1
|
Corzo-Gómez JC, Espinosa-Juárez JV, Ovando-Zambrano JC, Briones-Aranda A, Cruz-Salomón A, Esquinca-Avilés HA. A Review of Botanical Extracts with Repellent and Insecticidal Activity and Their Suitability for Managing Mosquito-Borne Disease Risk in Mexico. Pathogens 2024; 13:737. [PMID: 39338928 PMCID: PMC11435231 DOI: 10.3390/pathogens13090737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 08/23/2024] [Accepted: 08/27/2024] [Indexed: 09/30/2024] Open
Abstract
Among the main arboviruses affecting public health in tropical regions are dengue, zika, and chikungunya, transmitted mainly by mosquitoes of the Aedes genus, especially Aedes aegypti. In recent years, outbreaks have posed major challenges to global health, highlighting the need for integrated and innovative strategies for their control and prevention. Prevention strategies include the elimination of vectors and avoiding mosquito bites; this can be achieved through the use of bioinsecticides and repellents based on plant phytochemicals, as they offer sustainable, ecological, and low-cost alternatives. Mexico has a variety of plants from which both extracts and essential oils have been obtained which have demonstrated significant efficacy in repelling and/or killing insect vectors. This review examines the current knowledge on plant species found in Mexico which are promising options concerning synthetic compounds in terms of their repellent and insecticidal properties against mosquitoes of the genus Aedes and that are friendly to the environment and health.
Collapse
Affiliation(s)
- Josselin Carolina Corzo-Gómez
- Escuela de Ciencias Químicas, Universidad Autónoma de Chiapas, Ocozocoautla de Espinosa 29140, Chiapas, Mexico; (J.V.E.-J.); (J.C.O.-Z.); (A.C.-S.)
| | - Josué Vidal Espinosa-Juárez
- Escuela de Ciencias Químicas, Universidad Autónoma de Chiapas, Ocozocoautla de Espinosa 29140, Chiapas, Mexico; (J.V.E.-J.); (J.C.O.-Z.); (A.C.-S.)
| | - Jose Carlos Ovando-Zambrano
- Escuela de Ciencias Químicas, Universidad Autónoma de Chiapas, Ocozocoautla de Espinosa 29140, Chiapas, Mexico; (J.V.E.-J.); (J.C.O.-Z.); (A.C.-S.)
| | - Alfredo Briones-Aranda
- Laboratorio de Farmacología, Facultad de Medicina Humana, Universidad Autónoma de Chiapas, Tuxtla Gutiérrez 29050, Chiapas, Mexico;
| | - Abumalé Cruz-Salomón
- Escuela de Ciencias Químicas, Universidad Autónoma de Chiapas, Ocozocoautla de Espinosa 29140, Chiapas, Mexico; (J.V.E.-J.); (J.C.O.-Z.); (A.C.-S.)
| | - Héctor Armando Esquinca-Avilés
- Escuela de Ciencias Químicas, Universidad Autónoma de Chiapas, Ocozocoautla de Espinosa 29140, Chiapas, Mexico; (J.V.E.-J.); (J.C.O.-Z.); (A.C.-S.)
| |
Collapse
|
2
|
Le Mauff A, Norris EJ, Li AY, Swale DR. Repellent activity of essential oils to the Lone Star tick, Amblyomma americanum. Parasit Vectors 2024; 17:202. [PMID: 38711138 DOI: 10.1186/s13071-024-06246-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 03/14/2024] [Indexed: 05/08/2024] Open
Abstract
BACKGROUND The Lone Star tick, Amblyomma americanum is important to human health because of a variety of pathogenic organisms transmitted to humans during feeding events, which underscores the need to identify novel approaches to prevent tick bites. Thus, the goal of this study was to test natural and synthetic molecules for repellent activity against ticks in spatial, contact and human fingertip bioassays. METHODS The efficacy of essential oils and naturally derived compounds as repellents to Am. americanum nymphs was compared in three different bioassays: contact, spatial and fingertip repellent bioassays. RESULTS Concentration response curves after contact exposure to 1R-trans-chrysanthemic acid (TCA) indicated a 5.6 μg/cm2 concentration required to repel 50% of ticks (RC50), which was five- and sevenfold more active than DEET and nootkatone, respectively. For contact repellency, the rank order of repellency at 50 μg/cm2 for natural oils was clove > geranium > oregano > cedarwood > thyme > amyris > patchouli > citronella > juniper berry > peppermint > cassia. For spatial bioassays, TCA was approximately twofold more active than DEET and nootkatone at 50 μg/cm2 but was not significantly different at 10 μg/cm2. In spatial assays, thyme and cassia were the most active compounds tested with 100% and 80% ticks repelled within 15 min of exposure respectively and was approximately twofold more effective than DEET at the same concentration. To translate these non-host assays to efficacy when used on the human host, we quantified repellency using a finger-climbing assay. TCA, nootkatone and DEET were equally effective in the fingertip assay, and patchouli oil was the only natural oil that significantly repelled ticks. CONCLUSIONS The differences in repellent potency based on the assay type suggests that the ability to discover active tick repellents suitable for development may be more complicated than with other arthropod species; furthermore, the field delivery mechanism must be considered early in development to ensure translation to field efficacy. TCA, which is naturally derived, is a promising candidate for a tick repellent that has comparable repellency to commercialized tick repellents.
Collapse
Affiliation(s)
- Anais Le Mauff
- Emerging Pathogens Institute, Department of Entomology and Nematology, University of Florida, 2055 Mowry Road, PO Box 100009, Gainesville, FL, 32610, USA
| | - Edmund J Norris
- Center for Medical, Agricultural, and Veterinary Entomology, United States Department of Agriculture, Agricultural Research Service, Gainesville, FL, 32608, USA
| | - Andrew Y Li
- Invasive Insect Biocontrol & Behavior Laboratory, United States Department of Agriculture, Agricultural Research Service, Beltsville, MD, 20705, USA
| | - Daniel R Swale
- Emerging Pathogens Institute, Department of Entomology and Nematology, University of Florida, 2055 Mowry Road, PO Box 100009, Gainesville, FL, 32610, USA.
| |
Collapse
|
3
|
Luker HA. A critical review of current laboratory methods used to evaluate mosquito repellents. FRONTIERS IN INSECT SCIENCE 2024; 4:1320138. [PMID: 38469342 PMCID: PMC10926509 DOI: 10.3389/finsc.2024.1320138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 01/02/2024] [Indexed: 03/13/2024]
Abstract
Pathogens transmitted by mosquitoes threaten human health around the globe. The use of effective mosquito repellents can protect individuals from contracting mosquito-borne diseases. Collecting evidence to confirm and quantify the effectiveness of a mosquito repellent is crucial and requires thorough standardized testing. There are multitudes of methods to test repellents that each have their own strengths and weaknesses. Determining which type of test to conduct can be challenging and the collection of currently used and standardized methods has changed over time. Some of these methods can be powerful to rapidly screen numerous putative repellent treatments. Other methods can test mosquito responses to specific treatments and measure either spatial or contact repellency. A subset of these methods uses live animals or human volunteers to test the repellency of treatments. Assays can greatly vary in their affordability and accessibility for researchers and/or may require additional methods to confirm results. Here I present a critical review that covers some of the most frequently used laboratory assays from the last two decades. I discuss the experimental designs and highlight some of the strengths and weaknesses of each type of method covered.
Collapse
Affiliation(s)
- Hailey A. Luker
- Molecular Vector Physiology Laboratory, Department of Biology, New Mexico State University, Las Cruces, NM, United States
| |
Collapse
|
4
|
Oktavianawati I, Santoso M, Fatmawati S. Metabolite profiling of Borneo's Gonystylus bancanus through comprehensive extraction from various polarity of solvents. Sci Rep 2023; 13:15215. [PMID: 37709800 PMCID: PMC10502116 DOI: 10.1038/s41598-023-41494-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 08/28/2023] [Indexed: 09/16/2023] Open
Abstract
Gonystylus bancanus wood or ramin wood has been generally known as a source of agarwood (gaharu) bouya, a kind of agarwood inferior type, or under the exported trading name of aetoxylon oil. The massive exploitation of ramin wood is causing this plant's extinction and putting it on Appendix II CITES and IUCN Red List of Threatened Species. To date, no scientific publication concerns the chemical exploration of G. bancanus wood and preserving this germplasm through its metabolite profiling. Therefore, research focused on chemical components profiling of G. bancanus is promised. This research is aimed to explore metabolomics and analyze the influence of solvent polarities on the partitioning of metabolites in G. bancanus wood. A range of solvents in different polarities was applied to provide comprehensive extraction of metabolites in G. bancanus wood. Moreover, a hydrodistillation was also carried out to extract the volatile compounds despite the non-volatile ones. LCMS and GCMS analyses were performed to identify volatile and non-volatile components in the extracts and essential oil. Multivariate data analysis was processed using Principal Component Analysis (PCA) and agglomerative hierarchical clustering. 142 metabolites were identified by LCMS analysis, while 89 metabolites were identified by GCMS analysis. Terpenoids, flavonoids, phenyl propanoids, and saccharides are some major compound classes available from LCMS data. Oxygenated sesquiterpenes, especially 10-epi-γ-eudesmol, and β-eudesmol, are the major volatile components identified from GCMS analysis. PCA of LCMS analysis demonstrated that PC1 discriminated two clusters: essential oil, dichloromethane, and n-hexane extracts were in the positive quadrant, while methanol and ethyl acetate extracts were in the negative quadrant. Three-dimensional analysis of GCMS data revealed that n-hexane extract was in the superior quadrant, and its composition can be significantly distinguished from other extracts and essential oil. G. bancanus wood comprises valuable metabolites, i.e., terpenoids, which benefit the essential oil industry. Comprehensive extraction by performing solvents in different polarities on G. bancanus wood could allow exploration of fully extracted metabolites, supported by the exhibition of identified metabolites from LCMS and GCMS analysis.
