1
|
Bamigbade GB, Subhash AJ, Kamal-Eldin A, Nyström L, Ayyash M. An Updated Review on Prebiotics: Insights on Potentials of Food Seeds Waste as Source of Potential Prebiotics. Molecules 2022; 27:molecules27185947. [PMID: 36144679 PMCID: PMC9505924 DOI: 10.3390/molecules27185947] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 09/06/2022] [Accepted: 09/08/2022] [Indexed: 01/19/2023] Open
Abstract
Prebiotics are a group of biological nutrients that are capable of being degraded by microflora in the gastrointestinal tract (GIT), primarily Lactobacilli and Bifidobacteria. When prebiotics are ingested, either as a food additive or as a supplement, the colonic microflora degrade them, producing short-chain fatty acids (SCFA), which are simultaneously released in the colon and absorbed into the blood circulatory system. The two major groups of prebiotics that have been extensively studied in relation to human health are fructo-oligosaccharides (FOS) and galactooligosaccharides (GOS). The candidature of a compound to be regarded as a prebiotic is a function of how much of dietary fiber it contains. The seeds of fruits such as date palms have been reported to contain dietary fiber. An increasing awareness of the consumption of fruits and seeds as part of the daily diet, as well as poor storage systems for seeds, have generated an enormous amount of seed waste, which is traditionally discarded in landfills or incinerated. This cultural practice is hazardous to the environment because seed waste is rich in organic compounds that can produce hazardous gases. Therefore, this review discusses the potential use of seed wastes in prebiotic production, consequently reducing the environmental hazards posed by these wastes.
Collapse
Affiliation(s)
- Gafar Babatunde Bamigbade
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University (UAEU), Al-Ain P.O. Box 15551, United Arab Emirates
| | - Athira Jayasree Subhash
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University (UAEU), Al-Ain P.O. Box 15551, United Arab Emirates
| | - Afaf Kamal-Eldin
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University (UAEU), Al-Ain P.O. Box 15551, United Arab Emirates
| | - Laura Nyström
- Department of Health Science and Technology, Institute of Food, Nutrition and Health, ETH Zurich, 8092 Zurich, Switzerland
| | - Mutamed Ayyash
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University (UAEU), Al-Ain P.O. Box 15551, United Arab Emirates
- Correspondence:
| |
Collapse
|
2
|
Fărcaș AC, Socaci SA, Nemeș SA, Pop OL, Coldea TE, Fogarasi M, Biriș-Dorhoi ES. An Update Regarding the Bioactive Compound of Cereal By-Products: Health Benefits and Potential Applications. Nutrients 2022; 14:nu14173470. [PMID: 36079730 PMCID: PMC9460243 DOI: 10.3390/nu14173470] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/20/2022] [Accepted: 08/21/2022] [Indexed: 11/16/2022] Open
Abstract
Cereal processing generates around 12.9% of all food waste globally. Wheat bran, wheat germ, rice bran, rice germ, corn germ, corn bran, barley bran, and brewery spent grain are just a few examples of wastes that may be exploited to recover bioactive compounds. As a result, a long-term strategy for developing novel food products and ingredients is encouraged. High-value compounds like proteins, essential amino acids, essential fatty acids, ferulic acid, and other phenols, tocopherols, or β-glucans are found in cereal by-products. This review aims to provide a critical and comprehensive overview of current knowledge regarding the bioactive compounds recovered from cereal by-products, emphasizing their functional values and potential human health benefits.
Collapse
Affiliation(s)
- Anca Corina Fărcaș
- Department of Food Science, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Manastur 3-5, 400372 Cluj-Napoca, Romania
- Correspondence: (A.C.F.); (S.A.S.); Tel.: +40-264-596388 (A.C.F.)
| | - Sonia Ancuța Socaci
- Department of Food Science, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Manastur 3-5, 400372 Cluj-Napoca, Romania
- Correspondence: (A.C.F.); (S.A.S.); Tel.: +40-264-596388 (A.C.F.)
| | - Silvia Amalia Nemeș
- Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Manastur 3-5, 400372 Cluj-Napoca, Romania
| | - Oana Lelia Pop
- Department of Food Science, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Manastur 3-5, 400372 Cluj-Napoca, Romania
| | - Teodora Emilia Coldea
- Department of Food Engineering, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Manastur 3-5, 400372 Cluj-Napoca, Romania
| | - Melinda Fogarasi
- Department of Food Engineering, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Manastur 3-5, 400372 Cluj-Napoca, Romania
| | - Elena Suzana Biriș-Dorhoi
- Department of Food Science, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Manastur 3-5, 400372 Cluj-Napoca, Romania
| |
Collapse
|
3
|
Lech M, Labus K. The methods of brewers’ spent grain treatment towards the recovery of valuable ingredients contained therein and comprehensive management of its residues. Chem Eng Res Des 2022. [DOI: 10.1016/j.cherd.2022.05.032] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
4
|
Effects of Brewer Grain Meal with Enzyme Combination on Growth Performance, Nutrient Digestibility, Intestinal Morphology, Immunity, and Oxidative Status in Growing Pigs. FERMENTATION 2022. [DOI: 10.3390/fermentation8040172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
This study investigated the effects of supplementing feed with various levels of brewer grain meal (BGM) and enzymes (amylase, xylanase, β-glucanase, lipase, cellulase, β-mannanase, phytase, and pectinase) on growth performance, nutrient digestibility, intestinal morphology, immunity, and oxidative status in growing pigs. Eighty growing pigs were subjected to four feed treatments (five replicates per treatment), based on a corn-soybean basal diet: feeds with 0.1% enzyme combination supplementation (PC), no enzyme supplementation (NC), 20% BGM with 0.1% enzyme combination (BGM20), and 40% BGM with 0.1% enzyme combination (BGM40). Supplementing the feed with both BGM-supplemented diets significantly increased final body weight, average daily gain, the digestibility of crude protein and ash, serum concentration of total proteins, superoxide dismutase activity, villus height in the duodenum and jejunum, and duodenal villus height to crypt depth ratio; however, it did not significantly increase blood urea nitrogen, tumor necrosis factor-alpha, malondialdehyde levels, and duodenal crypt depth compared to the NC diet (p < 0.05). Furthermore, a lower hindgut pH in the middle of the colon was detected following the BGM-supplemented diet compared to PC treatment (p = 0.005). Increased levels of triglycerides and albumin were detected in BGM20-fed pigs, whereas increased levels of glucose, total antioxidant capacity, and glutathione peroxidase but decreased interleukine-6 levels were observed in the BGM40 compared with the NC group (p = 0.05). No differences were observed in the average daily feed intake and gain to feed ratio, in the serum levels of aspartate aminotransferase or immunoglobulins (p > 0.05). The addition of up to 40% BGM combined with 0.1% enzyme supplementation positively promotes the growth performance, nutrient utilization, and intestinal health of growing pigs.
