1
|
Different machine learning statistical discrimination exhibits dissimilar key compounds of soybean leaves in targeted polyphenol-metric metabolomics for the traits and cultivation. Food Chem 2022; 404:134454. [DOI: 10.1016/j.foodchem.2022.134454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 09/08/2022] [Accepted: 09/26/2022] [Indexed: 11/21/2022]
|
2
|
Jung YH, Lee DC, Kim JO, Kim JH. Untargeted metabolomics-assisted comparative cytochrome P450-dependent metabolism of fenbendazole in human and dog liver microsomes. Xenobiotica 2022; 52:986-996. [PMID: 36533905 DOI: 10.1080/00498254.2022.2160676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Fenbendazole (FBZ), a benzimidazole carbamate anthelmintic, has attracted attention for its antitumor activity. This study examined the metabolic characteristics of FBZ in humans compared with those in dogs. The phase I metabolites were identified in liver microsomal incubates using liquid chromatography-mass spectrometry (MS)-based untargeted metabolomics approaches. Seven metabolites of FBZ were identified by principal component analysis and orthogonal partial least square-discriminant analysis based on the global ion variables of the FBZ incubation groups. The chemical structure of the FBZ metabolites was suggested by examining the MS/MS spectrum and isotope distribution pattern. Cytochrome P450 (CYP) 1A1, CYP2D6, and CYP2J2 were the major isozymes responsible for the FBZ metabolism. No differences in the types of metabolites produced by the two species were noted. Multivariate analysis of human and dog incubation groups showed that five metabolites were relatively abundant in humans and the other two were not. In summary, the phase I metabolic profile of FBZ and the comparative metabolism between humans and dogs were examined using an untargeted metabolomics approach. This study suggests a successful investigation of FBZ metabolism in humans for conducting safety assessments regarding drug repositioning.
Collapse
Affiliation(s)
| | - Dong-Cheol Lee
- College of Pharmacy, Yeungnam University, Gyeongsan, Korea
| | - Jong Oh Kim
- College of Pharmacy, Yeungnam University, Gyeongsan, Korea
| | - Ju-Hyun Kim
- College of Pharmacy, Yeungnam University, Gyeongsan, Korea
| |
Collapse
|
3
|
Phung HM, Jang D, Trinh TA, Lee D, Nguyen QN, Kim CE, Kang KS. Regulation of appetite-related neuropeptides by Panax ginseng: A novel approach for obesity treatment. J Ginseng Res 2022; 46:609-619. [PMID: 35818423 PMCID: PMC9270656 DOI: 10.1016/j.jgr.2022.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 03/24/2022] [Accepted: 03/29/2022] [Indexed: 12/04/2022] Open
Abstract
Obesity is a primary factor provoking various chronic disorders, including cardiovascular disease, diabetes, and cancer, and causes the death of 2.8 million individuals each year. Diet, physical activity, medications, and surgery are the main therapies for overweightness and obesity. During weight loss therapy, a decrease in energy stores activates appetite signaling pathways under the regulation of neuropeptides, including anorexigenic [corticotropin-releasing hormone, proopiomelanocortin (POMC), cholecystokinin (CCK), and cocaine- and amphetamine-regulated transcript] and orexigenic [agouti-related protein (AgRP), neuropeptide Y (NPY), and melanin-concentrating hormone] neuropeptides, which increase food intake and lead to failure in attaining weight loss goals. Ginseng and ginsenosides reverse these signaling pathways by suppressing orexigenic neuropeptides (NPY and AgRP) and provoking anorexigenic neuropeptides (CCK and POMC), which prevent the increase in food intake. Moreover, the results of network pharmacology analysis have revealed that constituents of ginseng radix, including campesterol, beta-elemene, ginsenoside Rb1, biotin, and pantothenic acid, are highly correlated with neuropeptide genes that regulate energy balance and food intake, including ADIPOQ, NAMPT, UBL5, NUCB2, LEP, CCK, GAST, IGF1, RLN1, PENK, PDYN, and POMC. Based on previous studies and network pharmacology analysis data, ginseng and its compounds may be a potent source for obesity treatment by regulating neuropeptides associated with appetite.
Collapse
Affiliation(s)
- Hung Manh Phung
- Department of Preventive Medicine, College of Korean Medicine, Gachon University, Seongnam-si, Republic of Korea
| | - Dongyeop Jang
- Department of Physiology, College of Korean Medicine, Gachon University, Seongnam-si, Republic of Korea
| | - Tuy An Trinh
- Department of Preventive Medicine, College of Korean Medicine, Gachon University, Seongnam-si, Republic of Korea
| | - Donghun Lee
- Department of Herbal Pharmacology, College of Korean Medicine, Gachon University, Seongnam-si, Republic of Korea
| | - Quynh Nhu Nguyen
- Department of Preventive Medicine, College of Korean Medicine, Gachon University, Seongnam-si, Republic of Korea
| | - Chang-Eop Kim
- Department of Physiology, College of Korean Medicine, Gachon University, Seongnam-si, Republic of Korea
| | - Ki Sung Kang
- Department of Preventive Medicine, College of Korean Medicine, Gachon University, Seongnam-si, Republic of Korea
| |
Collapse
|
4
|
Yang S, Liu T, Hu C, Li W, Meng Y, Li H, Song C, He C, Zhou Y, Fan Y. Ginsenoside Compound K Protects against Obesity through Pharmacological Targeting of Glucocorticoid Receptor to Activate Lipophagy and Lipid Metabolism. Pharmaceutics 2022; 14:pharmaceutics14061192. [PMID: 35745765 PMCID: PMC9231161 DOI: 10.3390/pharmaceutics14061192] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/19/2022] [Accepted: 05/23/2022] [Indexed: 12/10/2022] Open
Abstract
(1) Background: The glucocorticoid receptor (GR) plays a key role in lipid metabolism, but investigations of GR activation as a potential therapeutic approach have been hampered by a lack of selective agonists. Ginsenoside compound K (CK) is natural small molecule with a steroid-like structure that offers a variety of therapeutic benefits. Our study validates CK as a novel GR agonist for the treatment of obesity. (2) Methods: By using pulldown and RNA interference, we determined that CK binds to GR. The anti-obesity potential effects of CK were investigated in obese mice, including through whole-body energy homeostasis, glucose and insulin tolerance, and biochemical and proteomic analysis. Using chromatin immunoprecipitation, we identified GR binding sites upstream of lipase ATGL. (3) Results: We demonstrated that CK reduced the weight and blood lipids of mice more significantly than the drug Orlistat. Proteomics data showed that CK up-regulated autophagy regulatory proteins, enhanced fatty acid oxidation proteins, and decreased fatty acid synthesis proteins. CK induced lipophagy with the initial formation of the phagophore via AMPK/ULK1 activation. However, a blockade of autophagy did not disturb the increase in CK on lipase expression, suggesting that autophagy and lipase are independent pathways in the function of CK. The pulldown and siRNA experiments showed that GR is the critical target. After binding to GR, CK not only activated lipophagy, but also promoted the binding of GR to the ATGL promoter. (4) Conclusions: Our findings indicate that CK is a natural food candidate for reducing fat content and weight.
