1
|
Aguayo-Patrón SV, Trujillo-Rivera OA, Cornejo-Granados F, Ochoa-Leyva A, Calderón de la Barca AM. HLA-Haplotypes Influence Microbiota Structure in Northwestern Mexican Schoolchildren Predisposed for Celiac Disease or Type 1 Diabetes. Microorganisms 2023; 11:1412. [PMID: 37374914 DOI: 10.3390/microorganisms11061412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 05/20/2023] [Accepted: 05/24/2023] [Indexed: 06/29/2023] Open
Abstract
To contribute to and elucidate the participation of microbiota in celiac disease (CD) and type 1 diabetes (T1D) development, we evaluated the influence of HLA haplotypes, familial risk, and diet on the microbiota of schoolchildren. We conducted a cross-sectional study on 821 apparently healthy schoolchildren, genotyping HLA DQ2/DQ8, and registering familial risk. We analyzed the fecal microbiota using 16S rRNA gene sequencing, and autoantibodies for CD or T1D by ELISA. After analyses, we created three groups: at-high-risk children (Group 1), at-high-risk children plus autoantibodies (Group 2), and nonrisk children (Group 3). HLA influenced the microbiota of Groups 1 and 2, decreasing phylogenetic diversity in comparison to Group 3. The relative abundance of Oscillospiraceae UCG_002, Parabacteroides, Akkermansia, and Alistipes was higher in Group 3 compared to Groups 1 and 2. Moreover, Oscillospiraceae UCG_002 and Parabacteroides were protectors of the autoantibodies' positivity (RRR = 0.441 and RRR = 0.034, respectively). Conversely, Agathobacter was higher in Group 2, and Lachnospiraceae was in both Groups 1 and 2. Lachnospiraceae correlated positively with the sucrose degradation pathway, while the principal genera in Group 3 were associated with amino acid biosynthesis pathways. In summary, HLA and familial risk influence microbiota composition and functionality in children predisposed to CD or T1D, increasing their autoimmunity risk.
Collapse
Affiliation(s)
- Sandra V Aguayo-Patrón
- Coordinación de Nutrición, Centro de Investigación en Alimentación y Desarrollo A.C., Hermosillo 83304, Mexico
| | - Omar A Trujillo-Rivera
- Coordinación de Nutrición, Centro de Investigación en Alimentación y Desarrollo A.C., Hermosillo 83304, Mexico
| | - Fernanda Cornejo-Granados
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de Mexico, Cuernavaca 62210, Mexico
| | - Adrian Ochoa-Leyva
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de Mexico, Cuernavaca 62210, Mexico
| | - Ana M Calderón de la Barca
- Coordinación de Nutrición, Centro de Investigación en Alimentación y Desarrollo A.C., Hermosillo 83304, Mexico
| |
Collapse
|
2
|
Garavand F, Khodaei D, Mahmud N, Islam J, Khan I, Jafarzadeh S, Tahergorabi R, Cacciotti I. Recent progress in using zein nanoparticles-loaded nanocomposites for food packaging applications. Crit Rev Food Sci Nutr 2022; 64:3639-3659. [PMID: 36222362 DOI: 10.1080/10408398.2022.2133080] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Biopolymers are important due to their exceptional functional and barrier properties and also their non-toxicity and eco-friendly nature for various food, biomedical, and pharmaceutical applications. However, biopolymers usually need reinforcement strategies to address their poor mechanical, thermal, and physical properties as well as processability aspects. Several natural nanoparticles have been proposed as reinforcing agents for biopolymeric food packaging materials. Among them, zein nanoparticles (ZNPs) have attracted a lot of interest, being an environmentally friendly material. The purpose of the present review paper is to provide a comprehensive overview of the ZNPs-loaded nanocomposites for food packaging applications, starting from the synthesis, characteristics and properties of ZNPs, to the physicochemical properties of the ZNPs-loaded nanocomposites, in terms of morphology, permeability, solubility, optical features, hydrophobic/hydrophilic behavior, structural characteristics, thermal features, and mechanical attributes. Finally, at the end of this review, some considerations about the safety issues and gastrointestinal fate of ZNPs, as well as the use of ZNPs-based nanocomposites as food packaging, are reported, taking into account that, despite the enormous benefits, nanotechnology also presents some risks associated to the use of nanometric materials.
