1
|
Chen G, Harwood JL, Lemieux MJ, Stone SJ, Weselake RJ. Acyl-CoA:diacylglycerol acyltransferase: Properties, physiological roles, metabolic engineering and intentional control. Prog Lipid Res 2022; 88:101181. [PMID: 35820474 DOI: 10.1016/j.plipres.2022.101181] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 05/31/2022] [Accepted: 07/04/2022] [Indexed: 12/15/2022]
Abstract
Acyl-CoA:diacylglycerol acyltransferase (DGAT, EC 2.3.1.20) catalyzes the last reaction in the acyl-CoA-dependent biosynthesis of triacylglycerol (TAG). DGAT activity resides mainly in membrane-bound DGAT1 and DGAT2 in eukaryotes and bifunctional wax ester synthase-diacylglycerol acyltransferase (WSD) in bacteria, which are all membrane-bound proteins but exhibit no sequence homology to each other. Recent studies also identified other DGAT enzymes such as the soluble DGAT3 and diacylglycerol acetyltransferase (EaDAcT), as well as enzymes with DGAT activities including defective in cuticular ridges (DCR) and steryl and phytyl ester synthases (PESs). This review comprehensively discusses research advances on DGATs in prokaryotes and eukaryotes with a focus on their biochemical properties, physiological roles, and biotechnological and therapeutic applications. The review begins with a discussion of DGAT assay methods, followed by a systematic discussion of TAG biosynthesis and the properties and physiological role of DGATs. Thereafter, the review discusses the three-dimensional structure and insights into mechanism of action of human DGAT1, and the modeled DGAT1 from Brassica napus. The review then examines metabolic engineering strategies involving manipulation of DGAT, followed by a discussion of its therapeutic applications. DGAT in relation to improvement of livestock traits is also discussed along with DGATs in various other eukaryotic organisms.
Collapse
Affiliation(s)
- Guanqun Chen
- Department of Agricultural, Food, and Nutritional Science, University of Alberta, Edmonton, Alberta T6H 2P5, Canada.
| | - John L Harwood
- School of Biosciences, Cardiff University, Cardiff CF10 3AX, UK
| | - M Joanne Lemieux
- Department of Biochemistry, University of Alberta, Membrane Protein Disease Research Group, Edmonton T6G 2H7, Canada
| | - Scot J Stone
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada.
| | - Randall J Weselake
- Department of Agricultural, Food, and Nutritional Science, University of Alberta, Edmonton, Alberta T6H 2P5, Canada
| |
Collapse
|
2
|
Effect of Sea Salt and Taro Waste on Fungal Mortierella alpina Cultivation for Arachidonic Acid-Rich Lipid Production. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8020081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Arachidonic acid (ARA), an important polyunsaturated fatty acid (PUFA), acts as a precursor for eicosanoid hormones, such as prostaglandins, leukotrienes and other biological substances in human and animal bodies. Mortierella alpina is considered to be a potential strain for ARA production. Using agricultural waste as a substrate for microbial fermentation could achieve biorefinery concepts, and sea water utilization of the cultivation process could help to conserve fresh water resources. The objectives of this study were to find a potential M. alpina strain for ARA production, to investigate the tolerance of salinity and to evaluate the feasibility of the taro waste hydrolysate for M. alpina cultivation. The result showed that M. alpina FU30797 had the highest lipid content (25.97%) and ARA ratio (34.60%) among three strains. Furthermore, there was no significant difference between 0 and 10 g/L of sea salt solution on the biomass concentration and lipid content of M. alpina FU30797. The acidic hydrolysate and enzymatic hydrolysate of taro peel waste (TPW) were both utilized as culture substrates by M. alpina FU30797; however, the substrate up-take rate and lipid content in the TPW enzymatic hydrolysate cultivation were 292.33 mg/L-h and 30.68%, respectively, which are higher than those in acidic hydrolysate cultivation, and the ARA ratio was 33.05% in the enzymatic hydrolysate cultivation. From fed-batch cultivation in the bioreactor, the lipid content and ARA ratio reached 36.97% and 46.04%, respectively. In summary, the results from this project could potentially provide useful information for developing the PUFA-ARA bioprocess by using M. alpina.