Collapse
Affiliation(s)
- Siwen Yang
- Engineering Research Center of Glycoconjugates of Ministry of Education, Jilin Provincial Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, China; (S.Y.); (T.L.); (C.H.); (W.L.); (Y.M.); (H.L.); (C.S.)
| | - Ting Liu
- Engineering Research Center of Glycoconjugates of Ministry of Education, Jilin Provincial Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, China; (S.Y.); (T.L.); (C.H.); (W.L.); (Y.M.); (H.L.); (C.S.)
| | - Chenxing Hu
- Engineering Research Center of Glycoconjugates of Ministry of Education, Jilin Provincial Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, China; (S.Y.); (T.L.); (C.H.); (W.L.); (Y.M.); (H.L.); (C.S.)
| | - Weili Li
- Engineering Research Center of Glycoconjugates of Ministry of Education, Jilin Provincial Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, China; (S.Y.); (T.L.); (C.H.); (W.L.); (Y.M.); (H.L.); (C.S.)
| | - Yuhan Meng
- Engineering Research Center of Glycoconjugates of Ministry of Education, Jilin Provincial Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, China; (S.Y.); (T.L.); (C.H.); (W.L.); (Y.M.); (H.L.); (C.S.)
| | - Haiyang Li
- Engineering Research Center of Glycoconjugates of Ministry of Education, Jilin Provincial Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, China; (S.Y.); (T.L.); (C.H.); (W.L.); (Y.M.); (H.L.); (C.S.)
| | - Chengcheng Song
- Engineering Research Center of Glycoconjugates of Ministry of Education, Jilin Provincial Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, China; (S.Y.); (T.L.); (C.H.); (W.L.); (Y.M.); (H.L.); (C.S.)
| | - Congcong He
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA;
| | - Yifa Zhou
- Engineering Research Center of Glycoconjugates of Ministry of Education, Jilin Provincial Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, China; (S.Y.); (T.L.); (C.H.); (W.L.); (Y.M.); (H.L.); (C.S.)
- Correspondence: (Y.Z.); (Y.F.)
| | - Yuying Fan
- Engineering Research Center of Glycoconjugates of Ministry of Education, Jilin Provincial Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, China; (S.Y.); (T.L.); (C.H.); (W.L.); (Y.M.); (H.L.); (C.S.)
- Correspondence: (Y.Z.); (Y.F.)
| |
Collapse
|
5
|
Wang X, Chen Q, Wang X, Cong P, Xu J, Xue C. Lipidomics Approach in High-Fat-Diet-Induced Atherosclerosis Dyslipidemia Hamsters: Alleviation Using Ether-Phospholipids in Sea Urchin. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:9167-9177. [PMID: 33961420 DOI: 10.1021/acs.jafc.1c01161] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Ether-phospholipids (ether-PLs) in sea urchins, especially eicosapentaenoic-acid-enriched plasmenyl phosphatidylethanolamine (PE-P) and plasmanyl phosphatidylcholine (PC-O), exhibit potential lipid-regulating effects. However, their underlying regulatory mechanisms have not yet been elucidated. Herein, we integrated an untargeted lipidomics strategy and biochemical analysis to investigate these mechanisms in high-fat-induced atherosclerotic hamsters. Dietary supplementation with PE-P and PC-O decreased total cholesterol and low-density lipoprotein cholesterol concentrations in serum. The lipid regulatory effects of PE-P were superior to those of PC-O. Additionally, 20 lipid molecular species, including phosphatidylethanolamine, cholesteryl ester, triacylglycerol, and phosphatidylinositol, were identified as potential lipid biomarkers in the serum of hamsters with PC-O and PE-P treatment (95% confidence interval; p < 0.05). The variations of lipids may be attributed to downregulation of adipogenesis genes and upregulation of lipid β-oxidation genes and bile acid biosynthesis genes. The improved lipid homeostasis by ether-PLs in sea urchins might be a key pathway underlying the antiatherosclerosis effect.
Collapse
Affiliation(s)
- Xincen Wang
- College of Food Science and Engineering, Ocean University of China, 5 Yushan Road, Qingdao, Shandong 266003, People's Republic of China
| | - Qinsheng Chen
- College of Food Science and Engineering, Ocean University of China, 5 Yushan Road, Qingdao, Shandong 266003, People's Republic of China
| | - Xiaoxu Wang
- College of Food Science and Engineering, Ocean University of China, 5 Yushan Road, Qingdao, Shandong 266003, People's Republic of China
| | - Peixu Cong
- College of Food Science and Engineering, Ocean University of China, 5 Yushan Road, Qingdao, Shandong 266003, People's Republic of China
| | - Jie Xu
- College of Food Science and Engineering, Ocean University of China, 5 Yushan Road, Qingdao, Shandong 266003, People's Republic of China
| | - Changhu Xue
- College of Food Science and Engineering, Ocean University of China, 5 Yushan Road, Qingdao, Shandong 266003, People's Republic of China
- Laboratory of Marine Drugs and Biological Products, Pilot National Laboratory for Marine Science and Technology (Qingdao), 1 Wenhai Road, Qingdao, Shandong 266237, People's Republic of China
| |
Collapse
|
6
|
Wu Z, Kim GJ, Park SY, Shon JC, Liu KH, Choi H. In Vitro Metabolism Study of Seongsanamide A in Human Liver Microsomes Using Non-Targeted Metabolomics and Feature-Based Molecular Networking. Pharmaceutics 2021; 13:pharmaceutics13071031. [PMID: 34371722 PMCID: PMC8309059 DOI: 10.3390/pharmaceutics13071031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 07/02/2021] [Accepted: 07/05/2021] [Indexed: 11/16/2022] Open
Abstract
Seongsanamide A is a bicyclic peptide with an isodityrosine residue discovered in Bacillus safensis KCTC 12796BP which exhibits anti-allergic activity in vitro and in vivo without significant cytotoxicity. The purpose of this study was to elucidate the in vitro metabolic pathway and potential for drug interactions of seongsanamide A in human liver microsomes using non-targeted metabolomics and feature-based molecular networking (FBMN) techniques. We identified four metabolites, and their structures were elucidated by interpretation of high-resolution tandem mass spectra. The primary metabolic pathway associated with seongsanamide A metabolism was hydroxylation and oxidative hydrolysis. A reaction phenotyping study was also performed using recombinant cytochrome P450 isoforms. CYP3A4 and CYP3A5 were identified as the major metabolic enzymes responsible for metabolite formation. Seongsanamide A did not inhibit the cytochrome P450 isoforms commonly involved in drug metabolism (IC50 > 10 µM). These results will contribute to further understanding the metabolism and drug interaction potential of various bicyclic peptides.
Collapse
Affiliation(s)
- Zhexue Wu
- Mass Spectrometry Based Convergence Research Institute, Kyungpook National University, Daegu 41566, Korea;
| | - Geum Jin Kim
- College of Pharmacy and Research Institute of Cell Culture, Yeungnam University, Gyeongsan 38541, Korea;
| | - So-Young Park
- BK21 FOUR Community-Based Intelligent Novel Drug Discovery Education Unit, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu 41566, Korea; (S.-Y.P.); (J.C.S.)
| | - Jong Cheol Shon
- BK21 FOUR Community-Based Intelligent Novel Drug Discovery Education Unit, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu 41566, Korea; (S.-Y.P.); (J.C.S.)
| | - Kwang-Hyeon Liu
- Mass Spectrometry Based Convergence Research Institute, Kyungpook National University, Daegu 41566, Korea;
- BK21 FOUR Community-Based Intelligent Novel Drug Discovery Education Unit, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu 41566, Korea; (S.-Y.P.); (J.C.S.)
