1
|
Liang YF, Li JD, Fang RY, Xu ZL, Luo L, Chen ZJ, Yang JY, Shen YD, Ueda H, Hammock B, Wang H. Design of an Antigen-Triggered Nanobody-Based Fluorescence Probe for PET Immunoassay to Detect Quinalphos in Food Samples. Anal Chem 2023; 95:12321-12328. [PMID: 37527540 DOI: 10.1021/acs.analchem.3c01696] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2023]
Abstract
Photoinduced electron-transfer (PET) immunoassay based on a fluorescence site-specifically labeled nanobody, also called mini Quenchbody (Q-body), exhibits extraordinary sensitivity and saves much time in the homogeneous noncompetitive mode and is therefore regarded as a valuable method. However, limited by the efficiency of both quenching and dequenching of the fluorescence signal before and after antigen binding associated with the PET principle, not all original nanobodies can be used as candidates for mini Q-bodies. Herein, with the anti-quinalphos nanobody 11A (Nb-11A) as the model, we, for the first time, adopt a strategy by combining X-ray structural analysis with site-directed mutagenesis to design and produce a mutant Nb-R29W, and then successfully generate a mini Q-body by labeling with ATTO520 fluorescein. Based on this, a novel PET immunoassay is established, which exhibits a limit of detection of 0.007 μg/mL with a detection time of only 15 min, 25-fold improved sensitivity, and faster by 5-fold compared to the competitive immunoassay. Meanwhile, the recovery test of vegetable samples and validation by the standard ultraperformance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) both demonstrated that the established PET immunoassay is a novel, sensitive, and accurate detection method for quinalphos. Ultimately, the findings of this work will provide valuable insights into the development of triggered PET fluorescence probes by using existing antibody resources.
Collapse
Affiliation(s)
- Yi-Fan Liang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Jia-Dong Li
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Ru-Yu Fang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Zhen-Lin Xu
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Lin Luo
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Zi-Jian Chen
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Jin-Yi Yang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Yu-Dong Shen
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Hiroshi Ueda
- World Research Hub Initiative, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama 226-8503, Japan
| | - Bruce Hammock
- Department of Entomology and Nematology, UCD Comprehensive Cancer Center, University of California Davis, Davis, California 95616, United States
| | - Hong Wang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| |
Collapse
|
2
|
Ying Y, Cui X, Li H, Pan L, Luo T, Cao Z, Wang J. Development of Magnetic Lateral Flow and Direct Competitive Immunoassays for Sensitive and Specific Detection of Halosulfuron-Methyl Using a Novel Hapten and Monoclonal Antibody. Foods 2023; 12:2764. [PMID: 37509857 PMCID: PMC10378753 DOI: 10.3390/foods12142764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/12/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023] Open
Abstract
Halosulfuron-methyl (HM) is widely used for the removal of noxious weeds in corn, sugarcane, wheat, rice, and tomato fields. Despite its high efficiency and low toxicity, drift to nontarget crops and leaching of its metabolites to groundwater pose potential risks. Considering the instability of HM, the pyrazole sulfonamide of HM was used to generate a hapten and antigen to raise a high-quality monoclonal antibody (Mab, designated 1A91H11) against HM. A direct competitive immunoassay (dcELISA) using Mab 1A91H11 achieved a half-maximal inhibitory concentration (IC50) of 1.5 × 10-3 mg/kg and a linear range of 0.7 × 10-3 mg/kg-10.7 × 10-3 mg/kg, which was 10 times more sensitive than a comparable indirect competitive ELISA (icELISA) and more simple to operate. A spiking recovery experiment performed in tomato and maize matrices with 0.01, 0.05, and 0.1 mg/kg HM had average recoveries within 78.9-87.9% and 103.0-107.4% and coefficients of variation from 1.1-6.8% and 2.7-6.4% in tomato and maize, respectively. In addition, a magnetic lateral flow immunoassay (MLFIA) was developed for quantitative detection of low concentrations of HM in paddy water. Compared with dcELISA, the MLFIA exhibited 3.3- to 50-fold higher sensitivity (IC50 0.21 × 10-3 mg/kg). The average recovery and RSD of the developed MLFIA ranged from 81.5 to 92.5% and 5.4 to 9.7%. The results of this study demonstrated that the developed dcELISA and MLFIA are suitable for rapid detection of HM residues in tomato and maize matrices and paddy water, respectively, with acceptable accuracy and precision.
