1
|
Agostani E, Tassistro E, Antolini L, Gambacorti‐Passerini C. Inflammatory/Immune Adverse Events in Chronic Myeloid Leukemia Patients During Treatment With Bosutinib. Cancer Med 2025; 14:e70580. [PMID: 39910922 PMCID: PMC11799592 DOI: 10.1002/cam4.70580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 12/08/2024] [Accepted: 12/26/2024] [Indexed: 02/07/2025] Open
Abstract
BACKGROUND Bosutinib, a tyrosine kinase inhibitor (TKI), is effective in treating chronic myeloid leukemia (CML) patients resistant or intolerant to previous TKIs. Unlike other TKIs, bosutinib's lack of inhibition of c-KIT and PDGFR may contribute to its unique tolerability profile. Similar to dasatinib, it targets Bcr/Abl and SRC kinases, particularly Lyn, raising safety concerns. In fact, the susceptibility of Lyn -/- mice to autoimmune disorders and the deregulation of Lyn-dependent pathways in patients with lupus were previously shown. AIMS This study aimed to assess the time-adjusted rate (TAR) of inflammatory/immune-related adverse events in bosutinib-treated patients. METHODS We analyzed clinical data from 60 patients with a minimum follow-up of three months. We used the CTCAE dictionary to identify immune-related adverse events (irAEs). RESULTS Patients had a median treatment duration of 47.9 months (IQR: 38.4-121.8), totaling 592.7 person-months. Among 33 patients (55% of the sample), we detected 94 irAEs (2.3% of total adverse events), including giant cell arteritis, psoriasis, erythema nodosum, articular pain, pleural and pericardial effusion, and three cases of recurrent sterile pneumonia. The estimated TAR of the first irAEs was 14.7 (95% CI: 10.4-20.7) events per 100 person-years; considering repeated irAEs, the TAR was 28.4 (95% CI: 23.2-34.8) events per 100 person-years. The median time to the first irAE was 14.8 months (IQR: 7.1-42). These rates are higher than those observed in imatinib-treated patients. CONCLUSIONS Our findings support the clinical impression of a high incidence of irAEs in bosutinib-treated patients and may lead to an enhanced understanding of bosutinib's safety profile and mechanism of action.
Collapse
Affiliation(s)
- E. Agostani
- Hematology DepartmentFondazione IRCCS San Gerardo Dei TintoriMonzaItaly
- Department of Medicine and SurgeryUniversity of Milano‐ BicoccaMonzaItaly
| | - E. Tassistro
- Bicocca Center of Bioinformatics, Biostatistics and Bioimaging (B4 Centre), department of Medicine and SurgeryUniversity of Milano‐BicoccaMonzaItaly
- Biostatistics and Clinical EpidemiologyFondazione IRCCS San Gerardo Dei TintoriMonzaItaly
| | - L. Antolini
- Bicocca Center of Bioinformatics, Biostatistics and Bioimaging (B4 Centre), department of Medicine and SurgeryUniversity of Milano‐BicoccaMonzaItaly
| | - C. Gambacorti‐Passerini
- Hematology DepartmentFondazione IRCCS San Gerardo Dei TintoriMonzaItaly
- Department of Medicine and SurgeryUniversity of Milano‐ BicoccaMonzaItaly
| |
Collapse
|
2
|
Hao H, Bian Y, Yang N, Ji X, Bao J, Zhu K. Discovery of anti-tumor small molecule lead compounds targeting the SH3 domain of c-Src protein through virtual screening and biological evaluation. Arch Biochem Biophys 2025; 764:110286. [PMID: 39743031 DOI: 10.1016/j.abb.2024.110286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 12/24/2024] [Accepted: 12/29/2024] [Indexed: 01/04/2025]
Abstract
c-Src, also known as cellular Src, is a non-receptor tyrosine kinase that plays a crucial role in various cellular processes, including cell proliferation, adhesion, and migration. Its dysregulation has been implicated in the development and progression of several diseases, particularly cancer. Current therapeutic agents targeting c-Src are primarily small molecules binding to its kinase domain. However, drug resistance often reduces the effectiveness of these drugs. The SH3 domain of c-Src is a highly conserved functional region with a low propensity for developing drug resistance, whereas there are no existing anti-cancer drugs specifically binding to this domain. In this study, structure-based virtual screening and thermal shift experimental verification identified three molecules that showed potent binding affinity with SH3 domain of c-Src. Subsequent kinase activity assay validated the inhibitory activity of these compounds against c-Src, with IC50 values ranging from 60.42 to 122.2 nM. Next, cell-level assays and preliminary study were conducted to further evaluate the efficacy of the identified active compounds. In conclusion, the present work has provided new chemical templates as lead structures for the future development of new antitumor therapeutics targeting the c-Src SH3 domain to overcome drug resistance.
Collapse
Affiliation(s)
- Haifang Hao
- School of Biological Science and Technology, University of Jinan, Jinan, 250022, China
| | - Yuan Bian
- School of Biological Science and Technology, University of Jinan, Jinan, 250022, China
| | - Na Yang
- School of Biological Science and Technology, University of Jinan, Jinan, 250022, China
| | - Xingzhao Ji
- Department of Pulmonary and Critical Care Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China.
| | - Jie Bao
- School of Biological Science and Technology, University of Jinan, Jinan, 250022, China.
| | - Kongkai Zhu
- Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China; The Second Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China.
| |
Collapse
|
3
|
Zhong H, Zhang Z, Chen M, Chen Y, Yang C, Xue Y, Xu P, Liu H. Structural Basis for Long Residence Time c-Src Antagonist: Insights from Molecular Dynamics Simulations. Int J Mol Sci 2024; 25:10477. [PMID: 39408805 PMCID: PMC11476938 DOI: 10.3390/ijms251910477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/25/2024] [Accepted: 09/27/2024] [Indexed: 10/19/2024] Open
Abstract
c-Src is involved in multiple signaling pathways and serves as a critical target in various cancers. Growing evidence suggests that prolonging a drug's residence time (RT) can enhance its efficacy and selectivity. Thus, the development of c-Src antagonists with longer residence time could potentially improve therapeutic outcomes. In this study, we employed molecular dynamics simulations to explore the binding modes and dissociation processes of c-Src with antagonists characterized by either long or short RTs. Our results reveal that the long RT compound DAS-DFGO-I (DFGO) occupies an allosteric site, forming hydrogen bonds with residues E310 and D404 and engaging in hydrophobic interactions with residues such as L322 and V377. These interactions significantly contribute to the long RT of DFGO. However, the hydrogen bonds between the amide group of DFGO and residues E310 and D404 are unstable. Substituting the amide group with a sulfonamide yielded a new compound, DFOGS, which exhibited more stable hydrogen bonds with E310 and D404, thereby increasing its binding stability with c-Src. These results provide theoretical guidance for the rational design of long residence time c-Src inhibitors to improve selectivity and efficacy.
Collapse
Affiliation(s)
- Haiyang Zhong
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou 221004, China
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Zhengshuo Zhang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou 221004, China
| | - Mengdan Chen
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou 221004, China
| | - Yue Chen
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou 221004, China
| | - Can Yang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou 221004, China
| | - Yunsheng Xue
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou 221004, China
| | - Pei Xu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou 221004, China
| | - Hongli Liu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou 221004, China
| |
Collapse
|
4
|
Wang Y, Nan X, Duan Y, Wang Q, Liang Z, Yin H. FDA-approved small molecule kinase inhibitors for cancer treatment (2001-2015): Medical indication, structural optimization, and binding mode Part I. Bioorg Med Chem 2024; 111:117870. [PMID: 39128361 DOI: 10.1016/j.bmc.2024.117870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/01/2024] [Accepted: 08/05/2024] [Indexed: 08/13/2024]
Abstract
The dysregulation of kinases has emerged as a major class of targets for anticancer drug discovery given its node roles in the etiology of tumorigenesis, progression, invasion, and metastasis of malignancies, which is validated by the FDA approval of 28 small molecule kinase inhibitor (SMKI) drugs for cancer treatment at the end of 2015. While the preclinical and clinical data of these drugs are widely presented, it is highly essential to give an updated review on the medical indications, design principles and binding modes of these anti-tumor SMKIs approved by the FDA to offer insights for the future development of SMKIs with specific efficacy and safety.
Collapse
Affiliation(s)
- Ying Wang
- Department of Electrophysiological Diagnosis, 3201 Hospital of Xi'an Jiaotong University Health Science Center, Hanzhong 723000, China
| | - Xiang Nan
- College of Chemical & Environment Science, Shaanxi University of Technology, Hanzhong 723001, China; Department of Stomatology, Shenzhen Second People's Hospital, Shenzhen 518035, China
| | - Yanping Duan
- College of Chemical & Environment Science, Shaanxi University of Technology, Hanzhong 723001, China
| | - Qiuxu Wang
- Department of Stomatology, Shenzhen Second People's Hospital, Shenzhen 518035, China.
| | - Zhigang Liang
- Department of Stomatology, Shenzhen Second People's Hospital, Shenzhen 518035, China
| | - Hanrong Yin
- Department of Electrophysiological Diagnosis, 3201 Hospital of Xi'an Jiaotong University Health Science Center, Hanzhong 723000, China.
| |
Collapse
|
5
|
Chiodi D, Ishihara Y. The role of the methoxy group in approved drugs. Eur J Med Chem 2024; 273:116364. [PMID: 38781921 DOI: 10.1016/j.ejmech.2024.116364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 03/12/2024] [Accepted: 03/23/2024] [Indexed: 05/25/2024]
Abstract
The methoxy substituent is prevalent in natural products and, consequently, is present in many natural product-derived drugs. It has also been installed in modern drug molecules with no remnant of natural product features because medicinal chemists have been taking advantage of the benefits that this small functional group can bestow on ligand-target binding, physicochemical properties, and ADME parameters. Herein, over 230 methoxy-containing small-molecule drugs, as well as several fluoromethoxy-containing drugs, are presented from the vantage point of the methoxy group. Biochemical mechanisms of action, medicinal chemistry SAR studies, and numerous X-ray cocrystal structures are analyzed to identify the precise role of the methoxy group for many of the drugs and drug classes. Although the methoxy substituent can be considered as the hybridization of a hydroxy and a methyl group, the combination of these functionalities often results in unique effects that can amount to more than the sum of the individual parts.
Collapse
Affiliation(s)
- Debora Chiodi
- Department of Chemistry, Takeda Pharmaceuticals, 9625 Towne Centre Drive, San Diego, CA, 92121, USA
| | - Yoshihiro Ishihara
- Department of Chemistry, Vividion Therapeutics, 5820 Nancy Ridge Drive, San Diego, CA, 92121, USA.
| |
Collapse
|
6
|
Wang X, DeFilippis RA, Yan W, Shah NP, Li HY. Overcoming Secondary Mutations of Type II Kinase Inhibitors. J Med Chem 2024; 67:9776-9788. [PMID: 38837951 PMCID: PMC11586107 DOI: 10.1021/acs.jmedchem.3c01629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
Type II kinase inhibitors bind in the "DFG-out" kinase conformation and are generally considered to be more potent and selective than type I inhibitors, which target a DFG-in conformation. Nine type II inhibitors are currently clinically approved, with more undergoing clinical development. Resistance-conferring secondary mutations emerged with the first series of type II inhibitors, most commonly at residues within the kinase activation loop and at the "gatekeeper" position. Recently, new inhibitors have been developed to overcome such mutations; however, mutations activating other pathways (and/or other targets) have subsequently emerged on occasion. Here, we systematically summarize the secondary mutations that confer resistance to type II inhibitors, the structural basis for resistance, newer inhibitors designed to overcome resistance, as well as the challenges and opportunities for the development of new inhibitors to overcome secondary kinase domain mutations.