- Correspondence: (K.-H.L.); (H.C.); Tel.: +82-53-950-8567 (K.-H.L.); +82-53-810-2824 (H.C.); FAX: +82- 53-950-8557 (K.-H.L.); +82-53-810-2036 (H.C.)
| | - Hyukjae Choi
- College of Pharmacy and Research Institute of Cell Culture, Yeungnam University, Gyeongsan 38541, Korea;
- Correspondence: (K.-H.L.); (H.C.); Tel.: +82-53-950-8567 (K.-H.L.); +82-53-810-2824 (H.C.); FAX: +82- 53-950-8557 (K.-H.L.); +82-53-810-2036 (H.C.)
| |
Collapse
|
7
|
Song Y, Park SY, Wu Z, Liu KH, Seo YH. Hybrid inhibitors of DNA and HDACs remarkably enhance cytotoxicity in leukaemia cells. J Enzyme Inhib Med Chem 2021; 35:1069-1079. [PMID: 32314611 PMCID: PMC7191901 DOI: 10.1080/14756366.2020.1754812] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Chlorambucil is a nitrogen mustard-based DNA alkylating drug, which is widely used as a front-line treatment of chronic lymphocytic leukaemia (CLL). Despite its widespread application and success for the initial treatment of leukaemia, a majority of patients eventually develop acquired resistance to chlorambucil. In this regard, we have designed and synthesised a novel hybrid molecule, chloram-HDi that simultaneously impairs DNA and HDAC enzymes. Chloram-HDi efficiently inhibits the proliferation of HL-60 and U937 leukaemia cells with GI50 values of 1.24 µM and 1.75 µM, whereas chlorambucil exhibits GI50 values of 21.1 µM and 37.7 µM against HL-60 and U937 leukaemia cells, respectively. The mechanism behind its remarkably enhanced cytotoxicity is that chloram-HDi not only causes a significant DNA damage of leukaemia cells but also downregulates DNA repair protein, Rad52, resulting in the escalation of its DNA-damaging effect. Furthermore, chloram-HDi inhibits HDAC enzymes to induce the acetylation of α-tubulin and histone H3.
Collapse
Affiliation(s)
- Yoojin Song
- College of Pharmacy, Keimyung University, Daegu, Republic of Korea
| | - Sun You Park
- College of Pharmacy, Keimyung University, Daegu, Republic of Korea
| | - Zhexue Wu
- BK21 Plus KNU Multi-Omics based Creative Drug Research Team, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu, South Korea
| | - Kwang-Hyeon Liu
- BK21 Plus KNU Multi-Omics based Creative Drug Research Team, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu, South Korea
| | - Young Ho Seo
- College of Pharmacy, Keimyung University, Daegu, Republic of Korea
| |
Collapse
|
8
|
Rha CS, Jung YS, Lee JD, Jang D, Kim MS, Lee MS, Hong YD, Kim DO. Chemometric Analysis of Extracts and Fractions from Green, Oxidized, and Microbial Fermented Teas and Their Correlation to Potential Antioxidant and Anticancer Effects. Antioxidants (Basel) 2020; 9:antiox9101015. [PMID: 33086613 PMCID: PMC7650543 DOI: 10.3390/antiox9101015] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 10/08/2020] [Accepted: 10/16/2020] [Indexed: 02/06/2023] Open
Abstract
Previous reports on phytochemicals in green tea (GT) and processed teas mainly focused on more representative compounds such as catechins. Here, we focus on the insignificantly studied non-catechin components in tea extracts, and explore the multivariate correlation between diverse phenolic compounds in tea and the in vitro antioxidant and anticancer effects. Extracts from GT and four types of processed teas were further divided into hydrophilic and hydrophobic fractions, whose phenolic compositions and antioxidant capacities were quantified using HPLC-MS and three antioxidant assays, respectively. For three types of teas, the anticancer effects of their extracts and fractions were assessed using cancer cell lines. The hydrophobic fractions had lower antioxidant capacities than the corresponding hydrophilic fractions, but exhibited superior antiproliferative effects on cancer cells compared with the whole extract and the hydrophilic fraction. Partial least squares-discriminant analysis revealed a strong correlation between the anticancer effects and the theaflavins and flavonols. Therefore, in addition to catechins, the hydrophobic fraction of tea extracts may have beneficial health effects.
Collapse
Affiliation(s)
- Chan-Su Rha
- AMOREPACIFIC R&D Center, Yongin 17074, Korea;
- Correspondence: (C.-S.R.); (D.-O.K.); Tel.: +82-31-280-5981 (C.-S.R.); +82-31-201-3796 (D.-O.K.)
| | - Young Sung Jung
- Department of Food Science and Biotechnology, Kyung Hee University, Yongin 17104, Korea; (Y.S.J.); (D.J.); (M.-S.K.)
| | - Jung-Dae Lee
- Osulloc Tea R&D Center, Osulloc Farm Corporation, Seogwipo 63521, Korea; (J.-D.L.); (M.-S.L.)
| | - Davin Jang
- Department of Food Science and Biotechnology, Kyung Hee University, Yongin 17104, Korea; (Y.S.J.); (D.J.); (M.-S.K.)
| | - Mi-Seon Kim
- Department of Food Science and Biotechnology, Kyung Hee University, Yongin 17104, Korea; (Y.S.J.); (D.J.); (M.-S.K.)
| | - Min-Seuk Lee
- Osulloc Tea R&D Center, Osulloc Farm Corporation, Seogwipo 63521, Korea; (J.-D.L.); (M.-S.L.)
| | | | - Dae-Ok Kim
- Department of Food Science and Biotechnology, Kyung Hee University, Yongin 17104, Korea; (Y.S.J.); (D.J.); (M.-S.K.)
- Correspondence: (C.-S.R.); (D.-O.K.); Tel.: +82-31-280-5981 (C.-S.R.); +82-31-201-3796 (D.-O.K.)