Collapse
|
3
|
Argiz L, Gonzalez-Cabaleiro R, Correa-Galeote D, Val del Rio A, Mosquera-Corral A. Open-culture biotechnological process for triacylglycerides and polyhydroxyalkanoates recovery from industrial waste fish oil under saline conditions. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.118805] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
4
|
Zhang H, Cui Q, Song X. Research advances on arachidonic acid production by fermentation and genetic modification of Mortierella alpina. World J Microbiol Biotechnol 2021; 37:4. [DOI: 10.1007/s11274-020-02984-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 12/20/2020] [Indexed: 12/12/2022]
|
5
|
Mamani LDG, Magalhães AI, Ruan Z, Carvalho JCD, Soccol CR. Industrial production, patent landscape, and market trends of arachidonic acid-rich oil of Mortierella alpina. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.biori.2019.02.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
6
|
Samadlouie HR, Nurmohamadi S, Moradpoor F, Gharanjik S. Effect of low-cost substrate on the fatty acid profiles of Mortierella alpina CBS 754.68 and Wickerhamomyces siamensis SAKSG. BIOTECHNOL BIOTEC EQ 2018. [DOI: 10.1080/13102818.2018.1471360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022] Open
Affiliation(s)
- Hamid Reza Samadlouie
- Department of Food Science and Technology, Faculty of Agricultural Engineering, Shahrood University of Technology, Shahrood, Iran
| | - Sanaz Nurmohamadi
- Department of Food Science and Technology, Faculty of Agricultural Engineering, Ayat Ollah Amoli Branch, Islamic Azad University, Amol, Iran
| | - Fatemeh Moradpoor
- Department of Food Science and Technology, Faculty of Agricultural Engineering, Ayat Ollah Amoli Branch, Islamic Azad University, Amol, Iran
| | - Shahrokh Gharanjik
- Department of Biotechnology, Faculty of Agricultural Engineering, Shahrood University of Technology, Shahrood, Iran
| |
Collapse
|
7
|
Yu Y, Zhang L, Li T, Wu N, Jiang L, Ji X, Huang H. How nitrogen sources influence Mortierella alpina aging: From the lipid droplet proteome to the whole-cell proteome and metabolome. J Proteomics 2018; 179:140-149. [DOI: 10.1016/j.jprot.2018.03.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 02/19/2018] [Accepted: 03/16/2018] [Indexed: 01/20/2023]
|
8
|
The Effect of pH and Temperature on Arachidonic Acid Production by Glycerol-Grown Mortierella alpina NRRL-A-10995. FERMENTATION-BASEL 2018. [DOI: 10.3390/fermentation4010017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
9
|
Zhou X, Zhou X, Huang L, Cao R, Xu Y. Efficient coproduction of gluconic acid and xylonic acid from lignocellulosic hydrolysate by Zn(II)-selective inhibition on whole-cell catalysis by Gluconobacter oxydans. BIORESOURCE TECHNOLOGY 2017; 243:855-859. [PMID: 28724257 DOI: 10.1016/j.biortech.2017.07.023] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 07/04/2017] [Accepted: 07/05/2017] [Indexed: 06/07/2023]
Abstract
With Zn(II)-selective inhibition on the whole-cell catalysis of Gluconobacter oxydans NL71, gluconic acid and xylonic acid were coproduced efficiently from the hydrolysate of corn stover. Further metabolism of gluconic acid to the by-product 2-ketogluconic acid was prevented by addition of 10g/L ZnCl2. Remarkably, yields of 93.91% of gluconic acid and 93.36% of xylonic acid were obtained with the supplement of ZnCl2 in the synthetic medium, without by-product production. After optimization of the concentrations of ZnCl2 and inocula of the strain, maximum amounts of gluconic acid and xylonic acid were coproduced at titers of 63.01g/L and 33.81g/L, with an overall utilization of 100% of the sugars in the enzymatic hydrolysate of corn stover. The results showed execution of our objective to prove this novel bioconversion method for simultaneously producing gluconic acid and xylonic acid, which would benefit subsequent studies on the comprehensive utilization of lignocellulosic materials.
