1
|
Yue 岳珂 K, Cao 曹芹芹 QQ, Shaukat A, Zhang 张才 C, Huang 黄淑成 SC. Insights into the evaluation, influential factors and improvement strategies for poultry meat quality: a review. NPJ Sci Food 2024; 8:62. [PMID: 39251637 PMCID: PMC11385947 DOI: 10.1038/s41538-024-00306-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 08/29/2024] [Indexed: 09/11/2024] Open
Abstract
Poultry meat, an essential source of animal protein, requires stringent safety and quality measures to address public health concerns and growing international attention. This review examines both direct and indirect factors that compromise poultry meat quality in intensive farming systems. It highlights the integration of rapid and micro-testing with traditional methods to assess meat safety. The paper advocates for adopting probiotics, prebiotics, and plant extracts to improve poultry meat quality.
Collapse
Affiliation(s)
- Ke Yue 岳珂
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China
| | - Qin-Qin Cao 曹芹芹
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225000, China
| | - Aftab Shaukat
- National Center for International Research on Animal Genetics Breeding and Reproduction (NCIRAGBR), Huazhong Agricultural University, Wuhan, 430070, China
| | - Cai Zhang 张才
- Henan International Joint Laboratory of Animal Welfare and Health Breeding, Henan University of Science and Technology, Luoyang, 471023, China
| | - Shu-Cheng Huang 黄淑成
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China.
| |
Collapse
|
2
|
Lai H, Ming P, Wu M, Wang S, Sun D, Zhai H. An electrochemical aptasensor based on P-Ce-MOF@MWCNTs as signal amplification strategy for highly sensitive detection of zearalenone. Food Chem 2023; 423:136331. [PMID: 37182496 DOI: 10.1016/j.foodchem.2023.136331] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 04/22/2023] [Accepted: 05/05/2023] [Indexed: 05/16/2023]
Abstract
In this research, a signal-off electrochemical aptasensor with high sensitivity was constructed for trace detection of zearalenone (ZEN). Specifically, Ce-based metal-organic framework and multi-walled carbon nanotubes nanocomposite was functionalized with polyethyleneimine (P-Ce-MOF@MWCNTs) and served as sensing platform for its high surface area and excellent electrochemical active. Subsequently, toluidine blue (TB) was electrodeposited as the signal probe, and platinum@gold nanoparticles (Pt@Au) were dropped for the attachment of aptamer (ZEA). In the presence of ZEN, the ZEA would specifically recognize and combine with the target, causing a decrease of electrochemical signal from TB. Under the optimal conditions, the aptasensor exhibited good linear relationship for ZEN in a concentration range from 5.0 × 10-5 to 50.0 ng/mL, while the limit of detection (LOD, S/N = 3) and limit of quantitation (LOQ, S/N = 10) were 1.0 × 10-5 ng/mL and 2.9 × 10-5 ng/mL, respectively. Ultimately, the aptasensor was successfully applied into ZEN detection in semen coicis real samples.
Collapse
Affiliation(s)
- Haohong Lai
- College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Pingtao Ming
- College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Maoqiang Wu
- College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Shumei Wang
- College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China; Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| | - Duanping Sun
- Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Haiyun Zhai
- College of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| |
Collapse
|
3
|
Cai P, Feng N, Zou H, Gu J, Liu X, Liu Z, Yuan Y, Bian J. Zearalenone damages the male reproductive system of rats by destroying testicular focal adhesion. ENVIRONMENTAL TOXICOLOGY 2023; 38:278-288. [PMID: 36288102 DOI: 10.1002/tox.23694] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 10/04/2022] [Accepted: 10/13/2022] [Indexed: 06/16/2023]
Abstract
Zearalenone (ZEA), a common mycotoxin in animal feed, is harmful to public health and causes huge economic losses. The potential target proteins of ZEA and its derivatives were screened using the PharmMapper database and the related genes (proteins) of the testis were obtained from Genecards. We obtained 144 potential targets of ZEA and its derivatives related to the testis using Venn diagrams. The PPI analysis showed that ZEA had the most targets in testis, followed by ZAN, α-ZAL, β-ZEL, α-ZEL, and β-ZAL. Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) analyses evaluated the metabolic and cancer pathways. We further screened four hub genes: RAC3, CCND1, EP300, and CTNNB1. Eight key biological processes were obtained by GO analysis, and four important pathways were identified by KEGG analysis. Animal and cell experimental results confirmed that ZEA could inhibit the expression of four key KEGG pathway protein components and four hub proteins that interfere with cell adhesion by inhibiting the focal adhesion structure of the testis, Leydig cells, and Sertoli cells. Collectively, our findings reveal that the destruction of the focal adhesion structure in the testis is the mechanism through which ZEA damages the male reproductive system.