| |
Collapse
|
9
|
Zhu Y, Wancewicz B, Schaid M, Tiambeng TN, Wenger K, Jin Y, Heyman H, Thompson CJ, Barsch A, Cox ED, Davis DB, Brasier AR, Kimple ME, Ge Y. Ultrahigh-Resolution Mass Spectrometry-Based Platform for Plasma Metabolomics Applied to Type 2 Diabetes Research. J Proteome Res 2020; 20:463-473. [PMID: 33054244 DOI: 10.1021/acs.jproteome.0c00510] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Metabolomics-the endpoint of the omics cascade-is increasingly recognized as a preferred method for understanding the ultimate responses of biological systems to stress. Flow injection electrospray (FIE) mass spectrometry (MS) has advantages for untargeted metabolic fingerprinting due to its simplicity and capability for high-throughput screening but requires a high-resolution mass spectrometer to resolve metabolite features. In this study, we developed and validated a high-throughput and highly reproducible metabolomics platform integrating FIE with ultrahigh-resolution Fourier transform ion cyclotron resonance (FTICR) MS for analysis of both polar and nonpolar metabolite features from plasma samples. FIE-FTICR MS enables high-throughput detection of hundreds of metabolite features in a single mass spectrum without a front-end separation step. Using plasma samples from genetically identical obese mice with or without type 2 diabetes (T2D), we validated the intra and intersample reproducibility of our method and its robustness for simultaneously detecting alterations in both polar and nonpolar metabolite features. Only 5 min is needed to acquire an ultra-high resolution mass spectrum in either a positive or negative ionization mode. Approximately 1000 metabolic features were reproducibly detected and annotated in each mouse plasma group. For significantly altered and highly abundant metabolite features, targeted tandem MS (MS/MS) analyses can be applied to confirm their identity. With this integrated platform, we successfully detected over 300 statistically significant metabolic features in T2D mouse plasma as compared to controls and identified new T2D biomarker candidates. This FIE-FTICR MS-based method is of high throughput and highly reproducible with great promise for metabolomics studies toward a better understanding and diagnosis of human diseases.
Collapse
Affiliation(s)
- Yanlong Zhu
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States.,Human Proteomics Program, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - Benjamin Wancewicz
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - Michael Schaid
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States.,Research Service, William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin 53705, United States
| | - Timothy N Tiambeng
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Kent Wenger
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States.,Human Proteomics Program, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - Yutong Jin
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Heino Heyman
- Bruker Daltonics Inc., Billerica, Massachusetts 01821, United States
| | | | | | - Elizabeth D Cox
- Department of Pediatrics, University of Wisconsin-Madison, Madison, Wisconsin 53792, United States
| | - Dawn B Davis
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States.,Research Service, William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin 53705, United States
| | - Allan R Brasier
- Institute for Clinical and Translational Research, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - Michelle E Kimple
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States.,Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States.,Research Service, William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin 53705, United States
| | - Ying Ge
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States.,Human Proteomics Program, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States.,Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| |
Collapse
|
10
|
Shon JC, Kim WC, Ryu R, Wu Z, Seo JS, Choi MS, Liu KH. Plasma Lipidomics Reveals Insights into Anti-Obesity Effect of Chrysanthemum morifolium Ramat Leaves and Its Constituent Luteolin in High-Fat Diet-Induced Dyslipidemic Mice. Nutrients 2020; 12:nu12102973. [PMID: 33003339 PMCID: PMC7650530 DOI: 10.3390/nu12102973] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 09/25/2020] [Accepted: 09/26/2020] [Indexed: 02/07/2023] Open
Abstract
The Chrysanthemum morifolium Ramat (CM) is widely used as a traditional medicine and herbal tea by the Asian population for its health benefits related to obesity. However, compared to the flowers of CM, detailed mechanisms underlying the beneficial effects of its leaves on obesity and dyslipidemia have not yet been elucidated. Therefore, to investigate the lipidomic biomarkers responsible for the pharmacological effects of CM leaf extract (CLE) in plasma of mice fed a high-fat diet (HFD), the plasma of mice fed a normal diet (ND), HFD, HFD plus CLE 1.5% diet, and HFD plus luteolin 0.003% diet (LU) for 16 weeks were analyzed using liquid chromatography-tandem mass spectrometry (LC-MS/MS) combined with multivariate analysis. In our analysis, the ND, HFD, CLE, and LU groups were clearly differentiated by partial least-squares discriminant analysis (PLS-DA) score plots. The major metabolites contributing to this differentiation were cholesteryl esters (CEs), lysophosphatidylcholines (LPCs), phosphatidylcholines (PCs), ceramides (CERs), and sphingomyelins (SMs). The levels of plasma CEs, LPCs, PCs, SMs, and CERs were significantly increased in the HFD group compared to those in the ND group, and levels of these lipids recovered to normal after administration of CLE or LU. Furthermore, changes in hepatic mRNA expression levels involved in the Kennedy pathway and sphingolipid biosynthesis were also suppressed by treatment with CLE or LU. In conclusion, this study examined the beneficial effects of CLE and LU on obesity and dyslipidemia, which were demonstrated as reduced synthesis of lipotoxic intermediates. These results may provide valuable insights towards evaluating the therapeutic effects of CLE and LU and understanding obesity-related diseases.
Collapse
Affiliation(s)
- Jong Cheol Shon
- Environmental Chemistry Research Group, Korea Institute of Toxicology, Jinju 52834, Korea; (J.C.S.); (J.-S.S.)
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu 41566, Korea; (W.C.K.); (Z.W.)
| | - Won Cheol Kim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu 41566, Korea; (W.C.K.); (Z.W.)
| | - Ri Ryu
- Research Institute of Eco-Friendly Livestock Science, Institute of Green-Bio Science and Technology, Seoul National University, Pyeongchang 25354, Korea;
| | - Zhexue Wu
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu 41566, Korea; (W.C.K.); (Z.W.)
| | - Jong-Su Seo
- Environmental Chemistry Research Group, Korea Institute of Toxicology, Jinju 52834, Korea; (J.C.S.); (J.-S.S.)
| | - Myung-Sook Choi
- Center for Food and Nutritional Genomics Research, Kyungpook National University, Daegu 41566, Korea
- Correspondence: (M.-S.C.); (K.-H.L.); Tel.: +82-53-950-6232 (M.-S.C.); +82-53-950-8567 (K.-H.L.); Fax: +82-53-950-8557 (M.-S.C. & K.-H.L.)
| | - Kwang-Hyeon Liu
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu 41566, Korea; (W.C.K.); (Z.W.)
- Correspondence: (M.-S.C.); (K.-H.L.); Tel.: +82-53-950-6232 (M.-S.C.); +82-53-950-8567 (K.-H.L.); Fax: +82-53-950-8557 (M.-S.C. & K.-H.L.)
| |
Collapse
|
11
|
Weber M, Mera P, Casas J, Salvador J, Rodríguez A, Alonso S, Sebastián D, Soler-Vázquez MC, Montironi C, Recalde S, Fucho R, Calderón-Domínguez M, Mir JF, Bartrons R, Escola-Gil JC, Sánchez-Infantes D, Zorzano A, Llorente-Cortes V, Casals N, Valentí V, Frühbeck G, Herrero L, Serra D. Liver CPT1A gene therapy reduces diet-induced hepatic steatosis in mice and highlights potential lipid biomarkers for human NAFLD. FASEB J 2020; 34:11816-11837. [PMID: 32666604 DOI: 10.1096/fj.202000678r] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 06/12/2020] [Accepted: 06/19/2020] [Indexed: 12/25/2022]
Abstract
The prevalence of nonalcoholic fatty liver disease (NAFLD) has increased drastically due to the global obesity pandemic but at present there are no approved therapies. Here, we aimed to revert high-fat diet (HFD)-induced obesity and NAFLD in mice by enhancing liver fatty acid oxidation (FAO). Moreover, we searched for potential new lipid biomarkers for monitoring liver steatosis in humans. We used adeno-associated virus (AAV) to deliver a permanently active mutant form of human carnitine palmitoyltransferase 1A (hCPT1AM), the key enzyme in FAO, in the liver of a mouse model of HFD-induced obesity and NAFLD. Expression of hCPT1AM enhanced hepatic FAO and autophagy, reduced liver steatosis, and improved glucose homeostasis. Lipidomic analysis in mice and humans before and after therapeutic interventions, such as hepatic AAV9-hCPT1AM administration and RYGB surgery, respectively, led to the identification of specific triacylglyceride (TAG) specie (C50:1) as a potential biomarker to monitor NAFFLD disease. To sum up, here we show for the first time that liver hCPT1AM gene therapy in a mouse model of established obesity, diabetes, and NAFLD can reduce HFD-induced derangements. Moreover, our study highlights TAG (C50:1) as a potential noninvasive biomarker that might be useful to monitor NAFLD in mice and humans.