Collapse
Affiliation(s)
- Xiuqi Wang
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, United States
| | - Rosa Anna DeFilippis
- Division of Hematology/Oncology, University of California, San Francisco, California 94143, United States
| | - Wei Yan
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, United States
- Department of Pharmacology, School of Medicine, The University of Texas Health San Antonio, San Antonio, Texas 78229, United States
| | - Neil P Shah
- Division of Hematology/Oncology, University of California, San Francisco, California 94143, United States
| | - Hong-Yu Li
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, United States
- Department of Pharmacology, School of Medicine, The University of Texas Health San Antonio, San Antonio, Texas 78229, United States
| |
Collapse
|
7
|
Öster L, Castaldo M, de Vries E, Edfeldt F, Pemberton N, Gordon E, Cederblad L, Käck H. The structures of salt-inducible kinase 3 in complex with inhibitors reveal determinants for binding and selectivity. J Biol Chem 2024; 300:107201. [PMID: 38508313 PMCID: PMC11061224 DOI: 10.1016/j.jbc.2024.107201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 03/11/2024] [Accepted: 03/14/2024] [Indexed: 03/22/2024] Open
Abstract
The salt-inducible kinases (SIKs) 1 to 3, belonging to the AMPK-related kinase family, serve as master regulators orchestrating a diverse set of physiological processes such as metabolism, bone formation, immune response, oncogenesis, and cardiac rhythm. Owing to its key regulatory role, the SIK kinases have emerged as compelling targets for pharmacological intervention across a diverse set of indications. Therefore, there is interest in developing SIK inhibitors with defined selectivity profiles both to further dissect the downstream biology and for treating disease. However, despite a large pharmaceutical interest in the SIKs, experimental structures of SIK kinases are scarce. This is likely due to the challenges associated with the generation of proteins suitable for structural studies. By adopting a rational approach to construct design and protein purification, we successfully crystallized and subsequently solved the structure of SIK3 in complex with HG-9-91-01, a potent SIK inhibitor. To enable further SIK3-inhibitor complex structures we identified an antibody fragment that facilitated crystallization and enabled a robust protocol suitable for structure-based drug design. The structures reveal SIK3 in an active conformation, where the ubiquitin-associated domain is shown to provide further stabilization to this active conformation. We present four pharmacologically relevant and distinct SIK3-inhibitor complexes. These detail the key interaction for each ligand and reveal how different regions of the ATP site are engaged by the different inhibitors to achieve high affinity. Notably, the structure of SIK3 in complex with a SIK3 specific inhibitor offers insights into isoform selectivity.
Collapse
Affiliation(s)
- Linda Öster
- Mechanistic and Structural Biology, Discovery Sciences, R&D, AstraZeneca, Gothenburg, Sweden.
| | - Marie Castaldo
- Discovery Biology, Discovery Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | - Emma de Vries
- Biologics Engineering, R&D, AstraZeneca, Cambridge, UK
| | - Fredrik Edfeldt
- Mechanistic and Structural Biology, Discovery Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | - Nils Pemberton
- Medicinal Chemistry, Research & Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Euan Gordon
- Discovery Biology, Discovery Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | - Linda Cederblad
- Discovery Biology, Discovery Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | - Helena Käck
- Mechanistic and Structural Biology, Discovery Sciences, R&D, AstraZeneca, Gothenburg, Sweden.
| |
Collapse
|
8
|
Yasuda S, Svergja H, Olsen CE, Hoff BH. Promotion of Water as Solvent in Amination of 4-Chloropyrrolopyrimidines and Related Heterocycles under Acidic Conditions. ACS OMEGA 2024; 9:14142-14152. [PMID: 38559978 PMCID: PMC10976386 DOI: 10.1021/acsomega.3c09673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/22/2024] [Accepted: 02/28/2024] [Indexed: 04/04/2024]
Abstract
A switch of reaction medium from organic solvents to water can improve the safety and lower the cost of production processes. Hydrochloric acid-promoted amination of fused pyrimidines has been studied using 4-chloro-7H-pyrrolo[2,3-d]pyrimidine and aniline as model compounds. Higher rate was observed in water than in four alcoholic solvents and DMF. An important aspect is that the amount of acid should be kept low to minimize the competing solvolysis. The substrate scope for the amination in water was evaluated by reacting 4-chloro-7H-pyrrolo[2,3-d]pyrimidine with 20 aniline derivatives with variance in steric and electronic properties. Preparative useful reactions were seen for 14 of the 20 derivatives. Unsuited nucleophiles are ortho-substituted anilines with a pKa below 1. Amination of the corresponding quinazoline, thienopyrimidine, and purine also proceeded well in water. Highly lipophilic and crystalline compounds are more efficiently aminated in 2-propanol. Aliphatic and benzylic amines react poorly under acidic conditions, but these aminations can be done in water without acid.
Collapse
Affiliation(s)
- Shuhei Yasuda
- Department of Chemistry, Norwegian University of Science and Technology (NTNU), Ho̷gskoleringen 5, NO-7491 Trondheim, Norway
| | | | - Cecilie Elisabeth Olsen
- Department of Chemistry, Norwegian University of Science and Technology (NTNU), Ho̷gskoleringen 5, NO-7491 Trondheim, Norway
| | - Bård Helge Hoff
- Department of Chemistry, Norwegian University of Science and Technology (NTNU), Ho̷gskoleringen 5, NO-7491 Trondheim, Norway
| |
Collapse
|
9
|
Maddeboina K, Yada B, Kumari S, McHale C, Pal D, Durden DL. Recent advances in multitarget-directed ligands via in silico drug discovery. Drug Discov Today 2024; 29:103904. [PMID: 38280625 DOI: 10.1016/j.drudis.2024.103904] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 01/11/2024] [Accepted: 01/23/2024] [Indexed: 01/29/2024]
Abstract
To combat multifactorial refractory diseases, such as cancer, cardiovascular, and neurodegenerative diseases, multitarget drugs have become an emerging area of research aimed at 'synthetic lethality' (SL) relationships associated with drug-resistance mechanisms. In this review, we discuss the in silico design of dual and triple-targeted ligands, strategies by which specific 'warhead' groups are incorporated into a parent compound or scaffold with primary inhibitory activity against one target to develop one small molecule that inhibits two or three molecular targets in an effort to increase potency against multifactorial diseases. We also discuss the analytical exploration of structure-activity relationships (SARs), physicochemical properties, polypharmacology, scaffold feature extraction of US Food and Drug Administration (FDA)-approved multikinase inhibitors (MKIs), and updates regarding the clinical status of dual-targeted chemotypes.
Collapse
Affiliation(s)
- Krishnaiah Maddeboina
- Molecular Targeted Therapeutics Laboratory, Levine Cancer Institute/Atrium Health, Charlotte, NC 28204, USA; Department of Biochemistry, Atrium Health Wake Forest Baptist Comprehensive Cancer Center, Wake Forest University School of Medicine, Winston Salem, NC 27157, USA.
| | - Bharath Yada
- Molecular Targeted Therapeutics Laboratory, Levine Cancer Institute/Atrium Health, Charlotte, NC 28204, USA
| | - Shikha Kumari
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, CT 06520, USA
| | - Cody McHale
- Molecular Targeted Therapeutics Laboratory, Levine Cancer Institute/Atrium Health, Charlotte, NC 28204, USA
| | - Dhananjaya Pal
- Molecular Targeted Therapeutics Laboratory, Levine Cancer Institute/Atrium Health, Charlotte, NC 28204, USA
| | - Donald L Durden
- Molecular Targeted Therapeutics Laboratory, Levine Cancer Institute/Atrium Health, Charlotte, NC 28204, USA; Department of Biochemistry, Atrium Health Wake Forest Baptist Comprehensive Cancer Center, Wake Forest University School of Medicine, Winston Salem, NC 27157, USA.
| |
Collapse
|
10
|
Romanelli MN, Braconi L, Gabellini A, Manetti D, Marotta G, Teodori E. Synthetic Approaches to Piperazine-Containing Drugs Approved by FDA in the Period of 2011-2023. Molecules 2023; 29:68. [PMID: 38202651 PMCID: PMC10780301 DOI: 10.3390/molecules29010068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 12/15/2023] [Accepted: 12/18/2023] [Indexed: 01/12/2024] Open
Abstract
The piperazine moiety is often found in drugs or in bioactive molecules. This widespread presence is due to different possible roles depending on the position in the molecule and on the therapeutic class, but it also depends on the chemical reactivity of piperazine-based synthons, which facilitate its insertion into the molecule. In this paper, we take into consideration the piperazine-containing drugs approved by the Food and Drug Administration between January 2011 and June 2023, and the synthetic methodologies used to prepare the compounds in the discovery and process chemistry are reviewed.
Collapse
Affiliation(s)
- Maria Novella Romanelli
- Section of Pharmaceutical and Nutraceutical Science, Department of Neurosciences, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Via Ugo Schiff, 6, Sesto Fiorentino, 50019 Florence, Italy; (L.B.); (A.G.); (D.M.); (G.M.); (E.T.)
| | | | | | | | | | | |
Collapse
|
11
|
El-Damasy AK, Jin H, Park JW, Kim HJ, Khojah H, Seo SH, Lee JH, Bang EK, Keum G. Overcoming the imatinib-resistant BCR-ABL mutants with new ureidobenzothiazole chemotypes endowed with potent and broad-spectrum anticancer activity. J Enzyme Inhib Med Chem 2023; 38:2189097. [PMID: 36927348 PMCID: PMC10026764 DOI: 10.1080/14756366.2023.2189097] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023] Open
Abstract
The design of kinase inhibitors targeting the oncogenic kinase BCR-ABL constitutes a promising paradigm for treating chronic myeloid leukaemia (CML). Nevertheless, the efficacy of imatinib, the first FDA-approved targeted therapy for CML, is curbed by the emergence of resistance. Herein, we report the identification of the 2-methoxyphenyl ureidobenzothiazole AK-HW-90 (2b) as a potent pan-BCR-ABL inhibitor against imatinib-resistant mutants, particularly T315I. A concise array of six compounds 2a-f was designed based on our previously reported benzothiazole lead AKE-5l to improve its BCR-ABLT315I inhibitory activity. Replacing the 6-oxypicolinamide moiety of AKE-5l with o-methoxyphenyl and changing the propyl spacer with phenyl afforded 2a and AK-HW-90 (2b) with IC50 values of 2.0 and 0.65 nM against BCR-ABLT315I, respectively. AK-HW-90 showed superior anticancer potency to imatinib against multiple cancer cells (NCI), including leukaemia K-562. The obtained outcomes offer AK-HW-90 as a promising candidate for the treatment of CML and other types of cancer.