Collapse
Affiliation(s)
- Peirong Cai
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Nannan Feng
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Hui Zou
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Jianhong Gu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Xuezhong Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Zongping Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Yan Yuan
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Jianchun Bian
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, China
| |
Collapse
|
4
|
Qing H, Huang S, Zhan K, Zhao L, Zhang J, Ji C, Ma Q. Combined Toxicity Evaluation of Ochratoxin A and Aflatoxin B1 on Kidney and Liver Injury, Immune Inflammation, and Gut Microbiota Alteration Through Pair-Feeding Pullet Model. Front Immunol 2022; 13:920147. [PMID: 35967406 PMCID: PMC9373725 DOI: 10.3389/fimmu.2022.920147] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 06/13/2022] [Indexed: 12/13/2022] Open
Abstract
Ochratoxin A (OTA) and aflatoxin B1 (AFB1) are often co-contaminated, but their synergistic toxicity in poultry is limitedly described. Furthermore, the traditional ad libitum feeding model may fail to distinguish the specific impact of mycotoxins on the biomarkers and the indirect effect of mildew on the palatability of feed. A pair-feeding model was introduced to investigate the specific effect and the indirect effect of the combined toxicity of OTA and AFB1, which were independent and dependent on feed intake, respectively. A total of 180 one-day-old pullets were randomly divided into 3 groups with 6 replicates, and each replicate contained 10 chicks. The control group (Group A) and the pair-feeding group (Group B) received the basal diet without mycotoxin contamination. Group C was administrated with OTA- and AFB1-contaminated feed (101.41 μg/kg of OTA + 20.10 μg/kg of AFB1). The scale of feeding in Group B matched with the feed intake of Group C. The trial lasted 42 days. Compared with the control group, co-contamination of OTA and AFB1 in feed could adversely affect the growth performance (average daily feed intake (ADFI), body weight (BW), average daily weight gain (ADG), feed conversion ratio (FCR), and shank length (SL)), decrease the relative weight of the spleen (p < 0.01), and increase the relative weight of the kidney (p < 0.01). Moreover, the reduction of feed intake could also adversely affect the growth performance (BW, ADG, and SL), but not as severely as mycotoxins do. Apart from that, OTA and AFB1 also activated the antioxidative and inflammation reactions of chicks, increasing the level of catalase (CAT), reactive oxygen species (ROS), and interleukin-8 (IL-8) while decreasing the level of IL-10 (p < 0.01), which was weakly influenced by the feed intake reduction. In addition, OTA and AFB1 induced histopathological changes and apoptosis in the kidney and liver as well as stimulated the growth of pernicious bacteria to cause toxic effects. There were no histopathological changes and apoptosis in the kidney and liver of the pair-feeding group. The combined toxicity of OTA and AFB1 had more severe effects on pullets than merely reducing feed supply. However, the proper reduction of the feed intake could improve pullets’ physical health by enriching the bacteria Lactobacillus, Phascolarctobacterium, Bacteroides, Parabacteroides, and Barnesiella.
Collapse
Affiliation(s)
- Hanrui Qing
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Shimeng Huang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Kai Zhan
- Anhui Province Key Laboratory of Livestock and Poultry Product Safety Engineering, Anhui Academy of Agricultural Sciences, Hefei, China
| | - Lihong Zhao
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Jianyun Zhang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Cheng Ji
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Qiugang Ma
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
- *Correspondence: Qiugang Ma,
| |
Collapse
|
5
|
Zhou J, Zhao L, Huang S, Liu Q, Ao X, Lei Y, Ji C, Ma Q. Zearalenone toxicosis on reproduction as estrogen receptor selective modulator and alleviation of zearalenone biodegradative agent in pregnant sows. J Anim Sci Biotechnol 2022; 13:36. [PMID: 35382876 PMCID: PMC8985363 DOI: 10.1186/s40104-022-00686-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 02/04/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Zearalenone (ZEA) is a resorcylic acid lactone derivative derived from various Fusarium species that are widely found in food and feeds. The molecular structure of ZEA resembles that of the mammalian hormone 17β-oestradiol, thus zearalenone and its metabolites are known to compete with endogenous hormones for estrogen receptors binding sites and to activate transcription of oestrogen-responsive genes. However, the effect of long-term low-dose ZEA exposure on the reproductive response to Bacillus subtilis ANSB01G culture for first-parity gilts has not yet been investigated. This study was conducted to investigate the toxic effects of ZEA as an estrogen receptor selective modulator and the alleviating effects of Bacillus subtilis ANSB01G cultures as ZEA biodegraders in pregnant sows during their first parity. RESULTS A total of 80 first-parity gilts (Yorkshire × Landrace) were randomly assigned to four dietary treatments during gestation: CO (positive control); MO (negative control, 246 μg ZEA/kg diet); COA (CO + B. subtilis ANSB01G culture with 2 × 109 CFU/kg diet); MOA (MO + B. subtilis ANSB01G culture with 2 × 109 CFU/kg diet). There were 20 replications per treatment with one gilt per replicate. Feeding low-dose ZEA naturally contaminated diets disordered most of reproductive hormones secretion and affected estrogen receptor-α and estrogen receptor-β concentrations in serum and specific organs and led to moderate histopathological changes of gilts, but did not cause significant detrimental effects on reproductive performance. The addition of Bacillus subtilis ANSB01G culture to the diet can effectively relieve the competence of ZEA to estrogen receptor and the disturbance of reproductive hormones secretion, and then ameliorate toxicosis of ZEA in gilts. CONCLUSIONS Collectively, our study investigated the effects of feeding low-dose ZEA on reproduction in pregnant sows during their first parity. Feeding low-dose ZEA could modulate estrogen receptor-α and -β concentrations in specific organs, cause disturbance of reproductive hormones and vulva swelling, and damage organ histopathology and up-regulate apoptosis in sow models. Diet with Bacillus subtilis ANSB01G alleviated negative effects of the ZEA on gilts to some extent.