Collapse
Affiliation(s)
- Minéia Weber
- Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences, Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, Barcelona, Spain
| | - Paula Mera
- Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences, Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Josefina Casas
- Research Unit on BioActive Molecules, Department of Biological Chemistry, Institute of Advanced Chemistry of Catalonia (IQAC)/CSIC, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Instituto de Salud Carlos III, Madrid, Spain
| | - Javier Salvador
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain.,Department of Endocrinology & Nutrition, Clínica Universidad de Navarra, Pamplona, Spain
| | - Amaia Rodríguez
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain.,Metabolic Research Laboratory, Clínica Universidad de Navarra, IdiSNA, Pamplona, Spain
| | - Sergio Alonso
- Cancer Genetics and Epigenetics Group, Program of Predictive and Personalized Medicine of Cancer, Germans Trias i Pujol Research Institute (IGTP-PMPPC), Campus Can Ruti, Barcelona, Spain
| | - David Sebastián
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology, Departament de Bioquímica i Biomedicina Molecular, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
| | - M Carmen Soler-Vázquez
- Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences, Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, Barcelona, Spain
| | - Carla Montironi
- Pathology Department, Hospital Clinic de Barcelona, Barcelona, Spain.,Liver Cancer Translational Research Laboratory, Liver Unit, IDIBAPS-Hospital Clínic, Universitat de Barcelona, Barcelona, Spain
| | - Sandra Recalde
- Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences, Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, Barcelona, Spain
| | - Raquel Fucho
- Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences, Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, Barcelona, Spain
| | - María Calderón-Domínguez
- Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences, Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, Barcelona, Spain
| | - Joan Francesc Mir
- Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences, Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, Barcelona, Spain
| | - Ramon Bartrons
- Departament de Ciències Fisiològiques, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Spain
| | - Joan Carles Escola-Gil
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain.,IIB Sant Pau, Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - David Sánchez-Infantes
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain.,Germans Trias i Pujol Research Institute (IGTP-PMPPC), Campus Can Ruti, Barcelona, Spain
| | - Antonio Zorzano
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology, Departament de Bioquímica i Biomedicina Molecular, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
| | - Vicenta Llorente-Cortes
- Institute of Biomedical Research of Barcelona (IIBB), Spanish National Research Council (CSIC), Biomedical Research Institute Sant Pau (IIB Sant Pau), Barcelona, Spain.,CIBERCV, Institute of Health Carlos III, Madrid, Spain.,Cardiovascular Research Center, CSIC-ICCC, Barcelona, Spain
| | - Núria Casals
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain.,Basic Sciences Department, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, Sant Cugat del Vallès, Spain
| | - Víctor Valentí
- Metabolic Research Laboratory, Clínica Universidad de Navarra, IdiSNA, Pamplona, Spain.,Department of Surgery, Clínica Universidad de Navarra, Pamplona, Spain
| | - Gema Frühbeck
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain.,Metabolic Research Laboratory, Clínica Universidad de Navarra, IdiSNA, Pamplona, Spain
| | - Laura Herrero
- Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences, Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Dolors Serra
- Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences, Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
12
|
Enhanced Triacylglycerol Content and Gene Expression for Triacylglycerol Metabolism, Acyl-Ceramide Synthesis, and Corneocyte Lipid Formation in the Epidermis of Borage Oil Fed Guinea Pigs. Nutrients 2019; 11:nu11112818. [PMID: 31752143 PMCID: PMC6893540 DOI: 10.3390/nu11112818] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 11/12/2019] [Accepted: 11/13/2019] [Indexed: 01/10/2023] Open
Abstract
Triacylglycerol (TAG) metabolism is related to the acyl-ceramide (Cer) synthesis and corneocyte lipid envelope (CLE) formation involved in maintaining the epidermal barrier. Prompted by the recovery of a disrupted epidermal barrier with dietary borage oil (BO: 40.9% linoleic acid (LNA) and 24.0% γ-linolenic acid (GLA)) in essential fatty acid (EFA) deficiency, lipidomic and transcriptome analyses and subsequent quantitative RT-PCR were performed to determine the effects of borage oil (BO) on TAG content and species, and the gene expression related to overall lipid metabolism. Dietary BO for 2 weeks in EFA-deficient guinea pigs increased the total TAG content, including the TAG species esterified LNA, GLA, and their C20 metabolized fatty acids. Moreover, the expression levels of genes in the monoacylglycerol and glycerol-3-phosphate pathways, two major pathways of TAG synthesis, increased, along with those of TAG lipase, acyl-Cer synthesis, and CLE formation. Dietary BO enhanced TAG content, the gene expression of TAG metabolism, acyl-Cer synthesis, and CLE formation.
Collapse
|
13
|
Im SS, Park HY, Shon JC, Chung IS, Cho HC, Liu KH, Song DK. Plasma sphingomyelins increase in pre-diabetic Korean men with abdominal obesity. PLoS One 2019; 14:e0213285. [PMID: 30835753 PMCID: PMC6400388 DOI: 10.1371/journal.pone.0213285] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 02/18/2019] [Indexed: 12/29/2022] Open
Abstract
Abdominal or visceral obesity is a well-known risk factor for metabolic diseases. However, whether abdominal obesity significantly affects plasma lipid profile during the development of type 2 diabetes has not been fully elucidated. We investigated the differences in plasma lipid concentrations in 63 participants categorized into six groups (middle-aged Korean men); Normal, Pre-diabetes (pre-DM), and Diabetes mellitus (DM) with or without abdominal obesity (AO or lean). The lipidomic profiles were determined by using liquid chromatography-tandem mass spectrometry (LC-MS/MS). Sphingomyelin (SM) levels in plasma were significantly higher in the pre-DM with AO than in pre-DM with lean (p = 0.021). SM concentrations correlated positively with waist-to-hip ratio (WHR) (r = 0.256, p = 0.044), cholesteryl ester (CE) (r = 0.483, p < 0.0001), ceramide (r = 0.489, p < 0.0001) and plasmanyl phosphatidylcholine (PC) (r = 0.446, p < 0.0001). The present study found that pre-diabetic patients with AO were characterized by increased plasma concentrations of SM. Plasma SM levels in individuals with AO may be an early prognostic biomarker to better predict the progression toward type 2 diabetes and metabolic syndrome.