Collapse
Affiliation(s)
- Xuelian Zhou
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, People's Republic of China; College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, People's Republic of China; Jiangsu Province Key Laboratory of Green Biomass-based Fuels and Chemicals, Nanjing 210037, People's Republic of China
| | - Xin Zhou
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, People's Republic of China; College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, People's Republic of China; Jiangsu Province Key Laboratory of Green Biomass-based Fuels and Chemicals, Nanjing 210037, People's Republic of China
| | - Lu Huang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, People's Republic of China; College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, People's Republic of China; Jiangsu Province Key Laboratory of Green Biomass-based Fuels and Chemicals, Nanjing 210037, People's Republic of China
| | - Rou Cao
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, People's Republic of China; College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, People's Republic of China; Jiangsu Province Key Laboratory of Green Biomass-based Fuels and Chemicals, Nanjing 210037, People's Republic of China
| | - Yong Xu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, People's Republic of China; College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, People's Republic of China; Jiangsu Province Key Laboratory of Green Biomass-based Fuels and Chemicals, Nanjing 210037, People's Republic of China.
| |
Collapse
|
10
|
Abed SM, Zou X, Ali AH, Jin Q, Wang X. Profiling of triacylglycerol composition in arachidonic acid single cell oil from Mortierella alpina by using ultra-performance liquid chromatography-electrospray ionization-quadrupole-time-of-flight mass spectrometry. J Food Compost Anal 2017. [DOI: 10.1016/j.jfca.2017.07.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
11
|
Forfang K, Zimmermann B, Kosa G, Kohler A, Shapaval V. FTIR Spectroscopy for Evaluation and Monitoring of Lipid Extraction Efficiency for Oleaginous Fungi. PLoS One 2017; 12:e0170611. [PMID: 28118388 PMCID: PMC5261814 DOI: 10.1371/journal.pone.0170611] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 01/06/2017] [Indexed: 11/19/2022] Open
Abstract
To assess whether Fourier Transform Infrared (FTIR) spectroscopy could be used to evaluate and monitor lipid extraction processes, the extraction methods of Folch, Bligh and Lewis were used. Biomass of the oleaginous fungi Mucor circinelloides and Mortierella alpina were employed as lipid-rich material for the lipid extraction. The presence of lipids was determined by recording infrared spectra of all components in the lipid extraction procedure, such as the biomass before and after extraction, the water and extract phases. Infrared spectra revealed the incomplete extraction after all three extraction methods applied to M.circinelloides and it was shown that mechanical disruption using bead beating and HCl treatment were necessary to complete the extraction in this species. FTIR spectroscopy was used to identify components, such as polyphosphates, that may have negatively affected the extraction process and resulted in differences in extraction efficiency between M.circinelloides and M.alpina. Residual lipids could not be detected in the infrared spectra of M.alpina biomass after extraction using the Folch and Lewis methods, indicating their complete lipid extraction in this species. Bligh extraction underestimated the fatty acid content of both M.circinelloides and M.alpina biomass and an increase in the initial solvent-to-sample ratio (from 3:1 to 20:1) was needed to achieve complete extraction and a lipid-free IR spectrum. In accordance with previous studies, the gravimetric lipid yield was shown to overestimate the potential of the SCO producers and FAME quantification in GC-FID was found to be the best-suited method for lipid quantification. We conclude that FTIR spectroscopy can serve as a tool for evaluating the lipid extraction efficiency, in addition to identifying components that may affect lipid extraction processes.