Collapse
Affiliation(s)
- Jianchuan Zhou
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China.,Sichuan tieqilishi Food Co., Ltd, Mianyang, 610000, Sichuan province, China
| | - Lihong Zhao
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Shimeng Huang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Qingxiu Liu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Xiang Ao
- Sichuan tieqilishi Food Co., Ltd, Mianyang, 610000, Sichuan province, China
| | - Yuanpei Lei
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Cheng Ji
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Qiugang Ma
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
6
|
Shen W, Liu Y, Zhang X, Zhang X, Rong X, Zhao L, Ji C, Lei Y, Li F, Chen J, Ma Q. Comparison of Ameliorative Effects between Probiotic and Biodegradable Bacillus subtilis on Zearalenone Toxicosis in Gilts. Toxins (Basel) 2021; 13:toxins13120882. [PMID: 34941719 PMCID: PMC8703852 DOI: 10.3390/toxins13120882] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 11/30/2021] [Accepted: 12/08/2021] [Indexed: 12/03/2022] Open
Abstract
This study was conducted to compare the potential ameliorative effects between probiotic Bacillus subtilis and biodegradable Bacillus subtilis on zearalenone (ZEN) toxicosis in gilts. Thirty-six Landrace×Yorkshire gilts (average BW = 64 kg) were randomly divided into four groups: (1) Normal control diet group (NC) fed the basal diet containing few ZEN (17.5 μg/kg); (2) ZEN contaminated group (ZC) fed the contaminated diet containing an exceeded limit dose of ZEN (about 300 μg/kg); (3) Probiotic agent group (PB) fed the ZC diet with added 5 × 109 CFU/kg of probiotic Bacillus subtilis ANSB010; (4) Biodegradable agent group (DA) fed the ZC diet with added 5 × 109 CFU/kg of biodegradable Bacillus subtilis ANSB01G. Results showed that Bacillus subtilis ANSB010 and ANSB01G isolated from broiler intestinal chyme had similar inhibitory activities against common pathogenic bacteria. In addition, the feed conversion ratio and the vulva size in DA group were significantly lower than ZC group (p < 0.05). The levels of IgG, IgM, IL-2 and TNFα in the ZC group were significantly higher than PB and DA groups (p < 0.05). The levels of estradiol and prolactin in the ZC group was significantly higher than those of the NC and DA groups (p < 0.05). Additionally, the residual ZEN in the feces of the ZC and PB groups were higher than those of the NC and DA groups (p < 0.05). In summary, the ZEN-contaminated diet had a damaging impact on growth performance, plasma immune function and hormone secretion of gilts. Although probiotic and biodegradable Bacillus subtilis have similar antimicrobial capacities, only biodegradable Bacillus subtilis could eliminate these negative effects through its biodegradable property to ZEN.
Collapse
Affiliation(s)
- Wenqiang Shen
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing 100193, China; (W.S.); (Y.L.); (X.Z.); (X.Z.); (X.R.); (L.Z.); (C.J.); (Y.L.)
| | - Yaojun Liu
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing 100193, China; (W.S.); (Y.L.); (X.Z.); (X.Z.); (X.R.); (L.Z.); (C.J.); (Y.L.)
| | - Xinyue Zhang
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing 100193, China; (W.S.); (Y.L.); (X.Z.); (X.Z.); (X.R.); (L.Z.); (C.J.); (Y.L.)
| | - Xiong Zhang
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing 100193, China; (W.S.); (Y.L.); (X.Z.); (X.Z.); (X.R.); (L.Z.); (C.J.); (Y.L.)
| | - Xiaoping Rong
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing 100193, China; (W.S.); (Y.L.); (X.Z.); (X.Z.); (X.R.); (L.Z.); (C.J.); (Y.L.)
| | - Lihong Zhao
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing 100193, China; (W.S.); (Y.L.); (X.Z.); (X.Z.); (X.R.); (L.Z.); (C.J.); (Y.L.)
| | - Cheng Ji
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing 100193, China; (W.S.); (Y.L.); (X.Z.); (X.Z.); (X.R.); (L.Z.); (C.J.); (Y.L.)
| | - Yuanpei Lei
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing 100193, China; (W.S.); (Y.L.); (X.Z.); (X.Z.); (X.R.); (L.Z.); (C.J.); (Y.L.)
| | - Fengjuan Li
- FuQing Fengze Agricultural Science and Technology Development Co., Ltd., Fuzhou 350011, China; (F.L.); (J.C.)
| | - Jing Chen
- FuQing Fengze Agricultural Science and Technology Development Co., Ltd., Fuzhou 350011, China; (F.L.); (J.C.)
| | - Qiugang Ma
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing 100193, China; (W.S.); (Y.L.); (X.Z.); (X.Z.); (X.R.); (L.Z.); (C.J.); (Y.L.)
- Correspondence:
| |
Collapse
|
7
|
Chen R, Sun Y, Huo B, Mao Z, Wang X, Li S, Lu R, Li S, Liang J, Gao Z. Development of Fe 3O 4@Au nanoparticles coupled to Au@Ag core-shell nanoparticles for the sensitive detection of zearalenone. Anal Chim Acta 2021; 1180:338888. [PMID: 34538331 DOI: 10.1016/j.aca.2021.338888] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 07/23/2021] [Accepted: 07/24/2021] [Indexed: 11/29/2022]
Abstract
Agricultural products are frequently contaminated by mycotoxins; thus, the accurate detection of mycotoxins is important to food safety. Zearalenone (ZEN), a mycotoxin produced by certain Fusarium and Gibberella species, is a group III carcinogen. We developed a universal surface-enhanced Raman scattering (SERS) aptasensor for the detection of ZEN. The SERS biosensor consists of two functional nanomaterials: sulfhydryl (SH)-ZEN aptamer complementary DNA-modified Fe3O4@Au was used as a capture probe and SH-ZEN aptamer-modified Au@Ag core-shell nanoparticles served as reporter probes. In the absence of ZEN, the highest Raman signal was obtained owing to the SERS effects of Fe3O4@Au and Au@Ag core-shell nanoparticles. Conversely, the addition of ZEN triggered the release of Au@Ag core-shell nanoparticles from Fe3O4@Au, leading to a decrease in SERS intensity after magnetic separation. Hybridization of the ZEN aptamer and its complementary strand generated a strong SERS signal from the reporter probe. Moreover, preferential binding of the ZEN aptamer to ZEN was observed. The signal intensity in SERS decreased linearly when the capture probes released the reporter. For ZEN detection, a linear range from 0.005 to 500 ng mL-1, with an R2 of 0.9981, was obtained. The detection limit was 0.001 ng mL-1. The SERS aptasensor showed excellent performance for analytical applications with real-world samples (beer and wine). This study presents a new model for the detection of mycotoxins based on simple changes in aptamers.