Collapse
Affiliation(s)
- Seung-Soon Im
- Department of Physiology and Obesity-mediated Disease Research Center, Keimyung University School of Medicine, Daegu, Korea
| | - Hyeon Young Park
- Department of Physiology and Obesity-mediated Disease Research Center, Keimyung University School of Medicine, Daegu, Korea
| | - Jong Cheol Shon
- BK21 Plus KNU Multi-Omics Based Creative Drug Research Team, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu, Korea
| | - In-Sung Chung
- Department of Occupational & Environmental Medicine, Keimyung University School of Medicine, Daegu, Korea
| | - Ho Chan Cho
- Department of Clinical Endocrinology, Keimyung University School of Medicine, Daegu, Korea
| | - Kwang-Hyeon Liu
- BK21 Plus KNU Multi-Omics Based Creative Drug Research Team, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu, Korea
- * E-mail: (KHL); (DKS)
| | - Dae-Kyu Song
- Department of Physiology and Obesity-mediated Disease Research Center, Keimyung University School of Medicine, Daegu, Korea
- * E-mail: (KHL); (DKS)
| |
Collapse
|
14
|
Yang H, Suh DH, Kim DH, Jung ES, Liu KH, Lee CH, Park CY. Metabolomic and lipidomic analysis of the effect of pioglitazone on hepatic steatosis in a rat model of obese Type 2 diabetes. Br J Pharmacol 2018; 175:3610-3625. [PMID: 29968381 PMCID: PMC6086983 DOI: 10.1111/bph.14434] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 06/08/2018] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND AND PURPOSE Thiazolidinediones, acting as PPAR-γ ligands, reduce hepatic steatosis in humans and animals. However, the underlying mechanism of this action remains unclear. The purpose of this study was to investigate changes in hepatic metabolites and lipids in response to treatment with the thiazolidinedione pioglitazone in an animal model of obese Type 2 diabetes. EXPERIMENTAL APPROACH Male Otsuka Long-Evans Tokushima Fatty (OLETF) rats were orally administered either vehicle (control) or pioglitazone (30 mg·kg-1 ) and fed a high-fat diet (60% kcal fat) for 12 weeks. Hepatic metabolites were analysed via metabolomic and lipidomic analyses. Gene expression and PLA2 activity were analysed in livers from pioglitazone-treated and control rats. KEY RESULTS OLETF rats that received pioglitazone showed decreased fat accumulation and improvement of lipid profiles in the liver compared to control rats. Pioglitazone treatment significantly altered levels of hepatic metabolites, including free fatty acids, lysophosphatidylcholines and phosphatidylcholines, in the liver. In addition, pioglitazone significantly reduced the expression of genes involved in hepatic de novo lipogenesis and fatty acid uptake and transport, whereas genes related to fatty acid oxidation were up-regulated. Gene expression and enzyme activity of PLA2 , which hydrolyzes phosphatidylcholines to release lysophosphatidylcholines and free fatty acids, were significantly decreased in the livers of pioglitazone-treated rats compared to control rats. CONCLUSIONS AND IMPLICATIONS Our results present evidence for the ameliorative effect of pioglitazone on hepatic steatosis, largely due to the regulation of lipid metabolism, including fatty acids, lysophosphatidylcholines, phosphatidylcholines and related gene-expression patterns.
Collapse
Affiliation(s)
- Hyekyung Yang
- Medical Research Institute, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Dong Ho Suh
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, South Korea
| | - Dae Hee Kim
- Medical Research Institute, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Eun Sung Jung
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, South Korea
| | - Kwang-Hyeon Liu
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu, South Korea
| | - Choong Hwan Lee
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, South Korea
| | - Cheol-Young Park
- Medical Research Institute, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, South Korea.,Division of Endocrinology and Metabolism, Department of Internal Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, South Korea
| |
Collapse
|
15
|
Wu W, Jiao C, Li H, Ma Y, Jiao L, Liu S. LC-MS based metabolic and metabonomic studies of Panax ginseng. PHYTOCHEMICAL ANALYSIS : PCA 2018; 29:331-340. [PMID: 29460310 DOI: 10.1002/pca.2752] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 01/02/2018] [Accepted: 01/03/2018] [Indexed: 05/28/2023]
Abstract
INTRODUCTION Panax ginseng has received much attention as a valuable health supplement with medicinal potential. Its chemical diversity and multiple pharmacological properties call for comprehensive methods to better understand the effects of ginseng and ginsenosides. Liquid chromatography-mass spectrometry (LC-MS) based metabonomic approaches just fit the purpose. OBJECTIVE Aims to give a review of recent progress on LC-MS based pharmacokinetic, metabolic, and phytochemical metabolomic studies of ginseng, and metabonomic studies of ginseng intervention effects. METHODS The review has four sections: the first section discusses metabolic studies of ginsenosides based on LC-MS, the second focuses on ginsenoside-drug interactions and pharmacokinetic interaction between herb compounds based on LC-MS, the third is phytochemical metabolomic studies of ginseng based on LC-MS, and the fourth deals with metabonomic studies of ginseng intervention effects based on LC-MS. RESULTS LC-MS based metabonomic research on ginseng include analysis of single ginsenoside and total ginsenosides. The theory of multi-components and multi-targeted mechanisms helps to explain ginseng effects. CONCLUSION LC-MS based metabonomics is a promising way to comprehensively assess ginseng. It is valuable for quality control and mechanism studies of ginseng.
Collapse
Affiliation(s)
- Wei Wu
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, P. R. China
| | - Chuanxi Jiao
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, P. R. China
| | - Hui Li
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, P. R. China
| | - Yue Ma
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, P. R. China
| | - Lili Jiao
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, P. R. China
| | - Shuying Liu
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, P. R. China
| |
Collapse
|
16
|
Heo JY, Kim JE, Dan Y, Kim YW, Kim JY, Cho KH, Bae YK, Im SS, Liu KH, Song IH, Kim JR, Lee IK, Park SY. Clusterin deficiency induces lipid accumulation and tissue damage in kidney. J Endocrinol 2018; 237:175-191. [PMID: 29563234 DOI: 10.1530/joe-17-0453] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 03/21/2018] [Indexed: 01/15/2023]
Abstract
Clusterin is a secretory glycoprotein that is involved in multiple physiopathological processes, including lipid metabolism. Previous studies have shown that clusterin prevents hepatic lipid accumulation via suppression of sterol regulatory element-binding protein (SREBP) 1. In this study, we examined the role of clusterin in renal lipid accumulation in clusterin-knockout mice and NRK52e tubular epithelial cells. Clusterin deficiency increased the expression of SREBP1 and its target genes and decreased malonyl-CoA decarboxylase protein levels in the kidney. Expression of the endocytic receptor, megalin, and scavenger receptor class A was increased in clusterin-deficient mice. Functional analysis of lipid metabolism also revealed that lipid uptake and triglyceride synthesis were increased and fatty acid oxidation was reduced, leading to increased lipid accumulation in clusterin-deficient mice. These phenomena were accompanied by mesangial expansion, fibrosis and increased urinary protein-to-creatinine ratio. High-fat feeding aggravated these clusterin deficiency-induced pathological changes. Clusterin knockdown in NRK52e cells increased lipogenic gene expression and lipid levels, whereas overexpression of clusterin by treatment with adenovirus or recombinant clusterin protein suppressed lipogenic gene expression and lipid levels. Transforming growth factor-beta 1 (TGFB1) expression increased in the kidney of clusterin-deficient mice and suppression of TGFB1 in NRK52e cells suppressed lipid accumulation. These results suggest that clusterin deficiency induces renal lipid accumulation by dysregulating the expression of lipid metabolism-related factors and TGFB1, thereby leading to chronic kidney disease. Hence, clusterin may serve as a therapeutic target for lipid-induced chronic kidney disease.