Collapse
|
5
|
Pineapple Waste Cell Wall Sugar Fermentation by Saccharomyces cerevisiae for Second Generation Bioethanol Production. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8030100] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Agricultural food waste is rich in cellulosic and non-cellulosic fermentable substance. In this study, we investigated the bioconversion of pineapple waste cell wall sugars into bioethanol by simultaneous saccharification and fermentation using Saccharomyces cerevisiae ATCC 4126. Soluble and insoluble cell wall sugars were investigated during the fermentation process. Moreover, the fermentation medium was investigated for protein, moisture, ash, lignin and glycerol determinations with a particular focus on the increase in single cell protein due to yeast growth, allowing a total valorization of the resulting fermentation medium, with no further waste production, with respect to environmental sustainability. Soluble and insoluble sugars in the starting material were 32.12% and 26.33% respectively. The main insoluble sugars resulting from the cell wall hydrolysis detected at the beginning of the fermentation, were glucose, xylose and uronic acid. Glucose and mannose were the most prevalent sugars in the soluble sugars fraction. The ethanol theoretical yield, calculated according to dry matter lost, reached up to 85% (3.9% EtOH). The final fermentation substrate was mainly represented by pentose sugars. The protein content increased from 4.45% up to 20.1% during the process.
Collapse
|
6
|
Staszak K, Wieszczycka K. Membrane techniques in the production of beverages. PHYSICAL SCIENCES REVIEWS 2022. [DOI: 10.1515/psr-2021-0051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
The most important developments in membrane techniques used in the beverage industry are discussed. Particular emphasis is placed on the production of fruit and vegetable juices and nonalcoholic drinks, including beer and wine. This choice was dictated by the observed consumer trends, who increasingly appreciate healthy food and its taste qualities.
Collapse
Affiliation(s)
- Katarzyna Staszak
- Institute of Technology and Chemical Engineering, Poznan University of Technology , Berdychowo 4 , Poznan , Poland
| | - Karolina Wieszczycka
- Institute of Technology and Chemical Engineering, Poznan University of Technology , Berdychowo 4 , Poznan , Poland
| |
Collapse
|
7
|
Effect of enzymatically hydrolysed brewers’ spent grain supplementation on the rheological, textural and sensory properties of muffins. FUTURE FOODS 2021. [DOI: 10.1016/j.fufo.2021.100085] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
|
8
|
Lynch KM, Strain CR, Johnson C, Patangia D, Stanton C, Koc F, Gil-Martinez J, O'Riordan P, Sahin AW, Ross RP, Arendt EK. Extraction and characterisation of arabinoxylan from brewers spent grain and investigation of microbiome modulation potential. Eur J Nutr 2021; 60:4393-4411. [PMID: 34057578 PMCID: PMC8572209 DOI: 10.1007/s00394-021-02570-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 04/19/2021] [Indexed: 12/17/2022]
Abstract
Purpose Brewers’ spent grain (BSG) represents the largest by-product of the brewing industry. Its utilisation as an animal feed has become less practical today; however, its high fibre and protein content make it a promising untapped resource for human nutrition. BSG contains mainly insoluble fibre. This fibre, along with protein, is trapped with the complex lignocellulosic cell structure and must be solubilised to release components which may be beneficial to health through modulation of the gut microbiota. Methods In this study, the application of a simultaneous saccharification and fermentation process for the extraction and solubilisation of arabinoxylan from BSG is demonstrated. Results Processing of the BSG was varied to modulate the physicochemical and molecular characteristic of the released arabinoxylan. The maximum level of arabinoxylan solubilisation achieved was approximately 21%, compared to the unprocessed BSG which contained no soluble arabinoxylan (AX). Concentration of the solubilised material produced a sample containing 99% soluble AX. Samples were investigated for their microbiome modulating capacity in in-vitro faecal fermentation trials. Many samples promoted increased Lactobacillus levels (approx. twofold). One sample that contained the highest level of soluble AX was shown to be bifidogenic, increasing the levels of this genus approx. 3.5-fold as well as acetate (p = 0.018) and propionate (p < 0.001) production. Conclusion The findings indicate that AX extracted from BSG has prebiotic potential. The demonstration that BSG is a source of functional fibre is a promising step towards the application of this brewing side-stream as a functional food ingredient for human nutrition. Supplementary Information The online version contains supplementary material available at 10.1007/s00394-021-02570-8.
Collapse
Affiliation(s)
- Kieran M Lynch
- School of Food and Nutritional Sciences, University College Cork, Cork, Ireland
| | - Conall R Strain
- Teagasc Food Research Centre, Fermoy, Co., Cork, Ireland.,APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Crystal Johnson
- Teagasc Food Research Centre, Fermoy, Co., Cork, Ireland.,APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Dhrati Patangia
- Teagasc Food Research Centre, Fermoy, Co., Cork, Ireland.,APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Catherine Stanton
- Teagasc Food Research Centre, Fermoy, Co., Cork, Ireland.,APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Fatma Koc
- Teagasc Food Research Centre, Fermoy, Co., Cork, Ireland.,APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Jorge Gil-Martinez
- Global Innovation and Technology Centre, Anheuser-Busch InBev nv/sa, Brouwerijplein 1, 3000, Leuven, Belgium
| | - Patrick O'Riordan
- Global Innovation and Technology Centre, Anheuser-Busch InBev nv/sa, Brouwerijplein 1, 3000, Leuven, Belgium
| | - Aylin W Sahin
- School of Food and Nutritional Sciences, University College Cork, Cork, Ireland
| | - R Paul Ross
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Elke K Arendt
- School of Food and Nutritional Sciences, University College Cork, Cork, Ireland. .,APC Microbiome Ireland, University College Cork, Cork, Ireland.