Collapse
Affiliation(s)
- Ruipeng Chen
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin, 300457, China; Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China
| | - Yunfeng Sun
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin, 300457, China
| | - Bingyang Huo
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, China
| | - Zefeng Mao
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin, 300457, China; Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China
| | - Xiaojuan Wang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin, 300457, China; Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China
| | - Shiyu Li
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin, 300457, China; Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China
| | - Ran Lu
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin, 300457, China; Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China
| | - Shuang Li
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China
| | - Jun Liang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin, 300457, China.
| | - Zhixian Gao
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, 300050, China.
| |
Collapse
|
8
|
Guo Y, Huo X, Zhao L, Ma Q, Zhang J, Ji C, Zhao L. Protective Effects of Bacillus subtilis ANSB060, Bacillus subtilis ANSB01G, and Devosia sp. ANSB714-Based Mycotoxin Biodegradation Agent on Mice Fed with Naturally moldy Diets. Probiotics Antimicrob Proteins 2021; 12:994-1001. [PMID: 31721071 DOI: 10.1007/s12602-019-09606-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Mycotoxins are toxic secondary metabolites produced by toxigenic fungi that commonly contaminate agricultural crops. The purpose of the current study was to evaluate whether Bacillus subtilis ANSB060, Bacillus subtilis ANSB01G, and Devosia sp. ANSB714-based mycotoxin biodegradation agent (MBA) could alleviate the negative effects of naturally moldy diet containing aflatoxin (AF), zearalenone (ZEN), and deoxynivalenol (DON) on growth performance, serum immune function, and antioxidant capacity as well as tissue residues in mice. A total of 54 mice were randomly divided into three dietary treatments: basal diet (CON), multi-mycotoxins contaminated diet (MCD) containing AF, ZEN and DON and multi-mycotoxins contaminated diet plus MBA at a dose of 1.0 g kg-1 feed (MCD + MBA). Mice fed with moldy diet showed a significant decrease in body weight gain (p < 0.05), whereas the relative weight of the liver, spleen and uterus were remarkably increased (p < 0.05). Serum IgA and IgM contents were significantly decreased in MCD treatment compared with that in CON treatment (p < 0.05). In contrast, serum interleukin-1β (IL-1β), interleukin-2 (IL-2), and interleukin-6 (IL-6) concentrations were significantly promoted in mice fed with moldy diet (p < 0.05). Besides, the exposure to mycotoxins caused marked down-regulation of serum superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) activities in mice (p < 0.05). The addition of MBA effectively counteracted these toxic effects of moldy diet on mice. And DON residues in kidneys of mice consuming moldy diet were eliminated by the supplementation with MBA. Taken together, Bacillus subtilis ANSB060, Bacillus subtilis ANSB01G, and Devosia sp. ANSB714-based mycotoxin biodegradation agent has great potential use as a microbial additive to counteract mycotoxins contamination in food and feed.
Collapse
Affiliation(s)
- Yongpeng Guo
- College of Animal Science and Technology, State Key Laboratory of Animal Nutrition, China Agricultural University, 100193, Beijing, People's Republic of China
| | - Xueting Huo
- College of Animal Science and Technology, State Key Laboratory of Animal Nutrition, China Agricultural University, 100193, Beijing, People's Republic of China
| | - Lihua Zhao
- College of Animal Science and Technology, National Engineering Laboratory for Animal Breeding, China Agricultural University, 100193, Beijing, People's Republic of China
| | - Qiugang Ma
- College of Animal Science and Technology, State Key Laboratory of Animal Nutrition, China Agricultural University, 100193, Beijing, People's Republic of China
| | - Jianyun Zhang
- College of Animal Science and Technology, State Key Laboratory of Animal Nutrition, China Agricultural University, 100193, Beijing, People's Republic of China
| | - Cheng Ji
- College of Animal Science and Technology, State Key Laboratory of Animal Nutrition, China Agricultural University, 100193, Beijing, People's Republic of China
| | - Lihong Zhao
- College of Animal Science and Technology, State Key Laboratory of Animal Nutrition, China Agricultural University, 100193, Beijing, People's Republic of China.