Collapse
Affiliation(s)
- Farhad Garavand
- Department of Food Chemistry and Technology, Teagasc Moorepark Food Research Centre, Co. Cork, Ireland
| | - Diako Khodaei
- Department of Sport, Exercise, and Nutrition, Atlantic Technological University, Galway, Ireland
| | - Niaz Mahmud
- Food and Nutritional Sciences Program, North Carolina Agricultural and Technical State University, Greensboro, North Carolina, USA
| | - Joinul Islam
- Food and Nutritional Sciences Program, North Carolina Agricultural and Technical State University, Greensboro, North Carolina, USA
| | - Injeela Khan
- Food and Nutritional Sciences Program, North Carolina Agricultural and Technical State University, Greensboro, North Carolina, USA
| | - Shima Jafarzadeh
- School of Engineering, Edith Cowan University, Joondalup, Western Australia, Australia
| | - Reza Tahergorabi
- Food and Nutritional Sciences Program, North Carolina Agricultural and Technical State University, Greensboro, North Carolina, USA
| | - Ilaria Cacciotti
- Department of Engineering, INSTM RU, University of Rome 'Niccolò Cusano', Rome, Italy
| |
Collapse
|
3
|
Lerner A, Benzvi C. Microbial Transglutaminase Is a Very Frequently Used Food Additive and Is a Potential Inducer of Autoimmune/Neurodegenerative Diseases. TOXICS 2021; 9:233. [PMID: 34678929 PMCID: PMC8537092 DOI: 10.3390/toxics9100233] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/14/2021] [Accepted: 09/22/2021] [Indexed: 12/12/2022]
Abstract
Microbial transglutaminase (mTG) is a heavily used food additive and its industrial transamidated complexes usage is rising rapidly. It was classified as a processing aid and was granted the GRAS (generally recognized as safe) definition, thus escaping full and thorough toxic and safety evaluations. Despite the manufacturers claims, mTG or its cross-linked compounds are immunogenic, pathogenic, proinflammatory, allergenic and toxic, and pose a risk to public health. The enzyme is a member of the transglutaminase family and imitates the posttranslational modification of gluten, by the tissue transglutaminase, which is the autoantigen of celiac disease. The deamidated and transamidated gliadin peptides lose their tolerance and induce the gluten enteropathy. Microbial transglutaminase and its complexes increase intestinal permeability, suppresses enteric protective pathways, enhances microbial growth and gliadin peptide's epithelial uptake and can transcytose intra-enterocytically to face the sub-epithelial immune cells. The present review updates on the potentially detrimental side effects of mTG, aiming to interest the scientific community, induce food regulatory authorities' debates on its safety, and protect the public from the mTG unwanted effects.
Collapse
Affiliation(s)
- Aaron Lerner
- Chaim Sheba Medical Center, The Zabludowicz Research Center for Autoimmune Diseases, Tel Hashomer 5262000, Israel;
- Ariel University, Ariel 40700, Israel
| | - Carina Benzvi
- Chaim Sheba Medical Center, The Zabludowicz Research Center for Autoimmune Diseases, Tel Hashomer 5262000, Israel;
| |
Collapse
|
4
|
Pigmented Corn Varieties as Functional Ingredients for Gluten-Free Products. Foods 2021; 10:foods10081770. [PMID: 34441547 PMCID: PMC8392392 DOI: 10.3390/foods10081770] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/20/2021] [Accepted: 07/27/2021] [Indexed: 02/06/2023] Open
Abstract
Oxidative stress, one among the several factors responsible for the gluten toxicity in celiac disease, together with inflammation and duodenal mucosal injury, are only partially reduced by the gluten-free diet. Thanks to their phenolic profile, the pigmented varieties of corn could be an interesting source of dietary antioxidants for the formulation of new gluten-free ingredients. The aim of this research was: (1) to characterize the phenolic profile and the associated antioxidant properties of corn samples with different pigmentation, using spectrophotometric and chromatographic techniques and (2) to assess the stability of anthocyanins during the gastro-intestinal digestion. The pigmented varieties showed a significantly higher content of polyphenols compared to the common yellow varieties and, as a consequence, a higher antioxidant activity. Although corn is among the cereals most frequently used in gluten-free products, it can produce an inflammatory response in some celiac patients. Therefore, after the chemical characterization, the safety of the pigmented varieties for celiac patients was confirmed using different in vitro models (cell agglutination test and the measure of transepithelial electrical resistance). Although in vivo studies are necessary, the data collected in this study underline that the pigmented corn could have a role in reducing the oxidative stress at the intestinal level in celiac subjects.
Collapse
|
5
|
Calderón de la Barca AM, Castillo-Fimbres RS, Mejía-León ME, Quihui-Cota L, Ochoa-Leyva A, Aguayo-Patrón SV. Enteric parasitic infection disturbs bacterial structure in Mexican children with autoantibodies for type 1 diabetes and/or celiac disease. Gut Pathog 2020; 12:37. [PMID: 32788927 PMCID: PMC7418185 DOI: 10.1186/s13099-020-00376-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 08/05/2020] [Indexed: 01/04/2023] Open
Abstract
Background Intestinal bacterial dysbiosis and increased gut permeability are associated with higher risk of developing type 1 diabetes (T1D) or celiac disease (CD). There is a lack of information on parasitism involved in gut disturbance of predisposed children. We evaluated the effect of enteropathogenic parasites (Cryptosporidium spp., Cyclospora spp. G. lamblia, and Blastocystis spp.) on the bacterial structure of feces from children with autoantibodies for T1D or CD. Participants included 37 children under 18 years of age, from whom stools were analyzed for enteric parasites by qPCR and 22/37 for bacterial profile by sequencing the V3–V4 region of the 16s rRNA gene. Dietary, clinical, and socioeconomic data was recorded. Results Pathogens parasitized 28/37 participants, Cryptosporidium spp. was the most prevalent (62.2%), followed by both Cyclospora cayetanensis and Blastocystis spp (37.8%). There were no dietary differences (p > 0.05) attributable to parasitism. Co-infected participants with Cryptosporidium and Cyclospora did not differ (p = 0.064) from non-infected participants in bacterial alpha phylogenetic diversity. The same parasites’ co-infection was associated with a decreased abundance of the Ruminococaceae (p = 0.04) and Verrucomicrobioceae families, of the Akkermansia genus (p = 0.009). There was a lower Firmicutes/Bacteroidetes ratio (p = 0.02) in infected than in uninfected participants. Conclusions Cryptosporidium and Cyclospora affected the bacterial structure at family and genus levels, decreasing the ratio between Firmicutes and Bacteroidetes in children with auto-antibodies for T1D or CD, which could increase the risk of illness onset.