| |
Collapse
|
9
|
Optimised Fractionation of Brewer’s Spent Grain for a Biorefinery Producing Sugars, Oligosaccharides, and Bioethanol. Processes (Basel) 2021. [DOI: 10.3390/pr9020366] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Brewer’s spent grain (BSG) is the main by-product of the beer brewing process. It has a huge potential as a feedstock for bio-based manufacturing processes to produce high-value bio-products, biofuels, and platform chemicals. For the valorisation of BSG in a biorefinery process, efficient fractionation and bio-conversion processes are required. The aim of our study was to develop a novel fractionation of BSG for the production of arabinose, arabino-xylooligomers, xylose, and bioethanol. A fractionation process including two-step acidic and enzymatic hydrolysis steps was investigated and optimised by a response surface methodology and a desirability function approach to fractionate the carbohydrate content of BSG. In the first acidic hydrolysis, high arabinose yield (76%) was achieved under the optimised conditions (90 °C, 1.85 w/w% sulphuric acid, 19.5 min) and an arabinose- and arabino-xylooligomer-rich supernatant was obtained. In the second acidic hydrolysis, the remaining xylan was solubilised (90% xylose yield) resulting in a xylose-rich hydrolysate. The last, enzymatic hydrolysis step resulted in a glucose-rich supernatant (46 g/L) under optimised conditions (15 w/w% solids loading, 0.04 g/g enzyme dosage). The glucose-rich fraction was successfully used for bioethanol production (72% ethanol yield by commercial baker’s yeast). The developed and optimised process offers an efficient way for the value-added utilisation of BSG. Based on the validated models, the amounts of the produced sugars, the composition of the sugar streams and solubilised oligo-saccharides are predictable and variable by changing the reaction conditions of the process.
Collapse
|
10
|
Ciurko D, Łaba W, Żarowska B, Janek T. Enzymatic hydrolysis using bacterial cultures as a novel method for obtaining antioxidant peptides from brewers' spent grain. RSC Adv 2021; 11:4688-4700. [PMID: 35424402 PMCID: PMC8694660 DOI: 10.1039/d0ra08830g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 01/19/2021] [Indexed: 11/21/2022] Open
Abstract
Brewers' spent grain was used as a substrate to obtain protein hydrolysates with antioxidant activity. Hydrolysis was conducted in the culture using proteolytic bacteria. Hydrolysis was controlled by measurement of α-amino group concentration and with the aid of size exclusion chromatography. For each culture the degree of hydrolysis was calculated. The most efficient protein hydrolysis was observed in the cultures of Bacillus cereus (43.06%) and Bacillus lentus (41.81%). In addition, gelatin zymography was performed in order to detect bacterial proteases and their activity. The profile of secreted enzymes was heterogeneous, while the greatest variety was observed for Bacillus polymyxa. Brewers' spent grain protein hydrolysates exhibited high antioxidant activity. Bacillus subtilis and Bacillus cereus post-cultured media displayed the highest activity, respectively 1291.97 and 1621.31 μM TEAC per g for ABTS, 188.89 and 160.93 μM TEAC per g for DPPH, and 248.81 and 284.08 μM TEAC per g for the FRAP method. Hydrolysis of brewers' spent grain conducted in the bacterial cultures entails reduction of workload, economic cost and environmental impact.![]()
Collapse
Affiliation(s)
- Dominika Ciurko
- Wrocław University of Environmental and Life Sciences, Department of Biotechnology and Food Microbiology, Faculty of Biotechnology and Food Science J. Chełmońskiego 37 51-630 Wrocław Poland +48 71 320 7723
| | - Wojciech Łaba
- Wrocław University of Environmental and Life Sciences, Department of Biotechnology and Food Microbiology, Faculty of Biotechnology and Food Science J. Chełmońskiego 37 51-630 Wrocław Poland +48 71 320 7723
| | - Barbara Żarowska
- Wrocław University of Environmental and Life Sciences, Department of Biotechnology and Food Microbiology, Faculty of Biotechnology and Food Science J. Chełmońskiego 37 51-630 Wrocław Poland +48 71 320 7723
| | - Tomasz Janek
- Wrocław University of Environmental and Life Sciences, Department of Biotechnology and Food Microbiology, Faculty of Biotechnology and Food Science J. Chełmońskiego 37 51-630 Wrocław Poland +48 71 320 7723
| |
Collapse
|
11
|
Brewer's Spent Grains-Valuable Beer Industry By-Product. Biomolecules 2020; 10:biom10121669. [PMID: 33322175 PMCID: PMC7764043 DOI: 10.3390/biom10121669] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/09/2020] [Accepted: 12/11/2020] [Indexed: 11/17/2022] Open
Abstract
The brewing sector is a significant part of the global food industry. Breweries produce large quantities of wastes, including wastewater and brewer’s spent grains. Currently, upcycling of food industry by-products is one of the principles of the circular economy. The aim of this review is to present possible ways to utilize common solid by-product from the brewing sector. Brewer’s spent grains (BSG) is a good material for sorption and processing into activated carbon. Another way to utilize spent grains is to use them as a fuel in raw form, after hydrothermal carbonization or as a feedstock for anaerobic digestion. The mentioned by-products may also be utilized in animal and human nutrition. Moreover, BSG is a waste rich in various substances that may be extracted for further utilization. It is likely that, in upcoming years, brewer’s spent grains will not be considered as a by-product, but as a desirable raw material for various branches of industry.
Collapse
|
12
|
Abstract
This review was based on updated research on how to use brewer’s spent grains (BSG). The use of BSG was considered both in food, as an ingredient or using value-added components derived from brewer’s spent grain, or in non-food products such as pharmaceuticals, cosmetics, construction, or food packaging. BSG is a valuable source of individual components due to its high nutritional value and low cost that is worth exploiting more to reduce food waste but also to improve human health and the environment. From the bioeconomy point of view, biological resources are transformed into bioenergetically viable and economically valuable products. The pretreatment stage of BSG biomass plays an important role in the efficiency of the extraction process and the yield obtained. The pretreatments presented in this review are both conventional and modern extraction methods, such as solvent extractions or microwave-assisted extractions, ultrasonic-assisted extractions, etc.
