1
|
Wang X, Chen H, Xu Y, Deng Q. The role of micro-structures in the aqueous phase of emulsion in lipid oxidation process. Food Chem 2024; 464:141760. [PMID: 39471561 DOI: 10.1016/j.foodchem.2024.141760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 10/16/2024] [Accepted: 10/22/2024] [Indexed: 11/01/2024]
Abstract
The instability of emulsions depended on participation of many physical structures in the emulsion. The walnut oil emulsion stabilized by sunflower phospholipid was used to study the potential relationship between the micro-structures in aqueous phase and the overall physicochemical stability of the emulsion. The vesicles and micro- structures (<70 nm, containing trace amounts of triglycerides) was observed by Cryo-TEM in the aqueous phase of emulsions. The content of triglycerides decreased gradually with the instability of the emulsion. The increase of phospholipid concentration inhibited the formation of lipid hydroperoxides (LOOH). However, the degradation of LOOH occurred preferentially in the aqueous micro- structures of high concentrations of phospholipids emulsions. These micro- structures did not affect the distribution of LOOH in the initial emulsion, but affected the distribution of malondialdehyde (MDA). This study provided insights into understanding the oxidative stability of emulsions - highlighting the role of micro- structures in the aqueous phase.
Collapse
Affiliation(s)
- Xintian Wang
- Key Laboratory of Oilseeds Processing, Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Science, Wuhan, China
| | - Hongjian Chen
- College of Health Science and Engineering, Hubei University, Wuhan, China.
| | - Yingying Xu
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, China
| | - Qianchun Deng
- Key Laboratory of Oilseeds Processing, Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Science, Wuhan, China.
| |
Collapse
|
2
|
Li A, Dewettinck K, Verheust Y, Van de Walle D, Raes K, Diehl B, Tzompa-Sosa DA. Edible insects as a novel source of lecithin: Extraction and lipid characterization of black soldier fly larvae and yellow mealworm. Food Chem 2024; 452:139391. [PMID: 38713980 DOI: 10.1016/j.foodchem.2024.139391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 04/08/2024] [Accepted: 04/14/2024] [Indexed: 05/09/2024]
Abstract
Edible insects with high fat and phosphorus content are a potential novel source of lecithin, however, studies on their minor lipids are limited. In this study, lecithin was extracted from black soldier fly larvae and yellow mealworm. Herein, the effects of lecithin extraction method, matrix and ultrasound pretreatment were explored based on the fatty acid composition and phospholipid profile with soy lecithin as a reference. The use of a wet matrix and ultrasound pretreatment increased the extraction efficiency of total PLs from both insects. Insect lecithin contained a considerable amount of sphingomyelin compared to soy lecithin. In insect lecithin, a total of 47 glycerophospholipid and sphingomyelin molecular species, as well as four molecular species of fatty acyl esters of hydroxy fatty acid, were detected. This study is the first comprehensive investigation of insects as a new source of lecithin with applications in food, cosmetics and in the pharmaceutical industry.
Collapse
Affiliation(s)
- An Li
- Food Structure and Function research group, Department of Food Technology, Safety, and Health, Ghent University, Ghent 9000, Belgium
| | - Koen Dewettinck
- Food Structure and Function research group, Department of Food Technology, Safety, and Health, Ghent University, Ghent 9000, Belgium
| | - Yannick Verheust
- Research Unit VEG-i-TEC, Department of Food Technology, Safety and Health, Ghent University, 8500 Kortrijk, Belgium
| | - Davy Van de Walle
- Food Structure and Function research group, Department of Food Technology, Safety, and Health, Ghent University, Ghent 9000, Belgium
| | - Katleen Raes
- Research Unit VEG-i-TEC, Department of Food Technology, Safety and Health, Ghent University, 8500 Kortrijk, Belgium
| | - Bernd Diehl
- Spectral Service AG, Emil-Hoffmann-Straße 33, 50996 Cologne, Germany
| | - Daylan A Tzompa-Sosa
- Food Structure and Function research group, Department of Food Technology, Safety, and Health, Ghent University, Ghent 9000, Belgium.