Collapse
Affiliation(s)
- Ana M Calderón de la Barca
- Dept. Nutrición, Centro de Investigación en Alimentación y Desarrollo, A.C., Astiazarán Rojas No. 46, Hermosillo, 83304 Sonora Mexico
| | - Reyna S Castillo-Fimbres
- Dept. Nutrición, Centro de Investigación en Alimentación y Desarrollo, A.C., Astiazarán Rojas No. 46, Hermosillo, 83304 Sonora Mexico
| | - María Esther Mejía-León
- Facultad de Medicina Mexicali, Universidad Autónoma de Baja California, Dr. Humberto Torres Sanginés S/N Centro Cívico, Mexicali, 21000 B.C. Mexico
| | - Luis Quihui-Cota
- Dept. Nutrición, Centro de Investigación en Alimentación y Desarrollo, A.C., Astiazarán Rojas No. 46, Hermosillo, 83304 Sonora Mexico
| | - Adrián Ochoa-Leyva
- Dept. Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca. Av. Universidad 2001, Col. Chamilpa, Cuernavaca, 62210 Morelos Mexico
| | - Sandra V Aguayo-Patrón
- Dept. Nutrición, Centro de Investigación en Alimentación y Desarrollo, A.C., Astiazarán Rojas No. 46, Hermosillo, 83304 Sonora Mexico.,Universidad del Valle de México, Hermosillo, Son. Mexico
| |
Collapse
|
6
|
Lerner A, Matthias T. Processed Food Additive Microbial Transglutaminase and Its Cross-Linked Gliadin Complexes Are Potential Public Health Concerns in Celiac Disease. Int J Mol Sci 2020; 21:E1127. [PMID: 32046248 PMCID: PMC7037116 DOI: 10.3390/ijms21031127] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 02/04/2020] [Accepted: 02/05/2020] [Indexed: 12/14/2022] Open
Abstract
Microbial transglutaminase (mTG) is a survival factor for microbes, but yeasts, fungi, and plants also produce transglutaminase. mTG is a cross-linker that is heavily consumed as a protein glue in multiple processed food industries. According to the manufacturers' claims, microbial transglutaminase and its cross-linked products are safe, i.e., nonallergenic, nonimmunogenic, and nonpathogenic. The regulatory authorities declare it as "generally recognized as safe" for public users. However, scientific observations are accumulating concerning its undesirable effects on human health. Functionally, mTG imitates its family member, tissue transglutaminase, which is the autoantigen of celiac disease. Both these transglutaminases mediate cross-linked complexes, which are immunogenic in celiac patients. The enzyme enhances intestinal permeability, suppresses mechanical (mucus) and immunological (anti phagocytic) enteric protective barriers, stimulates luminal bacterial growth, and augments the uptake of gliadin peptide. mTG and gliadin molecules are cotranscytosed through the enterocytes and deposited subepithelially. Moreover, mucosal dendritic cell surface transglutaminase induces gliadin endocytosis, and the enzyme-treated wheat products are immunoreactive in CD patients. The present review summarizes and updates the potentially detrimental effects of mTG, aiming to stimulate scientific and regulatory debates on its safety, to protect the public from the enzyme's unwanted effects.
Collapse
Affiliation(s)
- Aaron Lerner
- AESKU.KIPP Institute, Mikroforum Ring 2, 55234 Wendelsheim, Germany;
| | | |
Collapse
|
7
|
Fotschki J, Wróblewska B, Fotschki B, Kalicki B, Rigby N, Mackie A. Microbial transglutaminase alters the immunogenic potential and cross-reactivity of horse and cow milk proteins. J Dairy Sci 2020; 103:2153-2166. [PMID: 31928755 DOI: 10.3168/jds.2019-17264] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 11/12/2019] [Indexed: 12/31/2022]
Abstract
Horse milk is a valuable raw material and a very attractive alternative for scientific research to address the issue of cow milk (CM) allergy due to its protein profile. A decrease in immunoreactive properties can be achieved by thermal, enzymatic, and hydrolytic processing. Therefore, the aim of this study was to explore the possibility of reducing the immunoreactivity of horse milk proteins by microbial transglutaminase (TG) polymerization. To determine how TG linking alters immunoreactivity under simulated digestion of the examined milk, analyses were performed before, during, and after digestion. The dose-dependent (1, 10, and 100 U) effects of microbial TG on horse and cow milk were analyzed. A consecutive 3-stage digestion was simulated with salivary, gastric, and intestinal fluids. The effects of digestion were analyzed by SDS-PAGE, particle size analysis, and size-exclusion chromatography. Immunoreactivity was assessed using competitive ELISA (β-lactoglobulin and α-casein) and immunodot (sera from 7 patients aged 3 to 13 years who are allergic to CM proteins). Horse milk contained almost half of the amount of total proteins in CM. The dose 1 U/g of total milk protein changed the immunoreactivity of both cow and horse milk. With increasing TG doses, α-casein immunoreactivity increased, and β-lactoglobulin decreased. After total digestion, horse milk was characterized by 2.4-fold lower average IgE and 4.8-fold lower IgG reactivity than CM. We found that TG alters the IgE and IgG reactivity of CM after in vitro digestion. Horse milk was less reactive to IgE and IgG than was CM, with animal and patient sera. The effect of TG on immunoreactivity depends on enzyme quantity and milk protein type. The diet based on modified horse milk proteins could be an alternative for some patients with CM protein allergy; however, confirmation through clinical trials is needed.