Collapse
Affiliation(s)
- Ying Ying
- Institute of Quality Standards and Testing Technology for Agro-Products, Key Laboratory of Agro-Product Quality and Safety, Chinese Academy of Agricultural Sciences, Ministry of Agriculture, Beijing 100081, China
- Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xueyan Cui
- Institute of Quality Standards and Testing Technology for Agro-Products, Key Laboratory of Agro-Product Quality and Safety, Chinese Academy of Agricultural Sciences, Ministry of Agriculture, Beijing 100081, China
- Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Hui Li
- Institute of Quality Standards and Testing Technology for Agro-Products, Key Laboratory of Agro-Product Quality and Safety, Chinese Academy of Agricultural Sciences, Ministry of Agriculture, Beijing 100081, China
- Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Lingyi Pan
- Institute of Quality Standards and Testing Technology for Agro-Products, Key Laboratory of Agro-Product Quality and Safety, Chinese Academy of Agricultural Sciences, Ministry of Agriculture, Beijing 100081, China
- Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Ting Luo
- Institute of Quality Standards and Testing Technology for Agro-Products, Key Laboratory of Agro-Product Quality and Safety, Chinese Academy of Agricultural Sciences, Ministry of Agriculture, Beijing 100081, China
- Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Zhen Cao
- Institute of Quality Standards and Testing Technology for Agro-Products, Key Laboratory of Agro-Product Quality and Safety, Chinese Academy of Agricultural Sciences, Ministry of Agriculture, Beijing 100081, China
- Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jing Wang
- Institute of Quality Standards and Testing Technology for Agro-Products, Key Laboratory of Agro-Product Quality and Safety, Chinese Academy of Agricultural Sciences, Ministry of Agriculture, Beijing 100081, China
- Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
3
|
Picomolar, Electrochemical Detection of Paraoxon Ethyl, by Strongly Coordinated NiCo2O4-SWCNT Composite as an Electrode Material. J Electroanal Chem (Lausanne) 2023. [DOI: 10.1016/j.jelechem.2023.117175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
4
|
Shen Z, Xu D, Wang G, Geng L, Xu R, Wang G, Guo Y, Sun X. Novel colorimetric aptasensor based on MOF-derived materials and its applications for organophosphorus pesticides determination. JOURNAL OF HAZARDOUS MATERIALS 2022; 440:129707. [PMID: 35986944 DOI: 10.1016/j.jhazmat.2022.129707] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 07/14/2022] [Accepted: 07/30/2022] [Indexed: 06/15/2023]
Abstract
For the visual detection of four organophosphorus pesticides (OPs), a colorimetric aptasensor was developed based on aptamer-mediated bimetallic metal-organic frameworks (MOFs) nano-polymers. Fe-Co magnetic nanoparticles (MNPs) and Fe-N-C nanozymes were prepared based on pyrolytic reaction, and were labeled with broad spectrum aptamers and complementary chains of organophosphorus pesticides respectively. The hybridization of aptamers and complementary chains led to the formation of nano-polymers. In the presence of target pesticides, they competed with complementary chains for aptamers on Fe-Co MNPs, resulting in a large number of Fe-N-C nanozymes signal labels being released into the supernatant. Fe-N-C nanozymes showed similar activity to peroxidase and catalyzed the 3,3',5,5'-tetramethylbenzidine-hydrogen peroxide (TMB-H2O2) color system to turn the solution blue-green under mild conditions. The magnetic probes had good selectivity and sensitivity, and were easily separated by magnetic absorption. The sensor functioned well under optimal conditions, demonstrating good stability and specificity for four pesticides: phorate, profenofos, isocarbophos and omethoate, and the detection limits of four pesticides were as low as 0.16 ng/mL, 0.16 ng/mL, 0.03 ng/mL and 1.6 ng/mL respectively, and the recovery rate of OPs residue in vegetable samples was satisfactory. The work described here provided a simple, rapid and sensitive way to construct a biosensor.
Collapse
Affiliation(s)
- Zheng Shen
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, Shandong 255049, China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China; Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China
| | - Deyan Xu
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, Shandong 255049, China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China; Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China
| | - Guangxian Wang
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, Shandong 255049, China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China; Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China
| | - Lingjun Geng
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, Shandong 255049, China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China; Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China
| | - Rui Xu
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, Shandong 255049, China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China; Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China
| | - Guanjie Wang
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, Shandong 255049, China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China; Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China
| | - Yemin Guo
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, Shandong 255049, China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China; Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China.
| | - Xia Sun
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, Shandong 255049, China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China; Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China.
| |
Collapse
|
5
|
Tahsiri Z, Niakousari M, Hosseini SMH, Majdinasab M. Magnetic layered double hydroxide nanosheet as a biomolecular vessel for enzyme immobilization. Int J Biol Macromol 2022; 209:1422-1429. [PMID: 35461871 DOI: 10.1016/j.ijbiomac.2022.04.111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 02/20/2022] [Accepted: 04/15/2022] [Indexed: 11/05/2022]
Abstract
Magnetic nanoparticle coated with manganese‑aluminum layered double hydroxide (Fe3O4/Mg-Al-CO3-LDH) was prepared and used as porous support for ficin (EC 3.4.22.3) as a model enzyme. Structural characteristics were studied by XRD, FTIR, SEM and light scattering. The quantity of immobilized ficin on the mentioned LDH and non-magnetic LDH was measured and enzyme activity, stability and reusability were compared. Results revealed that the core and shell structure of Fe3O4/Mg-Al-CO3-LDH makes it better dispersion compared to the pristine Mg-Al-CO3-LDH. Ficin showed strong affinity to absorption of the surface of mentioned LDHs nanosheet especially magnetic LDH, confirmed that the existence of Fe3O4 in the core structure of magnetic Fe3O4/Mg-Al-CO3-LDH caused better dispersion of LDH nanocrystal shell compared to pristine LDH moreover, enzyme which immobilized on the magnetic LDH supports, can be recovered by magnetic interaction. The storage stability of free ficin, immobilized ficin on the Mg-Al-CO3-LDH and Fe3O4/Mg-Al-CO3-LDH during a period of 120 days lost about 75%, 30%, and 20% of their initial activities, respectively.