Collapse
Affiliation(s)
- Ashraf K El-Damasy
- Center for Brain Technology, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Heewon Jin
- Center for Brain Technology, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
| | - Jung Woo Park
- Center for Supercomputing Applications, Div. of National Supercomputing R&D, Korea Institute of Science and Technology Information, Daejeon, Republic of Korea
| | - Hyun Ji Kim
- Center for Brain Technology, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
| | - Hanan Khojah
- Department of Pharmacognosy, College of Pharmacy, Jouf University, Sakaka, Saudi Arabia
| | - Seon Hee Seo
- Center for Brain Disorders, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
| | - Ju-Hyeon Lee
- Center for Brain Technology, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
| | - Eun-Kyoung Bang
- Center for Brain Technology, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
| | - Gyochang Keum
- Center for Brain Technology, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
- Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology (UST), Seoul, Republic of Korea
| |
Collapse
|
12
|
Meyer C, McCoy M, Li L, Posner B, Westover KD. LIMS-Kinase provides sensitive and generalizable label-free in vitro measurement of kinase activity using mass spectrometry. CELL REPORTS. PHYSICAL SCIENCE 2023; 4:101599. [PMID: 38213501 PMCID: PMC10783653 DOI: 10.1016/j.xcrp.2023.101599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
Measurements of kinase activity are important for kinase-directed drug development, analysis of inhibitor structure and function, and understanding mechanisms of drug resistance. Sensitive, accurate, and miniaturized assay methods are crucial for these investigations. Here, we describe a label-free, high-throughput mass spectrometry-based assay for studying individual kinase enzymology and drug discovery in a purified system, with a focus on validated drug targets as benchmarks. We demonstrate that this approach can be adapted to many known kinase substrates and highlight the benefits of using mass spectrometry to measure kinase activity in vitro, including increased sensitivity. We speculate that this approach to measuring kinase activity will be generally applicable across most of the kinome, enabling research on understudied kinases and kinase drug discovery.
Collapse
Affiliation(s)
- Cynthia Meyer
- Department of Biochemistry, The University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390, USA
- Department of Radiation Oncology, The University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390, USA
| | - Melissa McCoy
- Department of Biochemistry, The University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390, USA
| | - Lianbo Li
- Department of Biochemistry, The University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390, USA
- Department of Radiation Oncology, The University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390, USA
| | - Bruce Posner
- Department of Biochemistry, The University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390, USA
| | - Kenneth D. Westover
- Department of Biochemistry, The University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390, USA
- Department of Radiation Oncology, The University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390, USA
- X (formerly Twitter): @KENWESTOVER
- Lead contact
| |
Collapse
|
13
|
Ko T, Jou C, Grau-Perales AB, Reynders M, Fenton AA, Trauner D. Photoactivated Protein Degrader for Optical Control of Synaptic Function. ACS Chem Neurosci 2023; 14:3704-3713. [PMID: 37712589 PMCID: PMC10557063 DOI: 10.1021/acschemneuro.3c00390] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 08/04/2023] [Indexed: 09/16/2023] Open
Abstract
Hundreds of proteins determine the function of synapses, and synapses define the neuronal circuits that subserve myriad brain, cognitive, and behavioral functions. It is thus necessary to precisely manipulate specific proteins at specific sub-cellular locations and times to elucidate the roles of particular proteins and synapses in brain function. We developed PHOtochemically TArgeting Chimeras (PHOTACs) as a strategy to optically degrade specific proteins with high spatial and temporal precision. PHOTACs are small molecules that, upon wavelength-selective illumination, catalyze ubiquitylation and degradation of target proteins through endogenous proteasomes. Here, we describe the design and chemical properties of a PHOTAC that targets Ca2+/calmodulin-dependent protein kinase II alpha (CaMKIIα), which is abundant and crucial for the baseline synaptic function of excitatory neurons. We validate the PHOTAC strategy, showing that the CaMKIIα-PHOTAC is effective in mouse brain tissue. Light activation of CaMKIIα-PHOTAC removed CaMKIIα from regions of the mouse hippocampus only within 25 μm of the illuminated brain surface. The optically controlled degradation decreases synaptic function within minutes of light activation, measured by the light-initiated attenuation of evoked field excitatory postsynaptic potential (fEPSP) responses to physiological stimulation. The PHOTACs methodology should be broadly applicable to other key proteins implicated in synaptic function, especially for evaluating their precise roles in the maintenance of long-term potentiation and memory within subcellular dendritic domains.
Collapse
Affiliation(s)
- Tongil Ko
- Department
of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Department
of Chemistry, New York University, New York, New York 10003, United States
| | - Claudia Jou
- Department
of Psychology, Hunter College, New York, New York 10065, United States
| | | | - Martin Reynders
- Department
of Chemistry, New York University, New York, New York 10003, United States
| | - André A. Fenton
- Center
for Neural Science, New York University, New York, New York 10003, United States
| | - Dirk Trauner
- Department
of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
14
|
Ko T, Jou C, Grau-Perales A, Reynders M, Fenton A, Trauner D. A Photoactivated Protein Degrader for Optical Control of Synaptic Function. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.13.528397. [PMID: 36824807 PMCID: PMC9949324 DOI: 10.1101/2023.02.13.528397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Hundreds of proteins determine the function of synapses, and synapses define the neuronal circuits that subserve myriad brain, cognitive, and behavioral functions. It is thus necessary to precisely manipulate specific proteins at specific sub-cellular locations and times to elucidate the roles of particular proteins and synapses in brain function. We developed PHOtochemically TArgeting Chimeras (PHOTACs) as a strategy to optically degrade specific proteins with high spatial and temporal precision. PHOTACs are small molecules that, upon wavelength-selective illumination, catalyze ubiquitylation and degradation of target proteins through endogenous proteasomes. Here we describe the design and chemical properties of a PHOTAC that targets Ca 2+ /calmodulin-dependent protein kinase II alpha (CaMKIIα), which is abundant and crucial for baseline synaptic function of excitatory neurons. We validate the PHOTAC strategy, showing that the CaMKIIα-PHOTAC is effective in mouse brain tissue. Light activation of CaMKIIα-PHOTAC removed CaMKIIα from regions of the mouse hippocampus only within 25 μm of the illuminated brain surface. The optically-controlled degradation decreases synaptic function within minutes of light activation, measured by the light-initiated attenuation of evoked field excitatory postsynaptic potential (fEPSP) responses to physiological stimulation. The PHOTACs methodology should be broadly applicable to other key proteins implicated in synaptic function, especially for evaluating their precise roles in the maintenance of long-term potentiation and memory within subcellular dendritic domains.
Collapse
Affiliation(s)
- T. Ko
- Department of Chemistry, University of Pennsylvania, 231 South 34th Street Philadelphia, PA 19104-6323, USA
- Department of Chemistry, New York University, 100 Washington Square East, New York, NY 10003, USA
| | - C. Jou
- Department of Psychology, Hunter College, 695 Park Avenue, New York, NY, 10065, USA
| | - A.B. Grau-Perales
- Center for Neural Science, New York University, 4 Washington Place, New York, NY 10003, USA
| | - M. Reynders
- Department of Chemistry, New York University, 100 Washington Square East, New York, NY 10003, USA
| | - A.A. Fenton
- Center for Neural Science, New York University, 4 Washington Place, New York, NY 10003, USA
| | - D. Trauner
- Department of Chemistry, University of Pennsylvania, 231 South 34th Street Philadelphia, PA 19104-6323, USA
- Department of Chemistry, New York University, 100 Washington Square East, New York, NY 10003, USA
| |
Collapse
|
15
|
Mahdipour P, Moradi L, Mirzaie M. Green Synthesis of Dihydropyrimido[4,5‐b]quinolinetriones by Sulfonic Acid‐Functionalized Silica‐Coated CoFe
2
O
4
as a Solid Acid Nanocatalyst under Thermal and Ultrasonic Conditions. ChemistrySelect 2022. [DOI: 10.1002/slct.202203824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Pegah Mahdipour
- Department of Organic Chemistry Faculty of Chemistry University of Kashan P.O. Box 8731753153 Kashan I. R. Iran 8731753153
| | - Leila Moradi
- Department of Organic Chemistry Faculty of Chemistry University of Kashan P.O. Box 8731753153 Kashan I. R. Iran 8731753153
| | | |
Collapse
|
16
|
Yi YW, You KS, Han S, Ha IJ, Park JS, Lee SG, Seong YS. Inhibition of IκB Kinase Is a Potential Therapeutic Strategy to Circumvent Resistance to Epidermal Growth Factor Receptor Inhibition in Triple-Negative Breast Cancer Cells. Cancers (Basel) 2022; 14:5215. [PMID: 36358633 PMCID: PMC9654813 DOI: 10.3390/cancers14215215] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/21/2022] [Accepted: 10/21/2022] [Indexed: 03/21/2024] Open
Abstract
Triple-negative breast cancer (TNBC) remains as an intractable malignancy with limited therapeutic targets. High expression of epidermal growth factor receptor (EGFR) has been associated with a poor prognosis of TNBC; however, EGFR targeting has failed with unfavorable clinical outcomes. Here, we performed a combinatorial screening of fifty-five protein kinase inhibitors with the EGFR inhibitor gefitinib in the TNBC cell line MDA-MB-231 and identified the IκB kinase (IKK) inhibitor IKK16 as a sensitizer of gefitinib. Cell viability and clonogenic survival assays were performed to evaluate the antiproliferative effects of the gefitinib and IKK16 (Gefitinib + IKK16) combination in TNBC cell lines. Western blot analyses were also performed to reveal the potential mode of action of this combination. In addition, next-generation sequencing (NGS) analysis was performed in Gefitinib+IKK16-treated cells. The Gefitinib+IKK16 treatment synergistically reduced cell viability and colony formation of TNBC cell lines such as HS578T, MDA-MB-231, and MDA-MB-468. This combination downregulated p-STAT3, p-AKT, p-mTOR, p-GSK3β, and p-RPS6. In addition, p-NF-κB and the total NF-κB were also regulated by this combination. Furthermore, NGS analysis revealed that NF-κB/RELA targets including CCL2, CXCL8, EDN1, IL-1β, IL-6, and SERPINE1 were further reduced and several potential tumor suppressors, such as FABP3, FADS2, FDFT1, SEMA6A, and PCK2, were synergistically induced by the Gefitinib-+IKK16 treatment. Taken together, we identified the IKK/NF-κB pathway as a potential target in combination of EGFR inhibition for treating TNBC.
Collapse
Affiliation(s)
- Yong Weon Yi
- Department of Biochemistry, College of Medicine, Dankook University, Cheonan 31116, Chungcheongnam-do, Korea
| | - Kyu Sic You
- Department of Biochemistry, College of Medicine, Dankook University, Cheonan 31116, Chungcheongnam-do, Korea
- Graduate School of Convergence Medical Science, Dankook University, Cheonan 31116, Chungcheongnam-do, Korea
| | - Sanghee Han
- Graduate School, Kyung Hee University, Seoul 02447, Korea
| | - In Jin Ha
- Graduate School, Kyung Hee University, Seoul 02447, Korea
| | - Jeong-Soo Park
- Department of Biochemistry, College of Medicine, Dankook University, Cheonan 31116, Chungcheongnam-do, Korea
| | - Seok-Geun Lee
- Graduate School, Kyung Hee University, Seoul 02447, Korea
| | - Yeon-Sun Seong
- Department of Biochemistry, College of Medicine, Dankook University, Cheonan 31116, Chungcheongnam-do, Korea
- Graduate School of Convergence Medical Science, Dankook University, Cheonan 31116, Chungcheongnam-do, Korea
| |
Collapse
|
17
|
Kagiwada H, Motono C, Horimoto K, Fukui K. Phosprof: pathway analysis database of drug response based on phosphorylation activity measurements. Database (Oxford) 2022; 2022:baac072. [PMID: 35994309 PMCID: PMC9394491 DOI: 10.1093/database/baac072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 07/19/2022] [Accepted: 08/17/2022] [Indexed: 06/15/2023]
Abstract
UNLABELLED Protein phosphorylation plays a fundamental role in many cellular processes. Proteins are phosphorylated by kinases, which have been studied as drug targets for the treatment of various diseases, particularly cancer. Because kinases have multiple roles in interconnected molecular pathways, their specific regulation is required to enhance beneficial and reduce adversarial effects of drugs. Using our previously developed platform, we measured phosphorylation profiles of MCF7 and K562 cells treated with 94 clinical drugs. These phosphorylation profiles can provide insights into pathway activities and biological functions. Here, we introduce Phosprof, a novel database of drug response based on phosphorylation activity. Phosprof is able to present up- or downregulated phosphorylated signature proteins on pathway maps, significant pathways on the hierarchal tree in signal transduction and commonly perturbed pathways affected by the selected drugs. It also serves as a useful web interface for new or known drug profile search based on their molecular similarity with the 94 drugs. Phosprof can be helpful for further investigation of drug responses in terms of phosphorylation by utilizing the various approved drugs whose target phenotypes are known. DATABASE URL https://phosprof.medals.jp/.