Collapse
Affiliation(s)
- Ika Oktavianawati
- Department of Chemistry, Faculty of Science and Data Analytics, Institut Teknologi Sepuluh Nopember, Kampus ITS, Sukolilo, Surabaya, 60111, Indonesia
- Department of Chemistry, Faculty of Mathematic and Sciences, Universitas Jember, Kampus Tegalboto, Jember, 68121, Indonesia
| | - Mardi Santoso
- Department of Chemistry, Faculty of Science and Data Analytics, Institut Teknologi Sepuluh Nopember, Kampus ITS, Sukolilo, Surabaya, 60111, Indonesia
| | - Sri Fatmawati
- Department of Chemistry, Faculty of Science and Data Analytics, Institut Teknologi Sepuluh Nopember, Kampus ITS, Sukolilo, Surabaya, 60111, Indonesia.
| |
Collapse
|
5
|
Cruz-Castillo AU, Rodríguez-Valdez LM, Correa-Basurto J, Nogueda-Torres B, Andrade-Ochoa S, Nevárez-Moorillón GV. Terpenic Constituents of Essential Oils with Larvicidal Activity against Aedes Aegypti: A QSAR and Docking Molecular Study. Molecules 2023; 28:molecules28062454. [PMID: 36985426 PMCID: PMC10054420 DOI: 10.3390/molecules28062454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/27/2023] [Accepted: 03/01/2023] [Indexed: 03/30/2023] Open
Abstract
Aedes aegypti is a vector for the arbovirus responsible for yellow fever, Zika and Chikungunya virus. Essential oils and their constituents are known for their larvicidal properties and are strong candidates for mosquito control. This work aimed to develop a quantitative structure-activity study and molecular screening for the search and design of new larvicidal agents. Twenty-five monoterpenes with previously evaluated larvicidal activity were built and optimized using computational tools. QSAR models were constructed through genetic algorithms from the larvicidal activity and the calculation of theoretical descriptors for each molecule. Docking studies on acetylcholinesterase (AChE) and sterol carrier protein (SCP-2) were also carried out. Results demonstrate that the epoxide groups in the structure of terpenes hinder larvicidal activity, while lipophilicity plays an important role in enhancing biological activity. Larvicidal activity correlates with the interaction of the sterol-carrier protein. Of the 25 compounds evaluated, carvacrol showed the highest larvicidal activity with an LC50 of 8.8 µg/mL. The information included in this work contributes to describing the molecular, topological, and quantum mechanical properties related to the larvicidal activity of monoterpenes and their derivatives.
Collapse
Affiliation(s)
- Adrián Ulises Cruz-Castillo
- Campus Coyoacán, Universidad del Valle de México, Calzada De Tlalpan No. 3016 y 3058, Ex Hacienda Coapa, Delegación Coyoacán, Ciudad de México 04910, Mexico
| | - Luz María Rodríguez-Valdez
- Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua, Circuito Universitario S/N Campus Universitario II, Chihuahua 31125, Mexico
| | - José Correa-Basurto
- Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón S/N Col. Santo Tomas, Ciudad de México 11340, Mexico
| | - Benjamín Nogueda-Torres
- Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala S/N Col. Santo Tomas, Ciudad de México 11340, Mexico
| | - Sergio Andrade-Ochoa
- Campus Coyoacán, Universidad del Valle de México, Calzada De Tlalpan No. 3016 y 3058, Ex Hacienda Coapa, Delegación Coyoacán, Ciudad de México 04910, Mexico
| | | |
Collapse
|
6
|
Sousa DL, Xavier EO, Cruz RCDD, Souza IAD, Oliveira RAD, Silva DCD, Gualberto SA, Freitas JSD. Chemical composition and repellent potential of essential oil from Croton tetradenius (Euphorbiaceae) leaves against Aedes aegypti (Diptera: Culicidae). BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2022. [DOI: 10.1016/j.bcab.2022.102549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
7
|
Norris EJ, Chen R, Li Z, Geldenhuys W, Bloomquist JR, Swale DR. Mode of action and toxicological effects of the sesquiterpenoid, nootkatone, in insects. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2022; 183:105085. [PMID: 35430075 DOI: 10.1016/j.pestbp.2022.105085] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 03/16/2022] [Accepted: 03/18/2022] [Indexed: 06/14/2023]
Abstract
Nootkatone, a sesquiterpenoid isolated from Alaskan yellow cedar (Cupressus nootkatensis), is known to possess insect repellent and acaricidal properties and has recently been registered for commercial use by the Environmental Protection Agency. Previous studies failed to elucidate the mechanism of action of nootkatone, but we found a molecular overlay of picrotoxinin and nootkatone indicated a high degree of structural and electrostatic similarity. We therefore tested the hypothesis that nootkatone was a GABA-gated chloride channel antagonist, similar to picrotoxinin. The KD50 and LD50 of nootkatone on the insecticide-susceptible strain of Drosophila melanogaster (CSOR) showed resistance ratios of 8 and 11, respectively, compared to the cyclodiene-resistant strain of RDL1675, indicating significant cross-resistance. Nootkatone reversed GABA-mediated block of the larval CSOR central nervous system; nerve firing of 78 ± 17% of baseline in the CSOR strain was significantly different from 24 ± 11% of baseline firing in the RDL1675 strain (p = 0.035). This finding indicated that the resistance was expressed within the nervous system. Patch clamp recordings on D. melanogaster central neurons mirrored extracellular recordings where nootkatone inhibited GABA-stimulated currents by 44 ± 9% at 100 μM, whereas chloride current was inhibited 4.5-fold less at 100 μM in RDL1675. Taken together, these data suggest nootkatone toxicity in D. melanogaster is mediated through GABA receptor antagonism.
Collapse
Affiliation(s)
- Edmund J Norris
- Emerging Pathogens Institute, Entomology and Nematology Department, 2055 Mowry Road, University of Florida, Gainesville, FL 32610-0009, USA; USDA/ARS Center for Medical, Agricultural, and Veterinary Entomology, Gainesville, FL 32610-0009, USA
| | - Rui Chen
- Louisiana State University Agricultural Center, Department of Entomology, Baton Rouge, LA 70803, USA
| | - Zhilin Li
- Louisiana State University Agricultural Center, Department of Entomology, Baton Rouge, LA 70803, USA
| | - Werner Geldenhuys
- Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown, WV 26506, USA
| | - Jeffrey R Bloomquist
- Emerging Pathogens Institute, Entomology and Nematology Department, 2055 Mowry Road, University of Florida, Gainesville, FL 32610-0009, USA
| | - Daniel R Swale
- Louisiana State University Agricultural Center, Department of Entomology, Baton Rouge, LA 70803, USA.
| |
Collapse
|
8
|
Zardeto G, Jesus RAD, Oliveira HLMD, Gonçalves JE, Piau Junior R, Jacomassi E, Gazim ZC. Tetradenia riparia leaves, flower buds, and stem essential oils to control of Aedes aegypti larvae. BRAZ J PHARM SCI 2022. [DOI: 10.1590/s2175-97902022e20556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
|
9
|
Gou Y, Li Z, Fan R, Guo C, Wang L, Sun H, Li J, Zhou C, Wang C, Wang Y. Ethnobotanical survey and evaluation of traditional mosquito repellent plants of Dai people in Xishuangbanna, Yunnan Province, China. JOURNAL OF ETHNOPHARMACOLOGY 2020; 262:113124. [PMID: 32730874 DOI: 10.1016/j.jep.2020.113124] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 06/15/2020] [Accepted: 06/17/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Dengue is one of the most important pervasive diseases in many regions of the world, including China. There is an urgent need for new repellents, including plant derivatives, due to the resistance, toxicity, and non-degradability of synthetic insecticides. Traditional plant-based remedies may provide potential avenues for developing new strategies. AIMS OF THE STUDY The aims of this study were to 1) document the traditional mosquitoes repellent plants used by the Dai people of Xishuangbanna, China; 2) screen out new efficient mosquito repellent plants as candidates for further study. MATERIALS AND METHODS During the period August 2016 to July 2017, five field surveys were conducted in 16 villages of Xishuangbanna. A total of 81 informants (44 males and 37 females) were interviewed using semi-structured questions to collect detailed information on the plants they use to prevent mosquito bites. Ten plants with higher popularity and larger resource were collected and extracts were prepared by hydro-distillation or with petroleum ether. Extracts were tested for adult Aedes albopictus repellency using a human-bait cage. Firstly, repellency was determined as the Minimum Effective Dosage (MED) per minute at which 1% of the mosquito bite through the treated cloth. Secondly, five plant extracts with lower MEDs were tested the repellent longevity of different concentrations. RESULTS Eighteen plants were documented as being used in traditional remedies against mosquitoes. The methods for controlling mosquitoes were diverse: direct burning was used for most plants (16 species), followed by smearing (5 species), and placing (5 species). Laboratory analyses confirmed that ten plants did exhibit mosquito repellent activity. Of them, Artemisia indica, Nicotiana tabacum, Blumea balsamifera, Vitex trifolia, and Chromolaena odorata showed good mosquito repellency with MEDs of 0.015, 0.061, 0.090, 0.090, and 0.105 mg/cm2, respectively. The protection rate provided by A. indica is also the highest among five plants. Although it provides complete protection time of only 30 min at 0.45 mg/cm2 concentration, its repellency within 2 h is not significantly different from that of DEET. CONCLUSION Dai villagers in Xishuangbanna have a rich, diverse and scientific knowledge of plant-based mosquito repellents. Laboratory experiments screened out several plants as candidates for mosquito repellents, of which Artemisia indica was the most promising candidate plant.
Collapse
Affiliation(s)
- Yi Gou
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China.
| | - Zhennan Li
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Ruyan Fan
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China.
| | - Changan Guo
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Lu Wang
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Hongzheng Sun
- Kunming City Center for Disease Control and Prevention, Kunming, 650201, China.
| | - Jiping Li
- Kunming City Center for Disease Control and Prevention, Kunming, 650201, China.
| | - Chengpeng Zhou
- Kunming City Center for Disease Control and Prevention, Kunming, 650201, China.
| | - Chen Wang
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China.
| | - Yuhua Wang
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China.
| |
Collapse
|
10
|
Tampe J, Espinoza J, Chacón-Fuentes M, Quiroz A, Rubilar M. Evaluation of Drimys winteri (Canelo) Essential Oil as Insecticide against Acanthoscelides obtectus (Coleoptera: Bruchidae) and Aegorhinus superciliosus (Coleoptera: Curculionidae). INSECTS 2020; 11:insects11060335. [PMID: 32486175 PMCID: PMC7349611 DOI: 10.3390/insects11060335] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 05/23/2020] [Accepted: 05/27/2020] [Indexed: 11/16/2022]
Abstract
Adverse effects caused by synthetic pesticides have increased interest in plant-derived insecticidal compounds, in particular essential oils, as a more compatible and ecofriendly alternative for pest control of economic importance. For this reason, the essential oil isolated from leaves and shoots of Drimys winteri (J.R. Forster & G. Forster)-also named canelo (CEO)-was investigated for its chemical profile and insecticidal action against Acanthoscelides obtectus (Say)-one of the most important post-harvest pests of dry beans in the world-and Aegorhinus superciliosus (Guérin)-a significant pest of fruit trees in Chile. The analysis by gas chromatography, paired with mass spectrometry (GC/MS) determined 56 compounds, corresponding to 92.28% of the detected compounds. Elemol (13.54%), γ-eudesmol (11.42%), β-eudesmol (8.49%), α-eudesmol (6.39%), α-pinene (7.92%) and β-pinene (5.17%) were the most abundant. Regarding the bioactivity of the CEO, the results demonstrated toxicological effects against A. obtectus. A concentration of 158.3 µL L-1 had a mortality rate of 94% after 24 h exposure. The LC50 and LC90 values at 24 h were 60.1 and 163.0 µL L-1. Moreover, behavioral bioassays showed a repellent effect against A. superciliosus with a dose of one microliter of CEO. Both sexes of the raspberry weevil stayed for very short times in the treated area with the oil (<0.8 min), showing a homogeneous repellency in the species. The overall data suggest that canelo leaves and shoots essential oil has an insecticide effect and is worth exploring to better understand the synergistic relationship between the compounds present in the essential oil.