Collapse
Affiliation(s)
- J Fotschki
- Department of Immunology and Food Microbiology, Division of Food Science, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, 10-748 Olsztyn, Poland.
| | - B Wróblewska
- Department of Immunology and Food Microbiology, Division of Food Science, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, 10-748 Olsztyn, Poland
| | - B Fotschki
- Department of Biological Function of Food, Division of Food Science, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, 10-748 Olsztyn, Poland
| | - B Kalicki
- Department of Pediatrics, Nephrology and Allergology, Military Institute of Medicine, 04-141 Warsaw, Poland
| | - N Rigby
- Institute of Food Research, Norwich NR4 7UA, United Kingdom; School of Food Science and Nutrition, University of Leeds, LS2 9JT, United Kingdom
| | - A Mackie
- Institute of Food Research, Norwich NR4 7UA, United Kingdom; School of Food Science and Nutrition, University of Leeds, LS2 9JT, United Kingdom
| |
Collapse
|
8
|
Li F, Chen Y, Liu S, Pan X, Liu Y, Zhao H, Yin X, Yu C, Kong W, Zhang Y. The Effect of Size, Dose, and Administration Route on Zein Nanoparticle Immunogenicity in BALB/c Mice. Int J Nanomedicine 2019; 14:9917-9928. [PMID: 31908449 PMCID: PMC6927268 DOI: 10.2147/ijn.s226466] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 11/13/2019] [Indexed: 11/23/2022] Open
Abstract
Background Zein-based carriers are a promising delivery system for biomedical applications. However, few studies involve systematic investigation on their in vivo biocompatibility and immunogenicity. Purpose The objective of this study was to identify the immunogenicity, type of immune response, biocompatibility and systemic recall immune response of zein nanoparticles administrated via different routes in mice. Animals and methods Female Balb/c mice were selected as the animal model in this paper. The effect of particle size, dose and inoculation routes on immunogenicity were systematically explored. The mice were challenged at week 50 via intramuscular and subcutaneous routes to investigate the systemic recall immune responses of zein nanoparticles. Hematoxylin and eosin staining was performed to investigate the biocompatibility of zein nanoparticles at injection sites. Results The administration of zein particles by parenteral routes led to a long-term systemic immune response. Particle size did not affect zein-specific IgG antibody titers. IgG antibody titers and inflammatory cell infiltration at the injection sites resulting from intramuscular zein particle injection were significantly higher than those from subcutaneous injection of the same dose. For intramuscular inoculation, dose-dependent IgG antibody titers were observed after the third inoculation, while no significant difference was found via the subcutaneous route. For both routes, IgG titer showed a time-dependent decrease at all dose levels from week 5 onward, and finally plateaued at week 28. The IgG subtype assay showed a predominant Th2-type immune response for both administration routes. Challenge with zein nanoparticles at week 50 led to a significant increase in specific IgG titer at all dose levels, indicating systemic recall immune responses. Interestingly, IgG antibody levels in the subcutaneous groups showed a delayed decrease compared to those of the intramuscular injection groups at all dose levels. Conclusion This study indicated that immunogenicity may be one of the key challenges of using zein nanoparticles as carriers via parenteral administration. Further investigation is needed to illustrate zein immunogenicity in other forms, and the possible effect of systemic recall immune response on in vivo pharmacokinetic characteristics.
Collapse
Affiliation(s)
- Feng Li
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, People's Republic of China
| | - Yan Chen
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, People's Republic of China.,Key Laboratory for Molecular Enzymology and Engineering, The Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, People's Republic of China
| | - Shubo Liu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, People's Republic of China
| | - Xue Pan
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, People's Republic of China
| | - Yulan Liu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, People's Republic of China
| | - Huiting Zhao
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, People's Republic of China
| | - Xiujing Yin
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, People's Republic of China
| | - Chunlin Yu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, People's Republic of China
| | - Wei Kong
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, People's Republic of China.,Key Laboratory for Molecular Enzymology and Engineering, The Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, People's Republic of China
| | - Yong Zhang
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, People's Republic of China.,Key Laboratory for Molecular Enzymology and Engineering, The Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, People's Republic of China
| |
Collapse
|
9
|
Abstract
Microbial transglutaminase is heavily used in the food processing industries to improve food qualities. Being a protein's glue, by cross-linking it creates neoepitope complexes that are immunogenic and potentially pathogenic in celiac disease. Despite low sequence identity, it imitates functionally its family member, the endogenous tissue transglutaminase, which is the autoantigen of celiac disease. The present comprehensive review highlights the enzyme characteristics, endogenous and exogenous intestinal sources, its cross-talks with gluten and gliadin, its immunogenicity and potential pathogenicity and risks for the gluten induced conditions. If substantiated, it might represent a new environmental inducer of celiac disease. The present findings might affect nutritional product labeling, processed food additive policies and consumer health education.
Collapse
Affiliation(s)
- Lerner Aaron
- B. Rappaport School of Medicine, Technion-Israel Institute of Technology, Haifa, Israel; AESKU.KIPP Institute, Wendelsheim, Germany.