Collapse
|
13
|
Tlais AZA, Fiorino GM, Polo A, Filannino P, Di Cagno R. High-Value Compounds in Fruit, Vegetable and Cereal Byproducts: An Overview of Potential Sustainable Reuse and Exploitation. Molecules 2020; 25:E2987. [PMID: 32629805 PMCID: PMC7412346 DOI: 10.3390/molecules25132987] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 06/23/2020] [Accepted: 06/29/2020] [Indexed: 02/06/2023] Open
Abstract
Food waste (FW) represents a global and ever-growing issue that is attracting more attention due to its environmental, ethical, social and economic implications. Although a valuable quantity of bioactive components is still present in the residuals, nowadays most FW is destined for animal feeding, landfill disposal, composting and incineration. Aiming to valorize and recycle food byproducts, the development of novel and sustainable strategies to reduce the annual food loss appears an urgent need. In particular, plant byproducts are a plentiful source of high-value compounds that may be exploited as natural antioxidants, preservatives and supplements in the food industry, pharmaceuticals and cosmetics. In this review, a comprehensive overview of the main bioactive compounds in fruit, vegetable and cereal byproducts is provided. Additionally, the natural and suitable application of tailored enzymatic treatments and fermentation to recover high-value compounds from plant byproducts is discussed. Based on these promising strategies, a future expansion of green biotechnologies to revalorize the high quantity of byproducts is highly encouraging to reduce the food waste/losses and promote benefits on human health.
Collapse
Affiliation(s)
- Ali Zein Alabiden Tlais
- Faculty of Sciences and Technology, Libera Università di Bolzano, 39100 Bolzano, Italy; (A.Z.A.T.); (G.M.F.); (A.P.)
| | - Giuseppina Maria Fiorino
- Faculty of Sciences and Technology, Libera Università di Bolzano, 39100 Bolzano, Italy; (A.Z.A.T.); (G.M.F.); (A.P.)
| | - Andrea Polo
- Faculty of Sciences and Technology, Libera Università di Bolzano, 39100 Bolzano, Italy; (A.Z.A.T.); (G.M.F.); (A.P.)
| | - Pasquale Filannino
- Department of Soil, Plant and Food Science, University of Bari Aldo Moro, 70121 Bari, Italy;
| | - Raffaella Di Cagno
- Faculty of Sciences and Technology, Libera Università di Bolzano, 39100 Bolzano, Italy; (A.Z.A.T.); (G.M.F.); (A.P.)
| |
Collapse
|
14
|
Shen Y, Abeynayake R, Sun X, Ran T, Li J, Chen L, Yang W. Feed nutritional value of brewers' spent grain residue resulting from protease aided protein removal. J Anim Sci Biotechnol 2019; 10:78. [PMID: 31548885 PMCID: PMC6749689 DOI: 10.1186/s40104-019-0382-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 07/25/2019] [Indexed: 11/10/2022] Open
Abstract
Background This study was conducted to evaluate the feed nutritional value of brewers’ spent grain (BSG) residue resulting from protease aided protein removal. The nutritional value was measured as nutrient content, gas production, nutrient digestibility and fermentation characteristics in batch culture. Results Protein extraction process decreased content of crude protein but concentrated the neutral detergent fibre (NDF) and ferulic acid in BSG residue. The changes in the chemical composition of BSG residue varied with enzyme and enzyme dosage. Digestibility of dry matter (DMD) and NDF of residue differed among proteases. Increasing alcalase dosage linearly decreased DMD, whereas, the DMD linearly increased as everlase or flavourzyme dosage increased. Compared with BSG, the DMD, gas production and fermentation acid concentration of BSG residues were lower, whereas NDF digestibility was higher. Conclusions The substantially increased NDF content and improved in vitro NDF digestibility due to protease hydrolysis suggest that BSG residue can be potentially exploited as a viable fibre source for ruminant feeding.
Collapse
Affiliation(s)
- Yizhao Shen
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, 071029 Hebei Republic of China.,Agriculture and Agri-Food of Canada, Lethbridge Research and Development Centre, Lethbridge, AB AB T1J4B1 Canada
| | - Ranithri Abeynayake
- 3Department of Agricultural Food & Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5 Canada
| | - Xin Sun
- College of Food Science and Engineering, Shandong Agricultural University, Taian, 271000 Shandong Republic of China
| | - Tao Ran
- Agriculture and Agri-Food of Canada, Lethbridge Research and Development Centre, Lethbridge, AB AB T1J4B1 Canada
| | - Jianguo Li
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, 071029 Hebei Republic of China
| | - Lingyun Chen
- 3Department of Agricultural Food & Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5 Canada
| | - Wenzhu Yang
- Agriculture and Agri-Food of Canada, Lethbridge Research and Development Centre, Lethbridge, AB AB T1J4B1 Canada
| |
Collapse
|
15
|
Cermeño M, Connolly A, O'Keeffe MB, Flynn C, Alashi AM, Aluko RE, FitzGerald RJ. Identification of bioactive peptides from brewers’ spent grain and contribution of Leu/Ile to bioactive potency. J Funct Foods 2019. [DOI: 10.1016/j.jff.2019.103455] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
|
16
|
Yu D, Sun Y, Wang W, O’Keefe SF, Neilson AP, Feng H, Wang Z, Huang H. Recovery of protein hydrolysates from brewer’s spent grain using enzyme and ultrasonication. Int J Food Sci Technol 2019. [DOI: 10.1111/ijfs.14314] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Dajun Yu
- Department of Food Science and Technology Virginia Polytechnic Institute and State University Blacksburg VA 24061USA
| | - Yewei Sun
- Department of Civil and Environmental Engineering Virginia Polytechnic Institute and State University Blacksburg VA 24061USA
| | - Wenjun Wang
- Department of Food Science and Human Nutrition University of Illinois at Urbana Champaign Urbana IL 61801USA
- College of Biosystems Engineering and Food Science Zhejiang University Hangzhou 310058China
| | - Sean F. O’Keefe
- Department of Food Science and Technology Virginia Polytechnic Institute and State University Blacksburg VA 24061USA
| | - Andrew P. Neilson
- Department of Food Science and Technology Virginia Polytechnic Institute and State University Blacksburg VA 24061USA
| | - Hao Feng
- Department of Food Science and Human Nutrition University of Illinois at Urbana Champaign Urbana IL 61801USA
| | - Zhiwu Wang
- Department of Food Science and Technology Virginia Polytechnic Institute and State University Blacksburg VA 24061USA
| | - Haibo Huang
- Department of Food Science and Technology Virginia Polytechnic Institute and State University Blacksburg VA 24061USA
| |
Collapse
|
17
|
Ibbett R, White R, Tucker G, Foster T. Hydro-mechanical processing of brewer's spent grain as a novel route for separation of protein products with differentiated techno-functional properties. INNOV FOOD SCI EMERG 2019. [DOI: 10.1016/j.ifset.2019.102184] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
18
|
Contreras MDM, Lama-Muñoz A, Manuel Gutiérrez-Pérez J, Espínola F, Moya M, Castro E. Protein extraction from agri-food residues for integration in biorefinery: Potential techniques and current status. BIORESOURCE TECHNOLOGY 2019; 280:459-477. [PMID: 30777702 DOI: 10.1016/j.biortech.2019.02.040] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 02/06/2019] [Accepted: 02/07/2019] [Indexed: 06/09/2023]
Abstract
The biorefinery concept is attracting scientific and policy attention as a promising option for enhancing the benefits of agri-food biomass along with a reduction of the environmental impact. Obtaining bioproducts based on proteins from agri-food residues could help to diversify the revenue stream in a biorefinery. In fact, the extracted proteins can be applied as such or in the form of hydrolyzates due to their nutritional, bioactive and techno-functional properties. In this context, the present review summarizes, exemplifies and discusses conventional extraction methods and current trends to extract proteins from residues of the harvesting, post-harvesting and/or processing of important crops worldwide. Moreover, those extraction methods just integrated in a biorefinery scheme are also described. In conclusion, a plethora of methods exits but only some of them have been applied in biorefinery designs, mostly at laboratory scale. Their economic and technical feasibility at large scale requires further study.