Collapse
Affiliation(s)
- Z Tahsiri
- Department of Food Science and Technology, Shiraz University, Shiraz, Iran
| | - M Niakousari
- Department of Food Science and Technology, Shiraz University, Shiraz, Iran.
| | - S M H Hosseini
- Department of Food Science and Technology, Shiraz University, Shiraz, Iran
| | - M Majdinasab
- Department of Food Science and Technology, Shiraz University, Shiraz, Iran
| |
Collapse
|
6
|
Ramadan MM, Mohamed MA, Almoammar H, Abd-Elsalam KA. Magnetic nanomaterials for purification, detection, and control of mycotoxins. NANOMYCOTOXICOLOGY 2020:87-114. [DOI: 10.1016/b978-0-12-817998-7.00005-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
7
|
Dong Y, Zheng W, Chen D, Li X, Wang J, Wang Z, Chen Y. Click Reaction-Mediated T2 Immunosensor for Ultrasensitive Detection of Pesticide Residues via Brush-like Nanostructure-Triggered Coordination Chemistry. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:9942-9949. [PMID: 31403785 DOI: 10.1021/acs.jafc.9b03463] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
We develop an ultrasensitive T2-mediated immunosensor based on the coordination chemistry and Cu(I)-catalyzed 1,3-dipolar cycloaddition of azide andalkyne (CuAAC) and apply it for the detection of pesticide residues. We functionalize polyglutamic acid (PGA) on polystyrene to form a brush-like nanostructure that has a large loading capacity of Cu(II) through the coordination chemistry between PGA and Cu(II). Such a brush-like nanostructure could be used to chelate Cu(II) to modulate the CuAAC between azide-functionalized 1000 nm polystyrene (PS1000) and alkyne-functionalized 30 nm magnetic nanoparticles (MNP30), and the MNP30-PS1000 conjugate as a product of CuAAC can act as a magnetic probe in this T2-based immunosensor. This click chemistry and coordination chemistry-mediated immunosensor allows for an ultrasensitive detection for chlorpyrifos residue (0.022 ng/mL), a 58-fold enhancement compared with that of enzyme-linked immunosorbent assay (1.28 ng/mL), providing a promising platform for detection of trace small molecules.
Collapse
Affiliation(s)
- Yongzhen Dong
- College of Food Science and Technology , Huazhong Agricultural University , Wuhan , Hubei 430070 , China
- Key Laboratory of Environment Correlative Dietology , Huazhong Agricultural University , Ministry of Education, Wuhan , China
| | - Wenshu Zheng
- National Center for NanoScience and Technology , 11 Beiyitiao , ZhongGuanCun , Beijing 100190 , China
| | - Da Chen
- Center for Aircraft Fire and Emergency , Civil Aviation University of China , Tianjin 300300 , China
| | - Xiujuan Li
- College of Food Science and Technology , Huazhong Agricultural University , Wuhan , Hubei 430070 , China
- Key Laboratory of Environment Correlative Dietology , Huazhong Agricultural University , Ministry of Education, Wuhan , China
| | - Jia Wang
- College of Food Science and Technology , Huazhong Agricultural University , Wuhan , Hubei 430070 , China
- Key Laboratory of Environment Correlative Dietology , Huazhong Agricultural University , Ministry of Education, Wuhan , China
| | - Zhilong Wang
- College of Food Science and Technology , Huazhong Agricultural University , Wuhan , Hubei 430070 , China
- Key Laboratory of Environment Correlative Dietology , Huazhong Agricultural University , Ministry of Education, Wuhan , China
| | - Yiping Chen
- College of Food Science and Technology , Huazhong Agricultural University , Wuhan , Hubei 430070 , China
- Key Laboratory of Environment Correlative Dietology , Huazhong Agricultural University , Ministry of Education, Wuhan , China
| |
Collapse
|
8
|
Jiang M, He J, Gong J, Gao H, Xu Z. Development of a quantum dot-labelled biomimetic fluorescence immunoassay for the simultaneous determination of three organophosphorus pesticide residues in agricultural products. FOOD AGR IMMUNOL 2019. [DOI: 10.1080/09540105.2019.1572714] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Affiliation(s)
- Mingdi Jiang
- Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, College of Food Science and Engineering, Shandong Agricultural University, Tai’an, People’s Republic of China
| | - Jingbo He
- Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, College of Food Science and Engineering, Shandong Agricultural University, Tai’an, People’s Republic of China
| | - Junjie Gong
- LongDa Foodstuff Group Co., Ltd., Yantai, People’s Republic of China
| | - Huiju Gao
- College of Forestry, Shandong Agricultural University, Tai’an, People’s Republic of China
| | - Zhixiang Xu
- Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, College of Food Science and Engineering, Shandong Agricultural University, Tai’an, People’s Republic of China
| |
Collapse
|
9
|
Chen ZJ, Zhang X, Wang BF, Rao MF, Wang H, Lei HT, Liu H, Zhang Y, Sun YM, Xu ZL. Production of Antigen-Binding Fragment against O, O-Diethyl Organophosphorus Pesticides and Molecular Dynamics Simulations of Antibody Recognition. Int J Mol Sci 2018; 19:ijms19051381. [PMID: 29734787 PMCID: PMC5983703 DOI: 10.3390/ijms19051381] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 04/29/2018] [Accepted: 05/03/2018] [Indexed: 01/26/2023] Open
Abstract
Immunoassay for pesticides is an emerging analytical method since it is rapid, efficient, sensitive, and inexpensive. In this study, a recombinant antigen-binding fragment (Fab) against a broad set of O,O-diethyl organophosphorus pesticides (DOPs) was produced and characterized. The κ chain and Fd fragment were amplified via PCR and inserted into the vector pComb3XSS and the soluble Fab on phagemid pComb3XSS was induced by isopropyl β-d-thiogalactoside in E. coli TOP 10F’. SDS-PAGE, Western blotting, and indirect competitive ELISA results indicated that Fab maintained the good characteristics of the parental mAb. To better understand antibody recognition, the three-dimensional (3D) model of Fab was built via homologous modeling and the interaction between Fab and DOPs was studied via molecular docking and dynamics simulations. The model clearly explained the interaction manner of Fab and DOPs, and showed that the Arg-L96 and Arg-H52 were mainly responsible for antibody binding. This work provided a foundation for further mutagenesis of Fab to improve its characteristics.