| |
Collapse
|
9
|
Palade LM, Dore MI, Marin DE, Rotar MC, Taranu I. Assessment of Food By-Products' Potential for Simultaneous Binding of Aflatoxin B1 and Zearalenone. Toxins (Basel) 2020; 13:2. [PMID: 33374968 PMCID: PMC7822050 DOI: 10.3390/toxins13010002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 11/26/2020] [Accepted: 12/18/2020] [Indexed: 11/24/2022] Open
Abstract
In this study, eight food by-products were investigated as biosorbent approaches in removing mycotoxin load towards potential dietary inclusion in animal feed. Among these food-derived by-products, grape seed (GSM) and seabuckthorn (SBM) meals showed the most promising binding capacity for Aflatoxin B1 (AFB1) and Zearalenone (ZEA), measured as percent of adsorbed mycotoxin. Furthermore, we explored the mycotoxin sequestering potential by screening the effect of time, concentration, temperature and pH. Comparative binding efficacy was addressed by carrying out adsorption experiments in vitro. The highest mycotoxin adsorption was attained using 30 mg of by-product for both GSM (85.9% AFB1 and 83.7% ZEA) and SBM (68% AFB1 and 84.5% ZEA). Optimal settings for the experimental factors were predicted employing the response surface design. GSM was estimated to adsorb AFB1 optimally at a concentration of 29 mg/mL, pH 5.95 and 33.6 °C, and ZEA using 28 mg/mL at pH 5.76 and 31.7 °C. Favorable adsorption of AFB1 was estimated at 37.5 mg of SBM (pH 8.1; 35.6 °C), and of ZEA at 30.2 mg of SBM (pH 5.6; 29.3 °C). Overall, GSM revealed a higher binding capacity compared with SBM. In addition, the two by-products showed different specificity for the binary-mycotoxin system, with SBM having higher affinity towards ZEA than AFB1 (Kf = 0.418 and 1/n = 0.213 vs. Kf = 0.217 and 1/n = 0.341) and GSM for AFB1 in comparison with ZEA (Kf = 0.367 and 1/n = 0.248 vs. Kf = 0.343 and 1/n = 0.264). In conclusion, this study suggests that GSM and SBM represent viable alternatives to commercial biosorbent products.
Collapse
Affiliation(s)
- Laurentiu Mihai Palade
- National Research Development Institute for Animal Biology and Nutrition, 077015 IBNA Balotesti, Romania; (M.I.D.); (D.E.M.); (M.C.R.); (I.T.)
| | | | | | | | | |
Collapse
|
10
|
Aptamer-based ratiometric fluorescent nanoprobe for specific and visual detection of zearalenone. Microchem J 2020. [DOI: 10.1016/j.microc.2020.104943] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
11
|
Bacillus subtilis ANSB01G culture alleviates oxidative stress and cell apoptosis induced by dietary zearalenone in first-parity gestation sows. ACTA ACUST UNITED AC 2020; 6:372-378. [PMID: 33005771 PMCID: PMC7503068 DOI: 10.1016/j.aninu.2020.03.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 03/01/2020] [Accepted: 03/27/2020] [Indexed: 11/21/2022]
Abstract
This study was conducted to evaluate the alleviation of Bacillus subtilis ANSB01G culture as zearalenone (ZEA) biodegradation agent on oxidative stress, cell apoptosis and fecal ZEA residue in the first parity gestation sows during the gestation. A total of 80 first-parity gilts (Yorkshire × Landrace) were randomly allocated to 4 dietary treatments with 20 replications per treatment and one gilt per replicate. The dietary treatments were as follows: CO (positive control); MO (negative control, ZEA level at 246 μg/kg diet); COA (CO + B. subtilis ANSB01G culture with 2 × 109 CFU/kg diet); MOA (MO + ZEA level at 260 μg/kg diet + B. subtilis ANSB01G culture with 2 × 109 CFU/kg diet). The experiment lasted for the whole gestation period of sows. Results showed that feeding the diet naturally contaminated with low-dose ZEA caused an increase of cell apoptosis in organ and the residual ZEA in feces as well as a decrease of antioxidant function in serum. The addition of B. subtilis ANSB01G culture in the diets can effectively alleviate the status of oxidative stress and cell apoptosis induced by ZEA in diets of gestation sows, as well as decrease the content of residual ZEA in feces.
Collapse
|
12
|
Wang X, Jiang L, Shi L, Yao K, Sun X, Yang G, Jiang L, Zhang C, Wang N, Zhang H, Wang Y, Liu X. Zearalenone induces NLRP3-dependent pyroptosis via activation of NF-κB modulated by autophagy in INS-1 cells. Toxicology 2019; 428:152304. [PMID: 31586597 DOI: 10.1016/j.tox.2019.152304] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 09/23/2019] [Accepted: 10/02/2019] [Indexed: 11/25/2022]
Abstract
Zearalenone (ZEA), one of the mycotoxins widely found in food and feed, can stimulate an inflammatory reaction. In the present study, we demonstrated that ZEA induced the activation of NLRP3 inflammasome even pyroptotic cell death in rat Insulinoma Cell Line (INS-1). Meanwhile, according to the results of western blot and TEM, the level of autophagy was elevated by ZEA, which protected against the activation of NLRP3 inflammasome and inflammatory response caused by ZEA. Furthermore, we indicated that ZEA-induced NF-κB p65 activation contributed to the activation of the NLRP3 inflammasome, inflammatory response, and pyroptosis in INS-1 cells, which were indicated by western blot and immunofluorescence, and the activation of NF-κB p65 induced by ZEA was autophagy-dependent. This study demonstrates that ZEA induces NLRP3-dependent pyroptosis via activation of NF-κB modulated by autophagy in INS-1 cells.