Collapse
Affiliation(s)
- Harumi Kagiwada
- *Corresponding author: Tel: +81 3 5501 1017; Fax: +81 3 5530 2061; Correspondence may also be addressed to Kazuhiko Fukui. Tel: +81 3 3599 8667; Fax: +81 3 5530 2061;
| | - Chie Motono
- Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology, 2-4-7, Aomi Koto-ku, Tokyo, Japan
- AIST-Waseda University Computational Bio Big-Data Open Innovation Laboratory (CBBD-OIL), 3-4-1, Okubo Shinjuku-ku, Tokyo 169-8555, Japan
| | - Katsuhisa Horimoto
- Artificial Intelligence Research Center, National Institute of Advanced Industrial Science and Technology, 2-4-7, Aomi Koto-ku, Tokyo, Japan
| | - Kazuhiko Fukui
- *Corresponding author: Tel: +81 3 5501 1017; Fax: +81 3 5530 2061; Correspondence may also be addressed to Kazuhiko Fukui. Tel: +81 3 3599 8667; Fax: +81 3 5530 2061;
| |
Collapse
|
18
|
Szychowski J, Papp R, Dietrich E, Liu B, Vallée F, Leclaire MÈ, Fourtounis J, Martino G, Perryman AL, Pau V, Yun Yin S, Mader P, Roulston A, Truchon JF, Marshall CG, Diallo M, Duffy NM, Stocco R, Godbout C, Bonneau-Fortin A, Kryczka R, Bhaskaran V, Mao D, Orlicky S, Beaulieu P, Turcotte P, Kurinov I, Sicheri F, Mamane Y, Gallant M, Black WC. Discovery of an Orally Bioavailable and Selective PKMYT1 Inhibitor, RP-6306. J Med Chem 2022; 65:10251-10284. [PMID: 35880755 PMCID: PMC9837800 DOI: 10.1021/acs.jmedchem.2c00552] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
PKMYT1 is a regulator of CDK1 phosphorylation and is a compelling therapeutic target for the treatment of certain types of DNA damage response cancers due to its established synthetic lethal relationship with CCNE1 amplification. To date, no selective inhibitors have been reported for this kinase that would allow for investigation of the pharmacological role of PKMYT1. To address this need compound 1 was identified as a weak PKMYT1 inhibitor. Introduction of a dimethylphenol increased potency on PKMYT1. These dimethylphenol analogs were found to exist as atropisomers that could be separated and profiled as single enantiomers. Structure-based drug design enabled optimization of cell-based potency. Parallel optimization of ADME properties led to the identification of potent and selective inhibitors of PKMYT1. RP-6306 inhibits CCNE1-amplified tumor cell growth in several preclinical xenograft models. The first-in-class clinical candidate RP-6306 is currently being evaluated in Phase 1 clinical trials for treatment of various solid tumors.
Collapse
Affiliation(s)
- Janek Szychowski
- Repare Therapeutics, Inc., 7210 Frederick-Banting, Ville St-Laurent, QC, H4S 2A1, Canada
| | - Robert Papp
- Repare Therapeutics, Inc., 7210 Frederick-Banting, Ville St-Laurent, QC, H4S 2A1, Canada
| | - Evelyne Dietrich
- Repare Therapeutics, Inc., 7210 Frederick-Banting, Ville St-Laurent, QC, H4S 2A1, Canada
| | - Bingcan Liu
- Repare Therapeutics, Inc., 7210 Frederick-Banting, Ville St-Laurent, QC, H4S 2A1, Canada
| | - Frédéric Vallée
- Repare Therapeutics, Inc., 7210 Frederick-Banting, Ville St-Laurent, QC, H4S 2A1, Canada
| | - Marie-Ève Leclaire
- Repare Therapeutics, Inc., 7210 Frederick-Banting, Ville St-Laurent, QC, H4S 2A1, Canada
| | - Jimmy Fourtounis
- Repare Therapeutics, Inc., 7210 Frederick-Banting, Ville St-Laurent, QC, H4S 2A1, Canada
| | - Giovanni Martino
- Repare Therapeutics, Inc., 7210 Frederick-Banting, Ville St-Laurent, QC, H4S 2A1, Canada
| | - Alexander L. Perryman
- Repare Therapeutics, Inc., 7210 Frederick-Banting, Ville St-Laurent, QC, H4S 2A1, Canada
| | - Victor Pau
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON, M5G 1X5, Canada
| | - Shou Yun Yin
- Repare Therapeutics, Inc., 7210 Frederick-Banting, Ville St-Laurent, QC, H4S 2A1, Canada
| | - Pavel Mader
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON, M5G 1X5, Canada
| | - Anne Roulston
- Repare Therapeutics, Inc., 7210 Frederick-Banting, Ville St-Laurent, QC, H4S 2A1, Canada
| | - Jean-Francois Truchon
- Repare Therapeutics, Inc., 7210 Frederick-Banting, Ville St-Laurent, QC, H4S 2A1, Canada
| | - C. Gary Marshall
- Repare Therapeutics, 1 Broadway, 15th Floor, Cambridge, MA 02142, USA
| | - Mohamed Diallo
- Repare Therapeutics, Inc., 7210 Frederick-Banting, Ville St-Laurent, QC, H4S 2A1, Canada
| | - Nicole M. Duffy
- Repare Therapeutics, Inc., 7210 Frederick-Banting, Ville St-Laurent, QC, H4S 2A1, Canada
| | - Rino Stocco
- Repare Therapeutics, Inc., 7210 Frederick-Banting, Ville St-Laurent, QC, H4S 2A1, Canada
| | - Claude Godbout
- Repare Therapeutics, Inc., 7210 Frederick-Banting, Ville St-Laurent, QC, H4S 2A1, Canada
| | | | - Rosie Kryczka
- Repare Therapeutics, Inc., 7210 Frederick-Banting, Ville St-Laurent, QC, H4S 2A1, Canada
| | - Vivek Bhaskaran
- Repare Therapeutics, Inc., 7210 Frederick-Banting, Ville St-Laurent, QC, H4S 2A1, Canada
| | - Daniel Mao
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON, M5G 1X5, Canada
| | - Stephen Orlicky
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON, M5G 1X5, Canada
| | - Patrick Beaulieu
- OmegaChem Inc., 480 Rue Perreault, Saint-Romuald, QC, G6W 7V6, Canada
| | - Pascal Turcotte
- AdMare BioInnovations, 7171 Frederick-Banting, Montréal, QC, H4S 1Z9, Canada
| | - Igor Kurinov
- Department of Chemistry and Chemical Biology, Cornell University, NE-CAT, Argonne, Il 60439, USA
| | - Frank Sicheri
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON, M5G 1X5, Canada
- Departments of Biochemistry and Molecular Genetics, University of Toronto, Ontario M5S 1A8, Canada
| | - Yael Mamane
- Repare Therapeutics, Inc., 7210 Frederick-Banting, Ville St-Laurent, QC, H4S 2A1, Canada
| | - Michel Gallant
- Repare Therapeutics, Inc., 7210 Frederick-Banting, Ville St-Laurent, QC, H4S 2A1, Canada
| | - W. Cameron Black
- Repare Therapeutics, Inc., 7210 Frederick-Banting, Ville St-Laurent, QC, H4S 2A1, Canada
| |
Collapse
|
19
|
Pan X, Liu N, Liu Y, Zhang Q, Wang K, Liu X, Zhang J. Design, synthesis, and biological evaluation of trizole-based heteroaromatic derivatives as Bcr-Abl kinase inhibitors. Eur J Med Chem 2022; 238:114425. [PMID: 35561654 DOI: 10.1016/j.ejmech.2022.114425] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 04/27/2022] [Accepted: 04/28/2022] [Indexed: 01/01/2023]
Abstract
Bcr-Abl is a key driver in the pathophysiology of CML. Broadening the chemical diversity of Bcr-Abl kinase inhibitors to overcome drug resistance is a current medical demand for CML treatment. As a continuation to our research, a series of compounds with heteroaromatics-trizole scaffold as hinge binding moiety (HBM) were developed as Bcr-Abl inhibitors based on in silico modeling analysis. Biological results indicated that these compounds exhibited a significantly enhanced inhibition against Bcr-AblWT and Bcr-AblT315I in kinases assays, along with improved anti-proliferative activities in leukemia cell assays, compared with previous disclosed compounds. In particular, compounds 9f, 28c, 31, and 44c displayed comparable even better potency with that of Imatinib in enzymatic assay and cell assays including K562 cells and adriamycin-resistant K562/A cells. Moreover, compounds 9f, 28c, and 44c exhibited potent inhibition activities against K562R cells bearing T315I mutant with IC50 of 13.35 μM, 40.14 μM, and 1.91 μM, respectively, outperforming that of Imatinib. Meanwhile, the inhibition of Bcr-Abl activity in Ba/F3 cells demonstrated that these compounds exerted effects mainly by acting on Bcr-Abl. Additionally, compounds 9f, 28c, and 44c effectively induced apoptosis, arrest the cell cycle at S or G2/M phase, and inhibited phosphorylation of Bcr-Abl and STAT5 in a dose-dependent manner. Docking studies indicated that trizole indeed retained the hydrophobic interaction of aromatic heterocycles with hinge region, and ADME prediction suggested that tested compounds had a favorable safety profile. Therefore, aromatic heterocycles incorporated with trizole could serve as a promising HBM for Bcr-Abl inhibitors with proline as fexibile linker, and compounds 9f, 28c, especially 44c could be served as a starting point for further optimization.