Collapse
Affiliation(s)
- Zi-Jian Chen
- Guangdong Provincial Key Laboratory of Food Quality and Safety, South China Agricultural University, Guangzhou 510640, China.
| | - Xuan Zhang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, South China Agricultural University, Guangzhou 510640, China.
| | - Bing-Feng Wang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, South China Agricultural University, Guangzhou 510640, China.
| | - Mei-Fang Rao
- Guangdong Provincial Key Laboratory of Food Quality and Safety, South China Agricultural University, Guangzhou 510640, China.
| | - Hong Wang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, South China Agricultural University, Guangzhou 510640, China.
| | - Hong-Tao Lei
- Guangdong Provincial Key Laboratory of Food Quality and Safety, South China Agricultural University, Guangzhou 510640, China.
| | - Hui Liu
- Guangdong Institute of Product Quality Supervision and Inspection, Foshan 528300, China.
| | - Yan Zhang
- Guangdong Institute of Product Quality Supervision and Inspection, Foshan 528300, China.
| | - Yuan-Ming Sun
- Guangdong Provincial Key Laboratory of Food Quality and Safety, South China Agricultural University, Guangzhou 510640, China.
| | - Zhen-Lin Xu
- Guangdong Provincial Key Laboratory of Food Quality and Safety, South China Agricultural University, Guangzhou 510640, China.
| |
Collapse
|
10
|
Hendrickson O, Chertovich J, Zherdev A, Sveshnikov P, Dzantiev B. Ultrasensitive magnetic ELISA of zearalenone with pre-concentration and chemiluminescent detection. Food Control 2018. [DOI: 10.1016/j.foodcont.2017.08.008] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
11
|
Deng Q, Qiu M, Wang Y, Lv P, Wu C, Sun L, Ye R, Xu D, Liu Y, Gooneratne R. A sensitive and validated immunomagnetic-bead based enzyme-linked immunosorbent assay for analyzing total T-2 (free and modified) toxins in shrimp tissues. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2017; 142:441-447. [PMID: 28458227 DOI: 10.1016/j.ecoenv.2017.04.037] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 04/05/2017] [Accepted: 04/17/2017] [Indexed: 06/07/2023]
Abstract
Accurate analyses of total T-2 (free and modified) in aquatic organisms including shrimp are important as the hazard caused by T-2 has been caught increasing attention. Therefore, acurate analysis of free T-2 especially of modified T-2 in shrimp tissues is important. A rapid, sensitive, and validated method for quantitative determination of free T-2 and modified T-2 toxin was developed using immunomagnetic-bead based enzyme-linked immunosorbent assay (IMB-ELISA). Super paramagnetic particles with a carboxyl group activated by an ester method coupled with envelope antigen 3- acetylneosolaniol- hemisuccinate - ovalbumin (3-Ac-NEOS-HS-OVA) was used to form immunomagnetic beads which could bind to T-2 skeletal structure antibodies. The conditions for magnetic bead coating of T-2 skeletal structure antibodies, and the concentrations of the polyclonal antibody and HRP-labeled goat anti-rabbit antibody were optimized. A good linear relationship with T-2 concentrations ranging from 5-75ng/mL (R2 =0.9965) was observed. The detection limit of different shrimp tissues of the IMB-ELISA ranged from 2.53 to 3.20ng/mL. And the IC50 was 63ng/mL. The recovery varied from 86% to 99% with a standard deviation of 2.8-5.8%. The application of this method to study the distribution in tissues showed that the total T-2 concentration in hepatopancreas was 26.7µg/kg > blood > head > muscle in the highest dose group of 12.2mg/kg. Our research showed a combination of ELISA and immunomagnetic bead technology provide a new, convenient approach to significantly improve the accuracy and sensitivity of total T-2 measurement in shrimp tissues.
Collapse
Affiliation(s)
- Qi Deng
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Key Laboratory of Advanced Processing of Aquatic Products of Guangdong Higher Education Institution, Zhanjiang 524088, China
| | - Mei Qiu
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Key Laboratory of Advanced Processing of Aquatic Products of Guangdong Higher Education Institution, Zhanjiang 524088, China; National Marine Products Quality Supervision and Inspection Centre, Zhanjiang 524096, China
| | - Yaling Wang
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Key Laboratory of Advanced Processing of Aquatic Products of Guangdong Higher Education Institution, Zhanjiang 524088, China.
| | - Pengli Lv
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Key Laboratory of Advanced Processing of Aquatic Products of Guangdong Higher Education Institution, Zhanjiang 524088, China
| | - Chaojin Wu
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Key Laboratory of Advanced Processing of Aquatic Products of Guangdong Higher Education Institution, Zhanjiang 524088, China
| | - Lijun Sun
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Key Laboratory of Advanced Processing of Aquatic Products of Guangdong Higher Education Institution, Zhanjiang 524088, China.