Collapse
Affiliation(s)
- Xue Wang
- Department of Nutrition and Food Safety, College of Public Health, Dalian Medical University, No. 9, West Segment of South lvshun Road, Dalian 116044, Liaoning, PR China; Department of Teaching Affairs, the Second Affiliated Hospital of Dalian Medical University, Dalian 116023, PR China
| | - Liping Jiang
- Experimental Teaching Center of Public Health, Dalian Medical University, 9 W Lvshun South Road, Dalian, 116044, PR China
| | - Limin Shi
- Department of Nutrition and Food Safety, College of Public Health, Dalian Medical University, No. 9, West Segment of South lvshun Road, Dalian 116044, Liaoning, PR China
| | - Kun Yao
- Department of Orthopedics, the Second Affiliated Hospital of Dalian Medical University, Dalian 116023, PR China
| | - Xiance Sun
- Department of Occupational and Environmental Health, College of Public Health, Dalian Medical University. No. 9, West Segment of South lvshun Road, Dalian, 116044, Liaoning, PR China
| | - Guang Yang
- Department of Nutrition and Food Safety, College of Public Health, Dalian Medical University, No. 9, West Segment of South lvshun Road, Dalian 116044, Liaoning, PR China
| | - Lijie Jiang
- Department of Internal Medicine, The Afliated Zhong Shan Hospital of Dalian University, Dalian, 116001, Liaoning, PR China
| | - Cong Zhang
- Department of Nutrition and Food Safety, College of Public Health, Dalian Medical University, No. 9, West Segment of South lvshun Road, Dalian 116044, Liaoning, PR China
| | - Ningning Wang
- Department of Nutrition and Food Safety, College of Public Health, Dalian Medical University, No. 9, West Segment of South lvshun Road, Dalian 116044, Liaoning, PR China
| | - Hongying Zhang
- Department of Pathology and Forensic Medicine, Dalian Medical University, 9 West Lvshun Southern Road, Dalian 116044, PR China
| | - Yan Wang
- Department of endocrinology, the Second Hospital of Chaoyang, No. 26, Chaoyang street of the twin towers, Chaoyang, 122000, PR China.
| | - Xiaofang Liu
- Department of Nutrition and Food Safety, College of Public Health, Dalian Medical University, No. 9, West Segment of South lvshun Road, Dalian 116044, Liaoning, PR China.
| |
Collapse
|
13
|
Generation of human and rabbit recombinant antibodies for the detection of Zearalenone by phage display antibody technology. Talanta 2019; 201:397-405. [DOI: 10.1016/j.talanta.2019.04.034] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 04/11/2019] [Accepted: 04/12/2019] [Indexed: 01/15/2023]
|
14
|
Yang D, Jiang X, Sun J, Li X, Li X, Jiao R, Peng Z, Li Y, Bai W. Toxic effects of zearalenone on gametogenesis and embryonic development: A molecular point of review. Food Chem Toxicol 2018; 119:24-30. [DOI: 10.1016/j.fct.2018.06.003] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 05/29/2018] [Accepted: 06/01/2018] [Indexed: 10/14/2022]
|
15
|
Shi D, Zhou J, Zhao L, Rong X, Fan Y, Hamid H, Li W, Ji C, Ma Q. Alleviation of mycotoxin biodegradation agent on zearalenone and deoxynivalenol toxicosis in immature gilts. J Anim Sci Biotechnol 2018; 9:42. [PMID: 29796255 PMCID: PMC5956560 DOI: 10.1186/s40104-018-0255-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 04/17/2018] [Indexed: 11/21/2022] Open
Abstract
Background The current study was carried out to evaluate the effects of mycotoxin biodegradation agent (MBA, composed of Bacillus subtilis ANSB01G and Devosia sp. ANSB714) on relieving zearalenone (ZEA) and deoxynivalenol (DON) toxicosis in immature gilts. Methods A total of forty pre-pubertal female gilts (61.42 ± 1.18 kg) were randomly allocated to four diet treatments: CO (positive control); MO (negative control, ZEA 596.86 μg/kg feed and DON 796 μg/kg feed); COA (CO + 2 g MBA/kg feed); MOA (MO + 2 g MBA/kg feed). Each treatment contained 10 replicates with 1 gilt per replicate. Gilts were housed in an environmentally controlled room with the partially slatted floor. Results During the entire experimental period of 28 d, average daily gain (ADG) and average daily feed intake (ADFI) of gilts in MO group was significantly reduced compared with those in CO group. The vulva size of gilts was significantly higher in MO group than CO group. In addition, significant increases in the plasma levels of IgA, IgG, IL-8, IL-10 and PRL were determined in MO group compared with that in CO group. ZEA and DON in the diet up-regulated apoptotic caspase-3 in ovaries and uteri, along with down-regulated the anti-apoptotic protein Bcl-2 in ovaries. The supplementation of MBA into diets co-contaminated with ZEA and DON significantly increased ADG, decreased the vulva sizes, reduced the levels of IgG, IL-8 and PRL in plasma, and regulated apoptosis in ovaries and uteri of gilts. Conclusions The present results indicated that feeding diet contaminated with ZEA and DON simultaneously (596.86 μg/kg + 796 μg/kg) had detrimental effects on growth performance, plasma immune function and reproductive status of gilts. And MBA could reduce the negative impacts of these two toxins, believed as a promising feed additive for mitigating toxicosis of ZEA and DON at low levels in gilts.