Collapse
Affiliation(s)
- Xiaoyan Pan
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, No.76 Yanta West Road, Xi'an, 710061, PR China.
| | - Nanxin Liu
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, No.76 Yanta West Road, Xi'an, 710061, PR China
| | - Yuying Liu
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, No.76 Yanta West Road, Xi'an, 710061, PR China
| | - Qingqing Zhang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, No.76 Yanta West Road, Xi'an, 710061, PR China
| | - Kai Wang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, No.76 Yanta West Road, Xi'an, 710061, PR China
| | - Xueying Liu
- School of Pharmacy, The Fourth Military Medical University, No.169 West Changle Road, Xi'an, 710032, PR China
| | - Jie Zhang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, No.76 Yanta West Road, Xi'an, 710061, PR China
| |
Collapse
|
20
|
Dawson JC, Munro A, Macleod K, Muir M, Timpson P, Williams RJ, Frame M, Brunton VG, Carragher NO. Pathway profiling of a novel SRC inhibitor, AZD0424, in combination with MEK inhibitors for cancer treatment. Mol Oncol 2022; 16:1072-1090. [PMID: 34856074 PMCID: PMC8895456 DOI: 10.1002/1878-0261.13151] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 11/11/2021] [Accepted: 12/01/2021] [Indexed: 12/26/2022] Open
Abstract
A more comprehensive understanding of how cells respond to drug intervention, the likely immediate signalling responses and how resistance may develop within different microenvironments will help inform treatment regimes. The nonreceptor tyrosine kinase SRC regulates many cellular signalling processes, and pharmacological inhibition has long been a target of cancer drug discovery projects. Here, we describe the in vitro and in vivo characterisation of the small-molecule SRC inhibitor AZD0424. We show that AZD0424 potently inhibits the phosphorylation of tyrosine-419 of SRC (IC50 ~ 100 nm) in many cancer cell lines; however, inhibition of cell viability, via a G1 cell cycle arrest, was observed only in a subset of cancer cell lines in the low (on target) micromolar range. We profiled the changes in intracellular pathway signalling in cancer cells following exposure to AZD0424 and other targeted therapies using reverse-phase protein array (RPPA) analysis. We demonstrate that SRC is activated in response to treatment of KRAS-mutant colorectal cell lines with MEK inhibitors (trametinib or AZD6244) and that AZD0424 abrogates this. Cell lines treated with trametinib or AZD6244 in combination with AZD0424 had reduced EGFR, FAK and SRC compensatory activation, and cell viability was synergistically inhibited. In vivo, trametinib treatment of mice-bearing HCT116 tumours increased phosphorylation of SRC on Tyr419, and, when combined with AZD0424, inhibition of tumour growth was greater than with trametinib alone. We also demonstrate that drug-induced resistance to trametinib is not re-sensitised by AZD0424 treatment in vitro, likely as a result of multiple compensatory signalling mechanisms; however, inhibition of SRC remains an effective way to block invasion of trametinib-resistant tumour cells. These data imply that SRC inhibition may offer a useful addition to MEK inhibitor combination strategies.
Collapse
Affiliation(s)
- John C. Dawson
- Cancer Research UK Edinburgh CentreInstitute of Genetics and CancerUniversity of EdinburghEdinburghUK
| | - Alison Munro
- Cancer Research UK Edinburgh CentreInstitute of Genetics and CancerUniversity of EdinburghEdinburghUK
| | - Kenneth Macleod
- Cancer Research UK Edinburgh CentreInstitute of Genetics and CancerUniversity of EdinburghEdinburghUK
| | - Morwenna Muir
- Cancer Research UK Edinburgh CentreInstitute of Genetics and CancerUniversity of EdinburghEdinburghUK
| | - Paul Timpson
- Cancer ThemeThe Kinghorn Cancer CentreGarvan Institute of Medical ResearchSydneyAustralia
| | | | - Margaret Frame
- Cancer Research UK Edinburgh CentreInstitute of Genetics and CancerUniversity of EdinburghEdinburghUK
| | - Valerie G. Brunton
- Cancer Research UK Edinburgh CentreInstitute of Genetics and CancerUniversity of EdinburghEdinburghUK
| | - Neil O. Carragher
- Cancer Research UK Edinburgh CentreInstitute of Genetics and CancerUniversity of EdinburghEdinburghUK
| |
Collapse
|
21
|
Khayat MT, Omar AM, Ahmed F, Khan MI, Ibrahim SM, Muhammad YA, Malebari AM, Neamatallah T, El-Araby ME. Insights on Cancer Cell Inhibition, Subcellular Activities, and Kinase Profile of Phenylacetamides Pending 1 H-Imidazol-5-One Variants. Front Pharmacol 2022; 12:794325. [PMID: 35069208 PMCID: PMC8766756 DOI: 10.3389/fphar.2021.794325] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 12/01/2021] [Indexed: 11/16/2022] Open
Abstract
Structural changes of small-molecule drugs may bring interesting biological properties, especially in the field of kinase inhibitors. We sought to study tirbanibulin, a first-in-class dual Src kinase (non-ATP competitive)/tubulin inhibitor because there was not enough reporting about its structure–activity relationships (SARs). In particular, the present research is based on the replacement of the outer ring of the biphenyl system of 2-[(1,1′-biphenyl)-4-yl]-N-benzylacetamide, the identified pharmacophore of KX chemotype, with a heterocyclic ring. The newly synthesized compounds showed a range of activities in cell-based anticancer assays, agreeing with a clear SAR profile. The most potent compound, (Z)-N-benzyl-4-[4-(4-methoxybenzylidene)-2-methyl-5-oxo-4,5-dihydro-1H-imidazol-1-yl]phenylacetamide (KIM-161), demonstrated cytotoxic IC50 values at 294 and 362 nM against HCT116 colon cancer and HL60 leukemia cell lines, respectively. Profiling of this compound (aqueous solubility, liver microsomal stability, cytochrome P450 inhibition, reactivity with reduced glutathione, and plasma protein binding) confirmed its adequate drug-like properties. Mechanistic studies revealed that this compound does not depend on tubulin or Src kinase inhibition as a factor in forcing HL60 to exit its cell cycle and undergo apoptosis. Instead, KIM-161 downregulated several other kinases such as members of BRK, FLT, and JAK families. It also strongly suppresses signals of ERK1/2, GSK-3α/β, HSP27, and STAT2, while it downregulated AMPKα1 phosphorylation within the HL60 cells. Collectively, these results suggest that phenylacetamide-1H-imidazol-5-one (KIM-161) could be a promising lead compound for further clinical anticancer drug development.
Collapse
Affiliation(s)
- Maan T Khayat
- Faculty of Pharmacy, Department of Pharmaceutical Chemistry, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Abdelsattar M Omar
- Faculty of Pharmacy, Department of Pharmaceutical Chemistry, King Abdulaziz University, Jeddah, Saudi Arabia.,Faculty of Pharmacy, Department of Pharmaceutical Chemistry, Al-Azhar University, Nasr City, Egypt.,Center for Artificial Intelligence in Precision Medicines, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Farid Ahmed
- Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah, Saudi Arabia.,Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohammad I Khan
- Center for Artificial Intelligence in Precision Medicines, King Abdulaziz University, Jeddah, Saudi Arabia.,Faculty of Science, Department of Biochemistry, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Sara M Ibrahim
- Faculty of Science, Department of Biochemistry, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Yosra A Muhammad
- Faculty of Pharmacy, Department of Pharmaceutical Chemistry, King Abdulaziz University, Jeddah, Saudi Arabia.,Center for Artificial Intelligence in Precision Medicines, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Azizah M Malebari
- Faculty of Pharmacy, Department of Pharmaceutical Chemistry, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Thikryat Neamatallah
- Faculty of Pharmacy, Department of Pharmacology and Toxicology, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Moustafa E El-Araby
- Faculty of Pharmacy, Department of Pharmaceutical Chemistry, King Abdulaziz University, Jeddah, Saudi Arabia.,Center for Artificial Intelligence in Precision Medicines, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
22
|
Kazim N, Yen A. Evidence of off-target effects of bosutinib that promote retinoic acid-induced differentiation of non-APL AML cells. Cell Cycle 2021; 20:2638-2651. [PMID: 34836491 DOI: 10.1080/15384101.2021.2005275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
In the present study, we determined the effects of the Src family kinase (SFK) inhibitor, Bosutinib, and the engineered loss of the Lyn SFK on all-trans retinoic acid-induced leukemic cell differentiation. Retinoic acid (RA) is an embryonic morphogen and dietary factor that demonstrates chemotherapeutic efficacy in inducing differentiation of a non-APL AML cell model, the HL-60 human myeloblastic (FAB-M2) leukemia cell line, via activation of a novel signalsome containing an ensemble of signaling molecules that drive differentiation. Bosutinib is an inhibitor of SFKs used to treat myeloid leukemias where prominent high expression of SFKs, in particular Lyn, has been observed. Using either Bosutinib or loss of Lyn expression due to shRNA promoted RA-induced phenotypic differentiation, G0 arrest, and respiratory burst (functional differentiation) of HL-60 cells. Signaling events putatively seminal to RA-induced differentiation, the expression of Fgr, Cbl, Slp-76 and Vav, and the phosphorylation of c-Raf (pS259), Vav (p-tyr), and Slp76 (p-tyr) were not inhibited by Bosutinib or loss of Lyn. Nor was RA-induced upregulation of p-tyr phosphorylation of p47phox, a member of the NADPH complex that produces ROS, a putative phosphorylation dependent signaling regulator. Surprisingly, Bosutinib still works in the absence of Lyn to enhance RA-induced differentiation and neither compromised RA-induced expression, nor phosphorylation of signaling molecules that drive differentiation. These findings suggested there is a novel, off-target, Lyn-independent effect of Bosutinib that is of therapeutic significance to differentiation therapy.
Collapse
Affiliation(s)
- Noor Kazim
- Department of Biomedical Science, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Andrew Yen
- Department of Biomedical Science, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| |
Collapse
|
23
|
Ayala-Aguilera CC, Valero T, Lorente-Macías Á, Baillache DJ, Croke S, Unciti-Broceta A. Small Molecule Kinase Inhibitor Drugs (1995-2021): Medical Indication, Pharmacology, and Synthesis. J Med Chem 2021; 65:1047-1131. [PMID: 34624192 DOI: 10.1021/acs.jmedchem.1c00963] [Citation(s) in RCA: 150] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The central role of dysregulated kinase activity in the etiology of progressive disorders, including cancer, has fostered incremental efforts on drug discovery programs over the past 40 years. As a result, kinase inhibitors are today one of the most important classes of drugs. The FDA approved 73 small molecule kinase inhibitor drugs until September 2021, and additional inhibitors were approved by other regulatory agencies during that time. To complement the published literature on clinical kinase inhibitors, we have prepared a review that recaps this large data set into an accessible format for the medicinal chemistry community. Along with the therapeutic and pharmacological properties of each kinase inhibitor approved across the world until 2020, we provide the synthesis routes originally used during the discovery phase, many of which were only available in patent applications. In the last section, we also provide an update on kinase inhibitor drugs approved in 2021.
Collapse
Affiliation(s)
- Cecilia C Ayala-Aguilera
- Cancer Research UK Edinburgh Centre, Institute of Genetics & Cancer, University of Edinburgh, Crewe Road South, Edinburgh EH4 2XR, United Kingdom
| | - Teresa Valero
- Cancer Research UK Edinburgh Centre, Institute of Genetics & Cancer, University of Edinburgh, Crewe Road South, Edinburgh EH4 2XR, United Kingdom
| | - Álvaro Lorente-Macías
- Cancer Research UK Edinburgh Centre, Institute of Genetics & Cancer, University of Edinburgh, Crewe Road South, Edinburgh EH4 2XR, United Kingdom
| | - Daniel J Baillache
- Cancer Research UK Edinburgh Centre, Institute of Genetics & Cancer, University of Edinburgh, Crewe Road South, Edinburgh EH4 2XR, United Kingdom
| | - Stephen Croke
- Cancer Research UK Edinburgh Centre, Institute of Genetics & Cancer, University of Edinburgh, Crewe Road South, Edinburgh EH4 2XR, United Kingdom
| | - Asier Unciti-Broceta
- Cancer Research UK Edinburgh Centre, Institute of Genetics & Cancer, University of Edinburgh, Crewe Road South, Edinburgh EH4 2XR, United Kingdom
| |
Collapse
|
24
|
Yu F, Cai M, Shao L, Zhang J. Targeting Protein Kinases Degradation by PROTACs. Front Chem 2021; 9:679120. [PMID: 34277564 PMCID: PMC8279777 DOI: 10.3389/fchem.2021.679120] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 06/15/2021] [Indexed: 12/30/2022] Open
Abstract
Kinase dysregulation is greatly associated with cell proliferation, migration and survival, indicating the importance of kinases as therapeutic targets for anticancer drug development. However, traditional kinase inhibitors binding to catalytic or allosteric sites are associated with significant challenges. The emergence of resistance and targeting difficult-to-degrade and multi-domain proteins are significant limiting factors affecting the efficacy of targeted anticancer drugs. The next-generation treatment approaches seem to have overcome these concerns, and the use of proteolysis targeting chimera (PROTAC) technology is one such method. PROTACs bind to proteins of interest and recruit E3 ligase for degrading the whole target protein via the ubiquitin-proteasome pathway. This review provides a detailed summary of the most recent signs of progress in PROTACs targeting different kinases, primarily focusing on new chemical entities in medicinal chemistry.