Collapse
Affiliation(s)
- Jung-Yoon Heo
- Department of PhysiologyCollege of Medicine, Yeungnam University, Daegu, Korea
- Smart-Aging Convergence Research CenterCollege of Medicine, Yeungnam University, Daegu, Korea
| | - Ji-Eun Kim
- Department of PhysiologyCollege of Medicine, Yeungnam University, Daegu, Korea
- Smart-Aging Convergence Research CenterCollege of Medicine, Yeungnam University, Daegu, Korea
| | - Yongwook Dan
- Weinberg CollegeNorthwestern University, Evanston, Illinois, USA
| | - Yong-Woon Kim
- Department of PhysiologyCollege of Medicine, Yeungnam University, Daegu, Korea
| | - Jong-Yeon Kim
- Department of PhysiologyCollege of Medicine, Yeungnam University, Daegu, Korea
| | - Kyu Hyang Cho
- Department of Internal MedicineCollege of Medicine, Yeungnam University, Daegu, Korea
| | - Young Kyung Bae
- Department of PathologyCollege of Medicine, Yeungnam University, Daegu, Korea
| | - Seung-Soon Im
- Department of PhysiologyKeimyung University School of Medicine, Daegu, Korea
| | - Kwang-Hyeon Liu
- College of Pharmacy and Research Institute of Pharmaceutical SciencesKyungpook National University, Daegu, Korea
| | - In-Hwan Song
- Department of AnatomyCollege of Medicine, Yeungnam University, Daegu, Korea
| | - Jae-Ryong Kim
- Smart-Aging Convergence Research CenterCollege of Medicine, Yeungnam University, Daegu, Korea
- Department of Biochemistry and Molecular BiologyCollege of Medicine, Yeungnam University, Daegu, Korea
| | - In-Kyu Lee
- Department of Internal MedicineSchool of Medicine, Kyungpook National University, Daegu, Korea
| | - So-Young Park
- Department of PhysiologyCollege of Medicine, Yeungnam University, Daegu, Korea
- Smart-Aging Convergence Research CenterCollege of Medicine, Yeungnam University, Daegu, Korea
| |
Collapse
|
17
|
Park SY, Oh YJ, Lho Y, Jeong JH, Liu KH, Song J, Kim SH, Ha E, Seo YH. Design, synthesis, and biological evaluation of a series of resorcinol-based N-benzyl benzamide derivatives as potent Hsp90 inhibitors. Eur J Med Chem 2017; 143:390-401. [PMID: 29202402 DOI: 10.1016/j.ejmech.2017.11.054] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 10/19/2017] [Accepted: 11/20/2017] [Indexed: 12/12/2022]
Abstract
Heat shock protein 90 (Hsp90) is a ubiquitous molecular chaperone that is responsible for the stabilization and maturation of many oncogenic proteins. Therefore, Hsp90 has emerged as an attractive target in the field of cancer chemotherapy. In this study, we report the design, synthesis, and biological evaluation of a series of Hsp90 inhibitors. In particular, compound 30f shows a significant Hsp90α inhibitory activity with IC50 value of 5.3 nM and an excellent growth inhibition with GI50 value of 0.42 μM against non-small cell lung cancer cells, H1975. Compound 30f effectively reduces the expression levels of Hsp90 client proteins including Her2, EGFR, Met, Akt, and c-Raf. Consequently, compound 30f promotes substantial cleavages of PARP, Caspase 3, and Caspase 8, indicating that 30f induces cancer cell death via apoptotic pathway. Moreover, cytochrome P450 assay indicates that compound 30f has weak inhibitory effect on the activities of five major P450 isoforms (IC50 > 5 μM for 1A2, 2C9, 2C19, 2D6, and 3A), suggesting that clinical interactions between 30f and the substrate drugs of the five major P450 isoforms are not expected. Compound 30f also inhibits the tumor growth in a mouse xenograft model bearing subcutaneous H1975 without noticeable abnormal behavior and body weight changes. The immunostaining and western immunoblot analysis of EGFR, Met, Akt in xenograft tissue sections of tumor further demonstrate a good agreement with the in vitro results.
Collapse
Affiliation(s)
- Sun You Park
- College of Pharmacy, Keimyung University, Daegu 704-701, South Korea
| | - Yong Jin Oh
- College of Pharmacy, Keimyung University, Daegu 704-701, South Korea
| | - Yunmee Lho
- Department of Biochemistry, School of Medicine, Keimyung University, Daegu 704-701, South Korea
| | - Ju Hui Jeong
- College of Pharmacy, Keimyung University, Daegu 704-701, South Korea
| | - Kwang-Hyeon Liu
- BK21 Plus KNU Multi-Omics based Creative Drug Research Team, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu 41566, South Korea
| | - Jaeyoung Song
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu 41061, South Korea
| | - Soong-Hyun Kim
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu 41061, South Korea
| | - Eunyoung Ha
- Department of Biochemistry, School of Medicine, Keimyung University, Daegu 704-701, South Korea.
| | - Young Ho Seo
- College of Pharmacy, Keimyung University, Daegu 704-701, South Korea.
| |
Collapse
|
18
|
Zhang L, Virgous C, Si H. Ginseng and obesity: observations and understanding in cultured cells, animals and humans. J Nutr Biochem 2017; 44:1-10. [DOI: 10.1016/j.jnutbio.2016.11.010] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 10/28/2016] [Accepted: 11/17/2016] [Indexed: 12/18/2022]
|
19
|
Park HM, Park KT, Park EC, Kim SI, Choi MS, Liu KH, Lee CH. Mass Spectrometry-Based Metabolomic and Lipidomic Analyses of the Effects of Dietary Platycodon grandiflorum on Liver and Serum of Obese Mice under a High-Fat Diet. Nutrients 2017; 9:nu9010071. [PMID: 28106735 PMCID: PMC5295115 DOI: 10.3390/nu9010071] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Revised: 12/27/2016] [Accepted: 01/07/2017] [Indexed: 12/23/2022] Open
Abstract
We aimed to identify metabolites involved in the anti-obesity effects of Platycodon grandiflorum (PG) in high-fat diet (HFD)-fed mice using mass spectrometry (MS)-based metabolomic techniques. C57BL/6J mice were divided into four groups: normal diet (ND)-fed mice, HFD-fed mice, HFD with 1% PG extract-fed mice (HPGL), and HFD with 5% PG extract-fed mice (HPGH). After 8 weeks, the HFD group gained more weight than the ND group, while dietary 5% PG extract attenuated this change. The partial least squares discriminant analysis (PLS-DA) score plots showed a clear distinction between experimental groups in serum and liver markers. We also identified 10 and 32 metabolites in the serum and liver, respectively, as potential biomarkers that could explain the effect of high-dose PG added to HFD-fed mice, which were strongly involved in amino acid metabolism (glycine, serine, threonine, methionine, glutamate, phenylalanine, ornithine, lysine, and tyrosine), TCA cycle (fumarate and succinate), lipid metabolism (linoleic and oleic acid methyl esters, oleamide, and cholesterol), purine/pyrimidine metabolism (uracil and hypoxanthine), carbohydrate metabolism (maltose), and glycerophospholipid metabolism (phosphatidylcholines, phosphatidylethanolamines, lysophosphatidylcholines, and lysophosphatidylethanolamines). We suggest that further studies on these metabolites could help us gain a better understanding of both HFD-induced obesity and the effects of PG.