| | | |
Collapse
|
10
|
Docking of peptide candidates to HLA-DQ2 and HLA-DQ8 basket as a tool for predicting potential immunotoxic peptides toward celiac diseased people. REVUE FRANCAISE D ALLERGOLOGIE 2018. [DOI: 10.1016/j.reval.2018.10.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
11
|
Genetics, environment, and asthma associated with celiac disease in the extended family of an affected child. REVISTA DE GASTROENTEROLOGÍA DE MÉXICO (ENGLISH EDITION) 2018. [DOI: 10.1016/j.rgmxen.2018.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
12
|
Torsten M, Aaron L. Microbial Transglutaminase Is Immunogenic and Potentially Pathogenic in Pediatric Celiac Disease. Front Pediatr 2018; 6:389. [PMID: 30619787 PMCID: PMC6297833 DOI: 10.3389/fped.2018.00389] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 11/27/2018] [Indexed: 12/11/2022] Open
Abstract
The enzyme microbial transglutaminase is heavily used in the food processing industries to ameliorate food qualities and elongate the products' shelf life. As a protein's glue, it cross-links gliadin peptides, creating neo-complexes that are immunogenic and potentially pathogenic to celiac disease communities. Even lacking sequence identity, it imitates functionally the endogenous tissue transglutaminase, known to be the autoantigen of celiac disease and representing an undisputable key player in celiac disease initiation and progress. The present review expend on the enzyme characteristics, exogenous intestinal sources, its cross-linking avidity to gluten or gliadin, turning naïve protein to immunogenic ones. Several observation on microbial transglutaminase cross linked complexes immunogenicity in celiac patients are reviewed and its pathogenicity is summarized. Warnings on its potential risks for the gluten dependent conditions are highlighted. When substantiated, it might represent a new environmental factor of celiac disease genesis. It is hoped that the presented knowledge will encourage further research to explore the mechanism and the pathogenic pathways taken by the gliadin cross linked enzyme in driving celiac disease.
Collapse
Affiliation(s)
| | - Lerner Aaron
- AESKU. KIPP Institute, Wendelsheim, Germany.,B. Rappaport School of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
13
|
Genetics, environment, and asthma associated with celiac disease in the extended family of an affected child. REVISTA DE GASTROENTEROLOGÍA DE MÉXICO 2017; 83:79-85. [PMID: 29162372 DOI: 10.1016/j.rgmx.2017.05.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 04/04/2017] [Accepted: 05/02/2017] [Indexed: 01/01/2023]
Abstract
INTRODUCTION Celiac disease (CD) is an autoimmune enteropathy associated with gluten ingestion. In extended families of celiac patients that live in close proximity of one another, shared genetic and environmental factors can predispose them to CD. AIM The aim of this study was to provide evidence about the genetic and environmental factors involved in the development of CD in the extended family of a pediatric patient. METHODS The medical history, environmental conditions, and participant weight, height, and peripheral blood samples were evaluated. The HLA-DQ2/DQ8 haplotypes were genotyped through qPCR testing and the IgA anti-gliadin and anti-transglutaminase antibodies were quantified using the ELISA test. RESULTS Twelve close-living maternal relatives of the index case participated in the study. Eight of them presented with the HLA-DQ2 haplotype, inherited from the grandfather, and 7/12 and 9/12 were positive for IgA anti-gliadin and IgA anti-transglutaminase antibodies, respectively. The main intestinal symptoms stated by the participants were abdominal bloating, excess flatulence, constipation, and gastroesophageal reflux. The most frequent extra-intestinal symptoms were fatigue, stress, and anxiety. In addition, 6/13 participants had bronchial asthma. CONCLUSION The extended family living in close proximity of one another shared a genetic predisposition, environmental conditions, and asthma, which could have predisposed them to celiac disease.
Collapse
|
14
|
Zhang Y, Cui L, Li F, Shi N, Li C, Yu X, Chen Y, Kong W. Design, fabrication and biomedical applications of zein-based nano/micro-carrier systems. Int J Pharm 2016; 513:191-210. [DOI: 10.1016/j.ijpharm.2016.09.023] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 09/05/2016] [Accepted: 09/07/2016] [Indexed: 12/13/2022]
|
15
|
Matthias T, Jeremias P, Neidhöfer S, Lerner A. The industrial food additive, microbial transglutaminase, mimics tissue transglutaminase and is immunogenic in celiac disease patients. Autoimmun Rev 2016; 15:1111-1119. [PMID: 27640315 DOI: 10.1016/j.autrev.2016.09.011] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 08/03/2016] [Indexed: 12/12/2022]
Abstract
Microbial transglutaminase (mTg) is capable of cross-linking numerous molecules. It is a family member of human tissue transglutaminase (tTg), and is involved in CD. Despite declarations of the safety of mTg for industrial use, direct evidence for immunogenicity of the enzyme is lacking. The serological activity of mTg, tTg, gliadin complexed mTg (mTg neo-epitope) and gliadin complexed tTg (tTg neo-epitope) were studied in 95 pediatric celiac patients (CD), 99 normal children (NC), 79 normal adults (NA) and 45 children with nonspecific abdominal pain (AP). Sera were tested by ELISAs, detecting IgA, IgG or both IgA and IgG (check): AESKULISA® tTg (tTg), AESKULISA® tTg New Generation (tTg neo-epitope (tTg-neo)), microbial transglutaminase (mTg) and mTg neo-epitope (mTg-neo). Marsh criteria were used for the degree of intestinal injury. Parallel, mTg and tTg neo-epitopes were purified by asymmetric field flow fractionation, confirmed by multi-light-scattering and SDS-PAGE, and analyzed in adult CD and control groups by competition ELISAs. No sequence homology but active site similarity were detected on alignment of the 2 Tgs. Comparing pediatric CD patients with the 2 normal groups: mTg-neo IgA, IgG and IgA+IgG antibody activities exceed the comparable mTg ones (p<0.0001). All mTg-neo and tTg-neo levels were higher (p<0.001). tTg IgA and IgG+IgA were higher than mTg IgA and IgA+IgG (p<0.0001). The levels of tTg-neo IgA/IgG were higher than tTg IgA/IgG (p<0.0001). The sequential antibody activities best reflecting the increased intestinal damage were tTg-neo check>tTg-neo IgA≥mTg-neo IgG>tTg-neo IgG>mTg-neo check>mTg-neo IgA. Taken together, tTg-neo check, tTg-neo IgA and mTg-neo IgG correlated best with intestinal pathology (r2=0.6454, r2=0.6165, r2=0.5633; p<0.0001, p<0.0001, p<0.0001, respectively). Purified mTg-neo IgG and IgA showed an increased immunoreactivity compared to single mTg and gliadin (p<0.001) but similar immunoreactivity to the tTg-neo IgG and IgA ELISA. Using competition ELISA, the mTg neo-epitopes and tTg neo-epitopes have identical outcomes in CD sera both showing a decrease in optical density of 55±6% (p<0.0002). mTg is immunogenic in children with CD and, by complexing to gliadin, its immunogenicity is enhanced. Anti-mTg-neo-epitope IgG antibodies correlate with intestinal damage to a comparable degree as anti-tTg-neo IgA. mTg and tTg display a comparable immunopotent epitope. mTg-neo IgG is a new marker for CD. Further studies are needed to explore the pathogenic potential of anti-mTg antibodies in CD.