Collapse
Affiliation(s)
- Jocelyne Tampe
- Technology and Processes Laboratory, Department of Chemical Engineering, Faculty of Engineering and Science, Universidad de La Frontera, Avenida Francisco Salazar 01145, Temuco 4811230, Chile
- Scientific and Technological Bioresource Nucleus, BIOREN, Universidad de La Frontera, Avenida Francisco Salazar 01145, Temuco 4811230, Chile
- Correspondence: (J.T.); (M.R.)
| | - Javier Espinoza
- Laboratorio de Química Ecológica, Departamento de Ciencias Químicas y Recursos Naturales, Universidad de La Frontera, Casilla 54-D, Avenida Francisco Salazar 01145, Temuco 4811230, Chile; (J.E.); (M.C.-F.); (A.Q.)
- Centro de Excelencia en Investigación Biotecnológica Aplicada al Medio Ambiente (CIBAMA), Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Avenida Francisco Salazar 01145, Temuco 4811230, Chile
| | - Manuel Chacón-Fuentes
- Laboratorio de Química Ecológica, Departamento de Ciencias Químicas y Recursos Naturales, Universidad de La Frontera, Casilla 54-D, Avenida Francisco Salazar 01145, Temuco 4811230, Chile; (J.E.); (M.C.-F.); (A.Q.)
- Centro de Excelencia en Investigación Biotecnológica Aplicada al Medio Ambiente (CIBAMA), Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Avenida Francisco Salazar 01145, Temuco 4811230, Chile
| | - Andrés Quiroz
- Laboratorio de Química Ecológica, Departamento de Ciencias Químicas y Recursos Naturales, Universidad de La Frontera, Casilla 54-D, Avenida Francisco Salazar 01145, Temuco 4811230, Chile; (J.E.); (M.C.-F.); (A.Q.)
- Centro de Excelencia en Investigación Biotecnológica Aplicada al Medio Ambiente (CIBAMA), Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Avenida Francisco Salazar 01145, Temuco 4811230, Chile
| | - Mónica Rubilar
- Technology and Processes Laboratory, Department of Chemical Engineering, Faculty of Engineering and Science, Universidad de La Frontera, Avenida Francisco Salazar 01145, Temuco 4811230, Chile
- Scientific and Technological Bioresource Nucleus, BIOREN, Universidad de La Frontera, Avenida Francisco Salazar 01145, Temuco 4811230, Chile
- Correspondence: (J.T.); (M.R.)
| |
Collapse
|
11
|
Shoukat RF, Shakeel M, Rizvi SAH, Zafar J, Zhang Y, Freed S, Xu X, Jin F. Larvicidal, Ovicidal, Synergistic, and Repellent Activities of Sophora alopecuroides and Its Dominant Constituents Against Aedes albopictus. INSECTS 2020; 11:E246. [PMID: 32326460 PMCID: PMC7240748 DOI: 10.3390/insects11040246] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 04/08/2020] [Accepted: 04/09/2020] [Indexed: 11/16/2022]
Abstract
In the current study, to combat insecticide resistance, we explored larvicidal, ovicidal, synergistic, and repellent activities of Sophora alopecuroides extract and its dominant constituents against Aedes albopictus. The results of the toxicity bioassays demonstrated that the extract of S. alopecuroides exerted significant larvicidal activity (16.66-86.66%) against the third-instar larvae of Ae. albopictus at different concentrations (5-50 ug/mL) and low hatchability of eggs (2.32-75%) at 5-50 ug/mL. The constituents of S. alopecuroides showed a synergistic effect when applied as a mixture (LC30 + LC30) against larvae, while no synergistic effect was observed against the eggs of Ae. albopictus. S. alopecuroides extract provided 93.11% repellency in the first 90 min and gradually decreased to 53.14% after 240 min, while the positive control DEET (N,N-diethyl-3-methylbenzamide) showed 94.18% in the first 90 min and 55.33% after 240 min. All of the results exhibited a concentration-dependent effect. To the best of our knowledge, this is the first time that a study has identified a highly effective extract of S. alopecuroides, which could be used as an alternative agent to control larvae and eggs and to repel adults of Ae. albopictus.
Collapse
Affiliation(s)
- Rana Fartab Shoukat
- College of Agriculture, South China Agricultural University, Laboratory of Bio-Pesticide Creation and Application of Guangdong Province, Guangzhou 510642, China; (R.F.S.); (M.S.); (S.A.H.R.); (J.Z.); (Y.Z.); (X.X.)
| | - Muhammad Shakeel
- College of Agriculture, South China Agricultural University, Laboratory of Bio-Pesticide Creation and Application of Guangdong Province, Guangzhou 510642, China; (R.F.S.); (M.S.); (S.A.H.R.); (J.Z.); (Y.Z.); (X.X.)
| | - Syed Arif Hussain Rizvi
- College of Agriculture, South China Agricultural University, Laboratory of Bio-Pesticide Creation and Application of Guangdong Province, Guangzhou 510642, China; (R.F.S.); (M.S.); (S.A.H.R.); (J.Z.); (Y.Z.); (X.X.)
| | - Junaid Zafar
- College of Agriculture, South China Agricultural University, Laboratory of Bio-Pesticide Creation and Application of Guangdong Province, Guangzhou 510642, China; (R.F.S.); (M.S.); (S.A.H.R.); (J.Z.); (Y.Z.); (X.X.)
| | - Yuxin Zhang
- College of Agriculture, South China Agricultural University, Laboratory of Bio-Pesticide Creation and Application of Guangdong Province, Guangzhou 510642, China; (R.F.S.); (M.S.); (S.A.H.R.); (J.Z.); (Y.Z.); (X.X.)
| | - Shoaib Freed
- Laboratory of Insect Microbiology and Biotechnology, Department of Entomology, Faculty of Agricultural Sciences and Technology, Bahauddin Zakariya University, Multan 66000, Pakistan;
| | - Xiaoxia Xu
- College of Agriculture, South China Agricultural University, Laboratory of Bio-Pesticide Creation and Application of Guangdong Province, Guangzhou 510642, China; (R.F.S.); (M.S.); (S.A.H.R.); (J.Z.); (Y.Z.); (X.X.)
| | - Fengliang Jin
- College of Agriculture, South China Agricultural University, Laboratory of Bio-Pesticide Creation and Application of Guangdong Province, Guangzhou 510642, China; (R.F.S.); (M.S.); (S.A.H.R.); (J.Z.); (Y.Z.); (X.X.)
| |
Collapse
|
12
|
Discovery of three novel sesquiterpene synthases from Streptomyces chartreusis NRRL 3882 and crystal structure of an α-eudesmol synthase. J Biotechnol 2019; 297:71-77. [PMID: 30928538 DOI: 10.1016/j.jbiotec.2019.03.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 03/11/2019] [Accepted: 03/14/2019] [Indexed: 12/11/2022]
Abstract
With more than 50,000 members, terpenoids are one of the most important classes of natural products and show an enormous diversity. Due to their unique odors and specific bioactivities they already find wide application in the flavor, fragrance and pharma industries. Since most terpenoids can only be obtained by natural product extraction, the discovery of biosynthetic genes for the generation of terpene diversity becomes increasingly important. This study describes the discovery of three novel sesquiterpene synthases from Streptomyces chartreusis with preference for the formation of germacradiene-11-ol, α-eudesmol and α-amorphene respectively. The α-eudesmol synthase showed formation of 10-epi-δ-eudesmol and elemol as side products. Eudesmol-isomers are known to have repellent activity, which makes this enzyme a potential catalyst for products for the prevention of mosquito-related disease. The determination of the structure of the apo-enzyme of α-eudesmol synthase from S. chartreusis provides the first structural insights into an eudesmol-forming enzyme.
Collapse
|
13
|
Mathivanan A, Ravikumar S, Selvakumar G. Bioprospecting of sponge and its symbionts: New tool for mosquitocidal & insecticidal metabolites. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2019. [DOI: 10.1016/j.bcab.2019.101158] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
14
|
Devillers J. 2D and 3D structure-activity modelling of mosquito repellents: a review $. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2018; 29:693-723. [PMID: 30220218 DOI: 10.1080/1062936x.2018.1513218] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Indexed: 06/08/2023]
Abstract
Repellents disrupt the behaviour of blood-seeking mosquitoes protecting humans against their bites which can transmit serious diseases. Since the mid-1950s, N,N-diethyl-m-toluamide (DEET) is considered as the standard mosquito repellent worldwide. However, DEET presents numerous shortcomings. Faced with the heightening risk of mosquito expansion caused by global climate changes and increasing international exchanges, there is an urgent need for a better repellent than DEET and the very few other commercialised repelling molecules such as picaridin and IR3535. In silico approaches have been used to find new repellents and to provide better insights into their mechanism of action. In this context, the goal of our study was to retrieve from the literature all the papers dealing with qualitative and quantitative structure-activity relationships on mosquito repellents. A critical analysis of the SAR and QSAR models was made focusing on the quality of the biological data, the significance of the molecular descriptors and the validity of the statistical tools used for deriving the models. The predictive power and domain of application of these models were also discussed. The hypotheses to compute homology and pharmacophore models, their interest to find new repellents and to provide insights into the mechanisms of repellency in mosquitoes were analysed. The interest to consider the mosquito olfactory system as the target to compute new repellents was discussed. The potential environmental impact of these chemicals as well as new ways of research were addressed.
Collapse
|
15
|
Yusufoglu HS, Tabanca N, Bernier UR, Li AY, Salkini MA, Alqasoumi SI, Demirci B. Mosquito and tick repellency of two Anthemis essential oils from Saudi Arabia. Saudi Pharm J 2018; 26:860-864. [PMID: 30202228 PMCID: PMC6128710 DOI: 10.1016/j.jsps.2018.03.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 03/25/2018] [Indexed: 11/16/2022] Open
Abstract
The essential oils (EOs) of Anthemis melampodina (Am) and Anthemis scrobicularis (As) (Asteraceae) were extracted from the aerial parts of the plants by hydrodistillation, and their chemical compositions were analyzed using GC-FID and GC-MS. Fifty-six components representing 85.5% of the oil composition of Anthemis melampdina were identified, and the major components were α-pinene (17.1%) and β-eudesmol (13.8%). Forty-one components representing 86% of the oil composition of Anthemis scrobicularis were identified, and the major component was β-eudesmol (12.8%). Laboratory bioassays were conducted to determine repellency of Am and As EOs against the yellow fever mosquito Aedes aegypti L. and the lone star tick Amblyomma americanum L. The minimum effective doses (MEDs) of the Am and As EOs against mosquitoes were 0.187 ± 0.000 and 0.312 ± 0.063 mg/cm2 respectively, which were significantly higher than that of DEET (0.023 ± 0.000 mg/cm2) in human-based repellent bioassays. The As EO was more repellent than Am EO against nymphal ticks but was less effective than DEET in vertical paper bioassays.