Collapse
Affiliation(s)
- Fei Yu
- Medical School of Kunming University of Science and Technology, Kunming, China
| | - Ming Cai
- Medical School of Kunming University of Science and Technology, Kunming, China
| | - Liang Shao
- Medical School of Kunming University of Science and Technology, Kunming, China
| | - Jihong Zhang
- Medical School of Kunming University of Science and Technology, Kunming, China
| |
Collapse
|
25
|
You KS, Yi YW, Cho J, Seong YS. Dual Inhibition of AKT and MEK Pathways Potentiates the Anti-Cancer Effect of Gefitinib in Triple-Negative Breast Cancer Cells. Cancers (Basel) 2021; 13:1205. [PMID: 33801977 PMCID: PMC8000364 DOI: 10.3390/cancers13061205] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 02/28/2021] [Accepted: 03/07/2021] [Indexed: 12/14/2022] Open
Abstract
There is an unmet medical need for the development of new targeted therapeutic strategies for triple-negative breast cancer (TNBC). With drug combination screenings, we found that the triple combination of the protein kinase inhibitors (PKIs) of the epidermal growth factor receptor (EGFR), v-akt murine thymoma viral oncogene homolog (AKT), and MAPK/ERK kinase (MEK) is effective in inducing apoptosis in TNBC cells. A set of PKIs were first screened in combination with gefitinib in the TNBC cell line, MDA-MB-231. The AKT inhibitor, AT7867, was identified and further analyzed in two mesenchymal stem-like (MSL) subtype TNBC cells, MDA-MB-231 and HS578T. A combination of gefitinib and AT7867 reduced the proliferation and long-term survival of MSL TNBC cells. However, gefitinib and AT7867 induced the activation of the rat sarcoma (RAS)/ v-raf-1 murine leukemia viral oncogene homolog (RAF)/MEK/ extracellular signal-regulated kinase (ERK) pathway. To inhibit this pathway, MEK/ERK inhibitors were further screened in MDA-MB-231 cells in the presence of gefitinib and AT7867. As a result, we identified that the MEK inhibitor, PD-0325901, further enhanced the anti-proliferative and anti-clonogenic effects of gefitinib and AT7867 by inducing apoptosis. Our results suggest that the dual inhibition of the AKT and MEK pathways is a novel potential therapeutic strategy for targeting EGFR in TNBC cells.
Collapse
Affiliation(s)
- Kyu Sic You
- Graduate School of Convergence Medical Science, Dankook University, Cheonan 31116, Korea;
- Department of Biochemistry, College of Medicine, Dankook University, Cheonan 31116, Korea
| | - Yong Weon Yi
- Department of Nanobiomedical Science, Dankook University, Cheonan 31116, Korea;
| | - Jeonghee Cho
- Department of Nanobiomedical Science, Dankook University, Cheonan 31116, Korea;
| | - Yeon-Sun Seong
- Graduate School of Convergence Medical Science, Dankook University, Cheonan 31116, Korea;
- Department of Biochemistry, College of Medicine, Dankook University, Cheonan 31116, Korea
- Department of Nanobiomedical Science, Dankook University, Cheonan 31116, Korea;
| |
Collapse
|
26
|
Higuchi M, Ishiyama K, Maruoka M, Kanamori R, Takaori-Kondo A, Watanabe N. Paradoxical activation of c-Src as a drug-resistant mechanism. Cell Rep 2021; 34:108876. [PMID: 33761359 DOI: 10.1016/j.celrep.2021.108876] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 12/29/2020] [Accepted: 02/25/2021] [Indexed: 12/13/2022] Open
Abstract
ATP-competitive inhibitors have been developed as promising anti-cancer agents. However, drug-resistance frequently occurs, and the underlying mechanisms are not fully understood. Here, we show that the activation of c-Src and its downstream phosphorylation cascade can be paradoxically induced by Src-targeted and RTK-targeted kinase inhibitors. We reveal that inhibitor binding induces a conformational change in c-Src, leading to the association of the active form c-Src with focal adhesion kinase (FAK). Reduction of the inhibitor concentration results in the dissociation of inhibitors from the c-Src-FAK complex, which allows c-Src to phosphorylate FAK and initiate FAK-Grb2-mediated Erk signaling. Furthermore, a drug-resistant mutation in c-Src, which reduces the affinity of inhibitors for c-Src, converts Src inhibitors into facilitators of cell proliferation by enhancing the phosphorylation of FAK and Erk in c-Src-mutated cells. Our data thus reveal paradoxical enhancement of cell growth evoked by target-based kinase inhibitors, providing potentially important clues for the future development of effective and safe cancer treatment.
Collapse
Affiliation(s)
- Makio Higuchi
- Department of Pharmacology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Kenichi Ishiyama
- Department of Pharmacology, Kyoto University Graduate School of Medicine, Kyoto, Japan; Department of Hematology and Oncology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Masahiro Maruoka
- Laboratory of Single-Molecule Cell Biology, Tohoku University Graduate School of Life Sciences, Sendai, Japan
| | - Ryosuke Kanamori
- Department of Pharmacology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Akifumi Takaori-Kondo
- Department of Hematology and Oncology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Naoki Watanabe
- Department of Pharmacology, Kyoto University Graduate School of Medicine, Kyoto, Japan; Laboratory of Single-Molecule Cell Biology, Kyoto University Graduate School of Biostudies, Kyoto, Japan.
| |
Collapse
|
27
|
Okay M, Haznedaroglu IC. Protein Kinases in Hematological Disorders. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1275:383-393. [PMID: 33539024 DOI: 10.1007/978-3-030-49844-3_15] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cell signaling is an important part of the complex system of molecular communication that governs basic cellular activities and coordinates cell cycle machinery. Pathological alterations in the cellular information processing may be responsible for the diseases such as cancer. Numerous diseases may be treated effectively via the pharmacological management of cellular signaling. Protein kinases (PK) have significantly important roles in the cell signal transduction process. Protein kinases phosphorylate serine, threonine, tyrosine and histidine amino acids in a wide variety of molecular networks. Two main PK groups are distinguished; serine/threonine kinase and tyrosine kinases. MAPK (mitogen-activated protein kinases), ERK, EGFR (epidermal growth factor receptor), src, abl, FAK (focal adesion kinase), and JAK (janus family kinase) are considered as the main PK molecular networks. Protein kinases are closely related to the pathobiology of hematologic neoplastic disorders. For instance; JAKV617F point mutation-causing polycythemia vera and essential thrombocytosis occur at the position 617 in the JH2 domain of the JAK2 gene. The protein kinase inhibitor drugs targeting specific kinase molecules have already been developed and widely used in the field of Clinical Hematology. The existence of a local renin-angiotensin system (RAS) specific to the hematopoietic bone marrow (BM) microenvironment had been proposed two decades ago. Local BM RAS is important in hematopoietic stem cell biology and microenvironment. There are interactions among the local BM RAS and PK. For example, ACE2-ang(1-7)-Mas axis inhibits p38 MAPK/NF-КB signaling pathway. The Local BM RAS may have a role in the effect on PK in this biological spectrum. The aim of this review is to outline the functions of PKs in the pathobiology of hematologic neoplastic disorders.
Collapse
Affiliation(s)
- Mufide Okay
- Hacettepe University, Medical School, Department of Hematology, Ankara, Turkey
| | | |
Collapse
|
28
|
Mologni L, Marzaro G, Redaelli S, Zambon A. Dual Kinase Targeting in Leukemia. Cancers (Basel) 2021; 13:E119. [PMID: 33401428 PMCID: PMC7796318 DOI: 10.3390/cancers13010119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 12/23/2020] [Accepted: 12/28/2020] [Indexed: 12/13/2022] Open
Abstract
Pharmacological cancer therapy is often based on the concurrent inhibition of different survival pathways to improve treatment outcomes and to reduce the risk of relapses. While this strategy is traditionally pursued only through the co-administration of several drugs, the recent development of multi-targeting drugs (i.e., compounds intrinsically able to simultaneously target several macromolecules involved in cancer onset) has had a dramatic impact on cancer treatment. This review focuses on the most recent developments in dual-kinase inhibitors used in acute myeloid leukemia (AML), chronic myelogenous leukemia (CML), and lymphoid tumors, giving details on preclinical studies as well as ongoing clinical trials. A brief overview of dual-targeting inhibitors (kinase/histone deacetylase (HDAC) and kinase/tubulin polymerization inhibitors) applied to leukemia is also given. Finally, the very recently developed Proteolysis Targeting Chimeras (PROTAC)-based kinase inhibitors are presented.
Collapse
Affiliation(s)
- Luca Mologni
- Department of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (L.M.); (S.R.)
| | - Giovanni Marzaro
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, via Marzolo 5, I-35131 Padova, Italy;
| | - Sara Redaelli
- Department of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (L.M.); (S.R.)
| | - Alfonso Zambon
- Department of Chemistry and Geological Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| |
Collapse
|
29
|
Priyadarshana C, Setiawan R, Tajima A, Asano A. Src family kinases-mediated negative regulation of sperm acrosome reaction in chickens (Gallus gallus domesticus). PLoS One 2020; 15:e0241181. [PMID: 33180820 PMCID: PMC7660528 DOI: 10.1371/journal.pone.0241181] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 10/06/2020] [Indexed: 11/19/2022] Open
Abstract
The acrosome reaction (AR) is a strictly-regulated, synchronous exocytosis that is required for sperm to penetrate ova. This all-or-nothing process occurs only once in the sperm lifecycle through a sequence of signaling pathways. Spontaneous, premature AR therefore compromises fertilization potential. Although protein kinase A (PKA) pathways play a central role in AR across species, the signaling network used for AR induction is poorly understood in birds. Mechanistic studies of mammalian sperm AR demonstrate that PKA activity is downstreamly regulated by Src family kinases (SFKs). Using SFK inhibitors, our study shows that in chicken sperm, SFKs play a role in the regulation of PKA activity and spontaneous AR without affecting motility. Furthermore, we examined the nature of SFK phosphorylation using PKA and protein tyrosine phosphatase inhibitors, which demonstrated that unlike in mammals, SFK phosphorylation in birds does not occur downstream of PKA and is primarily regulated by calcium-dependent tyrosine phosphatase activity. Functional characterization of SFKs in chicken sperm showed that SFK activation modulates the membrane potential and plays a role in inhibiting spontaneous AR. Employing biochemical isolation, we also found that membrane rafts are involved in the regulation of SFK phosphorylation. This study demonstrates a unique mechanism for regulating AR induction inherent to avian sperm that ensure fertilization potential despite prolonged storage.