Collapse
Affiliation(s)
- Hye Min Park
- Department of Bioscience and Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea.
| | - Kab-Tae Park
- BK21 Plus KNU Multi-Omics Based Creative Drug Research Team, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu 41566, Korea.
| | - Edmond Changkyun Park
- Division of Life Science, Korea Basic Science Institute, Daejeon 34133, Korea.
- Center for Convergent Research of Emerging Virus Infection, Korea Research Institute of Chemical Technology, 141 Gajeong-ro, Yuseong-gu, Daejeon 34114, Korea.
| | - Seung Ii Kim
- Division of Life Science, Korea Basic Science Institute, Daejeon 34133, Korea.
- Center for Convergent Research of Emerging Virus Infection, Korea Research Institute of Chemical Technology, 141 Gajeong-ro, Yuseong-gu, Daejeon 34114, Korea.
| | - Myung Sook Choi
- Department of Food Science and Nutrition, Kyungpook National University, Daegu 41566, Korea.
| | - Kwang-Hyeon Liu
- BK21 Plus KNU Multi-Omics Based Creative Drug Research Team, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu 41566, Korea.
| | - Choong Hwan Lee
- Department of Bioscience and Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea.
| |
Collapse
|
20
|
Li X, Yu X, Sun D, Li J, Wang Y, Cao P, Liu Y. Effects of Polar Compounds Generated from the Deep-Frying Process of Palm Oil on Lipid Metabolism and Glucose Tolerance in Kunming Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:208-215. [PMID: 27973789 DOI: 10.1021/acs.jafc.6b04565] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
In the present study, effects of deep-fried palm oil, specifically polar compounds generated during the frying process, on animal health including lipid and glucose metabolism and liver functions were investigated. Kunming mice were fed a high-fat diet containing deep-fried palm oil or purified polar compounds for 12 weeks. Their effects on animal health including hepatic lipid profile, antioxidant enzyme activity, serum biochemistry, and glucose tolerance were analyzed. Our results revealed that the consumption of polar compounds was related to the change of lipid deposition in liver and adipose tissue, as well as glucose tolerance alteration in Kunming mice. Correspondingly, the transcription study of genes involved in lipid metabolism including PPARα, Acox1, and Cpt1α indicated that polar compounds probably facilitated the fatty acid oxidation on peroxisomes, whereas lipid oxidation in mitochondria was suppressed. Furthermore, glucose tolerance test (GTT) revealed that a high amount of polar compound intake impaired glucose tolerance, indicating its effect on glucose metabolism in vivo. Our results provide critical information on the effects of polar compounds generated from the deep-frying process of palm oil on animal health, particularly liver functions and lipid and glucose metabolism, which is important for the evaluation of the biosafety of frying oil.
Collapse
Affiliation(s)
- Xiaodan Li
- State Key Laboratory of Food Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition, School of Food Science and Technology, Jiangnan University , Wuxi 214122, China
| | - Xiaoyan Yu
- State Key Laboratory of Food Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition, School of Food Science and Technology, Jiangnan University , Wuxi 214122, China
| | - Dewei Sun
- State Key Laboratory of Food Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition, School of Food Science and Technology, Jiangnan University , Wuxi 214122, China
| | - Jinwei Li
- State Key Laboratory of Food Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition, School of Food Science and Technology, Jiangnan University , Wuxi 214122, China
| | - Yong Wang
- Department of Food Science and Engineering, Jinan University , Guangzhou 510632, China
| | - Peirang Cao
- State Key Laboratory of Food Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition, School of Food Science and Technology, Jiangnan University , Wuxi 214122, China
| | - Yuanfa Liu
- State Key Laboratory of Food Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition, School of Food Science and Technology, Jiangnan University , Wuxi 214122, China
| |
Collapse
|
21
|
Hyperlipidemia induced by high-fat diet enhances dentin formation and delays dentin mineralization in mouse incisor. J Mol Histol 2016; 47:467-74. [PMID: 27558143 DOI: 10.1007/s10735-016-9691-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Accepted: 08/10/2016] [Indexed: 01/04/2023]
Abstract
Dyslipidemia has become a serious health problem in children and adolescents worldwide for its high prevalence. Since hard tissues of permanent teeth form mainly during this period and lipids are actively involved in tooth development, the effects of hyperlipidemia on dental tissue formation and mineralization need to be illustrated. In this study, hyperlipidemia model was established in mice fed with high-fat diet (HFD). Micro-CT and histomorphological analyses were performed on the mandibular bones to assess the morphological changes of the mandibular incisor and first molar. After 4 weeks of HFD feeding, mice had significantly elevated serum lipid levels compared with mice fed with control diet. After 8 weeks, the mandibular incisor presented significantly increased dentin thickness and decreased diameter of pulp cavity in HFD-fed mice compared with control diet-fed mice, while its gross morphology and enamel thickness were not altered. In the mandibular first molar, dentin thickness of root did not show difference between the two groups. Histological section showed that mandibular incisor of HFD-fed mice manifested a wider predentin region and a lower mineral apposition rate compared with that of the control mice. In conclusion, hyperlipidemia induced by HFD feeding enhances dentin formation and delays dentin mineralization in the developing mouse incisor.
Collapse
|
22
|
Yang L, Li M, Shan Y, Shen S, Bai Y, Liu H. Recent advances in lipidomics for disease research. J Sep Sci 2015; 39:38-50. [PMID: 26394722 DOI: 10.1002/jssc.201500899] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 09/14/2015] [Accepted: 09/15/2015] [Indexed: 12/15/2022]
Abstract
Lipidomics is an important branch of metabolomics, which aims at the detailed analysis of lipid species and their multiple roles in the living system. In recent years, the development of various analytical methods for effective identification and characterization of lipids has greatly promoted the process of lipidomics. Meanwhile, as many diseases demonstrate a remarkable alteration in lipid profiles compared with that of healthy people, lipidomics has been extensively introduced to disease research. The comprehensive lipid profiling provides a chance to discover novel biomarkers for specific disease. In addition, it plays a crucial role in the study of lipid metabolism, which could illuminate the pathogenesis of diseases. In this review, after brief discussion of analytical methods for lipidomics in clinical research, we focus on the recent advances of lipidomics related to four types of diseases, including cancer, atherosclerosis, diabetes mellitus, and Alzheimer's disease.
Collapse
Affiliation(s)
- Li Yang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Institute of Analytical Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Min Li
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Institute of Analytical Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Yabing Shan
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Institute of Analytical Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing, China.,National Research Center for Geoanalysis, Beijing, China
| | - Sensen Shen
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Institute of Analytical Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Yu Bai
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Institute of Analytical Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Huwei Liu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Institute of Analytical Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| |
Collapse
|