Collapse
Affiliation(s)
- T Matthias
- AESKU.KIPP Institute, Wendelsheim, Germany
| | - P Jeremias
- AESKU.KIPP Institute, Wendelsheim, Germany
| | | | - A Lerner
- AESKU.KIPP Institute, Wendelsheim, Germany; B. Rappaport School of Medicine, Technion-Israel Institute of Technology, Haifa, Israel.
| |
Collapse
|
16
|
Ortiz Sánchez JP, Calderón de la Barca AM. Age-Related Immunoreactivity to Gluten Peptides in Celiac Disease. Gastroenterology 2016; 150:778-9. [PMID: 26827805 DOI: 10.1053/j.gastro.2015.10.052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 10/16/2015] [Indexed: 12/02/2022]
Affiliation(s)
- Juan Pedro Ortiz Sánchez
- Departamento de Nutrición y Metabolismo, Centro de Investigación en Alimentación y Desarrollo, Hermosillo, Sonora, Mexico
| | - Ana María Calderón de la Barca
- Departamento de Nutrición y Metabolismo, Centro de Investigación en Alimentación y Desarrollo, Hermosillo, Sonora, Mexico
| |
Collapse
|
17
|
Ortiz Sánchez JP, Mata Haro V, Cabrera Chávez F, Calderón de la Barca AM. Prolamins of maize and wheat differentially affect intestinal cells both in biopsies of celiac patients and CACO-2 cell line. FOOD AGR IMMUNOL 2015. [DOI: 10.1080/09540105.2015.1086316] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
|
18
|
HLA-DQ genetic risk gradient for type 1 diabetes and celiac disease in northwestern Mexico. REVISTA DE GASTROENTEROLOGÍA DE MÉXICO 2015; 80:135-43. [PMID: 26088570 DOI: 10.1016/j.rgmx.2015.03.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Revised: 03/20/2015] [Accepted: 03/26/2015] [Indexed: 02/07/2023]
Abstract
BACKGROUND Type 1 diabetes (T1D) and celiac disease (CD) are the 2 most common autoimmune childhood diseases that share their HLA-DQ2 and DQ8 genetic origin. There has currently been an increase in both diseases worldwide. In children from the low-population State of Sonora (15 inhabitants/km(2)) in north-western Mexico, there is no information on their genetic risk or the distribution of the related alleles in the general population. AIMS To compare the HLA-DQ allele frequency in a representative sample of newborns from Sonora with that of T1D and CD patients to determine the risk gradient, and to identify the presence of celiac autoimmunity in the T1D group. METHODS The study included 397 Sonoran newborns, with 44 cases of T1D, and 25 CD cases. The CD and T1D cases were clinically diagnosed by specialists at the Hospital Infantil del Estado de Sonora, and the autoantibodies were determined by ELISA. Whole blood was collected, gDNA was extracted, and HLA-DQ2 and DQ8 were typed by PCR-SSP. The risk gradient was calculated by comparing the allele frequencies of the cases with those of the newborns. RESULTS The Sonoran HLA-DQ risk heterodimer proportion was 16.1% for HLA-DQ2 and 13.6% for HLA-DQ8, with an HLA-DQ2:HLA-DQ8 ratio of 1.2:1. The DQ8/DQ2 genotype represented a 1:14 risk for T1D, whereas the DQ8/DQB1*0201 combination showed a 1:6 risk for CD. The prevalence of CD autoimmunity in T1D children was 7%. CONCLUSION The Sonoran population has a distinctive HLA-DQ allele distribution due to its ancestry. The HLA-DQ8 combinations with DQ2 or one of its alleles conferred the highest risk for both diseases, and T1D and CD frequently appear together.