Collapse
Affiliation(s)
- María Del Mar Contreras
- Department of Chemical, Environmental and Materials Engineering, Universidad de Jaén, Campus Las Lagunillas, 23071 Jaén, Spain
| | - Antonio Lama-Muñoz
- Department of Chemical, Environmental and Materials Engineering, Universidad de Jaén, Campus Las Lagunillas, 23071 Jaén, Spain
| | - José Manuel Gutiérrez-Pérez
- Department of Chemical, Environmental and Materials Engineering, Universidad de Jaén, Campus Las Lagunillas, 23071 Jaén, Spain; Center for Advanced Studies in Energy and Environment, Universidad de Jaén, Campus Las Lagunillas, 23071 Jaén, Spain
| | - Francisco Espínola
- Department of Chemical, Environmental and Materials Engineering, Universidad de Jaén, Campus Las Lagunillas, 23071 Jaén, Spain; Center for Advanced Studies in Energy and Environment, Universidad de Jaén, Campus Las Lagunillas, 23071 Jaén, Spain
| | - Manuel Moya
- Department of Chemical, Environmental and Materials Engineering, Universidad de Jaén, Campus Las Lagunillas, 23071 Jaén, Spain; Center for Advanced Studies in Energy and Environment, Universidad de Jaén, Campus Las Lagunillas, 23071 Jaén, Spain
| | - Eulogio Castro
- Department of Chemical, Environmental and Materials Engineering, Universidad de Jaén, Campus Las Lagunillas, 23071 Jaén, Spain; Center for Advanced Studies in Energy and Environment, Universidad de Jaén, Campus Las Lagunillas, 23071 Jaén, Spain.
| |
Collapse
|
19
|
Affiliation(s)
- Csaba Fehér
- Department of Applied Biotechnology and Food Science, Biorefinery Research Group, Budapest University of Technology and Economics, Budapest, Hungary
| |
Collapse
|
20
|
|
21
|
Proteomic profiling of barley spent grains guides enzymatic solubilization of the remaining proteins. Appl Microbiol Biotechnol 2018; 102:4159-4170. [PMID: 29550991 DOI: 10.1007/s00253-018-8886-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 02/14/2018] [Accepted: 02/18/2018] [Indexed: 10/17/2022]
Abstract
Within the brewing industry, malted barley is being increasingly replaced by raw barley supplemented with exogenous enzymes to lessen reliance on the time-consuming, high water and energy cost of malting. Regardless of the initial grain of choice, malted or raw, the resultant bulk spent grains are rich in proteins (up to 25% dry weight). Efficient enzymatic solubilization of these proteins requires knowledge of the protein composition within the spent grains. Therefore, a comprehensive proteomic profiling was performed on spent grains derived from (i) malted barley (spent grain A, SGA) and (ii) enzymatically treated raw barley (spent grain B, SGB); data are available via ProteomeXchange with identifier PXD008090. Results from complementary shotgun proteomics and 2D gel electrophoresis showed that the most abundant proteins in both spent grains were storage proteins (hordeins and embryo globulins); these were present at an average of two fold higher in spent grain B. Quantities of other major proteins were generally consistent in both spent grains A and B. Subsequent in silico protein sequence analysis of the predominant proteins facilitated knowledge-based protease selection to enhance spent grain solubilization. Among tested proteases, Alcalase 2.4 L digestion resulted in the highest remaining protein solubilization with 9.2 and 11.7% net dry weight loss in SGA and SGB respectively within 2 h. Thus, Alcalase alone can significantly reduce spent grain side stream, which makes it a possible solution to increase the value of this low-value side stream from the brewing and malt extract beverage manufacturing industry.
Collapse
|
22
|
Forssell P, Treimo J, Eijsink VGH, Faulds CB, Collins S, Schols HA, Hinz SWA, Myllymäki O, Tamminen T, Zoldners J, Viljanen K, Waldron KW, Buchert J. Enzyme-Aided Fractionation of Brewer's Spent Grains in Pilot Scale. JOURNAL OF THE AMERICAN SOCIETY OF BREWING CHEMISTS 2018. [DOI: 10.1094/asbcj-2011-0408-01] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- P. Forssell
- VTT Technical Research Centre of Finland, VTT, Finland
| | - J. Treimo
- Norwegian University of Life Sciences, Department of Chemistry, Biotechnology and Food Science, Ås, Norway
| | - V. G. H. Eijsink
- Norwegian University of Life Sciences, Department of Chemistry, Biotechnology and Food Science, Ås, Norway
| | | | - S. Collins
- Institute of Food Research, Norwich, U.K
| | - H. A. Schols
- Wageningen Agricultural University, Laboratory of Food Chemistry, Wageningen, The Netherlands
| | - S. W. A. Hinz
- Wageningen Agricultural University, Laboratory of Food Chemistry, Wageningen, The Netherlands
| | - O. Myllymäki
- VTT Technical Research Centre of Finland, VTT, Finland
| | - T. Tamminen
- VTT Technical Research Centre of Finland, VTT, Finland
| | - J. Zoldners
- Latvian State Institute of Wood Chemistry, Riga, Latvia
| | - K. Viljanen
- VTT Technical Research Centre of Finland, VTT, Finland
| | | | - J. Buchert
- VTT Technical Research Centre of Finland, VTT, Finland
| |
Collapse
|
23
|
Varzakas T, Zakynthinos G, Verpoort F. Plant Food Residues as a Source of Nutraceuticals and Functional Foods. Foods 2016; 5:E88. [PMID: 28231183 PMCID: PMC5302437 DOI: 10.3390/foods5040088] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 11/30/2016] [Accepted: 12/02/2016] [Indexed: 11/17/2022] Open
Abstract
This chapter describes the use of different plant and vegetable food residues as nutraceuticals and functional foods. Different nutraceuticals are mentioned and explained. Their uses are well addressed along with their disease management and their action as nutraceutical delivery vehicles.