| | - Riying Ye
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Key Laboratory of Advanced Processing of Aquatic Products of Guangdong Higher Education Institution, Zhanjiang 524088, China
| | - Defeng Xu
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Key Laboratory of Advanced Processing of Aquatic Products of Guangdong Higher Education Institution, Zhanjiang 524088, China
| | - Ying Liu
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Key Laboratory of Advanced Processing of Aquatic Products of Guangdong Higher Education Institution, Zhanjiang 524088, China
| | - Ravi Gooneratne
- Centre for Food Research and Innovation Centre for Food Research and Innovations, P.O. Box 85084, Lincoln University, Lincoln 7647, New Zealand
| |
Collapse
|
12
|
Li YF, Sun YM, Beier RC, Lei HT, Gee S, Hammock BD, Wang H, Wang Z, Sun X, Shen YD, Yang JY, Xu ZL. Immunochemical techniques for multianalyte analysis of chemical residues in food and the environment: A review. Trends Analyt Chem 2017. [DOI: 10.1016/j.trac.2016.12.010] [Citation(s) in RCA: 106] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
13
|
D’Souza AA, Kumari D, Banerjee R. Nanocomposite biosensors for point-of-care—evaluation of food quality and safety. NANOBIOSENSORS 2017. [PMCID: PMC7149521 DOI: 10.1016/b978-0-12-804301-1.00015-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Nanosensors have wide applications in the food industry. Nanosensors based on quantum dots for heavy metal and organophosphate pesticides detection, and nanocomposites as indicators for shelf life of fish/meat products, have served as important tools for food quality and safety assessment. Luminescent labels consisting of NPs conjugated to aptamers have been popular for rapid detection of infectious and foodborne pathogens. Various detection technologies, including microelectromechanical systems for gas analytes, microarrays for genetically modified foods, and label-free nanosensors using nanowires, microcantilevers, and resonators are being applied extensively in the food industry. An interesting aspect of nanosensors has also been in the development of the electronic nose and electronic tongue for assessing organoleptic qualities, such as, odor and taste of food products. Real-time monitoring of food products for rapid screening, counterfeiting, and tracking has boosted ingenious, intelligent, and innovative packaging of food products. This chapter will give an overview of the contribution of nanotechnology-based biosensors in the food industry, ongoing research, technology advancements, regulatory guidelines, future challenges, and industrial outlook.
Collapse
|
14
|
Rapid and sensitive detection of HIV-1 p24 antigen by immunomagnetic separation coupled with catalytic fluorescent immunoassay. Anal Bioanal Chem 2016; 408:6115-21. [PMID: 27351993 DOI: 10.1007/s00216-016-9722-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 06/07/2016] [Accepted: 06/14/2016] [Indexed: 01/05/2023]
Abstract
In this study, a system of magnetic beads (MBs) coupled with catalytic fluorescent immunoassay for rapid and sensitive determination of HIV-1 capsid antigen p24 was developed. p24 was captured by antibody immobilized MBs, and the detection antibody was linked to horseradish peroxidase (HRP) through biotin-streptavidin recognition, catalyzing the oxidation of o-phenylenediamine (OPD) and hydrogen peroxide to produce a fluorescent product. This is the first reported utilization of the fluorescence of OPD oxidation product catalyzed by HRP for immunoassay. Optimization of conditions afforded a low detection limit of 0.5 pg/mL (3σ) for p24 with a linear range of 1.4-90.0 pg/mL. The assay exhibited good reproducibility with a relative standard deviation (RSD) of 4.4 %, 4.7 %, and 5.0 % for detecting 1.4 pg/mL, 22.5 pg/mL, and 45.0 pg/mL p24, respectively. The assay can be completed in less than 90 min. Moreover, the proposed method was successfully applied to detect p24 in spiked serum. This method overcomes the interference of MBs to the fluorescence signal and demonstrated higher sensitivity for detection of p24 than conventional ELISA kits. The system could be applied for detecting other antigens with high sensitivity, rapidity, specificity, and simple operation. Graphical Abstract A rapid and sensitive biosensing method coupling immunomagnetic separation and catalytic fluorescence for determination of HIV-1 p24 has been developed.
Collapse
|
15
|
Jain M, A. MS, P. R, S. K, C. M, K. T. Synthesis, characterization and kinetic analysis of chitosan coated magnetic nanobiocatalyst and its application on glucose oleate ester synthesis. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.molcatb.2016.02.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
16
|
A Magnetic Nanoparticle Based Enzyme-Linked Immunosorbent Assay for Sensitive Quantification of Zearalenone in Cereal and Feed Samples. Toxins (Basel) 2015; 7:4216-31. [PMID: 26492271 PMCID: PMC4626730 DOI: 10.3390/toxins7104216] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 10/06/2015] [Accepted: 10/13/2015] [Indexed: 01/18/2023] Open
Abstract
A novel enzyme-linked immunosorbent assay based on magnetic nanoparticles and biotin/streptavidin-HRP (MNP-bsELISA) was developed for rapid and sensitive detection of zearalenone (ZEN). The detection signal was enhanced and the sensitivity of the assay was improved by combined use of antibody-conjugated magnetic nanoparticles and biotin-streptavidin system. Under the optimized conditions, the regression equation for quantification of ZEN was y = −0.4287x + 0.3132 (R2 = 0.9904). The working range was 0.07–2.41 ng/mL. The detection limit was 0.04 ng/mL and IC50 was 0.37 ng/mL. The recovery rates of intra-assay and inter-assay ranged from 92.8%–111.9% and 91.7%–114.5%, respectively, in spiked corn samples. Coefficients of variation were less than 10% in both cases. Parallel analysis of cereal and feed samples showed good correlation between MNP-bsELISA and liquid chromatograph-tandem mass spectrometry (R2 = 0.9283). We conclude that this method is suitable for rapid detection of zearalenone in cereal and feed samples in relevant laboratories.
Collapse
|
17
|
Soon YX, Tay KS. n-Octylated Magnetic Nanoparticle-Based Microextraction for the Determination of Organophosphorus Pesticides in Water. ANAL LETT 2015. [DOI: 10.1080/00032719.2014.991964] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
|
18
|
Du P, Jin M, Yang L, Du X, Chen G, Zhang C, Jin F, Shao H, She Y, Wang S, Zheng L, Wang J. A rapid immunomagnetic-bead-based immunoassay for triazophos analysis. RSC Adv 2015. [DOI: 10.1039/c5ra15106f] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Schematic illustration of a direct competitive immunomagnetic-bead-based enzyme-linked immunosorbent assay (IMB-ELISA) to detect the triazophos pesticides.