Collapse
Affiliation(s)
- Hasan Soliman Yusufoglu
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Saudi Arabia
| | - Nurhayat Tabanca
- USDA-ARS, Subtropical Horticulture Research Station, Miami, FL 33158, USA
| | - Ulrich R. Bernier
- USDA-ARS, Center for Medical, Agricultural, and Veterinary Entomology, Gainesville, FL 32608, USA
| | - Andrew Y. Li
- USDA-ARS, Invasive Insect Biocontrol and Behavior Laboratory, Beltsville, MD 20705, USA
| | - Mohammed Ayman Salkini
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Saudi Arabia
| | | | - Betul Demirci
- Department of Pharmacognosy, Faculty of Pharmacy, Anadolu University, Eskisehir 26470, Turkey
| |
Collapse
|
16
|
Saavedra LM, Romanelli GP, Duchowicz PR. Quantitative structure-activity relationship (QSAR) analysis of plant-derived compounds with larvicidal activity against Zika Aedes aegypti (Diptera: Culicidae) vector using freely available descriptors. PEST MANAGEMENT SCIENCE 2018; 74:1608-1615. [PMID: 29314584 DOI: 10.1002/ps.4850] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 11/24/2017] [Accepted: 12/29/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND We have developed a quantitative structure-activity relationship (QSAR) model for predicting the larvicidal activity of 60 plant-derived molecules against Aedes aegypti L. (Diptera: Culicidae), a vector of several diseases such as dengue, yellow fever, chikungunya and Zika. The balanced subsets method (BSM) based on k-means cluster analysis (k-MCA) was employed to split the data set. The replacement method (RM) variable subset selection technique coupled with multivariable linear regression (MLR) proved to be successful for exploring 18 326 molecular descriptors and fingerprints calculated with PaDEL, Mold2 and EPI Suite open-source softwares. RESULTS A robust QSAR model (Rtrain2=0.84, Strain = 0.20 and Rtest2=0.92, Stest = 0.23) involving five non-conformational descriptors was established. The model was validated and tested through the use of an external test set of compounds, the leave-one-out (LOO) and leave-more-out (LMO) cross-validation methods, Y-randomization and applicability domain (AD) analysis. CONCLUSION The QSAR model surpasses previously published models based on geometrical descriptors, thereby representing a suitable tool for predicting larvicidal activity against the vector A. aegypti using a conformation-independent approach. © 2018 Society of Chemical Industry.
Collapse
Affiliation(s)
- Laura M Saavedra
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de La Plata (UNLP), La Plata, Argentina
| | - Gustavo P Romanelli
- Centro de Investigación y Desarrollo en Ciencias Aplicadas "Dr. J.J. Ronco" (CINDECA), Departamento de Química, Facultad de Ciencias Exactas, CONICET, UNLP, La Plata, Argentina
- Cátedra de Química Orgánica, Centro de Investigación en Sanidad Vegetal (CISaV), Facultad de Ciencias Agrarias y Forestales, Universidad Nacional de La Plata, La Plata, Argentina
| | - Pablo R Duchowicz
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de La Plata (UNLP), La Plata, Argentina
| |
Collapse
|
17
|
Andrade-Ochoa S, Correa-Basurto J, Rodríguez-Valdez LM, Sánchez-Torres LE, Nogueda-Torres B, Nevárez-Moorillón GV. In vitro and in silico studies of terpenes, terpenoids and related compounds with larvicidal and pupaecidal activity against Culex quinquefasciatus Say (Diptera: Culicidae). Chem Cent J 2018; 12:53. [PMID: 29748726 PMCID: PMC5945571 DOI: 10.1186/s13065-018-0425-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 04/30/2018] [Indexed: 11/10/2022] Open
Abstract
Background In order to develop new larvicidal agents derived from phytochemicals, the larvicidal activity of fifty molecules that are constituent of essential oils was evaluated against Culex quinquefasciatus Say. Terpenes, terpenoids and phenylpropanoids molecules were included in the in vitro evaluation, and QSAR models using genetic algorithms were built to identify molecular and structural properties of biological interest. Further, to obtain structural details on the possible mechanism of action, selected compounds were submitted to docking studies on sterol carrier protein-2 (SCP-2) as possible target. Results Results showed high larvicidal activity of carvacrol and thymol on the third and fourth larval stage with a median lethal concentration (LC50) of 5.5 and 11.1 µg/mL respectively. Myrcene and carvacrol were highly toxic for pupae, with LC50 values of 31.8 and 53.2 µg/mL. Structure–activity models showed that the structural property π-bonds is the largest contributor of larvicidal activity while ketone groups should be avoided. Similarly, property–activity models attributed to the molecular descriptor LogP the most contribution to larvicidal activity, followed by the absolute total charge (Qtot) and molar refractivity (AMR). The models were statistically significant; thus the information contributes to the design of new larvicidal agents. Docking studies show that all molecules tested have the ability to interact with the SCP-2 protein, wherein α-humulene and β-caryophyllene were the compounds with higher binding energy. Conclusions The description of the molecular properties and the structural characteristics responsible for larvicidal activity of the tested compounds were used for the development of mathematical models of structure–activity relationship. The identification of molecular and structural descriptors, as well as studies of molecular docking on the SCP-2 protein, provide insight on the mechanism of action of the active molecules, and the information can be used for the design of new structures for synthesis as potential new larvicidal agents. Electronic supplementary material The online version of this article (10.1186/s13065-018-0425-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- S Andrade-Ochoa
- Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua, Circuito Universitario S/N, Campus Universitario II., Chihuahua, Chihuahua, Mexico.,Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala S/N. Col. Santo Tomas, 11340, México, DF, Mexico
| | - J Correa-Basurto
- Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n, Col. Casco de Santo Tomas, Delegación Miguel Hidalgo, C.P. 11340, México, DF, Mexico
| | - L M Rodríguez-Valdez
- Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua, Circuito Universitario S/N, Campus Universitario II., Chihuahua, Chihuahua, Mexico
| | - L E Sánchez-Torres
- Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala S/N. Col. Santo Tomas, 11340, México, DF, Mexico
| | - B Nogueda-Torres
- Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala S/N. Col. Santo Tomas, 11340, México, DF, Mexico
| | - G V Nevárez-Moorillón
- Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua, Circuito Universitario S/N, Campus Universitario II., Chihuahua, Chihuahua, Mexico.
| |
Collapse
|
18
|
Zhai C, Wang M, Raman V, Rehman JU, Meng Y, Zhao J, Avula B, Wang YH, Tian Z, Khan IA. Eleutherococcus senticosus (Araliaceae) Leaf Morpho-Anatomy, Essential Oil Composition, and Its Biological Activity Against Aedes aegypti (Diptera: Culicidae). JOURNAL OF MEDICAL ENTOMOLOGY 2017; 54:658-669. [PMID: 28399215 DOI: 10.1093/jme/tjw221] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Indexed: 06/07/2023]
Abstract
The roots of Eleutherococcus senticosus (Rupr. & Maxim.) Maxim., a well-known medicinal plant from Eastern Asia, are used worldwide for their known beneficial medicinal properties. Recently, the leaves have been used as an alternative to the roots. The present study was aimed at exploring the leaf essential oil as a potential source of compounds for mosquito management. Gas chromatography/mass spectrometry analysis of the leaf essential oil revealed 87 compounds, constituting 95.2% of the oil. α-Bisabolol (26.46%), β-caryophyllene (7.45%), germacrene D (6.87%), β-bisabolene (4.95%), and α-humulene (3.50%) were five of the major constituents. The essential oil was subjected to biting deterrence and repellent activity against mosquito Aedes aegypti. The biting deterrence of the oil produced a proportion not biting (PNB) value of 0.62 at 10 µg/cm2 as compared with 0.86 of control DEET (N,N-diethyl-3-methylbenzamide) at a standard dose of 25 nmol/cm2. Among individually selected compounds present in the oil (α-bisabolol, β-caryophyllene, α-humulene, and caryophyllene oxide), only α-bisabolol produced a PNB value of 0.80, equivalent to DEET at 25 nmol/cm2, whereas the others were not repellent. The artificial mixture (AMES-1) of these four selected compounds produced a relatively high PNB value of 0.80. The repellent activity measured by minimum effective dosage (MED) for α-bisabolol and α-humulene produced MED values of 0.094 and 0.104 mg/cm2, respectively, as compared with 0.023 mg/cm2 of DEET. The leaf essential oil, the artificial mixture (AMES-1), and other binary and tertiary combinations of major compounds showed no repellent activity. In addition, morpho-anatomical features of the leaf are provided for correct identification of the species.
Collapse
Affiliation(s)
- Chunmei Zhai
- National Center for Natural Products Research, School of Pharmacy, University of Mississippi, MS 38677 ( ; ; ; ; ; ; ; ; )
- Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang Province 150040, China
| | - Mei Wang
- National Center for Natural Products Research, School of Pharmacy, University of Mississippi, MS 38677 (; ; ; ; ; ; ; ; )
| | - Vijayasankar Raman
- National Center for Natural Products Research, School of Pharmacy, University of Mississippi, MS 38677 (; ; ; ; ; ; ; ; )
| | - Junaid U Rehman
- National Center for Natural Products Research, School of Pharmacy, University of Mississippi, MS 38677 (; ; ; ; ; ; ; ; )
| | - Yonghai Meng
- National Center for Natural Products Research, School of Pharmacy, University of Mississippi, MS 38677 ( ; ; ; ; ; ; ; ; )
- Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang Province 150040, China
| | - Jianping Zhao
- National Center for Natural Products Research, School of Pharmacy, University of Mississippi, MS 38677 (; ; ; ; ; ; ; ; )
| | - Bharathi Avula
- National Center for Natural Products Research, School of Pharmacy, University of Mississippi, MS 38677 (; ; ; ; ; ; ; ; )
| | - Yan-Hong Wang
- National Center for Natural Products Research, School of Pharmacy, University of Mississippi, MS 38677 (; ; ; ; ; ; ; ; )
| | - Zhenkun Tian
- Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang Province 150040, China
| | - Ikhlas A Khan
- National Center for Natural Products Research, School of Pharmacy, University of Mississippi, MS 38677 ( ; ; ; ; ; ; ; ; )
- Division of Pharmacognosy, Department of BioMolecular Sciences, School of Pharmacy, University of Mississippi, MS 38677
| |
Collapse
|
19
|
Alvarez Costa A, Naspi CV, Lucia A, Masuh HM. Repellent and Larvicidal Activity of the Essential Oil From Eucalyptus nitens Against Aedes aegypti and Aedes albopictus (Diptera: Culicidae). JOURNAL OF MEDICAL ENTOMOLOGY 2017; 54:670-676. [PMID: 28399283 DOI: 10.1093/jme/tjw222] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 11/30/2017] [Indexed: 06/07/2023]
Abstract
Dengue, chikungunya, and yellow fever are important vector-borne diseases transmitted by female mosquitoes when they feed on humans. The use of repellents based on natural products is an alternative for personal protection against these diseases. Application of chemicals with larvicidal activity is another strategy for controlling the mosquito population. The repellent and larvicidal activities of the essential oil from Eucalyptus nitens were tested against Aedes aegypti and Aedes albopictus, the main vectors of these arboviruses. The essential oil was extracted by hydrodistillation and then analyzed by gas chromatography-mass spectrometry. The main components of Eucalyptus nitens essential oil were found to be terpenes such as 1,8-cineole and p-cymene, followed by β-triketones and alkyl esters. The repellent activity of the essential oil against both species was significantly higher when compared with the main component, 1,8-cineole, alone. These results indicate that the repellent effect of E. nitens is not due only to the main component, 1,8-cineole, but also that other compounds may be responsible. Aedes aegypti was found to be more tolerant to the essential oil larvicidal effects than Ae. albopictus (Ae. aegypti LC50 = 52.83 ppm, Ae. albopictus LC 50 = 28.19 ppm). The repellent and larvicidal activity could be associated to the presence of cyclic β-triketones such as flavesone, leptospermone, and isoleptospermone.