Collapse
Affiliation(s)
- Theodoros Varzakas
- TEI Peloponnese, Department of Food Technology, Kalamata 24100, Greece.
- Department of Bioscience Bioengineering, Global Campus Songdo, Ghent University, 119 Songdomunhwa-Ro, Yeonsu-Gu, Incheon 406-840, Korea.
| | | | - Francis Verpoort
- Department of Bioscience Bioengineering, Global Campus Songdo, Ghent University, 119 Songdomunhwa-Ro, Yeonsu-Gu, Incheon 406-840, Korea.
- Laboratory of Organometallics, Catalysis and Ordered Materials, State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China.
- National Research Tomsk Polytechnic University, Lenin Avenue 30, Tomsk 634050, Russia.
| |
Collapse
|
24
|
Wood IP, Cook NM, Wilson DR, Ryden P, Robertson JA, Waldron KW. Ethanol from a biorefinery waste stream: Saccharification of amylase, protease and xylanase treated wheat bran. Food Chem 2016; 198:125-31. [DOI: 10.1016/j.foodchem.2015.09.108] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Revised: 09/04/2015] [Accepted: 09/29/2015] [Indexed: 11/30/2022]
|
25
|
Gómez B, Míguez B, Veiga A, Parajó JC, Alonso JL. Production, Purification, and in Vitro Evaluation of the Prebiotic Potential of Arabinoxylooligosaccharides from Brewer's Spent Grain. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015; 63:8429-8438. [PMID: 26345203 DOI: 10.1021/acs.jafc.5b03132] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Brewer's spent grain (BSG) samples were subjected to a two-step aqueous processing (starch extraction and autohydrolysis) in order to assess their potential as a raw material for obtaining a mixture of arabinoxylooligosaccharides (AXOS) suitable to be use as prebiotics for elderly. After hydrothermal treatment, the liquors were refined by a sequence of purification and conditioning steps including membrane filtration, enzymatic hydrolysis, and ion exchange. The presence of both substituted (degree of polimerization (DP) = 2-10) and unsubstituted (DP = 2-16) oligosaccharides made up of xylose and arabinose (AXOS) were confirmed in purified mixtures (in which total OS content = 84% w/w) by using chromatographic techniques and matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry (MALDI-TOF MS). Finally, AXOS were evaluated for their prebiotic activity by in vitro fermentation assays using fecal inocula from elderly people, demonstrating that AXOS were slightly better substrates than FOS, in terms of bacterial population shifts as in the production of SCFA.
Collapse
Affiliation(s)
- Belén Gómez
- Department of Chemical Engineering, University of Vigo (Ourense Campus) , Polytechnical Building, As Lagoas, 32004 Ourense, Spain
| | - Beatriz Míguez
- Department of Chemical Engineering, University of Vigo (Ourense Campus) , Polytechnical Building, As Lagoas, 32004 Ourense, Spain
| | - Adán Veiga
- Customdrinks , Polígono Industrial Os Acivros, Parcela C-1, Chantada, Lugo 27500, Spain
| | - Juan Carlos Parajó
- Department of Chemical Engineering, University of Vigo (Ourense Campus) , Polytechnical Building, As Lagoas, 32004 Ourense, Spain
| | - José Luís Alonso
- Department of Chemical Engineering, University of Vigo (Ourense Campus) , Polytechnical Building, As Lagoas, 32004 Ourense, Spain
| |
Collapse
|
26
|
Severini C, Azzollini D, Jouppila K, Jussi L, Derossi A, De Pilli T. Effect of enzymatic and technological treatments on solubilisation of arabinoxylans from brewer's spent grain. J Cereal Sci 2015. [DOI: 10.1016/j.jcs.2015.07.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
27
|
Palani Swamy SK, Govindaswamy V. Therapeutical properties of ferulic acid and bioavailability enhancement through feruloyl esterase. J Funct Foods 2015. [DOI: 10.1016/j.jff.2015.06.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
|
28
|
Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: an update for 2009-2010. MASS SPECTROMETRY REVIEWS 2015; 34:268-422. [PMID: 24863367 PMCID: PMC7168572 DOI: 10.1002/mas.21411] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Revised: 07/16/2013] [Accepted: 07/16/2013] [Indexed: 05/07/2023]
Abstract
This review is the sixth update of the original article published in 1999 on the application of MALDI mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2010. General aspects such as theory of the MALDI process, matrices, derivatization, MALDI imaging, arrays and fragmentation are covered in the first part of the review and applications to various structural typed constitutes the remainder. The main groups of compound that are discussed in this section are oligo and polysaccharides, glycoproteins, glycolipids, glycosides and biopharmaceuticals. Many of these applications are presented in tabular form. Also discussed are medical and industrial applications of the technique, studies of enzyme reactions and applications to chemical synthesis.