Collapse
|
19
|
Vashist SK, Lam E, Hrapovic S, Male KB, Luong JHT. Immobilization of Antibodies and Enzymes on 3-Aminopropyltriethoxysilane-Functionalized Bioanalytical Platforms for Biosensors and Diagnostics. Chem Rev 2014; 114:11083-130. [DOI: 10.1021/cr5000943] [Citation(s) in RCA: 212] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Sandeep Kumar Vashist
- HSG-IMIT - Institut für Mikro- und Informationstechnik, Georges-Koehler-Allee 103, 79110 Freiburg, Germany
- Laboratory for MEMS Applications, Department of Microsystems Engineering - IMTEK, University of Freiburg, Georges-Koehler-Allee 103, 79110 Freiburg, Germany
| | - Edmond Lam
- National Research Council Canada, Montreal, Quebec H4P 2R2, Canada
| | | | - Keith B. Male
- National Research Council Canada, Montreal, Quebec H4P 2R2, Canada
| | - John H. T. Luong
- Innovative Chromatography Group, Irish Separation Science Cluster (ISSC), Department of Chemistry and Analytical, Biological Chemistry Research Facility (ABCRF), University College Cork, Cork, Ireland
| |
Collapse
|
20
|
Wang YK, Wang YC, Wang HA, Ji WH, Sun JH, Yan YX. An immunomagnetic-bead-based enzyme-linked immunosorbent assay for sensitive quantification of fumonisin B1. Food Control 2014. [DOI: 10.1016/j.foodcont.2013.11.025] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
21
|
Cao Z, Zhao H, Cui Y, Zhang L, Tan G, Wang B, Li QX. Development of a sensitive monoclonal antibody-based enzyme-linked immunosorbent assay for the analysis of paclobutrazol residue in wheat kernel. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2014; 62:1826-1831. [PMID: 24547795 DOI: 10.1021/jf404905w] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
An indirect competitive enzyme-linked immunosorbent assay (icELISA) was developed with monoclonal antibody (mAb) mAb6H73C9 recognizing the plant growth regulator paclobutrazol (PBZ). The icELISA had a half-maximum inhibition concentration (IC50) and working range of approximately 8.7 and 2.0-50.4 ng/mL, respectively. Average recoveries of PBZ in the wheat (Triticum aestivum) kernel samples were between 84.3 and 118.9% with relative standard deviations between 3.9 and 14.2%. As determined by the icELISA and further confirmed by liquid chromatography-electrospray ionization quadrupole Orbitrap mass spectrometry (LC-ESI-MS) analysis, the maximum residue concentration was about 0.07 mg/kg in the kernel samples, which indicated that PBZ could transfer from PBZ- treated seedlings to the kernel samples. The correlation coefficient (R(2)) between icELISA and LC-ESI-MS results was 0.979, which manifested that the developed icELISA was sensitive enough for monitoring PBZ residues in wheat kernels.
Collapse
Affiliation(s)
- Zhen Cao
- Engineering Research Center of Plant Growth Regulator, Ministry of Education, College of Agronomy and Biotechnology and §College of Science, China Agricultural University , Beijing 100193, China
| | | | | | | | | | | | | |
Collapse
|
22
|
Zhang B, Liu B, Liao J, Chen G, Tang D. Novel Electrochemical Immunoassay for Quantitative Monitoring of Biotoxin Using Target-Responsive Cargo Release from Mesoporous Silica Nanocontainers. Anal Chem 2013; 85:9245-52. [DOI: 10.1021/ac4019878] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Bing Zhang
- Key Laboratory of Analysis and Detection for Food Safety (Ministry of Education & Fujian Province), Department of Chemistry, Fuzhou University, Fuzhou 350108, People’s Republic of China
| | - Bingqian Liu
- Key Laboratory of Analysis and Detection for Food Safety (Ministry of Education & Fujian Province), Department of Chemistry, Fuzhou University, Fuzhou 350108, People’s Republic of China
| | - Jiayao Liao
- Key
Laboratory on Luminescence and Real-Time Analysis (Ministry of Education),
College of Chemistry, Southwest University, Chongqing 400715, People’s Republic of China
| | - Guonan Chen
- Key Laboratory of Analysis and Detection for Food Safety (Ministry of Education & Fujian Province), Department of Chemistry, Fuzhou University, Fuzhou 350108, People’s Republic of China
| | - Dianping Tang
- Key Laboratory of Analysis and Detection for Food Safety (Ministry of Education & Fujian Province), Department of Chemistry, Fuzhou University, Fuzhou 350108, People’s Republic of China
| |
Collapse
|
23
|
Zhang X, Wang J, Li R, Dai Q, Gao R, Liu Q, Zhang M. Preparation of Fe3O4@C@Layered Double Hydroxide Composite for Magnetic Separation of Uranium. Ind Eng Chem Res 2013. [DOI: 10.1021/ie3024438] [Citation(s) in RCA: 126] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Xiaofei Zhang
- College
of Material Science and Chemical Engineering and ‡The Key Laboratory of Superlight
Materials and Surface Technology, Ministry of Education, Harbin Engineering University, Harbin
150001, PR China
| | - Jun Wang
- College
of Material Science and Chemical Engineering and ‡The Key Laboratory of Superlight
Materials and Surface Technology, Ministry of Education, Harbin Engineering University, Harbin
150001, PR China
| | - Rumin Li
- College
of Material Science and Chemical Engineering and ‡The Key Laboratory of Superlight
Materials and Surface Technology, Ministry of Education, Harbin Engineering University, Harbin
150001, PR China
| | - Qihui Dai
- College
of Material Science and Chemical Engineering and ‡The Key Laboratory of Superlight
Materials and Surface Technology, Ministry of Education, Harbin Engineering University, Harbin
150001, PR China
| | - Rui Gao
- College
of Material Science and Chemical Engineering and ‡The Key Laboratory of Superlight
Materials and Surface Technology, Ministry of Education, Harbin Engineering University, Harbin
150001, PR China
| | - Qi Liu
- College
of Material Science and Chemical Engineering and ‡The Key Laboratory of Superlight