Collapse
Affiliation(s)
- Agustín Alvarez Costa
- Centro de Investigaciones de Plagas e Insecticidas (CIPEIN-UNIDEF-CONICET), Juan Bautista de La Salle 4397, B1603ALO, Villa Martelli, Buenos Aires, Argentina (; ; ; )
| | - Cecilia V Naspi
- Centro de Investigaciones de Plagas e Insecticidas (CIPEIN-UNIDEF-CONICET), Juan Bautista de La Salle 4397, B1603ALO, Villa Martelli, Buenos Aires, Argentina (; ; ; )
| | - Alejandro Lucia
- Centro de Investigaciones de Plagas e Insecticidas (CIPEIN-UNIDEF-CONICET), Juan Bautista de La Salle 4397, B1603ALO, Villa Martelli, Buenos Aires, Argentina (; ; ; )
| | - Héctor M Masuh
- Centro de Investigaciones de Plagas e Insecticidas (CIPEIN-UNIDEF-CONICET), Juan Bautista de La Salle 4397, B1603ALO, Villa Martelli, Buenos Aires, Argentina (; ; ; )
| |
Collapse
|
20
|
Norris EJ, Coats JR. Current and Future Repellent Technologies: The Potential of Spatial Repellents and Their Place in Mosquito-Borne Disease Control. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2017; 14:ijerph14020124. [PMID: 28146066 PMCID: PMC5334678 DOI: 10.3390/ijerph14020124] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 01/19/2017] [Accepted: 01/22/2017] [Indexed: 12/31/2022]
Abstract
Every year, approximately 700,000 people die from complications associated with etiologic disease agents transmitted by mosquitoes. While insecticide-based vector control strategies are important for the management of mosquito-borne diseases, insecticide-resistance and other logistical hurdles may lower the efficacy of this approach, especially in developing countries. Repellent technologies represent another fundamental aspect of preventing mosquito-borne disease transmission. Among these technologies, spatial repellents are promising alternatives to the currently utilized contact repellents and may significantly aid in the prevention of mosquito-borne disease if properly incorporated into integrated pest management approaches. As their deployment would not rely on prohibitively expensive or impractical novel accessory technologies and resources, they have potential utility in developing countries where the burden of mosquito-borne disease is most prevalent. This review aims to describe the history of various repellent technologies, highlight the potential of repellent technologies in preventing the spread of mosquito-borne disease, and discuss currently known mechanisms that confer resistance to current contact and spatial repellents, which may lead to the failures of these repellents. In the subsequent section, current and future research projects aimed at exploring long-lasting non-pyrethroid spatial repellent molecules along with new paradigms and rationale for their development will be discussed.
Collapse
Affiliation(s)
- Edmund J Norris
- Department of Entomology, Iowa State University, Ames, IA 50011, USA.
| | - Joel R Coats
- Department of Entomology, Iowa State University, Ames, IA 50011, USA.
| |
Collapse
|
21
|
Blythe EK, Tabanca N, Demirci B, Tsikolia M, Bloomquist JR, Bernier UR. Lantana montevidensis Essential Oil: Chemical Composition and Mosquito Repellent Activity against Aedes aegypti. Nat Prod Commun 2016. [DOI: 10.1177/1934578x1601101122] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The essential oil (EO) of Lantana montevidensis (Spreng.) Briq. (L. sellowiana Link & Otto) was investigated for its chemical composition and mosquito repellent activity. The essential oil obtained by hydrodistillation of aerial plant parts was analyzed by GC-FID and GC-MS. The major constituents were β-elemene (22.0%), β-caryophyllene (20.1%), and germacrene D (9.4%). Sesquiterpene hydrocarbons were present in considerable quantities (78.9%) in the L. montevidensis EO, followed by oxygenated sesquiterpenes (8.9%), monoterpene hydrocarbons (7.7%), oxygenated monoterpenes (1.9%), diterpenes (1.2%) and other compounds (0.2%). The oil of L. montevidensis was repellent with a minimum effective dosage (MED) of 0.021 ± 0.013 mg/cm2 as compared with that of the positive control N,N-diethyl-3-methylbenzamide (DEET) with a MED of 0.006 ± 0.001 mg/cm2) against Aedes aegypti L. The major compound β-elemene was tested individually for its repellency and had a MED value of 0.23 ± 0.14 mg/cm2 (DEET was 0.008 ± 0.001 mg/cm2). This is the first report on the repellent activity of L. montevidensis EO and β-elemene using human-based in vivo assays against Ae. aegypti.
Collapse
Affiliation(s)
- Eugene K. Blythe
- Coastal Research and Extension Center, Mississippi State University, South Mississippi Branch Experiment Station, Poplarville, MS 39470, USA
| | - Nurhayat Tabanca
- Department of Entomology and Nematology, Emerging Pathogens Institute, University of Florida, Gainesville, FL 32610, USA
- USDA-ARS, Center for Medical, Agricultural, and Veterinary Entomology, Gainesville, FL 32608, USA
| | - Betul Demirci
- Department of Pharmacognosy, Faculty of Pharmacy, Anadolu University, Eskisehir, 26470, Turkey
| | - Maia Tsikolia
- Department of Entomology and Nematology, Emerging Pathogens Institute, University of Florida, Gainesville, FL 32610, USA
- USDA-ARS, Center for Medical, Agricultural, and Veterinary Entomology, Gainesville, FL 32608, USA
| | - Jeffrey R. Bloomquist
- Department of Entomology and Nematology, Emerging Pathogens Institute, University of Florida, Gainesville, FL 32610, USA
| | - Ulrich R. Bernier
- USDA-ARS, Center for Medical, Agricultural, and Veterinary Entomology, Gainesville, FL 32608, USA
| |
Collapse
|
22
|
Repellent Activity of the Essential Oil from the Heartwood of Pilgerodendron uviferum (D. Don) Florin against Aegorhinus superciliosus (Coleoptera: Curculionidae). Molecules 2016; 21:533. [PMID: 27110756 PMCID: PMC6274372 DOI: 10.3390/molecules21040533] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 04/14/2016] [Accepted: 04/20/2016] [Indexed: 11/17/2022] Open
Abstract
The weevil Aegorhinus superciliosus Guérin (Coleoptera: Curculionidae), which is endemic to Central-Southern Chile and Argentina, is one of the major berry pests in Chile and the most important pest in the La Araucanía Region (38°44'9″S, 72°35'25″W). Due to the poor effectiveness and problems surrounding the implementation of the traditional control methods using organophosphate and carbamate insecticides, new strategies for controlling this pest are needed. In this communication, we evaluated the behavioral responses of male and female A. superciliosus to volatile compounds released from the essential oil (EO) obtained from the heartwood of Pilgerodendron uviferum (D. Don) Florin using olfactometric bioassays. The composition of the EO was analyzed using gas chromatography (GC) and gas chromatography/mass spectrometry (GC/MS). According to these analyses, δ-cadinol (24.16%), cubenol (22.64%), 15-copaenol (15.46%) and δ-cadinene (10.81%) were the principal components of the EO. The Pilgerodendron uviferum EO, which is almost exclusively composed of sesquiterpenes (99.5%), exhibited a repellent effect against A. superciliosus adults, regardless of the sex or concentration used (56.6 mg/cm³ and 1.58 × 10(-2) mg/cm³). The EO has low volatility and greater persistence than the EOs composed of monoterpenes and is considered a good model in the search for raspberry weevil repellents.
Collapse
|
23
|
Contact and Repellent Activities of the Essential Oil from Juniperus formosana against Two Stored Product Insects. Molecules 2016; 21:504. [PMID: 27092485 PMCID: PMC6273697 DOI: 10.3390/molecules21040504] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2016] [Revised: 04/08/2016] [Accepted: 04/12/2016] [Indexed: 11/17/2022] Open
Abstract
The chemical composition of the essential oil from Juniperus formosana leaves and its contact and repellent activities against Tribolium castaneum and Liposcelis bostrychophila adults were investigated. The essential oil of J. formosana leaves was obtained by hydrodistillation and analyzed by GC-MS. A total of 28 components were identified and the main compounds in the essential oil were α-pinene (21.66%), 4-terpineol (11.25%), limonene (11.00%) and β-phellandrene (6.63%). The constituents α-pinene, 4-terpineol and d-limonene were isolated from the essential oil. It was found that the essential oil exhibited contact activity against T. castaneum and L. bostrychophila adults (LD50 = 29.14 μg/adult and 81.50 µg/cm², respectively). The compound 4-terpineol exhibited the strongest contact activity (LD50 = 7.65 μg/adult). In addition, data showed that at 78.63 nL/cm², the essential oil and the three isolated compounds strongly repelled T. castaneum adults. The compounds α-pinene and d-limonene reached the same level (Class V) of repellency as DEET (p = 0.396 and 0.664) against L. bostrychophila at 63.17 nL/cm² after 2 h treatment. The results indicate that the essential oil and the isolated compounds have potential to be developed into natural insecticides and repellents to control insects in stored products.
Collapse
|
24
|
Hieu TT, Choi WS, Kim SI, Wang M, Ahn YJ. Enhanced repellency of binary mixtures of Calophyllum inophyllum nut oil fatty acids or their esters and three terpenoids to Stomoxys calcitrans. PEST MANAGEMENT SCIENCE 2015; 71:1213-1218. [PMID: 25204729 DOI: 10.1002/ps.3904] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2014] [Revised: 08/14/2014] [Accepted: 09/04/2014] [Indexed: 06/03/2023]
Abstract
BACKGROUND An assessment was made of the repellency to female stable flies of tamanu nut oil fatty acids or their esters alone (each 0.5 mg cm(-2) ) or in combination with cuminyl alcohol, cuminaldehyde and α-phellandrene (each 0.25 mg cm(-2) ), using an exposed human hand bioassay. Results were compared with those of synthetic repellent DEET (0.25 mg cm(-2) ). RESULTS Based upon protection time (PT) (time to first bite of stable fly), oleic acid, linoleic acid, methyl oleate or methyl linoleate synergised the repellency of each monoterpenoid and DEET. For example, the binary mixture of oleic acid and cuminyl alcohol (PT 2.05 h) resulted in significantly greater repellency than either oleic acid (0.55 h), cuminyl alcohol (0.70 h) or DEET alone (1.50 h). The binary mixtures of oleic acid and cuminyl alcohol or DEET (PT 2.10 h) did not differ significantly in repellency. The structure-activity relationship indicates that the degree of saturation, the side chain length and the functional group of fatty acids appear to play a role in determining the fatty acid repellency to stable flies. CONCLUSION Mixtures formulated from fatty acid and monoterpenoid could be useful as potential repellents for protecting humans and possibly domestic animals from bites caused by stable fly.