| |
Collapse
|
3
|
Wang Z, Zhang L, Chen Y. HPTLC+SRES screening of pesticide for point-of-care application as shown with thiram in juice. Food Chem X 2023; 18:100670. [PMID: 37101421 PMCID: PMC10123129 DOI: 10.1016/j.fochx.2023.100670] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 03/30/2023] [Accepted: 03/31/2023] [Indexed: 04/03/2023] Open
Abstract
In this study, a HPTLC-platformed SERS detection was established for screening thiram in juice. After a simple extraction, the sample liquid was separated on HPTLC plates, which resulted in a specific zone for the analyte. Following infiltration with atomize water, the band of interest was easily scraped off and eluted. In parallel, a flexible and SERS-active substrate was fabricated by the in-situ synthesis of gold nanoparticles within cotton fabrics. Under optimized conditions, fingerprint-like signal at 1376 cm-1 of the analyte were easily recorded by a hand-held Raman spectrometer with enough LOD (0.5 mg/L), LOQ (0.9 mg/L) and reproducibility (<11.7%). The optimized screening system was further validated with pear, apple and mango juice by determining the spike-and-recovery rates (75.6 to 112.8%). It was demonstrated that this method could be a facile point-of-care testing system tailored for pesticide screening.
Collapse
Affiliation(s)
- Zhijian Wang
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Shanxi 030801, China
- Institute of Food Nutrition and Safety, Shanxi Agricultural University, Taiyuan 030031, Shanxi, China
| | - Lixin Zhang
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Shanxi 030801, China
| | - Yisheng Chen
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Shanxi 030801, China
- Institute of Food Nutrition and Safety, Shanxi Agricultural University, Taiyuan 030031, Shanxi, China
- Corresponding author at: College of Food Science and Engineering, Shanxi Agricultural University, Taigu, Shanxi 030801, China.
| |
Collapse
|
4
|
Miniaturized all-in-one nanoGIT+active system for on-surface metabolization, separation and effect imaging. Anal Chim Acta 2021; 1154:338307. [DOI: 10.1016/j.aca.2021.338307] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/28/2021] [Accepted: 02/07/2021] [Indexed: 02/06/2023]
|
5
|
Wang X, Yu K, Cheng C, Peng D, Yu X, Chen H, Chen Y, Julian McClements D, Deng Q. Effect of sesamol on the physical and chemical stability of plant-based flaxseed oil-in-water emulsions stabilized by proteins or phospholipids. Food Funct 2021; 12:2090-2101. [PMID: 33554990 DOI: 10.1039/d0fo02420a] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Plant-based polyphenols are increasingly being explored as functional ingredients in emulsified food systems. In this study, the effects of sesamol on the physical and chemical stability of flaxseed oil-in-water emulsions stabilized by either phospholipids (sunflower) or proteins (whey or pea) were investigated. In the absence of sesamol, the protein-based emulsions displayed better physical stability than the phospholipid-based ones, which was related to their smaller particle diameter and higher particle charge. For the phospholipid-based emulsions, sesamol addition did not improve their physical stability, but it did inhibit lipid oxidation. In particular, it decreased the formation of secondary oxidation products, with a 65% reduction in TBAR formation compared to the control after 8 days of storage. For the protein-based emulsions, sesamol addition reduced particle aggregation and inhibited lipid oxidation, reducing the secondary oxidation products by around 85% after 19 days of storage. The inhibitory efficiency of sesamol in the pea protein-based emulsions was comparable to that in the whey protein-based ones. The effects of sesamol on the physical and chemical stability of the emulsions were related to its partitioning between the oil, water, and interfacial layers. This study suggests that adding sesamol to plant-based emulsions may improve their physical and chemical stability, thereby extending their shelf life.