Materials and Surface Technology, Ministry of Education, Harbin Engineering University, Harbin
150001, PR China
| | - Milin Zhang
- College
of Material Science and Chemical Engineering and ‡The Key Laboratory of Superlight
Materials and Surface Technology, Ministry of Education, Harbin Engineering University, Harbin
150001, PR China
| |
Collapse
|
24
|
Gao Z, Xu M, Hou L, Chen G, Tang D. Magnetic Bead-Based Reverse Colorimetric Immunoassay Strategy for Sensing Biomolecules. Anal Chem 2013; 85:6945-52. [DOI: 10.1021/ac401433p] [Citation(s) in RCA: 194] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Zhuangqiang Gao
- Key Laboratory of Analysis and Detection for Food Safety (Fujian Province & Ministry of Education of China), Department of Chemistry, Fuzhou University, Fuzhou 350108, P. R. China
| | - Mingdi Xu
- Key Laboratory of Analysis and Detection for Food Safety (Fujian Province & Ministry of Education of China), Department of Chemistry, Fuzhou University, Fuzhou 350108, P. R. China
| | - Li Hou
- Key Laboratory of Analysis and Detection for Food Safety (Fujian Province & Ministry of Education of China), Department of Chemistry, Fuzhou University, Fuzhou 350108, P. R. China
| | - Guonan Chen
- Key Laboratory of Analysis and Detection for Food Safety (Fujian Province & Ministry of Education of China), Department of Chemistry, Fuzhou University, Fuzhou 350108, P. R. China
| | - Dianping Tang
- Key Laboratory of Analysis and Detection for Food Safety (Fujian Province & Ministry of Education of China), Department of Chemistry, Fuzhou University, Fuzhou 350108, P. R. China
| |
Collapse
|
25
|
Vaculovicova M, Smerkova K, Sedlacek J, Vyslouzil J, Hubalek J, Kizek R, Adam V. Integrated chip electrophoresis and magnetic particle isolation used for detection of hepatitis B virus oligonucleotides. Electrophoresis 2013; 34:1548-54. [PMID: 23483558 DOI: 10.1002/elps.201200697] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Revised: 01/14/2013] [Accepted: 01/14/2013] [Indexed: 01/23/2023]
Abstract
Rapid and sensitive detection is a key step in the effective and early response to the global hazard of various viral diseases. In this study, an integrated isolation of hepatitis B virus (HBV)-specific DNA fragment by magnetic nanoparticles (MNPs) and its immediate analysis by microchip CGE was performed. Microfluidic CE chip was used to accommodate the complete process of viral DNA isolation by MNPs including hybridization and thermal denaturation followed by CE separation. Beforehand, calibration curves of HBV fragments were constructed. For isolation by MNPs, specific streptavidin-biotin interaction was used to bind complementary HBV fragment to magnetic particles. After analysis of isolated HBV by regular MNPs method, innovative approach was performed. The commercial CE chip (Bio-rad) was successfully used to execute HBV fragment isolation. Detection using LIF with detection limit of 1 ng/mL was accomplished.
Collapse
Affiliation(s)
- Marketa Vaculovicova
- Department of Chemistry and Biochemistry, Faculty of Agronomy, Mendel University in Brno, Brno, Czech Republic
| | | | | | | | | | | | | |
Collapse
|
26
|
Hong J, Peralta-Videa JR, Gardea-Torresdey JL. Nanomaterials in Agricultural Production: Benefits and Possible Threats? ACS SYMPOSIUM SERIES 2013. [DOI: 10.1021/bk-2013-1124.ch005] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Jie Hong
- Environmental Science and Engineering PhD Program and The University of Texas at El Paso, 500 West University Ave., El Paso, Texas 79968
- Chemistry Department, The University of Texas at El Paso, 500 West University Ave., El Paso, Texas 79968
| | - Jose R. Peralta-Videa
- Environmental Science and Engineering PhD Program and The University of Texas at El Paso, 500 West University Ave., El Paso, Texas 79968
- Chemistry Department, The University of Texas at El Paso, 500 West University Ave., El Paso, Texas 79968
| | - Jorge L. Gardea-Torresdey
- Environmental Science and Engineering PhD Program and The University of Texas at El Paso, 500 West University Ave., El Paso, Texas 79968
- Chemistry Department, The University of Texas at El Paso, 500 West University Ave., El Paso, Texas 79968
| |
Collapse
|
27
|
Zhang X, Ji L, Wang J, Li R, Liu Q, Zhang M, Liu L. Removal of uranium(VI) from aqueous solutions by magnetic Mg–Al layered double hydroxide intercalated with citrate: Kinetic and thermodynamic investigation. Colloids Surf A Physicochem Eng Asp 2012. [DOI: 10.1016/j.colsurfa.2012.08.031] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
28
|
Sui Y, Cui Y, Nie Y, Xia GM, Sun GX, Han JT. Surface modification of magnetite nanoparticles using gluconic acid and their application in immobilized lipase. Colloids Surf B Biointerfaces 2011; 93:24-8. [PMID: 22225941 DOI: 10.1016/j.colsurfb.2011.11.054] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2011] [Revised: 11/25/2011] [Accepted: 11/27/2011] [Indexed: 10/14/2022]
Abstract
Superparamagnetic magnetite nanoparticles (SMN) were surface-modified with gluconic acid (GLA) to improve their hydrophilicity and bio-affinity. Gluconic acid was successfully coated on the surface of magnetite nanoparticles and characterized using Fourier transform infrared spectroscopy (FT-IR). With water-soluble carbodiimide (EDC) as the coupling reagent, lipase was successfully immobilized onto the hydroxyl-functionalized magnetic nanoparticles. The immobilized lipase had better resistance to temperature and pH inactivation in comparison to the free form and hence widened the reaction pH and temperature range. Thermostability and storage stability of the enzyme improved upon covalent immobilization. Immobilized lipase showed higher activity after recycling when compared to the free one and could be recovered by magnetic separation.