Collapse
Affiliation(s)
- Donghui Shi
- 1State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, 100193 People's Republic of China.,2Liaoning Medical University, Jinzhou, 121001 People's Republic of China
| | - Jianchuan Zhou
- 1State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, 100193 People's Republic of China.,Fuqing Fengze Agricultural Science and Technology Development Co. Ltd., Fuzhou, 350011 People's Republic of China
| | - Lihong Zhao
- 1State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, 100193 People's Republic of China
| | - Xiaoping Rong
- 1State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, 100193 People's Republic of China
| | - Yu Fan
- 1State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, 100193 People's Republic of China.,State Key Laboratory of Direct-Fed Microbial Engineering, Beijing, 100193 People's Republic of China
| | - Humera Hamid
- 1State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, 100193 People's Republic of China
| | - Wenqiang Li
- 1State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, 100193 People's Republic of China.,2Liaoning Medical University, Jinzhou, 121001 People's Republic of China
| | - Cheng Ji
- 1State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, 100193 People's Republic of China
| | - Qiugang Ma
- 1State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, 100193 People's Republic of China
| |
Collapse
|
16
|
Three kinds of lateral flow immunochromatographic assays based on the use of nanoparticle labels for fluorometric determination of zearalenone. Mikrochim Acta 2018; 185:238. [PMID: 29594745 DOI: 10.1007/s00604-018-2778-6] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Accepted: 03/16/2018] [Indexed: 12/23/2022]
Abstract
Colloidal gold, quantum dots and polystyrene microspheres were used as labels in three kinds of lateral flow immunochromatographic assays (ICAs) for the detection of zearalenone (ZEN) in cereal samples. The assays allow ZEN to be quantified within 20 min. The LODs are 10 μg·L-1 of ZEN for the colloidal gold-based ICA, and 1 μg·L-1 for both the quantum dot and polystyrene microsphere based ICAs. The respective data are 60 μg·kg-1, 6 μg·kg-1 and 6 μg·kg-1, respectively, for spiked samples and cereals. Only minor cross-sensitivity occurred between ZEN and fusarium toxins, and no cross-sensitivity if found for aflatoxin B1, T-2 mycotoxin, ochratoxin A, deoxynivalenol, and fumonisin B1. LODs of the three assays are lower than the maximum limits of ZEN set by most standardization agencies. Graphical abstract Schematic presentation of three lateral flow immunochromatographic assays (ICAs) based on the use of (a) colloidal gold (CG), (b) fluorescent quantum dots (QD), and
Collapse
|
17
|
Invited review: Diagnosis of zearalenone (ZEN) exposure of farm animals and transfer of its residues into edible tissues (carry over). Food Chem Toxicol 2015; 84:225-49. [PMID: 26277628 DOI: 10.1016/j.fct.2015.08.009] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Revised: 07/27/2015] [Accepted: 08/10/2015] [Indexed: 12/20/2022]
Abstract
The aim of the review was to evaluate the opportunities for diagnosing the zearalenone (ZEN) exposure and intoxication of farm animals by analyzing biological specimens for ZEN residue levels. Metabolism is discussed to be important when evaluating species-specific consequences for the overall toxicity of ZEN. Besides these toxicological facts, analytics of ZEN residues in various animal-derived matrices requires sensitive, matrix-adapted multi-methods with low limits of quantification, which is more challenging than the ZEN analysis in feed. Based on dose-response experiments with farm animals, the principle usability of various specimens as bio-indicators for ZEN exposure is discussed with regard to individual variation and practicability for the veterinary practitioner. ZEN residue analysis in biological samples does not only enable evaluation of ZEN exposure but also allows the risk for the consumer arising from contaminated foodstuffs of animal origin to be assessed. It was compiled from literature that the tolerable daily intake of 0.25 μg ZEN/kg body weight and day is exploited to approximately 8%, when a daily basket of animal foodstuffs and associated carry over factors are assumed at reported ZEN contamination levels of complete feed.
Collapse
|
18
|
Kwaśniewska K, Gadzała-Kopciuch R, Cendrowski K. Analytical Procedure for the Determination of Zearalenone in Environmental and Biological Samples. Crit Rev Anal Chem 2015; 45:119-30. [DOI: 10.1080/10408347.2014.896731] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
19
|
Winkler J, Kersten S, Valenta H, Hüther L, Meyer U, Engelhardt U, Dänicke S. Simultaneous determination of zearalenone, deoxynivalenol and their metabolites in bovine urine as biomarkers of exposure. WORLD MYCOTOXIN J 2015. [DOI: 10.3920/wmj2014.1745] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
A feeding trial with 30 dairy cows which were fed rations with three different concentrations of zearalenone (ZEA) and deoxynivalenol (DON) contaminated maize was carried out to examine the ZEA and DON concentration in urine. German Holstein cows (n=30) were divided into three groups (n=10 in each) which received diets with following toxin concentrations: CON (0.02 mg ZEA and 0.07 mg DON, per kg dry matter (DM)), FUS-50 (0.33 mg ZEA and 2.62 mg DON, per kg DM), FUS-100 (0.66 mg ZEA and 5.24 mg DON, per kg DM). For urine analysis, a reliable, cost-efficient and sensitive method for simultaneous determination of ZEA, DON and their metabolites was developed. The method comprises a solid phase extraction clean-up on Oasis HLB cartridges followed by LC-MS/MS measurement. ZEA, α-zearalenol, β-zearalenol, DON and de-epoxydeoxynivalenol (DOM) could be detected in the urine samples of the feeding trial. Thereby, DON was almost completely metabolised to DOM (83-98%) independent of the DON exposure. Moreover, conjugated toxins were the major urinary metabolites based on results of the analysis with β-glucuronidase treated and untreated samples. Furthermore, relationships between toxin intake and urinary toxin concentration could be established. In conclusion, increased urine toxin concentrations may hint on toxin exposure through the diets and thus the mycotoxins ZEA and DON and their detected metabolites could be used as biomarkers of exposure.