Collapse
Affiliation(s)
- Xintian Wang
- Key Laboratory of Oilseeds Processing, Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Science, Wuhan, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Effects of Dietary Inclusion of Canthaxanthin- and α-Tocopherol-Loaded Liposomes on Growth and Muscle Pigmentation of Rainbow Trout (Oncorhynchus mykiss). J FOOD QUALITY 2021. [DOI: 10.1155/2021/6653086] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Dietary inclusion of canthaxanthin, a common carotenoid pigment, has been long practiced in aquaculture to give the favorable flesh color in farmed salmonids. However, carotenoids are associated with limited solubility and poor physicochemical stability, and their dose in fish feed is widely regulated. In this study, we included canthaxanthin- and α-tocopherol-loaded liposomes into fish diets and evaluated the effects of supplemented fish feed on fish growth, color, nutrition, and canthaxanthin deposition in fillets of cultured rainbow trout (Oncorhynchus mykiss). The liposomes were fabricated using lecithin as phospholipids with the initial concentrations (IC = mcanthaxanthin/mlipids, % wt/wt) of canthaxanthin at 0.1%, 0.5%, and 1.0%. Particle size characterization showed that liposome mean sizes were 109.70 ± 6.36, 105.10 ± 8.41, and 109.20 ± 5.66 nm (mean ± SD; n = 3), respectively, corresponding with liposomes synthesized at canthaxanthin IC = 0.1%, IC = 0.5%, and IC = 1%. The polydispersity index (PDI) of all samples remained lower than 0.2. There were no significant differences in the mean size and PDI between blank lecithin liposome and canthaxanthin- and α-tocopherol-loaded liposomes. The encapsulation efficiency of canthaxanthin- and α-tocopherol-loaded liposomes decreased when increasing the concentration of canthaxanthin in lecithin liposomes, with EE% values of IC = 0.1%, IC = 0.5%, and IC = 1% being 85.3 ± 2.1, 72.9 ± 1.8, and 55.3 ± 2.6, respectively. For fish growth, at the end of the experiment, final weight was significantly higher in fish fed with diet supplemented with 1 g/kg canthaxanthin- and α-tocopherol-loaded liposomes (IC = 0.5%) in comparison to other experimental control groups. The difference in color of the salmon muscle was most apparent after two months of feeding. However, after three months, there was no noticeable change in the color score of the fish muscle, indicating saturation of color of the fish muscle. The above results suggest the potential of canthaxanthin- and a-tocopherol-loaded liposomes as the red pigment in fish aquaculture.
Collapse
|
7
|
Cebolla VL, Jarne C, Vela J, Garriga R, Membrado L, Galbán J. Scanning densitometry and mass spectrometry for HPTLC analysis of lipids: The last 10 years. J LIQ CHROMATOGR R T 2021. [DOI: 10.1080/10826076.2020.1866600] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
| | - Carmen Jarne
- Instituto de Carboquímica, ICB-CSIC, Zaragoza, Spain
| | - Jesús Vela
- Departamento de Química Analítica, EINA, Universidad de Zaragoza, Zaragoza, Spain
| | - Rosa Garriga
- Departamento de Química Física, Facultad de Ciencias, Universidad de Zaragoza, Zaragoza, Spain
| | - Luis Membrado
- Instituto de Carboquímica, ICB-CSIC, Zaragoza, Spain
| | - Javier Galbán
- Departamento de Química Analítica, Facultad de Ciencias, Universidad de Zaragoza, Zaragoza, Spain
| |
Collapse
|
8
|
Irungbam K, Roderfeld M, Glimm H, Hempel F, Schneider F, Hehr L, Glebe D, Churin Y, Morlock G, Yüce I, Roeb E. Cholestasis impairs hepatic lipid storage via AMPK and CREB signaling in hepatitis B virus surface protein transgenic mice. J Transl Med 2020; 100:1411-1424. [PMID: 32612285 PMCID: PMC7572243 DOI: 10.1038/s41374-020-0457-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 06/03/2020] [Accepted: 06/03/2020] [Indexed: 02/07/2023] Open
Abstract
Clinical studies demonstrated that nonalcoholic steatohepatitis is associated with liver-related outcomes in chronic hepatitis B. Furthermore, primary biliary fibrosis and biliary atresia occurred in patients with HBV infection. Interestingly, hepatitis B virus surface protein (HBs) transgenic mice spontaneously develop hepatic steatosis. Our aim is to investigate the effect of Abcb4 knockout-induced cholestasis on liver steatosis in HBs transgenic mice. Hybrids of HBs transgenic and Abcb4-/- mice were bred on the BALB/c genetic background. Lipid synthesis, storage, and catabolism as well as proteins and genes that control lipid metabolism were analyzed using HPTLC, qPCR, western blot, electrophoretic mobility shift assay (EMSA), lipid staining, and immunohistochemistry. Hepatic neutral lipid depots were increased in HBs transgenic mice and remarkably reduced in Abcb4-/- and HBs/Abcb4-/- mice. Similarly, HPTLC-based quantification analyses of total hepatic lipid extracts revealed a significant reduction in the amount of triacylglycerols (TAG), while the amount of free fatty acids (FFA) was increased in Abcb4-/- and HBs/Abcb4-/- in comparison to wild-type and HBs mice. PLIN2, a lipid droplet-associated protein, was less expressed in Abcb4-/- and HBs/Abcb4-/-. The expression of genes-encoding proteins involved in TAG synthesis and de novo lipogenesis (Agpat1, Gpat1, Mgat1, Dgat1, Dgat2, Fasn, Hmgcs1, Acc1, Srebp1-c, and Pparγ) was suppressed, and AMPK and CREB were activated in Abcb4-/- and HBs/Abcb4-/- compared to wild-type and HBs mice. Simulating cholestatic conditions in cell culture resulted in AMPK and CREB activation while FASN and PLIN2 were reduced. A concurrent inhibition of AMPK signaling revealed normal expression level of FASN and PLIN2, suggesting that activation of AMPK-CREB signaling regulates hepatic lipid metabolism, i.e. synthesis and storage, under cholestatic condition. In conclusions, in vivo and mechanistic in vitro data suggest that cholestasis reduces hepatic lipid storage via AMPK and CREB signaling. The results of the current study could be the basis for novel therapeutic strategies as NASH is a crucial factor that can aggravate chronic liver diseases.