Collapse
Affiliation(s)
- Chathura Priyadarshana
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Rangga Setiawan
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Atsushi Tajima
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Atsushi Asano
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
- * E-mail:
| |
Collapse
|
30
|
Liu J, Zhang Y, Huang H, Lei X, Tang G, Cao X, Peng J. Recent advances in Bcr-Abl tyrosine kinase inhibitors for overriding T315I mutation. Chem Biol Drug Des 2020; 97:649-664. [PMID: 33034143 DOI: 10.1111/cbdd.13801] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 09/13/2020] [Accepted: 09/20/2020] [Indexed: 12/18/2022]
Abstract
BCR-ABL is a gene produced by the fusion of the bcr gene and the c-abl proto-oncogene and is considered to be the main cause of chronic myelogenous leukemia (CML) production. Therefore, the development of selective Bcr-Abl kinase inhibitors is an attractive strategy for the treatment of CML. However, in the treatment of CML with a Bcr-Abl kinase inhibitor, the T315I gatekeeper mutant disrupts the important contact interaction between the inhibitor and the enzyme, resistant to the first- and second-generation drugs currently approved, such as imatinib, bosutinib, nilotinib, and dasatinib. In order to overcome this special resistance, several different strategies have been explored, and many molecules have been studied to effectively inhibit Bcr-Abl T315I. Some of these molecules are still under development, and some are being studied preclinically, and still others are in clinical research. Herein, this review reports some of the major examples of third-generation Bcr-Abl inhibitors against the T315I mutation.
Collapse
Affiliation(s)
- Juan Liu
- Institute of Pharmacy and Pharmacology, Hunan Province, Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China.,Pharmacy Department of Yiyang Central Hospital, Yiyang, China
| | - Yuan Zhang
- Institute of Pharmacy and Pharmacology, Hunan Province, Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China
| | - Honglin Huang
- Institute of Pharmacy and Pharmacology, Hunan Province, Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China
| | - Xiaoyong Lei
- Institute of Pharmacy and Pharmacology, Hunan Province, Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China
| | - Guotao Tang
- Institute of Pharmacy and Pharmacology, Hunan Province, Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China
| | - Xuan Cao
- Institute of Pharmacy and Pharmacology, Hunan Province, Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China
| | - Junmei Peng
- Institute of Pharmacy and Pharmacology, Hunan Province, Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China
| |
Collapse
|
31
|
Targeting the histone demethylase PHF8-mediated PKCα-Src-PTEN axis in HER2-negative gastric cancer. Proc Natl Acad Sci U S A 2020; 117:24859-24866. [PMID: 32958674 PMCID: PMC7547212 DOI: 10.1073/pnas.1919766117] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Targeted treatments for advanced gastric cancer (GC) are needed, particularly for HER2-negative GC, which represents the majority of cases (80 to 88%). In this study, in silico analyses of the lysine histone demethylases (KDMs) involved in diverse biological processes and diseases revealed that PHD finger protein 8 (PHF8, KDM7B) was significantly associated with poor clinical outcome in HER2-negative GC. The depletion of PHF8 significantly reduced cancer progression in GC cells and in mouse xenografts. PHF8 regulated genes involved in cell migration/motility based on a microarray analysis. Of note, PHF8 interacted with c-Jun on the promoter of PRKCA which encodes PKCα. The depletion of PHF8 or PKCα greatly up-regulated PTEN expression, which could be rescued by ectopic expression of a PKCα expression vector or an active Src. These suggest that PTEN destabilization occurs mainly via the PKCα-Src axis. GC cells treated with midostaurin or bosutinib significantly suppressed migration in vitro and in zebrafish models. Immunohistochemical analyses of PHF8, PKCα, and PTEN showed a positive correlation between PHF8 and PKCα but negative correlations between PHF8 and PTEN and between PKCα and PTEN. Moreover, high PHF8-PKCα expression was significantly correlated with worse prognosis. Together, our results suggest that the PKCα-Src-PTEN pathway regulated by PHF8/c-Jun is a potential prognostic/therapeutic target in HER2-negative advanced GC.
Collapse
|
32
|
El-Damasy AK, Jin H, Seo SH, Bang EK, Keum G. Design, synthesis, and biological evaluations of novel 3-amino-4-ethynyl indazole derivatives as Bcr-Abl kinase inhibitors with potent cellular antileukemic activity. Eur J Med Chem 2020; 207:112710. [PMID: 32961435 DOI: 10.1016/j.ejmech.2020.112710] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 07/29/2020] [Accepted: 07/30/2020] [Indexed: 10/23/2022]
Abstract
Breakpoint cluster region-Abelson (Bcr-Abl) kinase is a key driver in the pathophysiology of chronic myelogenous leukemia (CML). Broadening the chemical diversity of Bcr-Abl kinase inhibitors with novel chemical entities possessing favorable target potency and cellular efficacy is a current medical demand for CML treatment. In this respect, a new series of ethynyl bearing 3-aminoindazole based Bcr-Abl inhibitors has been designed, synthesized, and biologically evaluated. The target compounds were designed based on introducing the key structural features of ponatinib, alkyne spacer and diarylamide, into the previously reported indazole II to improve its Bcr-Abl inhibitory activity and overcome its poor cellular potency. All target compounds elicited potent activity against Bcr-AblWT with sub-micromolar IC50 values ranging 4.6-667 nM. In addition, certain derivatives exhibited promising potency over the clinically imatinib-resistant Bcr-AblT315I. Among the target molecules, compounds 9c, 9h and 10c stood as the most potent derivatives with IC50 values of 15.4 nM, 4.6 nM, and 25.8 nM, respectively, against Bcr-AblWT. Interestingly, 9h showed 2 folds and 3.6 times superior potency to the lead indazole II and 10c, respectively, against Bcr-AblT315I. Molecular docking of 9h pointed out its possibility to be a type II kinase inhibitor. Furthermore, all compounds, except 9b, showed highly potent antiproliferative activity against the Bcr-Abl positive leukemia K562 cell (MTT assay) surpassing the modest activity of lead indazole II. Moreover, the most potent members 9h and 10c exerted potent antileukemic activity against NCI leukemia panel, particularly K562 cell (SRB assay) with GI50 less than 10 nM, being superior to the FDA approved drug imatinib. Further biochemical hERG and cellular toxicity, phosphorylation assay, and NanoBRET target engagement of 9h underscored its merits as a promising candidate for CML therapy.
Collapse
Affiliation(s)
- Ashraf K El-Damasy
- Center for Neuro-Medicine, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea; Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt.
| | - Heewon Jin
- Center for Neuro-Medicine, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea; Department of Chemistry, College of Natural Sciences, Seoul National University, Seoul, 151-747, Republic of Korea
| | - Seon Hee Seo
- Center for Neuro-Medicine, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Eun-Kyoung Bang
- Center for Neuro-Medicine, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Gyochang Keum
- Center for Neuro-Medicine, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea; Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology (UST), Seoul, 02792, Republic of Korea.
| |
Collapse
|
33
|
Synthesis of (R) and (S)-3-Chloro-5-(2,4-dimethylpiperazin-1-yl)-4H-1,2,6-thiadiazin-4-ones. MOLBANK 2020. [DOI: 10.3390/m1139] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The reaction of 3,5-dichloro-4H-1,2,6-thiadiazin-4-one with (R) and (S)-1,3-dimethylpiperazines (1 equiv), in THF, at ca. 20 °C gives (R) and (S)-3-chloro-5-(2,4-dimethylpiperazin-1-yl)-4H-1,2,6-thiadiazin-4-ones in 70% and 68% yields, respectively. The new compounds were fully characterized.
Collapse
|
34
|
Du G, Rao S, Gurbani D, Henning NJ, Jiang J, Che J, Yang A, Ficarro SB, Marto JA, Aguirre AJ, Sorger PK, Westover KD, Zhang T, Gray NS. Structure-Based Design of a Potent and Selective Covalent Inhibitor for SRC Kinase That Targets a P-Loop Cysteine. J Med Chem 2020; 63:1624-1641. [PMID: 31935084 PMCID: PMC7493195 DOI: 10.1021/acs.jmedchem.9b01502] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
SRC is a major regulator of many signaling pathways and contributes to cancer development. However, development of a selective SRC inhibitor has been challenging, and FDA-approved SRC inhibitors, dasatinib and bosutinib, are multitargeted kinase inhibitors. Here, we describe our efforts to develop a selective SRC covalent inhibitor by targeting cysteine 277 on the P-loop of SRC. Using a promiscuous covalent kinase inhibitor (CKI) SM1-71 as a starting point, we developed covalent inhibitor 15a, which discriminates SRC from other covalent targets of SM1-71 including TAK1 and FGFR1. As an irreversible covalent inhibitor, compound 15a exhibited sustained inhibition of SRC signaling both in vitro and in vivo. Moreover, 15a exhibited potent antiproliferative effects in nonsmall cell lung cancer cell lines harboring SRC activation, thus providing evidence that this approach may be promising for further drug development efforts.
Collapse
Affiliation(s)
- Guangyan Du
- Department of Biological Chemistry and Molecular Pharmacology , Harvard Medical School , Boston , Massachusetts 02115 , United States
- Department of Cancer Biology , Dana Farber Cancer Institute , 450 Brookline Avenue , Boston , Massachusetts 02215 , United States
| | - Suman Rao
- Department of Biological Chemistry and Molecular Pharmacology , Harvard Medical School , Boston , Massachusetts 02115 , United States
- Department of Cancer Biology , Dana Farber Cancer Institute , 450 Brookline Avenue , Boston , Massachusetts 02215 , United States
- Laboratory of Systems Biology , Harvard Medical School , Boston , Massachusetts 02115 , United States
| | - Deepak Gurbani
- Departments of Biochemistry and Radiation Oncology , The University of Texas Southwestern Medical Center at Dallas , Dallas , Texas 75390 , United States
| | - Nathaniel J Henning
- Department of Biological Chemistry and Molecular Pharmacology , Harvard Medical School , Boston , Massachusetts 02115 , United States
- Department of Cancer Biology , Dana Farber Cancer Institute , 450 Brookline Avenue , Boston , Massachusetts 02215 , United States
| | - Jie Jiang
- Department of Biological Chemistry and Molecular Pharmacology , Harvard Medical School , Boston , Massachusetts 02115 , United States
- Department of Cancer Biology , Dana Farber Cancer Institute , 450 Brookline Avenue , Boston , Massachusetts 02215 , United States
| | - Jianwei Che
- Department of Biological Chemistry and Molecular Pharmacology , Harvard Medical School , Boston , Massachusetts 02115 , United States
- Department of Cancer Biology , Dana Farber Cancer Institute , 450 Brookline Avenue , Boston , Massachusetts 02215 , United States
| | - Annan Yang
- Department of Medical Oncology , Dana Farber Cancer Institute , 450 Brookline Avenue , Boston , Massachusetts 02215 , United States
| | - Scott B Ficarro
- Department of Biological Chemistry and Molecular Pharmacology , Harvard Medical School , Boston , Massachusetts 02115 , United States
| | - Jarrod A Marto
- Department of Biological Chemistry and Molecular Pharmacology , Harvard Medical School , Boston , Massachusetts 02115 , United States
| | - Andrew J Aguirre
- Department of Medical Oncology , Dana Farber Cancer Institute , 450 Brookline Avenue , Boston , Massachusetts 02215 , United States
| | - Peter K Sorger
- Laboratory of Systems Biology , Harvard Medical School , Boston , Massachusetts 02115 , United States
| | - Kenneth D Westover
- Departments of Biochemistry and Radiation Oncology , The University of Texas Southwestern Medical Center at Dallas , Dallas , Texas 75390 , United States
| | - Tinghu Zhang
- Department of Biological Chemistry and Molecular Pharmacology , Harvard Medical School , Boston , Massachusetts 02115 , United States
- Department of Cancer Biology , Dana Farber Cancer Institute , 450 Brookline Avenue , Boston , Massachusetts 02215 , United States
| | - Nathanael S Gray
- Department of Biological Chemistry and Molecular Pharmacology , Harvard Medical School , Boston , Massachusetts 02115 , United States
- Department of Cancer Biology , Dana Farber Cancer Institute , 450 Brookline Avenue , Boston , Massachusetts 02215 , United States
| |
Collapse
|
35
|
Palve V, Liao Y, Remsing Rix LL, Rix U. Turning liabilities into opportunities: Off-target based drug repurposing in cancer. Semin Cancer Biol 2020; 68:209-229. [PMID: 32044472 DOI: 10.1016/j.semcancer.2020.02.003] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 01/29/2020] [Accepted: 02/03/2020] [Indexed: 12/12/2022]
Abstract
Targeted drugs and precision medicine have transformed the landscape of cancer therapy and significantly improved patient outcomes in many cases. However, as therapies are becoming more and more tailored to smaller patient populations and acquired resistance is limiting the duration of clinical responses, there is an ever increasing demand for new drugs, which is not easily met considering steadily rising drug attrition rates and development costs. Considering these challenges drug repurposing is an attractive complementary approach to traditional drug discovery that can satisfy some of these needs. This is facilitated by the fact that most targeted drugs, despite their implicit connotation, are not singularly specific, but rather display a wide spectrum of target selectivity. Importantly, some of the unintended drug "off-targets" are known anticancer targets in their own right. Others are becoming recognized as such in the process of elucidating off-target mechanisms that in fact are responsible for a drug's anticancer activity, thereby revealing potentially new cancer vulnerabilities. Harnessing such beneficial off-target effects can therefore lead to novel and promising precision medicine approaches. Here, we will discuss experimental and computational methods that are employed to specifically develop single target and network-based off-target repurposing strategies, for instance with drug combinations or polypharmacology drugs. By illustrating concrete examples that have led to clinical translation we will furthermore examine the various scientific and non-scientific factors that cumulatively determine the success of these efforts and thus can inform the future development of new and potentially lifesaving off-target based drug repurposing strategies for cancers that constitute important unmet medical needs.