Collapse
Affiliation(s)
- David J. Harvey
- Department of BiochemistryOxford Glycobiology InstituteUniversity of OxfordOxfordOX1 3QUUK
| |
Collapse
|
29
|
Hammed AM, Jaswir I, Amid A, Alam Z, Asiyanbi-H TT, Ramli N. Enzymatic Hydrolysis of Plants and Algae for Extraction of Bioactive Compounds. FOOD REVIEWS INTERNATIONAL 2013. [DOI: 10.1080/87559129.2013.818012] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
30
|
Connolly A, Piggott CO, FitzGerald RJ. Characterisation of protein-rich isolates and antioxidative phenolic extracts from pale and black brewers' spent grain. Int J Food Sci Technol 2013. [DOI: 10.1111/ijfs.12137] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Alan Connolly
- Department of Life Sciences; University of Limerick; Castletroy Limerick; Ireland
| | - Charles O. Piggott
- Department of Life Sciences; University of Limerick; Castletroy Limerick; Ireland
| | | |
Collapse
|
31
|
Niemi P, Martins D, Buchert J, Faulds CB. Pre-hydrolysis with carbohydrases facilitates the release of protein from brewer's spent grain. BIORESOURCE TECHNOLOGY 2013; 136:529-534. [PMID: 23567727 DOI: 10.1016/j.biortech.2013.03.076] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Revised: 03/08/2013] [Accepted: 03/09/2013] [Indexed: 06/02/2023]
Abstract
Brewer's spent grain (BSG) is the most abundant side-stream from brewing. It is food-grade being rich in dietary fibre and protein and thus having potential as their source for both food and non-food applications. Initial treatment of milled BSG with a carbohydrase cocktail from Humicola insolens significantly enhanced the subsequent solubilisation of protein from the residual biomass. When treated with an alkaline protease, 76% of BSG protein was solubilized, whereas the yields were significantly lower with neutral or acidic proteases. In alkaline conditions significant amount of protein (53%) as predominantly low molecular weight protein was solubilized even without any protease addition. The degree of protein solubilisation was influenced by the time of exposure of modified BSG to the alkaline environment. The non-enzymatic protein solubilisation was, however, only observed when BSG had been initially treated with the carbohydrase, suggesting the protein is surrounded by cell wall polysaccharides restricting its initial release.
Collapse
Affiliation(s)
- Piritta Niemi
- VTT Technical Research Centre of Finland, P.O. Box 1000, FI-02044 VTT, Finland.
| | | | | | | |
Collapse
|
32
|
Improvement of functional and antimicrobial properties of brewery byproduct hydrolysed enzymatically. Lebensm Wiss Technol 2013. [DOI: 10.1016/j.lwt.2012.09.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
33
|
Brewers' spent grain; bioactivity of phenolic component, its role in animal nutrition and potential for incorporation in functional foods: a review. Proc Nutr Soc 2012; 72:117-25. [PMID: 23137812 DOI: 10.1017/s0029665112002820] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Brewers' spent grain (BSG) is a low-value co-product of the brewing industry produced in large quantities annually. This paper reviews the existing evidence regarding the phenolic component of BSG, focusing on composition, extraction and biofunctions such as antioxidant, anti-atherogenic, anti-inflammatory and anti-carcinogenic activities. Furthermore, the incorporation of BSG in foodstuffs will be discussed, including the use of BSG as an animal feed supplement and the potential of BSG to be incorporated into foods for human consumption. BSG contains hydroxycinnamic acids including ferulic acid, p-coumaric acid and caffeic acid; which have shown bioactivity in the pure form (antioxidant, anti-inflammatory, anti-atherogenic and anti-cancer). Phenolic extracts from BSG have also shown antioxidant potential, by protecting against oxidant-induced DNA damage, possibly by Fe chelation. Studies show that BSG has many benefits when used as a supplement in animal feed, such as increasing milk yield, milkfat content and in providing essential dietary amino acids. The incorporation of BSG in human foods such as cookies and ready-to-eat snacks has resulted in increased protein and fibre contents of the products, where the changes in organoleptic properties are controllable. It can be concluded that the phenolic component of BSG has potential bioactive effects, which are worth pursuing given that the inclusion of BSG into human foodstuffs is viable and beneficial.
Collapse
|
34
|
Niemi P, Tamminen T, Smeds A, Viljanen K, Ohra-aho T, Holopainen-Mantila U, Faulds CB, Poutanen K, Buchert J. Characterization of lipids and lignans in brewer's spent grain and its enzymatically extracted fraction. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2012; 60:9910-9917. [PMID: 22963516 DOI: 10.1021/jf302684x] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Brewer's spent grain (BSG), the major side stream of brewing, consists of the husks and the residual parts of malts after the mashing process. BSG was enzymatically fractionated by a two-step treatment with carbohydrate- and protein-degrading enzymes, which solubilized 66% of BSG. BSG contained 11% lipids, which were mostly triglycerides, but also a notable amount of free fatty acids was present. Lipids were mostly solubilized due to the alkaline pH applied in the protease treatment. The main fatty acids were linoleic, palmitic, and oleic acids. Several lignans were identified in BSG, syringaresinol and secoisolariciresinol being the most abundant, many associated with the cell wall matrix and released by the alkaline-protease treatment.
Collapse
Affiliation(s)
- Piritta Niemi
- Bio and Process Technology, VTT Technical Research Centre of Finland, P.O. Box 1000, FI-02044 VTT, Espoo, Finland.
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Niemi P, Faulds CB, Sibakov J, Holopainen U, Poutanen K, Buchert J. Effect of a milling pre-treatment on the enzymatic hydrolysis of carbohydrates in brewer's spent grain. BIORESOURCE TECHNOLOGY 2012; 116:155-160. [PMID: 22609670 DOI: 10.1016/j.biortech.2012.04.043] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2012] [Revised: 04/11/2012] [Accepted: 04/13/2012] [Indexed: 06/01/2023]
Abstract
Millions of tonnes of brewer's spent grain (BSG) are annually produced worldwide as a by-product of the brewing industry. BSG has the potential to be a valuable source of food, chemicals and energy if cost-efficient fractionation methods can be developed. A 2-fold improvement in carbohydrate solubilisation could be achieved through the introduction of a milling step prior to enzymatic hydrolysis. Course and fine milled fractions were characterized by particle size distribution and light microscopy. Fine milling decreased particle size down to the micron level and this in turn improved the carbohydrate solubility yield by a multi-enzyme mixture from 23% up to 45%. Carbohydrate solubilisation could be further increased through the supplementation of this enzyme preparation with additional cellulases. The physical degradation caused by the milling also liberated soluble carbohydrates without the requirement of any enzymatic treatment.