Collapse
Affiliation(s)
- Karuna Irungbam
- Department of Gastroenterology, Justus Liebig University Giessen, Giessen, Germany
| | - Martin Roderfeld
- Department of Gastroenterology, Justus Liebig University Giessen, Giessen, Germany
| | - Hannah Glimm
- Department of Gastroenterology, Justus Liebig University Giessen, Giessen, Germany
| | - Felix Hempel
- Department of Gastroenterology, Justus Liebig University Giessen, Giessen, Germany
| | - Franziska Schneider
- Department of Gastroenterology, Justus Liebig University Giessen, Giessen, Germany
| | - Laura Hehr
- Department of Gastroenterology, Justus Liebig University Giessen, Giessen, Germany
| | - Dieter Glebe
- Institute of Medical Virology, National Reference Centre for Hepatitis B Viruses and Hepatitis D Viruses, Justus Liebig University, Giessen, Germany
| | - Yuri Churin
- Department of Gastroenterology, Justus Liebig University Giessen, Giessen, Germany
| | - Gertrud Morlock
- Institute of Nutritional Science, Chair of Food Science, and TransMIT Center for Effect-Directed Analysis, Justus Liebig University Giessen, Giessen, Germany
| | - Imanuel Yüce
- Institute of Nutritional Science, Chair of Food Science, and TransMIT Center for Effect-Directed Analysis, Justus Liebig University Giessen, Giessen, Germany
| | - Elke Roeb
- Department of Gastroenterology, Justus Liebig University Giessen, Giessen, Germany.
| |
Collapse
|
9
|
Sherma J, Rabel F. Review of advances in planar chromatography-mass spectrometry published in the period 2015–2019. J LIQ CHROMATOGR R T 2020. [DOI: 10.1080/10826076.2020.1725561] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Joseph Sherma
- Department of Chemistry, Lafayette College, Easton, PA, USA
| | | |
Collapse
|
10
|
Titania and Zinc Oxide Nanoparticles: Coating with Polydopamine and Encapsulation within Lecithin Liposomes—Water Treatment Analysis by Gel Filtration Chromatography with Fluorescence Detection. SEPARATIONS 2018. [DOI: 10.3390/separations5010013] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The interplay of metal oxide nanoparticles, environmental pollution, and health risks is key to all industrial and drinking water treatment processes. In this work we present a study using gel filtration chromatography for the analytical investigation of metal oxide nanoparticles in water, their coating with polydopamine, and their encapsulation within lecithin liposomes. Polydopamine prevents TiO2 and ZnO nanoparticles from aggregation during chromatographic separation. Lecithin forms liposomes that encapsulate the nanoparticles and carry them through the gel filtration column, producing an increase of peak area for quantitative analysis without any change in retention time to affect qualitative identification. To the best of our knowledge, this is the first report that demonstrates the potential application of lecithin liposomes for cleaning up metal oxide nanoparticles in water treatment. Encapsulation of graphene quantum dots by liposomes would allow for monitoring of nanoparticle-loaded liposomes to ensure their complete removal by membrane ultrafiltration from treated water.