Collapse
Affiliation(s)
- Ying Sui
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, PR China
| | | | | | | | | | | |
Collapse
|
29
|
Peroxidase-like activity of aminopropyltriethoxysilane-modified iron oxide magnetic nanoparticles and its application to clenbuterol detection. Eur Food Res Technol 2011. [DOI: 10.1007/s00217-011-1582-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
30
|
Zhou G, Wang P, Yuan J, Qiu T, He Z. Immunomagnetic assay combined with CdSe/ZnS amplification of chemiluminescence for the detection of abscisic acid. Sci China Chem 2011. [DOI: 10.1007/s11426-011-4326-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
31
|
Cui Z, Han C, Li H. Dual-signal fenamithion probe by combining fluorescence with colorimetry based on Rhodamine B modified silver nanoparticles. Analyst 2011; 136:1351-6. [PMID: 21305084 DOI: 10.1039/c0an00617c] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A versatile yet simple strategy for the fabrication of a highly selective and sensitive fenamithion probe based on Rhodamine B (RB) modified silver nanoparticles (RB-Ag NPs) was developed. The advantage of our system over classical assays is that it combined fluorescence with colorimetry which can realize the prompt on-site and real-time detection of fenamithion with high sensitivity (0.1 nM) in aqueous solution. Moreover, the detection system presents excellent anti-disturbance ability when exposed to a series of interfering ionic/pesticides mixtures and can be applied to the determination of fenamithion in real vegetables and different water samples with the limit of detection (LOD) as low as 10 nM (0.0026 mg L(-1)), which is in accord with the maximum contamination level of 0.001∼0.25 mg L(-1) for organophosphorus pesticides as defined by the U.S. Environmental Protection Agency (EPA). Advantage is taken of the fact that RB would be displaced from the surface of the Ag NPs because of the stronger coordination ability of Ag NPs with fenamithion, an amino-containing organophosphorus pesticide, accompanying the clustered Ag NPs (9 nm) dissipating into smaller individual particles (7 nm). Based on this phenomenon, a novel analyte-induced etching mechanism was proposed.
Collapse
Affiliation(s)
- Zhimin Cui
- Key Laboratory of Pesticide and Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, PR China
| | | | | |
Collapse
|
32
|
Speroni F, Elviri L, Careri M, Mangia A. Magnetic particles functionalized with PAMAM-dendrimers and antibodies: a new system for an ELISA method able to detect Ara h3/4 peanut allergen in foods. Anal Bioanal Chem 2010; 397:3035-42. [PMID: 20607526 DOI: 10.1007/s00216-010-3851-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2010] [Revised: 05/10/2010] [Accepted: 05/16/2010] [Indexed: 10/19/2022]
Abstract
An innovative enzyme-linked immunosorbent assay (ELISA) format based on antibody-coated magnetic micro-particles (MPs) for the sensitive detection of Ara h3/4 allergen in food is described. The immunosupport is suspended in the incubation solutions and the MPs with the captured allergen can be easily harvested on a magnet, separated from the solutions, and washed using an easy-to-use, fast and selective approach that allows its detection and quantification. Two differently coated MPs, ProteinA-Pn-b and MP-NH(2)-PAMAM G 1.5-Pn-b immunosupports, were tested. The functionalization of the MPs with PAMAM-sodium carboxylate dendrimers elicits a major stability on the immunoglobulin activity resulting in a threefold enhancement of the analytical sensitivity for the assay with respect to a ProteinA immobilization. Validation was carried out on two different matrices: corn flakes and biscuits. In the case of MP-NH(2)-PAMAM G 1.5 -Pn-b immunosupport, limit of detection was found to be 0.2 mg peanuts/kg matrix in both matrices; the linear response range was demonstrated from 2.5 to 15 mg peanuts/kg matrix by performing statistical tests (homoscedasticity and Mandel fitting tests). Good accuracy and recovery (>80 +/- 2%) were obtained. Different food samples were tested and the results were compared with those obtained with a commercially available ELISA kit. The results obtained in this work demonstrated the applicability of the immunomagnetic ELISA methods on real samples and the possibility to perform the assay with significantly reduced reagent and sample consumption.
Collapse
Affiliation(s)
- Francesca Speroni
- Dipartimento di Chimica Generale ed Inorganica, Chimica Analitica, Chimica Fisica, Università degli Studi di Parma, Viale G.P. Usberti 17/A, 43100 Parma, Italy
| | | | | | | |
Collapse
|