Collapse
|
19
|
Lerner A, Matthias T. Possible association between celiac disease and bacterial transglutaminase in food processing: a hypothesis. Nutr Rev 2015; 73:544-52. [PMID: 26084478 PMCID: PMC4502714 DOI: 10.1093/nutrit/nuv011] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The incidence of celiac disease is increasing worldwide, and human tissue transglutaminase has long been considered the autoantigen of celiac disease. Concomitantly, the food industry has introduced ingredients such as microbial transglutaminase, which acts as a food glue, thereby revolutionizing food qualities. Several observations have led to the hypothesis that microbial transglutaminase is a new environmental enhancer of celiac disease. First, microbial transglutaminase deamidates/transamidates glutens such as the endogenous human tissue transglutaminase. It is capable of crosslinking proteins and other macromolecules, thereby changing their antigenicity and resulting in an increased antigenic load presented to the immune system. Second, it increases the stability of protein against proteinases, thus diminishing foreign protein elimination. Infections and the crosslinked nutritional constituent gluten and microbial transglutaminase increase the permeability of the intestine, where microbial transglutaminases are necessary for bacterial survival. The resulting intestinal leakage allows more immunogenic foreign molecules to induce celiac disease. The increased use of microbial transglutaminase in food processing may promote celiac pathogenesis ex vivo, where deamidation/transamidation starts, possibly explaining the surge in incidence of celiac disease. If future research substantiates this hypothesis, the findings will affect food product labeling, food additive policies of the food industry, and consumer health education.
Collapse
Affiliation(s)
- Aaron Lerner
- A. Lerner is with the Pediatric Gastroenterology and Nutrition Unit, Carmel Medical Center, B. Rappaport School of Medicine, Technion-Israel Institute of Technology, Haifa, Israel. T. Matthias is with the Aesku.Kipp Institute, Wendelsheim, Germany.
| | - Torsten Matthias
- A. Lerner is with the Pediatric Gastroenterology and Nutrition Unit, Carmel Medical Center, B. Rappaport School of Medicine, Technion-Israel Institute of Technology, Haifa, Israel. T. Matthias is with the Aesku.Kipp Institute, Wendelsheim, Germany
| |
Collapse
|
20
|
Zhang Y, Cui L, Che X, Zhang H, Shi N, Li C, Chen Y, Kong W. Zein-based films and their usage for controlled delivery: Origin, classes and current landscape. J Control Release 2015; 206:206-19. [DOI: 10.1016/j.jconrel.2015.03.030] [Citation(s) in RCA: 122] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Revised: 03/24/2015] [Accepted: 03/25/2015] [Indexed: 12/11/2022]
|
21
|
Mejía-León M, Ruiz-Dyck K, Calderón de la Barca A. HLA-DQ genetic risk gradient for type 1 diabetes and celiac disease in north-western Mexico. REVISTA DE GASTROENTEROLOGÍA DE MÉXICO 2015. [DOI: 10.1016/j.rgmxen.2015.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
22
|
Ruh T, Ohsam J, Pasternack R, Yokoyama K, Kumazawa Y, Hils M. Microbial transglutaminase treatment in pasta-production does not affect the immunoreactivity of gliadin with celiac disease patients' sera. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2014; 62:7604-7611. [PMID: 24998318 DOI: 10.1021/jf501275c] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The effect of microbial transglutaminase (MTG)-treatment of pasta-dough on the immunoreactivity with celiac disease patient's sera has been investigated. Modification by MTG has been proven by determination of the MTG reaction product ε-(γ-glutamyl)lysine (3.63 μmol/g protein), which was not detectable in non-MTG-treated pasta. Antigenicity has been analyzed by immunoblotting and ELISA using gliadin-extracts from pasta and MTG-treated pasta. Immunoblotting showed that the antibody-population (antigliadin antibodies and antideamidated gliadin antibodies) of the sera is specific for every individual patient. Immunoblotting and ELISA showed that there is no difference in immunoreactivity of gliadin extracted from pasta and MTG-pasta. Recognition pattern and intensity in Western blot as well as antibody titer has also been identical even for sera with a high antideamidated gliadin antibody titer. These results indicate no difference between pasta-gliadin and MTG-pasta-gliadin and especially no increased deamidation in pasta-gliadin by MTG-treatment.
Collapse
Affiliation(s)
- Tobias Ruh
- Zedira GmbH , Roesslerstr. 83, 64293 Darmstadt, Germany
| | | | | | | | | | | |
Collapse
|
23
|
Ortiz-Sánchez JP, Cabrera-Chávez F, Calderón de la Barca AM. Maize prolamins could induce a gluten-like cellular immune response in some celiac disease patients. Nutrients 2013; 5:4174-83. [PMID: 24152750 PMCID: PMC3820067 DOI: 10.3390/nu5104174] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Revised: 10/02/2013] [Accepted: 10/10/2013] [Indexed: 12/20/2022] Open
Abstract
Celiac disease (CD) is an autoimmune-mediated enteropathy triggered by dietary gluten in genetically prone individuals. The current treatment for CD is a strict lifelong gluten-free diet. However, in some CD patients following a strict gluten-free diet, the symptoms do not remit. These cases may be refractory CD or due to gluten contamination; however, the lack of response could be related to other dietary ingredients, such as maize, which is one of the most common alternatives to wheat used in the gluten-free diet. In some CD patients, as a rare event, peptides from maize prolamins could induce a celiac-like immune response by similar or alternative pathogenic mechanisms to those used by wheat gluten peptides. This is supported by several shared features between wheat and maize prolamins and by some experimental results. Given that gluten peptides induce an immune response of the intestinal mucosa both in vivo and in vitro, peptides from maize prolamins could also be tested to determine whether they also induce a cellular immune response. Hypothetically, maize prolamins could be harmful for a very limited subgroup of CD patients, especially those that are non-responsive, and if it is confirmed, they should follow, in addition to a gluten-free, a maize-free diet.