Collapse
|
11
|
Marquardt D, Frontzek MD, Zhao Y, Chakoumakos BC, Katsaras J. Neutron diffraction from aligned stacks of lipid bilayers using the WAND instrument. J Appl Crystallogr 2018. [DOI: 10.1107/s1600576718001243] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Neutron diffraction from aligned stacks of lipid bilayers is examined using the Wide-Angle Neutron Diffractometer (WAND), located at the High Flux Isotope Reactor, Oak Ridge, Tennessee, USA. Data were collected at different levels of hydration and neutron contrast by varying the relative humidity (RH) and H2O/D2O ratio from multi-bilayers of dioleoylphosphatidylcholine and sunflower phosphatidylcholine extract aligned on single-crystal silicon substrates. This work highlights the capabilites of a newly fabricated sample hydration cell, which allows the lipid bilayers to be hydrated with varying H/D ratios from the RH generated by saturated salt solutions, and also demonstrates WAND's capability as an instrument suitable for the study of aligned lipid multi-bilayers.
Collapse
|
12
|
Effect-directed analysis via hyphenated high-performance thin-layer chromatography for bioanalytical profiling of sunflower leaves. J Chromatogr A 2018; 1533:213-220. [DOI: 10.1016/j.chroma.2017.12.034] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 12/12/2017] [Accepted: 12/12/2017] [Indexed: 11/24/2022]
|
13
|
Böhme B, Symmank C, Rohm H. Physical and sensory properties of chocolate made with lecithin of different origin. EUR J LIPID SCI TECH 2016. [DOI: 10.1002/ejlt.201600201] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Birgit Böhme
- Chair of Food EngineeringTechnische Universität DresdenDresdenGermany
| | - Claudia Symmank
- Chair of Food EngineeringTechnische Universität DresdenDresdenGermany
| | - Harald Rohm
- Chair of Food EngineeringTechnische Universität DresdenDresdenGermany
| |
Collapse
|
14
|
Encapsulation of ω-3 fatty acids in nanoemulsion-based delivery systems fabricated from natural emulsifiers: Sunflower phospholipids. Food Chem 2016; 203:331-339. [DOI: 10.1016/j.foodchem.2016.02.080] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 01/26/2016] [Accepted: 02/11/2016] [Indexed: 11/18/2022]
|
15
|
Kroslakova I, Pedrussio S, Wolfram E. Direct Coupling of HPTLC with MALDI-TOF MS for Qualitative Detection of Flavonoids on Phytochemical Fingerprints. PHYTOCHEMICAL ANALYSIS : PCA 2016; 27:222-228. [PMID: 27313160 DOI: 10.1002/pca.2621] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2016] [Revised: 03/23/2016] [Accepted: 03/24/2016] [Indexed: 06/06/2023]
Abstract
INTRODUCTION Thin layer chromatographic fingerprints of plant raw materials and extracts for food and pharma applications often focus on phenol carbonic acids and flavonoids. The visual detection and comparison of Rf values of applied reference substances only renders limited phytochemical information. Recently, direct coupling of TLC with MALDI-TOF MS has been successfully applied for analysis of biologically relevant compounds such as lipids. The mass analysis of low molecular weight TLC or HPTLC fingerprints of flavonoids has, to our knowledge, not yet been investigated. OBJECTIVES In this study, the feasibility of direct coupling of HPTLC with UV-MALDI-TOF MS for determination of molecular mass of the ubiquitously present flavonol glycoside, rutin, and flavone glycoside, luteolin-7-O-glucoside, as well as their corresponding aglycones, quercetin and luteolin, is demonstrated. METHODOLOGY HPTLC plate suitable for combination with a MALDI MS adapter was used for chromatographic separation of compounds of interest. After separation, the plate was sprayed with 2,5 dihydroxybenzoic acid as a MALDI matrix using an automated spraying device. After drying, the developed chromatograms were scanned by UV-MALDI-TOF MS in positive mode with a spatial resolution of 0.2 mm. RESULTS All compounds studied were distinctly detected in MALDI-TOF mass spectra. This is particularly pertinent for the co-eluted aglycones luteolin and quercetin, which could not have been distinguished by the common visual HPTLC derivatisation and evaluation. CONCLUSION This study demonstrates the potential of MALDI-TOF MS for the analysis of low molecular weight fingerprints of flavonoids directly from their HPTLC chromatogram. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Ivana Kroslakova
- Zurich University of Applied Sciences, Institute of Chemistry and Biotechnology, Einsiedlerstrasse 31, CH-8820, Wädenswil, Switzerland
| | - Simona Pedrussio
- Zurich University of Applied Sciences, Institute of Chemistry and Biotechnology, Einsiedlerstrasse 31, CH-8820, Wädenswil, Switzerland
| | - Evelyn Wolfram
- Zurich University of Applied Sciences, Institute of Chemistry and Biotechnology, Einsiedlerstrasse 31, CH-8820, Wädenswil, Switzerland