Collapse
Affiliation(s)
- J. Winkler
- Institute of Animal Nutrition, Friedrich-Loeffler-Institute (FLI), Federal Research Institute for Animal Health, Bundesallee 50, 38116 Braunschweig, Germany
| | - S. Kersten
- Institute of Animal Nutrition, Friedrich-Loeffler-Institute (FLI), Federal Research Institute for Animal Health, Bundesallee 50, 38116 Braunschweig, Germany
| | - H. Valenta
- Institute of Animal Nutrition, Friedrich-Loeffler-Institute (FLI), Federal Research Institute for Animal Health, Bundesallee 50, 38116 Braunschweig, Germany
| | - L. Hüther
- Institute of Animal Nutrition, Friedrich-Loeffler-Institute (FLI), Federal Research Institute for Animal Health, Bundesallee 50, 38116 Braunschweig, Germany
| | - U. Meyer
- Institute of Animal Nutrition, Friedrich-Loeffler-Institute (FLI), Federal Research Institute for Animal Health, Bundesallee 50, 38116 Braunschweig, Germany
| | - U. Engelhardt
- Institute of Food Chemistry, Faculty of Life Sciences, Technische Universität Braunschweig, Schleinitzstraße 20, 38106 Braunschweig, Germany
| | - S. Dänicke
- Institute of Animal Nutrition, Friedrich-Loeffler-Institute (FLI), Federal Research Institute for Animal Health, Bundesallee 50, 38116 Braunschweig, Germany
| |
Collapse
|
20
|
Zhao L, Lei Y, Bao Y, Jia R, Ma Q, Zhang J, Chen J, Ji C. Ameliorative effects of Bacillus subtilis ANSB01G on zearalenone toxicosis in pre-pubertal female gilts. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2014; 32:617-25. [PMID: 25322071 DOI: 10.1080/19440049.2014.976845] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
The purpose of this research was to investigate the toxicity of zearalenone (ZEA) on the growing performance, genital organs, serum hormones and histopathological changes of pre-pubertal female gilts, and to evaluate the efficacy of Bacillus subtilis ANSB01G in alleviating ZEA toxicosis in gilts. Eighteen pre-pubertal female gilts were randomly allocated to three treatments with one replicate per treatment. The gilts were fed following three diets for 24 days: the Control group was given a basic diet with normal corn; Treatment 1 (T1) was prepared by substituting corn naturally contaminated with ZEA for all normal corn in the basic diet (with a final concentrations of 238.57 μg kg(-1) of ZEA); and Treatment 2 (T2) was prepared by mixing the T1 diet with 2 kg T(-1) of fermented-dried culture of ANSB01G. The results showed that the presence of ZEA in diets significantly increased the vulva size and reproductive organ weight of the T1 gilts as compared with the Control group, and the addition of ANSB01G to diet naturally contaminated with ZEA obviously ameliorated these symptoms, as was observed in the T2 group. The presence of low doses of ZEA in the T1 diet had no significant effect on the level of follicle-stimulating hormone (FSH), luteotrophic hormone (LH) or serum oestradiol (E2) in the serum of gilts, but the prolactin (PRL) level in group T1 increased significantly. The gilts of the T1 group exhibited conspicuous cell enlargement and fatty degeneration of the corpus uteri, swelling, inflammation and lymphocyte infiltration of liver cells as compared with the Control group. The presence of ANSB01G can alleviate these hyperoestrogenic effects caused by ZEA, maintaining the body of gilt in a normal and healthy status. It is suggested that reproductive organs of gilts are seriously affected even if they are fed a low dose of ZEA in less time, and the addition of B. subtilis ANSB01G can effectively alleviate ZEA toxicosis in gilts.
Collapse
Affiliation(s)
- Lihong Zhao
- a State Key Laboratory of Animal Nutrition, College of Animal Science and Technology , China Agricultural University , Beijing , China
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Liu J, Hu Y, Zhu G, Zhou X, Jia L, Zhang T. Highly sensitive detection of zearalenone in feed samples using competitive surface-enhanced Raman scattering immunoassay. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2014; 62:8325-8332. [PMID: 25052032 DOI: 10.1021/jf503191e] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Accurate and quantitative analysis of mycotoxin (such as zearalenone) is particularly imperative in the field of food safety and animal husbandry. Here, we develop a sensitive and specific method for zearalenone detection using competitive surface-enhanced Raman scattering (SERS) immunoassay. In this assay, a functional gold nanoparticle was labeled with the Raman reporter and the zearalenone antibody, and a modified substrate was assembled with the zearalenone-bovine serum albumin. With the addition of free zearalenone, the competitive immune reaction between free zearalenone and zearalenone-bovine serum albumin was initiated for binding with zearalenone antibody labeled on gold nanoparticle, resulting in the change of SERS signal intensity. The proposed method exhibits high sensitivity with a detection limit of 1 pg/mL and a wide dynamic range from 1 to 1000 pg/mL. Furthermore, this method can be further applied to analyze the multiple natural feed samples contaminated with zearalenone, holding great potential for real sample detection.
Collapse
Affiliation(s)
- Jianzhi Liu
- Ministry of Education Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University , Guangzhou 510631, People's Republic of China
| | | | | | | | | | | |
Collapse
|
22
|
Kinetic performance of reversed-phase C18 high-performance liquid chromatography columns compared by means of the Kinetic Plot Method in pharmaceutically relevant applications. J Chromatogr A 2011; 1218:3351-9. [DOI: 10.1016/j.chroma.2010.08.071] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2010] [Revised: 08/24/2010] [Accepted: 08/25/2010] [Indexed: 11/22/2022]
|
23
|
Reinen J, Kalma LL, Begheijn S, Heus F, Commandeur JN, Vermeulen NP. Application of cytochrome P450 BM3 mutants as biocatalysts for the profiling of estrogen receptor binding metabolites of the mycotoxin zearalenone. Xenobiotica 2010; 41:59-70. [DOI: 10.3109/00498254.2010.525762] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|