic Chemistry, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland
| | - Adam Pron
- Warsaw University of Technology, Faculty of Chemistry, Noakowskiego 3, 00-664 Warsaw, Poland.
| |
Collapse
|
10
|
Zhang Y, Zhang D, Liu AH. Luminescent Molecularly Imprinted Polymers Based on Covalent Organic Frameworks and Quantum Dots with Strong Optical Response to Quinoxaline-2-Carboxylicacid. Polymers (Basel) 2019; 11:polym11040708. [PMID: 30999709 PMCID: PMC6523229 DOI: 10.3390/polym11040708] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 04/07/2019] [Accepted: 04/13/2019] [Indexed: 11/17/2022] Open
Abstract
Three-dimensional molecularly imprinted polymers (MIPs) based on quantum dots-grafted covalent organic frameworks (QDs-grafted COFs) are reported in this study. The compound 1,3,5-triformylphloroglucinol-P-phenylenediamine was used as COF material to react with the amino-modified CdSe/ZnS QDs by Schiff-base reactions. The amino-derived QDs reacted with quinoxaline-2-carboxylicacid (QCA) via a non-covalent interaction. The system combines the advantages of MIPs, COFs, and QDs for highly sensitive and selective QCA detection. The MIPs based on QDs-grafted COFs showed good chemical selectivity and thermal stability, as well as consistency in QCA optosensing. Under optimal conditions, the detection limit for QCA in meat and feed samples was 0.85 μmol L−1, over a linear concentration range of 1–50 μmol L−1. The current findings suggest a potential application of MIPs based on QDs-grafted COFs for the detection of trace levels of hazardous chemicals for food safety and environmental control.
Collapse
Affiliation(s)
- Ying Zhang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, 11 Fucheng Road, Beijing 100048, China.
| | - Dianwei Zhang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, 11 Fucheng Road, Beijing 100048, China.
| | - And Huilin Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, 11 Fucheng Road, Beijing 100048, China.
| |
Collapse
|
11
|
Zhang D, Liu H, Geng W, Wang Y. A dual-function molecularly imprinted optopolymer based on quantum dots-grafted covalent-organic frameworks for the sensitive detection of tyramine in fermented meat products. Food Chem 2019; 277:639-645. [DOI: 10.1016/j.foodchem.2018.10.147] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 10/29/2018] [Accepted: 10/31/2018] [Indexed: 01/02/2023]
|
12
|
Wang Y, Lin S, Luo J, Huang R, Cai H, Yan W, Yang H. A Novel Tb@Sr-MOF as Self-Calibrating Luminescent Sensor for Nutritional Antioxidant. NANOMATERIALS (BASEL, SWITZERLAND) 2018; 8:E796. [PMID: 30301259 PMCID: PMC6215301 DOI: 10.3390/nano8100796] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 09/27/2018] [Accepted: 10/01/2018] [Indexed: 12/18/2022]
Abstract
Sesamol, is well-known antioxidant and can reduce the rate of oxidation and prolong expiration date. It is also potentially antimutagenic and antihepatotoxic, the detection of sesamol is important and remains a huge challenge. Herein, a new 3D alkaline earth Sr metal organic framework [Sr(BDC)DMACH₂O]n (BDC = benzene-1,4-dicarboxylate; DMAC = N,N-dimethylacetamide) is synthesized and a probe based on Tb3+ functionalized Sr-MOF. The Tb(3+)@Sr-MOF showed good luminescence and thermal property. Due to the energy competition between sesamol and ligand, the luminescence intensity of sesamol increases meantime luminescence intensity of Tb3+ decreases, the ratio of the emission intensities (I344/I545) linearly increases with sesamol in concentrations ranging from 1 × 10-7 to 8 × 10-4 M. Furthermore, the fluorescence-detected circular test shows that the composite Tb(3+)@Sr-MOF can serve as ratiometric sensor for sensing of sesamol. This is the first example for self-calibrated detecting sesamol based on metal-organic framework (MOF).
Collapse
Affiliation(s)
- Yi Wang
- College of chemistry and Material Engineering, Gui Yang University, Guiyang 550005, China.
| | - Shaomin Lin
- School of Material science and Engineering Han Shan Normal University, Chaozhou 521041, China.
| | - Jun Luo
- College of chemistry and Material Engineering, Gui Yang University, Guiyang 550005, China.
| | - Rui Huang
- School of Material science and Engineering Han Shan Normal University, Chaozhou 521041, China.
| | - Hong Cai
- School of Material science and Engineering Han Shan Normal University, Chaozhou 521041, China.
| | - Wei Yan
- College of chemistry and Material Engineering, Gui Yang University, Guiyang 550005, China.
| | - Huan Yang
- School of Material science and Engineering Han Shan Normal University, Chaozhou 521041, China.
| |
Collapse
|
13
|
Nitrogen-doped graphene quantum dots-labeled epitope imprinted polymer with double templates via the metal chelation for specific recognition of cytochrome c. Biosens Bioelectron 2017; 91:253-261. [DOI: 10.1016/j.bios.2016.12.040] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 12/07/2016] [Accepted: 12/15/2016] [Indexed: 01/27/2023]
|
14
|
Niu M, Pham-Huy C, He H. Core-shell nanoparticles coated with molecularly imprinted polymers: a review. Mikrochim Acta 2016. [DOI: 10.1007/s00604-016-1930-4] [Citation(s) in RCA: 134] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
15
|
Lee JH, Tay BK, Ganguly R, Webster RD. The Electrochemical Oxidation of Sesamol in Acetonitrile Containing Variable Amounts of Water. Electrochim Acta 2015. [DOI: 10.1016/j.electacta.2015.10.068] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
16
|
Zhang Y, Hu B, Huang Y. Polyethylenimine/grapefruit peel hybrid biosorbent for the removal of toxic CdTe quantum dots from water. RSC Adv 2015. [DOI: 10.1039/c5ra08129g] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The polyethyleneimine (PEI)-decorated grapefruit peel (GP) composites were facilely prepared by a simple one-step reaction and served as adsorbents for the efficient removal of CdTe quantum dots as one of the emerging pollutants of water.
Collapse
Affiliation(s)
- Ying Zhang
- The Key Laboratory of Eco-environments in Three Gorges Reservoir Region
- Ministry of Education
- College of Chemistry and Chemical Engineering
- Southwest University
- Chongqing 400715
| | - Baozhu Hu
- The Key Laboratory of Eco-environments in Three Gorges Reservoir Region
- Ministry of Education
- College of Chemistry and Chemical Engineering
- Southwest University
- Chongqing 400715
| | - Yuming Huang
- The Key Laboratory of Eco-environments in Three Gorges Reservoir Region
- Ministry of Education
- College of Chemistry and Chemical Engineering
- Southwest University
- Chongqing 400715
| |
Collapse
|