| |
Collapse
|
16
|
Monakhova YB, Diehl BWK. Quantitative Analysis of Sunflower Lecithin Adulteration with Soy Species by NMR Spectroscopy and PLS Regression. J AM OIL CHEM SOC 2015. [DOI: 10.1007/s11746-015-2753-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
17
|
Komaiko J, Sastrosubroto A, McClements DJ. Formation of oil-in-water emulsions from natural emulsifiers using spontaneous emulsification: sunflower phospholipids. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015; 63:10078-10088. [PMID: 26528859 DOI: 10.1021/acs.jafc.5b03824] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
This study examined the possibility of producing oil-in-water emulsions using a natural surfactant (sunflower phospholipids) and a low-energy method (spontaneous emulsification). Spontaneous emulsification was carried out by titrating an organic phase (oil and phospholipid) into an aqueous phase with continuous stirring. The influence of phospholipid composition, surfactant-to-oil ratio (SOR), initial phospholipids location, storage time, phospholipid type, and preparation method was tested. The initial droplet size depended on the nature of the phospholipid used, which was attributed to differences in phospholipid composition. Droplet size decreased with increasing SOR and was smallest when the phospholipid was fully dissolved in the organic phase rather than the aqueous phase. The droplets formed using spontaneous emulsification were relatively large (d > 10 μm), and so the emulsions were unstable to gravitational separation. At low SORs (0.1 and 0.5), emulsions produced with phospholipids had a smaller particle diameter than those produced with a synthetic surfactant (Tween 80), but at a higher SOR (1.0), this trend was reversed. High-energy methods (microfluidization and sonication) formed significantly smaller droplets (d < 10 μm) than spontaneous emulsification. The results from this study show that low-energy methods could be utilized with natural surfactants for applications for which fine droplets are not essential.
Collapse
Affiliation(s)
- Jennifer Komaiko
- Department of Food Science, University of Massachusetts , Amherst, Massachusetts 01003, United States
| | - Ashtri Sastrosubroto
- Department of Food Science, University of Massachusetts , Amherst, Massachusetts 01003, United States
| | - David Julian McClements
- Department of Food Science, University of Massachusetts , Amherst, Massachusetts 01003, United States
- Department of Biochemistry, Faculty of Science, King Abdulaziz University , P.O. Box 80203, Jeddah 21589, Saudi Arabia
| |
Collapse
|
18
|
Lee WJ, Weng SH, Su NW. Individual Phosphatidylcholine Species Analysis by RP-HPLC-ELSD for Determination of Polyenylphosphatidylcholine in Lecithins. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015; 63:3851-3858. [PMID: 25834917 DOI: 10.1021/acs.jafc.5b01022] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Polyenylphosphatidylcholine (PPC), a subgroup of the bioactive agents in phosphatidylcholine (PC), has been indicated to possess liver-protective effects. This study aimed to investigate a promising and feasible method to determine PC molecular species with a reverse phase (RP) high-performance liquid chromatograph (HPLC) equipped with an evaporative light scattering detector (ELSD). Chromatography was achieved using a C30 column and an isocratic mobile phase consisting of acetonitrile/methanol/triethylamine (40/58/2, v/v/v) at a flow rate of 1 mL/min, and ELSD detection was performed using 80 °C for the drift tube and an air flow rate of 1.8 L/min. To identify individual peaks on the chromatogram, MALDI-TOF-MS was employed for initial detection, and then the results were used to investigate the relationship between the retention time and fatty acyl chains of each PC molecule. A linear correlation was observed between the retention time and theoretical carbon number (TCN) of individual PC species. The compositions of PC molecular species in soybean and sunflower lecithins were similar to each other, and the major PC molecular species were 1,2-dilinoleoyl-sn-glycero-3-phosphocholine (LLPC), 1-oleoyl-2-linoleoyl-sn-glycero-3-phosphocholine (OLPC), and 1-palmitoyl-2-linoleoyl-sn-glycero-3-phosphocholine (PLPC). The contents of LLPC in soybean PC and sunflower PC were 40.6% and 64.3%, respectively.
Collapse
Affiliation(s)
- Wei-Ju Lee
- †Department of Agricultural Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Shun-Hsiang Weng
- ‡Department of Food Science and Nutrition, Meiho University, Pingtung County 91202, Taiwan
| | - Nan-Wei Su
- †Department of Agricultural Chemistry, National Taiwan University, Taipei 10617, Taiwan
| |
Collapse
|