Collapse
Affiliation(s)
- Tran Trung Hieu
- Department of Plant Biotechnology and Biotransformation, Faculty of Biology, Ho Chi Minh City University of Science, Vietnam National University, Ho Chi Minh, Vietnam
| | - Won Sil Choi
- National Instrumentation Centre for Environmental Management, Seoul National University, Seoul, South Korea
| | - Soon-Il Kim
- Nareso Co., Ltd, Bio Venture Valley, Seoul National University, Suwon, Gyeonggi, South Korea
| | - Mo Wang
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Young-Joon Ahn
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
- Department of Agricultural Biotechnology, Seoul National University, Seoul, South Korea
| |
Collapse
|
25
|
Haselton AT, Acevedo A, Kuruvilla J, Werner E, Kiernan J, Dhar P. Repellency of α-pinene against the house fly, Musca domestica. PHYTOCHEMISTRY 2015. [PMID: 26209937 DOI: 10.1016/j.phytochem.2015.07.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Musca domestica L. is a non-biting nuisance fly that is capable of transmitting a large variety of pathogens to humans and non-human animals. Natural compounds and their derivatives, which are often less toxic than entirely synthetic compounds, may be used as repellents against M. domestica as part of comprehensive pest control and disease mitigation programs. This work investigates the repellent properties of the natural compound α-pinene against M. domestica. Adult house flies of both sexes avoided the volatile plant-derived terpenes (1S)-(-)-α-pinene 1 and (1R)-(+)-α-pinene 2 in constant air flow laboratory conditions, with 1 exhibiting a stronger repellent effect. House flies also avoided tarsal contact with filter paper saturated with 1. Furthermore, both 1 and 2 are electrophysiologically active on in situ female house fly antennal preparations. These findings demonstrate that α-pinene exhibits natural baseline repellency against the house fly, elicits a specific physiological response in this fly, and that functional or structural modification of 1 in particular may yield novel fly repellents with desirable properties.
Collapse
Affiliation(s)
- Aaron T Haselton
- Department of Biology, State University of New York at New Paltz, New Paltz, NY 12561, United States.
| | - Angela Acevedo
- Department of Biology, State University of New York at New Paltz, New Paltz, NY 12561, United States
| | - Jacob Kuruvilla
- Department of Biology, State University of New York at New Paltz, New Paltz, NY 12561, United States
| | - Eric Werner
- Department of Biology, State University of New York at New Paltz, New Paltz, NY 12561, United States
| | - Jaydon Kiernan
- Department of Biology, State University of New York at New Paltz, New Paltz, NY 12561, United States
| | - Preeti Dhar
- Department of Chemistry, State University of New York at New Paltz, New Paltz, NY 12561, United States
| |
Collapse
|
26
|
Norris EJ, Gross AD, Dunphy BM, Bessette S, Bartholomay L, Coats JR. Comparison of the Insecticidal Characteristics of Commercially Available Plant Essential Oils Against Aedes aegypti and Anopheles gambiae (Diptera: Culicidae). JOURNAL OF MEDICAL ENTOMOLOGY 2015; 52:993-1002. [PMID: 26336230 DOI: 10.1093/jme/tjv090] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 06/17/2015] [Indexed: 06/05/2023]
Abstract
Aedes aegypti and Anopheles gambiae are two mosquito species that represent significant threats to global public health as vectors of Dengue virus and malaria parasites, respectively. Although mosquito populations have been effectively controlled through the use of synthetic insecticides, the emergence of widespread insecticide-resistance in wild mosquito populations is a strong motivation to explore new insecticidal chemistries. For these studies, Ae. aegypti and An. gambiae were treated with commercially available plant essential oils via topical application. The relative toxicity of each essential oil was determined, as measured by the 24-h LD(50) and percentage knockdown at 1 h, as compared with a variety of synthetic pyrethroids. For Ae. aegypti, the most toxic essential oil (patchouli oil) was ∼1,700-times less toxic than the least toxic synthetic pyrethroid, bifenthrin. For An. gambiae, the most toxic essential oil (patchouli oil) was ∼685-times less toxic than the least toxic synthetic pyrethroid. A wide variety of toxicities were observed among the essential oils screened. Also, plant essential oils were analyzed via gas chromatography/mass spectrometry (GC/MS) to identify the major components in each of the samples screened in this study. While the toxicities of these plant essential oils were demonstrated to be lower than those of the synthetic pyrethroids tested, the large amount of GC/MS data and bioactivity data for each essential oil presented in this study will serve as a valuable resource for future studies exploring the insecticidal quality of plant essential oils.
Collapse
Affiliation(s)
- Edmund J Norris
- Department of Entomology, Iowa State University, Ames, IA 50011
| | - Aaron D Gross
- Department of Entomology, Iowa State University, Ames, IA 50011. Current Address: Emerging Pathogens Institute, University of Florida, Gainesville, FL 32611
| | | | - Steven Bessette
- EcoSMART Technologies Inc., 20 Mansell Court East #375, Roswell, GA 30076
| | - Lyric Bartholomay
- Department of Entomology, Iowa State University, Ames, IA 50011. Current Address: Department of Pathobiological Sciences, University of Wisconsin, Madison, WI 53706
| | - Joel R Coats
- Department of Entomology, Iowa State University, Ames, IA 50011.
| |
Collapse
|
27
|
da Silva JBP, Navarro DMDAF, da Silva AG, Santos GKN, Dutra KA, Moreira DR, Ramos MN, Espíndola JWP, de Oliveira ADT, Brondani DJ, Leite ACL, Hernandes MZ, Pereira VRA, da Rocha LF, de Castro MCAB, de Oliveira BC, Lan Q, Merz KM. Thiosemicarbazones as Aedes aegypti larvicidal. Eur J Med Chem 2015; 100:162-75. [PMID: 26087027 DOI: 10.1016/j.ejmech.2015.04.061] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Revised: 04/28/2015] [Accepted: 04/29/2015] [Indexed: 01/21/2023]
Abstract
A set of aryl- and phenoxymethyl-(thio)semicarbazones were synthetized, characterized and biologically evaluated against the larvae of Aedes aegypti (A. aegypti), the vector responsible for diseases like Dengue and Yellow Fever. (Q)SAR studies were useful for predicting the activities of the compounds not included to create the QSAR model as well as to predict the features of a new compound with improved activity. Docking studies corroborated experimental evidence of AeSCP-2 as a potential target able to explain the larvicidal properties of its compounds. The trend observed between the in silico Docking scores and the in vitro pLC50 (equals -log LC50, at molar concentration) data indicated that the highest larvicidal compounds, or the compounds with the highest values for pLC50, are usually those with the higher docking scores (i.e., greater in silico affinity for the AeSCP-2 target). Determination of cytotoxicity for these compounds in mammal cells demonstrated that the top larvicide compounds are non-toxic.
Collapse
Affiliation(s)
- João Bosco P da Silva
- Departamento de Química Fundamental, Centro de Ciências Exatas e da Natureza, Universidade Federal de Pernambuco, 50670-901, Recife, PE, Brazil.
| | - Daniela Maria do A F Navarro
- Departamento de Química Fundamental, Centro de Ciências Exatas e da Natureza, Universidade Federal de Pernambuco, 50670-901, Recife, PE, Brazil.
| | - Aluizio G da Silva
- Departamento de Química Fundamental, Centro de Ciências Exatas e da Natureza, Universidade Federal de Pernambuco, 50670-901, Recife, PE, Brazil
| | - Geanne K N Santos
- Departamento de Química Fundamental, Centro de Ciências Exatas e da Natureza, Universidade Federal de Pernambuco, 50670-901, Recife, PE, Brazil
| | - Kamilla A Dutra
- Departamento de Química Fundamental, Centro de Ciências Exatas e da Natureza, Universidade Federal de Pernambuco, 50670-901, Recife, PE, Brazil
| | - Diogo Rodrigo Moreira
- Departamento de Química Fundamental, Centro de Ciências Exatas e da Natureza, Universidade Federal de Pernambuco, 50670-901, Recife, PE, Brazil
| | - Mozart N Ramos
- Departamento de Química Fundamental, Centro de Ciências Exatas e da Natureza, Universidade Federal de Pernambuco, 50670-901, Recife, PE, Brazil
| | - José Wanderlan P Espíndola
- Departamento de Ciências Farmacêuticas, Centro de Ciências da Saúde, Universidade Federal de Pernambuco, 50740-521, Recife, PE, Brazil
| | - Ana Daura T de Oliveira
- Departamento de Ciências Farmacêuticas, Centro de Ciências da Saúde, Universidade Federal de Pernambuco, 50740-521, Recife, PE, Brazil
| | - Dalci José Brondani
- Departamento de Ciências Farmacêuticas, Centro de Ciências da Saúde, Universidade Federal de Pernambuco, 50740-521, Recife, PE, Brazil
| | - Ana Cristina L Leite
- Departamento de Ciências Farmacêuticas, Centro de Ciências da Saúde, Universidade Federal de Pernambuco, 50740-521, Recife, PE, Brazil
| | - Marcelo Zaldini Hernandes
- Departamento de Ciências Farmacêuticas, Centro de Ciências da Saúde, Universidade Federal de Pernambuco, 50740-521, Recife, PE, Brazil
| | - Valéria R A Pereira
- Departamento de Imunologia, Centro de Pesquisas Aggeu Magalhães, Fundação Oswaldo Cruz, 50670-420, Recife, PE, Brazil
| | - Lucas F da Rocha
- Departamento de Imunologia, Centro de Pesquisas Aggeu Magalhães, Fundação Oswaldo Cruz, 50670-420, Recife, PE, Brazil
| | - Maria Carolina A B de Castro
- Departamento de Imunologia, Centro de Pesquisas Aggeu Magalhães, Fundação Oswaldo Cruz, 50670-420, Recife, PE, Brazil
| | - Beatriz C de Oliveira
- Departamento de Imunologia, Centro de Pesquisas Aggeu Magalhães, Fundação Oswaldo Cruz, 50670-420, Recife, PE, Brazil
| | - Que Lan
- Department of Entomology, University of Wisconsin-Madison, 1630 Linden Drive, Madison, WI 53706, USA
| | - Kenneth M Merz
- Quantum Theory Project, University of Florida, 2234 New Physics Building, Gainesville, PO Box 118435, Florida, USA
| |
Collapse
|
28
|
Rajeswara Rao B, Adinarayana G, Rajput D, Kumar A, Syamasundar K. Essential oil profiles of different parts of East Indian lemongrass {Cymbopogon flexuosus(Nees ex Steud.) Wats.}. JOURNAL OF ESSENTIAL OIL RESEARCH 2015. [DOI: 10.1080/10412905.2015.1007218] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
29
|
Ali A, Tabanca N, Demirci B, Blythe EK, Ali Z, Baser KHC, Khan IA. Chemical composition and biological activity of four salvia essential oils and individual compounds against two species of mosquitoes. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015; 63:447-56. [PMID: 25531412 DOI: 10.1021/jf504976f] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The chemical compositions of essential oils obtained from four species of genus Salvia were analyzed by gas chromatography with a flame ionization detector (GC-FID) and gas chromatography-mass spectrometry (GC-MS). The main compounds identified from Salvia species essential oils were as follows: 1,8-cineole (71.7%), α-pinene (5.1%), camphor (4.4%), and β-pinene (3.8%) in Salvia apiana; borneol (17.4%), β-eudesmol (10.4%), bornyl acetate (5%), and guaiol (4.8%) in Salvia elegans; bornyl acetate (11.4%), β-caryophyllene (6.5%), caryophyllene oxide (13.5%), and spathulenol (7.0%) in Salvia leucantha; α-thujene (25.8%), viridiflorol (20.4%), β-thujene (5.7%), and camphor (6.4%) in Salvia officinalis. In biting-deterrent bioassays, essential oils of S. leucantha and S. elegans at 10 μg/cm(2) showed activity similar to that of DEET (97%, N, N-diethyl-m-toluamide) in two species of mosquitoes, whereas the activities of S. officinalis and S. apiana essential oils were lower than those of the other oils or DEET. Pure compounds β-eudesmol and guaiol showed biting-deterrent activity similar to DEET at 25 nmol/cm(2), whereas the activity of 13-epi-manool, caryophyllene oxide, borneol, bornyl acetate, and β-caryophyllene was significantly lower than that of β-eudesmol, guaiol, or DEET. All essential oils showed larvicidal activity except that of S. apiana, which was inactive at the highest dose of 125 ppm against both mosquito species. On the basis of 95% CIs, all of the essential oils showed higher toxicity in Anopheles quadrimaculatus than in Aedes aegypti. The essential oil of S. leucantha with an LC50 value of 6.2 ppm showed highest toxicity in An. quadrimaculatus.