Collapse
Affiliation(s)
- Kristin Forfang
- Department of Mathematical Sciences and Technology, Norwegian University of Life Sciences, Ås, Norway
- Nofima AS, Ås, Norway
- * E-mail:
| | - Boris Zimmermann
- Department of Mathematical Sciences and Technology, Norwegian University of Life Sciences, Ås, Norway
| | - Gergely Kosa
- Department of Mathematical Sciences and Technology, Norwegian University of Life Sciences, Ås, Norway
- Nofima AS, Ås, Norway
| | - Achim Kohler
- Department of Mathematical Sciences and Technology, Norwegian University of Life Sciences, Ås, Norway
| | - Volha Shapaval
- Department of Mathematical Sciences and Technology, Norwegian University of Life Sciences, Ås, Norway
- Nofima AS, Ås, Norway
| |
Collapse
|
12
|
Zhang AH, Ji XJ, Wu WJ, Ren LJ, Yu YD, Huang H. Lipid Fraction and Intracellular Metabolite Analysis Reveal the Mechanism of Arachidonic Acid-Rich Oil Accumulation in the Aging Process of Mortierella alpina. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015; 63:9812-9819. [PMID: 26482338 DOI: 10.1021/acs.jafc.5b04521] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The mechanism of arachidonic acid (ARA) content increase during aging of Mortierella alpina was elucidated. Lipid fraction analysis showed that ARA content increased from 46.9% to 66.4% in the triacylglycerol (TAG) molecule, and ARA residue occupation increased in the majority of TAG molecules during the aging process. For the first time, intracellular metabolite analysis was conducted to reveal the pathways closely associated with ARA biosynthesis during aging. The main reason for the increased ARA content was not only at the expense of other fatty acids degradation but also at the expense of further ARA biosynthesis during aging. Furthermore, translocation played a vital role in ARA redistribution among the glycerol moiety, and mycelium did not die immediately with key pathways activated to maintain a relatively stable intracellular environment. This study lays a foundation for further improvement of ARA content in the oil product obtained from M. alpina.
Collapse
Affiliation(s)
- Ai-Hui Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University , No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Xiao-Jun Ji
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University , No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Wen-Jia Wu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University , No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Lu-Jing Ren
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University , No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Ya-Dong Yu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University , No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - He Huang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University , No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| |
Collapse
|
13
|
Wu W, Yan J, Ji X, Zhang X, Shang J, Sun L, Ren L, Huang H. Lipid characterization of an arachidonic acid-rich oil producing fungus Mortierella alpina. Chin J Chem Eng 2015. [DOI: 10.1016/j.cjche.2015.04.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
14
|
Zhao Y, Wang H, Liu T, Xin Z. The individual lipid compositions produced by Cunninghamella sp. Salicorn 5, an endophytic oleaginous fungus from Salicornia bigelovii Torr. Eur Food Res Technol 2013. [DOI: 10.1007/s00217-013-2141-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
15
|
Zhao G, Dai J, Wang P, Gong G, Wang L, Liu H, Zheng Z. An efficient method for the enrichment of the arachidonic acid methyl ester from Mortierella alpina-derived crude oils. FOOD AND BIOPRODUCTS PROCESSING 2013. [DOI: 10.1016/j.fbp.2013.04.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
16
|
Zhu Y, Zhou P, Hu J, Zhang R, Ren L, Li M, Ning F, Chen W, Yu L. Characterization of Pythium Transcriptome and Gene Expression Analysis at Different Stages of Fermentation. PLoS One 2013; 8:e65552. [PMID: 23824586 PMCID: PMC3688826 DOI: 10.1371/journal.pone.0065552] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Accepted: 04/25/2013] [Indexed: 01/20/2023] Open
Abstract
Background The Pythium splendens is a potentially useful organism for the synthesis of large amounts of eicosapentaenoic acid. Peak biomass and lipid accumulation do not occur at the same time and growth temperature has an effect on the fatty acid composition. Little is known about the pathway or the genes involved in growth, lipid synthesis or temperature resistance in P. splendens. Analysis of the transcriptome and expression profile data for P.splendensRBB-5 were used to extend genetic information for this strain and to contribute to a comprehensive understanding of the molecular mechanisms involved in specific biological processes. Methodology/Principal Findings This study used transcriptome assembly and gene expression analysis with short-read sequencing technology combined with a tag-based digital gene expression (DGE) system. Assembled sequences were annotated with gene descriptions, such as gene ontology (GO), clusters of orthologous group (COG) terms and KEGG orthology (KO) to generate 23,796 unigenes. In addition, we obtained a larger number of genes at different stages of fermentation (48, 100 and 148 h). The genes related to growth characteristics and lipid biosynthesis were analyzed in detail. Some genes associated with lipid and fatty acid biosynthesis were selected to confirm the digital gene expression (DGE) results by quantitative real-time PCR (qRT-PCR). Conclusion/Significance The transcriptome improves our genetic understanding of P.splendensRBB-5 greatly and makes a large number of gene sequences available for further study. Notably, the transcriptome and DGE profiling data of P.splendensRBB-5 provide a comprehensive insight into gene expression profiles at different stages of fermentation and lay the foundation for the study of optimizing lipid content and growth speed at the molecular level.