Collapse
Affiliation(s)
- Juan P. Ortiz-Sánchez
- Department of Nutrition, Research Center for Food and Development (CIAD, A.C.), Carr. La Victoria, Km. 0.6, Hermosillo, Sonora 83304, Mexico; E-Mail:
| | - Francisco Cabrera-Chávez
- Nutrition Sciences and Gastronomy Unit, University of Sinaloa, Culiacan, Sinaloa 80019, Mexico; E-Mail:
| | - Ana M. Calderón de la Barca
- Department of Nutrition, Research Center for Food and Development (CIAD, A.C.), Carr. La Victoria, Km. 0.6, Hermosillo, Sonora 83304, Mexico; E-Mail:
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +52-662-289-2400 (ext. 288); Fax: +52-662-280-0094
| |
Collapse
|
24
|
Cabrera-Chávez F, Iametti S, Miriani M, de la Barca AMC, Mamone G, Bonomi F. Maize prolamins resistant to peptic-tryptic digestion maintain immune-recognition by IgA from some celiac disease patients. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2012; 67:24-30. [PMID: 22298027 DOI: 10.1007/s11130-012-0274-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Maize is used as an alternative to wheat to elaborate food stuffs for celiac patients in a gluten-free diet.However, some maize prolamins (zeins) contain amino acid sequences that resemble the wheat gluten immunodominant peptides and their integrity after gastrointestinal proteolysisis unknown. In this study, the celiac IgA-immunoreactivity to zeins from raw or nixtamalized grains, before and after peptic/tryptic digestion was evaluated and their possible immunogenicity was investigated by in silico methods.IgA from some celiac patients with HLA-DQ2 or DQ8 haplotypes recognized two alpha-zeins even after peptic/ tryptic proteolysis. However, digestion affected zeins after denaturation, reduction, and alkylation, used for identification of prolamins as alpha-zein A20 and A30 by MS/MS sequencing. An in silico analysis indicated that other zeins contain similar sequences, or sequences that may bind even better to the HLA-DQ2/DQ8 molecules compared to the already identified ones. Results concur to indicate that relative abundance of these zeins, along with factors affecting their resistance to proteolysis, may be of paramount clinical relevance, and the use of maize in the formulation and preparation of gluten-free foods must be reevaluated in some cases of celiac disease.
Collapse
Affiliation(s)
- Francisco Cabrera-Chávez
- Dipartimento di Scienze Molecolari Agroalimentari, Università degli Studi di Milano, Milano, Italy
| | | | | | | | | | | |
Collapse
|
25
|
Abstract
PURPOSE OF REVIEW To summarize recent advances in celiac disease published between August 2008 and July 2009. RECENT FINDINGS Celiac disease affects nearly 1% of most populations but remains largely unrecognized. In the last year, work has shown that the prevalence of celiac disease has increased dramatically, not simply due to increased detection. Also, undiagnosed celiac disease may be associated with increased mortality. Significant progress has been made in understanding how gliadin peptides can cross the intestinal border and access the immune system. New genetic loci and candidate genes that may contribute to the risk of celiac disease and its overlap with type 1 diabetes mellitus have been identified. Novel deamidated gliadin peptides antibodies have better diagnostic accuracy over native gliadin-based tests. The inclusion of duodenal bulb biopsy specimens may increase the rate of celiac disease detection. The spectrum of celiac disease likely includes a minority of patients with mild enteropathy. A practical seven-item instrument may facilitate standardized evaluation of gluten-free diet adherence. Finally, refractory celiac disease, although rare, is associated with a poor prognosis. SUMMARY Celiac disease is a global health problem that requires a multidisciplinary and increasingly cooperative multinational research effort.
Collapse
|
26
|
Schuppan D, Junker Y, Barisani D. Celiac disease: from pathogenesis to novel therapies. Gastroenterology 2009; 137:1912-33. [PMID: 19766641 DOI: 10.1053/j.gastro.2009.09.008] [Citation(s) in RCA: 409] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2009] [Revised: 09/02/2009] [Accepted: 09/11/2009] [Indexed: 02/08/2023]
Abstract
Celiac disease has become one of the best-understood HLA-linked disorders. Although it shares many immunologic features with inflammatory bowel disease, celiac disease is uniquely characterized by (1) a defined trigger (gluten proteins from wheat and related cereals), (2) the necessary presence of HLA-DQ2 or HLA-DQ8, and (3) the generation of circulating autoantibodies to the enzyme tissue transglutaminase (TG2). TG2 deamidates certain gluten peptides, increasing their affinity to HLA-DQ2 or HLA-DQ8. This generates a more vigorous CD4(+) T-helper 1 T-cell activation, which can result in intestinal mucosal inflammation, malabsorption, and numerous secondary symptoms and autoimmune diseases. Moreover, gluten elicits innate immune responses that act in concert with the adaptive immunity. Exclusion of gluten from the diet reverses many disease manifestations but is usually not or less efficient in patients with refractory celiac disease or associated autoimmune diseases. Based on the advanced understanding of the pathogenesis of celiac disease, targeted nondietary therapies have been devised, and some of these are already in phase 1 or 2 clinical trials. Examples are modified flours that have been depleted of immunogenic gluten epitopes, degradation of immunodominant gliadin peptides that resist intestinal proteases by exogenous endopeptidases, decrease of intestinal permeability by blockage of the epithelial ZOT receptor, inhibition of intestinal TG2 activity by transglutaminase inhibitors, inhibition of gluten peptide presentation by HLA-DQ2 antagonists, modulation or inhibition of proinflammatory cytokines, and induction of oral tolerance to gluten. These and other experimental therapies will be discussed critically.
Collapse
Affiliation(s)
- Detlef Schuppan
- Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, USA.
| | | | | |
Collapse
|