Collapse
Affiliation(s)
- Abbas Ali
- National Center for Natural Products Research, The University of Mississippi , University, Mississippi 38677, United States
| | | | | | | | | | | | | |
Collapse
|
30
|
Oliveira FDA, Andrade LN, de Sousa EBV, de Sousa DP. Anti-ulcer activity of essential oil constituents. Molecules 2014; 19:5717-47. [PMID: 24802985 PMCID: PMC6290561 DOI: 10.3390/molecules19055717] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Revised: 04/18/2014] [Accepted: 04/25/2014] [Indexed: 12/14/2022] Open
Abstract
Essential oils have attracted considerable worldwide attention over the last few decades. These natural products have wide-ranging pharmacological activities and biotechnological applications. Faced with the need to find new anti-ulcer agents and the great effort on the development of drugs for the treatment of ulcers, in this review, the anti-ulcer activities of 21 bioactive compounds found in essential oils are discussed.
Collapse
Affiliation(s)
| | - Luciana Nalone Andrade
- Universidade Federal de Sergipe, Departamento de Farmácia, São Cristóvão, SE 49100-000, Brazil
| | | | | |
Collapse
|
31
|
Oliferenko PV, Oliferenko AA, Poda GI, Osolodkin DI, Pillai GG, Bernier UR, Tsikolia M, Agramonte NM, Clark GG, Linthicum KJ, Katritzky AR. Promising Aedes aegypti repellent chemotypes identified through integrated QSAR, virtual screening, synthesis, and bioassay. PLoS One 2013; 8:e64547. [PMID: 24039693 PMCID: PMC3765160 DOI: 10.1371/journal.pone.0064547] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Accepted: 04/15/2013] [Indexed: 11/19/2022] Open
Abstract
Molecular field topology analysis, scaffold hopping, and molecular docking were used as complementary computational tools for the design of repellents for Aedes aegypti, the insect vector for yellow fever, chikungunya, and dengue fever. A large number of analogues were evaluated by virtual screening with Glide molecular docking software. This produced several dozen hits that were either synthesized or procured from commercial sources. Analysis of these compounds by a repellent bioassay resulted in a few highly active chemicals (in terms of minimum effective dosage) as viable candidates for further hit-to-lead and lead optimization effort.
Collapse
Affiliation(s)
- Polina V. Oliferenko
- Department of Chemistry, University of Florida, Gainesville, Florida, United States of America
| | - Alexander A. Oliferenko
- Department of Chemistry, University of Florida, Gainesville, Florida, United States of America
| | - Gennadiy I. Poda
- Medicinal Chemistry Platform, Ontario Institute for Cancer Research, Toronto, Ontario, Canada
| | | | - Girinath G. Pillai
- Department of Chemistry, University of Florida, Gainesville, Florida, United States of America
- Institute of Chemistry, University of Tartu, Tartu, Estonia
| | | | | | | | | | | | - Alan R. Katritzky
- Department of Chemistry, University of Florida, Gainesville, Florida, United States of America
- Chemistry Department, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
32
|
Fabbro SD, Nazzi F. From Chemistry to Behavior. Molecular Structure and Bioactivity of Repellents against Ixodes ricinus Ticks. PLoS One 2013; 8:e67832. [PMID: 23805329 PMCID: PMC3689731 DOI: 10.1371/journal.pone.0067832] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Accepted: 05/22/2013] [Indexed: 11/19/2022] Open
Abstract
Tick-borne zoonoses are considered as emerging diseases. Tick repellents represent an effective tool for reducing the risk of tick bite and pathogens transmission. Previous work demonstrated the repellent activity of the phenylpropanoid eugenol against Ixodes ricinus; here we investigate the relationship between molecular structure and repellency in a group of substances related to that compound. We report the biological activity of 18 compounds varying for the presence/number of several moieties, including hydroxyl and methoxy groups and carbon side-chain. Each compound was tested at different doses with a bioassay designed to measure repellency against individual tick nymphs. Both vapor pressure and chemical features of the tested compounds appeared to be related to repellency. In particular, the hydroxyl and methoxy groups as well as the side-chain on the benzene ring seem to play a role. These results are discussed in light of available data on chemical perception in ticks. In the course of the study new repellent compounds were identified; the biological activity of some of them (at least as effective as the “gold standard” repellent DEET) appears to be very promising from a practical point of view.
Collapse
Affiliation(s)
- Simone Del Fabbro
- Dipartimento di Scienze Agrarie e Ambientali, Università degli Studi di Udine, Udine, Italy
- * E-mail:
| | - Francesco Nazzi
- Dipartimento di Scienze Agrarie e Ambientali, Università degli Studi di Udine, Udine, Italy
| |
Collapse
|
33
|
Tabanca N, Wang M, Avonto C, Chittiboyina AG, Parcher JF, Carroll JF, Kramer M, Khan IA. Bioactivity-guided investigation of geranium essential oils as natural tick repellents. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2013; 61:4101-4107. [PMID: 23528036 DOI: 10.1021/jf400246a] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The evaluation of 10 essential oils of geranium, Pelargonium graveolens (Geraniaceae), were all shown to have repellent activity against nymphs of the medically important lone star tick, Amblyomma americanum (L.). The biological tests were carried out using a vertical filter paper bioassay, where ticks must cross an area of the paper treated with repellent to approach host stimuli. One of the essential oil samples that repelled >90% of the ticks at 0.103 mg/cm(2) was selected for further fractionation studies. The sesquiterpene alcohol, (-)-10-epi-γ-eudesmol, was isolated and identified by spectral methods. (-)-10-epi-γ-Eudesmol at 0.103 and 0.052 mg of compound/cm(2) of filter paper repelled 90 and 73.3% of the ticks, respectively. (-)-10-epi-γ-Eudesmol exhibited similar repellency to the reference standard N,N-diethyl-meta-toluamide (DEET) at concentrations of ≥0.052 mg of compound/cm(2) of filter paper, with (-)-10-epi-γ-eudesmol losing much of its repellency at 0.026 mg of compound/cm(2) and DEET at 0.013 mg of compound/cm(2). Isomenthone and linalool did not repel ticks at the concentrations tested. Most repellents are marketed with much higher concentrations of active ingredient than the concentrations of the natural repellents tested herein; therefore, effective compounds, such as (-)-10-epi-γ-eudesmol, found in geranium oil, have the potential for commercial development.
Collapse
Affiliation(s)
- Nurhayat Tabanca
- National Center for Natural Products Research (NCNPR), and ∥Department of Pharmacognosy, School of Pharmacy, University of Mississippi , University, Mississippi 38677, United States
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Tong F, Coats JR. Quantitative structure-activity relationships of monoterpenoid binding activities to the housefly GABA receptor. PEST MANAGEMENT SCIENCE 2012; 68:1122-1129. [PMID: 22461383 DOI: 10.1002/ps.3280] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2011] [Revised: 01/01/2012] [Accepted: 01/25/2012] [Indexed: 05/31/2023]
Abstract
BACKGROUND Monoterpenoids are a large group of plant secondary metabolites. Many of these naturally occurring compounds have shown good insecticidal potency on pest insects. Previous studies in this laboratory have indicated that some monoterpenoids have positive modulatory effects on insect GABA receptors. In this study, the key properties of monoterpenoids involved in monoterpenoid binding activity at the housefly GABA receptor were determined by developing quantitative structure-activity relationship (QSAR) models, and the relationship between the toxicities of these monoterpenoids and their GABA receptor binding activities was evaluated. RESULTS Two QSAR models were determined for nine monoterpenoids showing significant effects on [³H]-TBOB binding and for nine p-menthane analogs with at least one oxygen atom attached to the ring. The Mulliken charges on certain carbon atoms, the log P value and the total energy showed significant relationships with binding activities to the housefly GABA receptor in these two QSAR models. CONCLUSIONS From the QSAR models, some chemical and structural parameters, including the electronic properties, hydrophobicity and stability of monoterpenoid molecules, were suggested to be strongly involved in binding activities to the housefly GABA receptor. These findings will help to understand the mode of action of these natural insecticides, and provide guidance to predict more monoterpenoid insecticides.