Collapse
Affiliation(s)
- Piritta Niemi
- VTT Technical Research Centre of Finland, Espoo FI-02044 VTT, Finland.
| | | | | | | | | | | |
Collapse
|
36
|
Szwajgier D, Waśko A, Targoński Z, Niedźwiadek M, Bancarzewska M. The Use of a Novel Ferulic Acid Esterase from Lactobacillus acidophilus K1 for the Release of Phenolic Acids from Brewer's Spent Grain. JOURNAL OF THE INSTITUTE OF BREWING 2012. [DOI: 10.1002/j.2050-0416.2010.tb00434.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
37
|
High-Performance Anion-Exchange Chromatography Coupled with Pulsed Electrochemical Detection as a Powerful Tool to Evaluate Carbohydrates of Food Interest: Principles and Applications. ACTA ACUST UNITED AC 2012. [DOI: 10.1155/2012/487564] [Citation(s) in RCA: 102] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Specific HPLC approaches are essential for carbohydrate characterization in food products. Carbohydrates are weak acids with pKa values in the range 12–14 and, consequently, at high pH can be transformed into oxyanions, and can be readily separated using highly efficient anion-exchange columns. Electrochemical detection in HPLC has been proven to be a powerful analytical technique for the determination of compounds containing electroactive groups; pulsed amperometric detection of carbohydrates is favourably performed by taking advantage of their electrocatalytic oxidation mechanism at a gold working electrode in a basic media. High-performance Anion Exchange Chromatography (HPAEC) at high pH coupled with pulsed electrochemical detection (PED) is one of the most useful techniques for carbohydrate determination either for routine monitoring or research application. This technique has been of a great impact on the analysis of oligo- and polysaccharides. The compatibility of electrochemical detection with gradient elution, coupled with the high selectivity of the anion-exchange stationary phases, allows mixtures of simple sugars, oligo- and polysaccharides to be separated with high resolution in a single run. A few reviews have been written on HPAEC-PED of carbohydrates of food interest in the last years. In this paper the recent developments in this field are examined.
Collapse
|
38
|
Kim CW, Choi HJ, Han BK, Yoo SS, Kim CN, Kim BY, Baik MY. Derivatization of Rice Wine Meal Using Commercial Proteases and Characterization of Its Hydrolysates. ACTA ACUST UNITED AC 2011. [DOI: 10.9721/kjfst.2011.43.6.729] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
39
|
Robertson JA, Castro-Mariñas L, Collins SRA, Faulds CB, Waldron KW. Enzymatic and chemical treatment limits on the controlled solubilization of brewers' spent grain. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2011; 59:11019-11025. [PMID: 21894957 DOI: 10.1021/jf202814j] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The enzymatic hydrolysis of brewers' spent grain (BSG) has been investigated through treatment with commercial carbohydrases and proteases. Resultant residues were then chemically fractionated and delignified. Enzymatic treatments released 25-30% of the BSG mass and yielded precursors suitable for subsequent conversion to potentially value-added products. Controlled chemical fractionation selectively solubilized arabinoxylan but with no differences apparent due to prior enzyme treatment. The loss of non-polysaccharide components during alkali treatment suggests the presence of a high proportion of alkali-soluble lignin. Further delignification of the alkali-insoluble residues and further chemical fractionation released the remaining hemicellulose, to yield a residue which was >90% cellulose. Further knowledge of the properties and interaction between BSG polymers will facilitate an improved enzyme-assisted total deconstruction of BSG and hence the exploitation of its biomass.
Collapse
Affiliation(s)
- James A Robertson
- Sustainability of the Food Chain Exploitation Platform, Institute of Food Research, Norwich Research Park, Colney, Norwich NR4 7UA, UK.
| | | | | | | | | |
Collapse
|
40
|
Bals B, Brehmer B, Dale B, Sanders J. Protease digestion from wheat stillage within a dry grind ethanol facility. Biotechnol Prog 2011; 27:428-34. [PMID: 21302370 DOI: 10.1002/btpr.521] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2010] [Revised: 08/10/2010] [Indexed: 11/07/2022]
Abstract
As the current starch based ethanol market increases at its rapid pace, finding new markets for the primary coproduct, distiller's grains, has gained considerable interest. One possibility is to isolate the protein-rich fraction for use as precursors to biochemicals and bioplastics, further decreasing fossil fuel consumption. This research focuses on enzymatic extraction of protein peptides from wheat heavy stillage using commercially available proteases. The energy saved due to this process ranged from ∼ 1.5 to 3.0 GJ/ton wheat stillage compared to fossil fuel-based chemicals. Using Protex 6L (Genencor), ∼ 57% of the protein in the stillage was soluble 24 h after protease addition at 0.1% w/w loading. Of these proteins, ∼ 32% were already soluble, indicating the importance of using wet heavy stillage as the feedstock rather than dried distiller's grains. Peptide size was less than 6 kDa. Further improvements in protein removal may be obtained through a fed batch addition of protease and improved protease cocktails.
Collapse
Affiliation(s)
- Bryan Bals
- Biomass Conversion Research Laboratory, Michigan State University, Lansing, MI 48910, USA.
| | | | | | | |
Collapse
|
41
|
Robertson JA, I'Anson KJ, Treimo J, Faulds CB, Brocklehurst TF, Eijsink VG, Waldron KW. Profiling brewers' spent grain for composition and microbial ecology at the site of production. Lebensm Wiss Technol 2010. [DOI: 10.1016/j.lwt.2010.01.019] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
42
|
Robertson JA, I'Anson KJA, Brocklehurst TF, Faulds CB, Waldron KW. Effect of storage conditions on the microbial ecology and biochemical stability of cell wall components in brewers' spent grain. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2010; 58:7266-7272. [PMID: 20509607 DOI: 10.1021/jf1001099] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
The composition of brewers' spent grain (BSG) makes it susceptible to microbial attack and chemical deterioration. This can constrain its appeal as an industrial feedstock. The current study has monitored the effects of BSG storage as fresh material (20 degrees C), refrigerated and autoclaved, measured against frozen material in relation to microbial proliferation and modification to plant cell wall polysaccharides and component phenolic acids. At 20 degrees C there was a rapid colonization by microbes and an associated loss of components from BSG. Refrigeration gave a similar but lower level response. When stored frozen, BSG showed no changes in composition but autoclaving resulted in a solubilization of polysaccharides and associated phenolics. Changes were associated with the temperature profile determined during autoclaving and were also partially due to the breakdown of residual starch. Losses of highly branched arabinoxylan (AX) and the related decrease in ferulic acid cross-linking were also found. The results confirm the need for storage stabilization of BSG and demonstrate that the methods selected for stabilization can themselves lead to a substantial modification to BSG.
Collapse
Affiliation(s)
- James A Robertson
- Sustainability of the Food Chain Exploitation Platform, Institute of Food Research, Norwich Research Park, Colney, Norwich, U.K.
| | | | | | | | | |
Collapse
|