Collapse
Affiliation(s)
- Yuanmin Zhu
- Institute of Resource Biology and Biotechnology, Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Molecular Biophysics Ministry of Education, Huazhong University of Science and Technology, Wuhan, China
- Wuhan Institute of Biotechnology, Wuhan, China
| | - Pengpeng Zhou
- Institute of Resource Biology and Biotechnology, Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Molecular Biophysics Ministry of Education, Huazhong University of Science and Technology, Wuhan, China
- Wuhan Institute of Biotechnology, Wuhan, China
| | - Jingrong Hu
- Institute of Resource Biology and Biotechnology, Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Molecular Biophysics Ministry of Education, Huazhong University of Science and Technology, Wuhan, China
| | - Ruijiao Zhang
- Institute of Resource Biology and Biotechnology, Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Molecular Biophysics Ministry of Education, Huazhong University of Science and Technology, Wuhan, China
- Wuhan Institute of Biotechnology, Wuhan, China
| | - Liang Ren
- Institute of Resource Biology and Biotechnology, Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Molecular Biophysics Ministry of Education, Huazhong University of Science and Technology, Wuhan, China
- Wuhan Institute of Biotechnology, Wuhan, China
- Department of Environmental and Bio-chemical Engineering, Wuhan Vocational College of Software and Engineering, Wuhan, China
| | - Maoteng Li
- Institute of Resource Biology and Biotechnology, Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Molecular Biophysics Ministry of Education, Huazhong University of Science and Technology, Wuhan, China
- Wuhan Institute of Biotechnology, Wuhan, China
| | - Fan Ning
- Institute of Resource Biology and Biotechnology, Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Molecular Biophysics Ministry of Education, Huazhong University of Science and Technology, Wuhan, China
- Wuhan Institute of Biotechnology, Wuhan, China
| | - Wei Chen
- Institute of Resource Biology and Biotechnology, Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Molecular Biophysics Ministry of Education, Huazhong University of Science and Technology, Wuhan, China
- Wuhan Institute of Biotechnology, Wuhan, China
| | - Longjiang Yu
- Institute of Resource Biology and Biotechnology, Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Molecular Biophysics Ministry of Education, Huazhong University of Science and Technology, Wuhan, China
- Wuhan Institute of Biotechnology, Wuhan, China
- * E-mail:
| |
Collapse
|
17
|
Ji XJ, Ren LJ, Nie ZK, Huang H, Ouyang PK. Fungal arachidonic acid-rich oil: research, development and industrialization. Crit Rev Biotechnol 2013; 34:197-214. [PMID: 23631634 DOI: 10.3109/07388551.2013.778229] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Fungal arachidonic acid (ARA)-rich oil is an important microbial oil that affects diverse physiological processes that impact normal health and chronic disease. In this article, the historic developments and technological achievements in fungal ARA-rich oil production in the past several years are reviewed. The biochemistry of ARA, ARA-rich oil synthesis and the accumulation mechanism are first introduced. Subsequently, the fermentation and downstream technologies are summarized. Furthermore, progress in the industrial production of ARA-rich oil is discussed. Finally, guidelines for future studies of fungal ARA-rich oil production are proposed in light of the current progress, challenges and trends in the field.
Collapse
Affiliation(s)
- Xiao-Jun Ji
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing University of Technology , Nanjing , People's Republic of China
| | | | | | | | | |
Collapse
|
18
|
Dedyukhina EG, Chistyakova TI, Vainshtein MB. Biosynthesis of arachidonic acid by micromycetes (review). APPL BIOCHEM MICRO+ 2011. [DOI: 10.1134/s0003683811020037] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|