Collapse
Affiliation(s)
- Fan Tong
- Pesticide Toxicology Laboratory, Department of Entomology, Iowa State University, Ames, IA, USA
| | | |
Collapse
|
35
|
Zhao J, Zhang J, Xu B, Wang Z, Cheng J, Zhu G. Design, synthesis, and analysis of the quantitative structure-activity relationships of 4-phenyl-acyl-substituted 3-(2,5-dimethylphenyl)-4-hydroxy-1-azaspiro[4.5]dec-3-ene-2,8-dione derivatives. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2012; 60:4779-87. [PMID: 22531003 DOI: 10.1021/jf3002069] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
A series of 4-phenyl-acyl-substituted 3-(2,5-dimethylphenyl)-4-hydroxy-1-azaspiro[4.5]dec-3-ene-2,8-dione derivatives were designed and synthesized, and their structures were characterized using (1)H NMR (or (13)C NMR), mass spectrometry, and elemental analysis. The bioactivities of the new compounds were evaluated. These compounds exhibited good inhibition activities against bean aphids (Aphis fabae) and carmine spider mite (Tetranychus cinnabarinus), and 4-phenyl acyl esters showed stronger bioactivity than 4-arylesterases and alkyl esters. The results showed that compound 8-I-e, which contains a para-methoxy group on the phenyl acyl, and compound 8-I-m, which contains a para-trifluoromethyl group on the phenyl acyl, displayed potent insecticidal activity against A. fabae and T. cinnabarinus respectively. The insecticidal activity showed a clear structure-activity relationship, confirming the importance of the flexible bridge. The DFT/B3LYP/6-31(d) level method was used to calculate molecular geometries and electronic descriptors. These factors included total energy, charge distribution, and the linear orbital level of the title compounds. Quantitative structure-activity relationship studies were performed on these compounds using quantum-chemical and physicochemical parameters as independent variables and insecticidal activity as a dependent variable. Insecticidal activity was most closely correlated (r > 0.8) with quantum chemical and physicochemical parameters.
Collapse
Affiliation(s)
- Jinhao Zhao
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Pesticide and Environment Toxicology, Zhejiang University, Hangzhou 310029, China.
| | | | | | | | | | | |
Collapse
|
36
|
Bioactive Natural Products as Potential Candidates to Control Aedes aegypti, the Vector of Dengue. STUDIES IN NATURAL PRODUCTS CHEMISTRY VOLUME 37 2012. [DOI: 10.1016/b978-0-444-59514-0.00010-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
37
|
Snyder JC, Antonious GF, Thacker R. A sensitive bioassay for spider mite (Tetranychus urticae) repellency: a double bond makes a difference. EXPERIMENTAL & APPLIED ACAROLOGY 2011; 55:215-224. [PMID: 21761225 DOI: 10.1007/s10493-011-9472-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2011] [Accepted: 06/24/2011] [Indexed: 05/31/2023]
Abstract
Choice bioassays were used to determine repellency of homologous n-alkanes (C(8)H(18)-C(21)H(44)) to spider mites. When tested at 400 μg/cm(2), the C(15)-C(19) alkanes were highly repellent; the C(16) n-alkane, n-hexadecane, was most repellent. Subsequently the EC(50) values, the concentration at which 50% of the mites were repelled, were determined for the C(15)-C(19) n-alkanes and their analogous 1-n-alkenes (C(15)H(30)-C(19)H(38)). The EC(50) value for 1-heptadecene, the C(17) 1-n-alkene, was the lowest observed. Except for the 17-carbon hydrocarbons, the EC(50) values for the n-alkanes were less than those for their analogous 1-n-alkenes. Depending on the compounds evaluated, there was as much as a six-fold difference of repellency between an n-alkane its analogous 1-n-alkene. Thus, the bioassay has sufficient sensitivity to detect behavioral differences associated with the presence or absence of a single double bond. The EC(50) values for the most repellent hydrocarbons were similar to that reported for 2,3-dihydrofarnesoic acid, a naturally occurring repellent isolated from trichome secretions of a wild tomato, Solanum habrochaites, and also were similar to concentrations used to evaluate arthropod repellents. Consequently, this bioassay may be useful for providing a better understanding of the relationships between structures and activities of natural products that are repellent to spider mites.
Collapse
Affiliation(s)
- John C Snyder
- Department of Horticulture, N318 Ag. Sci. N., University of Kentucky, Lexington, KY 40546-0091, USA.
| | | | | |
Collapse
|
38
|
Mathew J, Thoppil JE. Chemical composition and mosquito larvicidal activities of Salvia essential oils. PHARMACEUTICAL BIOLOGY 2011; 49:456-463. [PMID: 21284539 DOI: 10.3109/13880209.2010.523427] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
CONTEXT Vector control is facing a threat due to the emergence of resistance to synthetic insecticides. In this context, essential oils have received much attention as potentially useful bioactive compounds against insects. Therefore, our present study aimed to evaluate the efficacy of essential oils from the aerial parts of Salvia elegans Vahl, Salvia dorisiana Standl., Salvia splendens Sello ex J.A. Schult Blue Ribbon, and S. splendens Sello ex J.A. Schult Scarlet Sage Red (Lamiaceae) against the fourth instar larvae of Aedes albopictus Skuse (Diptera: Culicidae). OBJECTIVE The mosquito larvicidal activities of the essential oils and chemical composition of four taxa of Salvia are investigated in this article for the first time. MATERIALS AND METHODS Chemical compositions of essential oils obtained from four taxa of Salvia were analyzed by gas chromatography-mass spectrometry (GC-MS), GC-FID, and the effects of essential oils on fourth instar larvae of A. albopictus were investigated. RESULTS The main components identified from each Salvia essential oils were as follows: spathulenol (38.73%) and caryophyllene (10.32%) from S. elegans; ledol (45.8%) and 4,4'-[(p-phenylene)diisopropylidene]diphenol (17.38%) from S. dorisiana; β-cubebene (22.9%), and caryophyllene (12.99%) from S. splendens Blue Ribbon; phytol (41.46%) and cyclooctasulfur (24.88%) from S. splendens Scarlet Sage Red. The essential oils of S. elegans and S. splendens Blue Ribbon had excellent inhibitory larvicidal effect against A. albopictus larvae, and their LC(50) values in 24 h were 46.4 ppm (LC(90) = 121.8 ppm) and 59.2 ppm (LC(90) = 133.0 ppm), respectively. DISCUSSION AND CONCLUSION These findings demonstrate that the essential oils of these Salvia species could be considered as the powerful candidates to bring about useful botanicals so as to prevent the resurgence of mosquito vectors.
Collapse
Affiliation(s)
- Jija Mathew
- Cell and Molecular Biology Division, Department of Botany, University of Calicut, Calicut, Kerala, India
| | | |
Collapse
|
39
|
Abstract
Plant-based repellents have been used for generations in traditional practice as a personal protection measure against host-seeking mosquitoes. Knowledge on traditional repellent plants obtained through ethnobotanical studies is a valuable resource for the development of new natural products. Recently, commercial repellent products containing plant-based ingredients have gained increasing popularity among consumers, as these are commonly perceived as "safe" in comparison to long-established synthetic repellents although this is sometimes a misconception. To date insufficient studies have followed standard WHO Pesticide Evaluation Scheme guidelines for repellent testing. There is a need for further standardized studies in order to better evaluate repellent compounds and develop new products that offer high repellency as well as good consumer safety. This paper presents a summary of recent information on testing, efficacy and safety of plant-based repellents as well as promising new developments in the field.
Collapse
Affiliation(s)
- Marta Ferreira Maia
- Disease Control Department, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK
| | | |
Collapse
|
40
|
Abstract
Plant-based repellents have been used for generations in traditional practice as a personal protection measure against host-seeking mosquitoes. Knowledge on traditional repellent plants obtained through ethnobotanical studies is a valuable resource for the development of new natural products. Recently, commercial repellent products containing plant-based ingredients have gained increasing popularity among consumers, as these are commonly perceived as "safe" in comparison to long-established synthetic repellents although this is sometimes a misconception. To date insufficient studies have followed standard WHO Pesticide Evaluation Scheme guidelines for repellent testing. There is a need for further standardized studies in order to better evaluate repellent compounds and develop new products that offer high repellency as well as good consumer safety. This paper presents a summary of recent information on testing, efficacy and safety of plant-based repellents as well as promising new developments in the field.
Collapse
Affiliation(s)
- Marta Ferreira Maia
- Disease Control Department, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK
- Biomedical and Environmental Thematic Group, Ifakara Health Institute, Ifakara, Morogoro, Tanzania
| | - Sarah J Moore
- Disease Control Department, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK
- Biomedical and Environmental Thematic Group, Ifakara Health Institute, Ifakara, Morogoro, Tanzania
| |
Collapse
|
41
|
Paluch G, Bartholomay L, Coats J. Mosquito repellents: a review of chemical structure diversity and olfaction. PEST MANAGEMENT SCIENCE 2010; 66:925-935. [PMID: 20623705 DOI: 10.1002/ps.1974] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Research on mosquito chemical repellents continues to advance, along with knowledge of mosquito olfaction and behavior, mosquito-host interactions and chemical structure. New tools and technologies have revealed information about insect olfactory mechanisms and processing, providing a more complex approach for the interpretation of how chemical repellents influence host-seeking and feeding behavior. Even with these advances, there is still a large amount of information contained in the early works on insect repellents. Many of the standard test methods and chemicals that are still used for evaluating active repellents were developed in the 1940s. These studies contain valuable references to the activity of different structural classes of chemicals, and serve as a guide to optimization of select compounds for insect repellency effects.
Collapse
Affiliation(s)
- Gretchen Paluch
- Department of Entomology, Iowa State University, Ames, IA 50011, USA
| | | | | |
Collapse
|
42
|
Carroll JF, Paluch G, Coats J, Kramer M. Elemol and amyris oil repel the ticks Ixodes scapularis and Amblyomma americanum (Acari: Ixodidae) in laboratory bioassays. EXPERIMENTAL & APPLIED ACAROLOGY 2010; 51:383-392. [PMID: 20016930 DOI: 10.1007/s10493-009-9329-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2009] [Accepted: 11/24/2009] [Indexed: 05/28/2023]
Abstract
The essential oil from Amyris balsamifera (Rutaceae) and elemol, a principal constituent of the essential oil of Osage orange, Maclura pomifera (Moraceae) were evaluated in in vitro and in vivo laboratory bioassays for repellent activity against host-seeking nymphs of the blacklegged tick, Ixodes scapularis, and the lone star tick, Amblyomma americanum. Both bioassays took advantage of the tendency of these host-seeking ticks to climb slender vertical surfaces. In one bioassay, the central portion of a vertical strip of filter paper was treated with test solution and ticks placed or allowed to crawl onto the untreated lower portion. In the other bioassay, a strip of organdy cloth treated with test solution was doubly wrapped (treatment on outer layer) around the middle phalanx of a forefinger and ticks released on the fingertip. Both amyris oil and elemol were repellent to both species of ticks. Elemol did not differ significantly in effectiveness against A. americanum from the widely used repellent deet. At 2 and 4 h after application to filter paper, 827 microg amyris oil/cm(2) paper repelled 80 and 55%, respectively, of A. americanum nymphs. Ixodes scapularis was repelled by lower concentrations of amyris oil and elemol than A. americanum.
Collapse
Affiliation(s)
- J F Carroll
- USDA, ARS, Beltsville Agricultural Research Center, Beltsville, MD 20705, USA.
| | | | | | | |
Collapse
|
43
|
|