Collapse
Affiliation(s)
- Vinayak Palve
- Department of Drug Discovery, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, 33612, USA
| | - Yi Liao
- Department of Drug Discovery, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, 33612, USA
| | - Lily L Remsing Rix
- Department of Drug Discovery, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, 33612, USA
| | - Uwe Rix
- Department of Drug Discovery, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, 33612, USA.
| |
Collapse
|
36
|
Schukken KM, Lin YC, Bakker PL, Schubert M, Preuss SF, Simon JE, van den Bos H, Storchova Z, Colomé-Tatché M, Bastians H, Spierings DC, Foijer F. Altering microtubule dynamics is synergistically toxic with spindle assembly checkpoint inhibition. Life Sci Alliance 2020; 3:3/2/e201900499. [PMID: 31980556 PMCID: PMC6985455 DOI: 10.26508/lsa.201900499] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 01/07/2020] [Accepted: 01/08/2020] [Indexed: 02/06/2023] Open
Abstract
Chromosomal instability (CIN) is a hallmark feature of cancer cells. In this study, Schukken and colleagues screen for compounds that selectively target CIN cells and identify an inhibitor of Src kinase to be selectively toxic for CIN cells. Chromosomal instability (CIN) and aneuploidy are hallmarks of cancer. As most cancers are aneuploid, targeting aneuploidy or CIN may be an effective way to target a broad spectrum of cancers. Here, we perform two small molecule compound screens to identify drugs that selectively target cells that are aneuploid or exhibit a CIN phenotype. We find that aneuploid cells are much more sensitive to the energy metabolism regulating drug ZLN005 than their euploid counterparts. Furthermore, cells with an ongoing CIN phenotype, induced by spindle assembly checkpoint (SAC) alleviation, are significantly more sensitive to the Src kinase inhibitor SKI606. We show that inhibiting Src kinase increases microtubule polymerization rates and, more generally, that deregulating microtubule polymerization rates is particularly toxic to cells with a defective SAC. Our findings, therefore, suggest that tumors with a dysfunctional SAC are particularly sensitive to microtubule poisons and, vice versa, that compounds alleviating the SAC provide a powerful means to treat tumors with deregulated microtubule dynamics.
Collapse
Affiliation(s)
- Klaske M Schukken
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
| | - Yu-Chih Lin
- Goettingen Center for Molecular Biosciences and University Medical Center, Goettingen, Germany
| | - Petra L Bakker
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
| | - Michael Schubert
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
| | - Stephanie F Preuss
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
| | - Judith E Simon
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
| | - Hilda van den Bos
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
| | - Zuzana Storchova
- Department of Molecular Genetics, University of Kaiserslautern, Germany
| | - Maria Colomé-Tatché
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands.,Institute of Computational Biology, Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany.,Technical University of Munich, School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| | - Holger Bastians
- Goettingen Center for Molecular Biosciences and University Medical Center, Goettingen, Germany
| | - Diana Cj Spierings
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
| | - Floris Foijer
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
| |
Collapse
|
37
|
Multikinase Abl/DDR/Src Inhibition Produces Optimal Effects for Tyrosine Kinase Inhibition in Neurodegeneration. Drugs R D 2019; 19:149-166. [PMID: 30919310 PMCID: PMC6544596 DOI: 10.1007/s40268-019-0266-z] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Background and objectives Inhibition of Abelson (Abl) tyrosine kinase as a therapeutic target has been gaining attention in neurodegeneration. Post-mortem Alzheimer’s and Parkinson’s disease brains show that the levels of several other tyrosine kinases, including Discoidin Domain Receptors (DDR1/2) are elevated. Knockdown of these tyrosine kinases with shRNA reduces neurotoxic proteins, including alpha-synuclein, beta-amyloid and tau. Methods Direct profiling of the pharmacokinetics of multi-kinase inhibitors Nilotinib, Bosutinib, Bafetinib, Radotinib and LCB-03-0110 shows differential levels of brain penetration but the ability of these agents to reduce toxic proteins is independent of brain concentration and selectivity to Abl. Results Our results indicate that the effective dose of Nilotinib has the lowest plasma:brain ratio (1%) followed by Bosutinib and Radotinib (5%), Bafetinib (12%) and LCB-03-0110 (12%). However, similar doses of multi-kinase Abl/DDR inhibitor Nilotinib, DDR/Src inhibitor LCB-03-0110 and Abl/Src inhibitor Bosutinib were much more effective than the more selective Abl inhibitors Radotinib and Bafetinib. Taken together, these data suggest that a multi-kinase target that includes Abl and other tyrosine kinases (DDRs, and Src) may offer more advantages alleviating neurodegenerative pathologies than the absolute CNS drug concentration and selectivity to Abl. Conclusion DDRs and Src are other potential co-targets with Abl in neurodegeneration. Electronic supplementary material The online version of this article (10.1007/s40268-019-0266-z) contains supplementary material, which is available to authorized users.
Collapse
|
38
|
AXL receptor tyrosine kinase as a promising anti-cancer approach: functions, molecular mechanisms and clinical applications. Mol Cancer 2019; 18:153. [PMID: 31684958 PMCID: PMC6827209 DOI: 10.1186/s12943-019-1090-3] [Citation(s) in RCA: 336] [Impact Index Per Article: 56.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 10/18/2019] [Indexed: 02/08/2023] Open
Abstract
Molecular targeted therapy for cancer has been a research hotspot for decades. AXL is a member of the TAM family with the high-affinity ligand growth arrest-specific protein 6 (GAS6). The Gas6/AXL signalling pathway is associated with tumour cell growth, metastasis, invasion, epithelial-mesenchymal transition (EMT), angiogenesis, drug resistance, immune regulation and stem cell maintenance. Different therapeutic agents targeting AXL have been developed, typically including small molecule inhibitors, monoclonal antibodies (mAbs), nucleotide aptamers, soluble receptors, and several natural compounds. In this review, we first provide a comprehensive discussion of the structure, function, regulation, and signalling pathways of AXL. Then, we highlight recent strategies for targeting AXL in the treatment of cancer.AXL-targeted drugs, either as single agents or in combination with conventional chemotherapy or other small molecule inhibitors, are likely to improve the survival of many patients. However, future investigations into AXL molecular signalling networks and robust predictive biomarkers are warranted to select patients who could receive clinical benefit and to avoid potential toxicities.
Collapse
|
39
|
Minhas R, Bansal Y, Bansal G. Inducible nitric oxide synthase inhibitors: A comprehensive update. Med Res Rev 2019; 40:823-855. [PMID: 31502681 DOI: 10.1002/med.21636] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 08/22/2019] [Accepted: 08/23/2019] [Indexed: 12/27/2022]
Abstract
Inducible nitric oxide synthase (iNOS), which is expressed in response to bacterial/proinflammatory stimuli, generates nitric oxide (NO) that provides cytoprotection. Overexpression of iNOS increases the levels of NO, and this increased NO level is implicated in pathophysiology of complex multifactorial diseases like Parkinson's disease, Alzheimer's disease, multiple sclerosis, rheumatoid arthritis, and inflammatory bowel disease. Selective inhibition of iNOS is an effective approach in treatment of such complex diseases. l-Arginine, being a substrate for iNOS, is the natural lead to develop iNOS inhibitors. More than 200 research reports on development of nitric oxide synthase inhibitors by different research groups across the globe have appeared in literature so far. The first review on iNOS, in 2002, discussed the iNOS inhibitors under two classes that is, amino acid and non-amino acid derivatives. Other review articles discussing specific chemical classes of iNOS inhibitors also appeared during last decade. In the present review, all reports on both natural and synthetic iNOS inhibitors, published 2002 onwards, are studied, classified, and discussed to provide comprehensive information on iNOS inhibitors. The synthetic inhibitors are broadly classified into two categories that is, arginine and non-arginine analogs. The latter are further classified into amidines, five- or six-membered heterocyclics, fused cyclics, steroidal type, and chalcones analogs. Structures of the most/significantly potent compounds from each report are provided to know the functional groups important for incurring iNOS inhibitory activity and selectivity. This review is aimed to provide a comprehensive view to the medicinal chemists for rational designing of novel and potent iNOS inhibitors.
Collapse
Affiliation(s)
- Richa Minhas
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab, India
| | - Yogita Bansal
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab, India
| | - Gulshan Bansal
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab, India
| |
Collapse
|
40
|
Hirozane Y, Toyofuku M, Yogo T, Tanaka Y, Sameshima T, Miyahisa I, Yoshikawa M. Structure-based rational design of staurosporine-based fluorescent probe with broad-ranging kinase affinity for kinase panel application. Bioorg Med Chem Lett 2019; 29:126641. [PMID: 31526603 DOI: 10.1016/j.bmcl.2019.126641] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 08/20/2019] [Accepted: 08/24/2019] [Indexed: 02/08/2023]
Abstract
Selectivity profiling of compounds is important for kinase drug discovery. To this end, we aimed to develop a broad-range protein kinase assay by synthesizing a novel staurosporine-derived fluorescent probe based on staurosporine and kinase-binding related structural information. Upon structural analysis of staurosporine with kinases, a 4'-methylamine moiety of staurosporine was found to be located on the solvent side of the kinases, to which several linker units can be conjugated by either alkylation or acylation. However, such conjugation was suggested to reduce the binding affinities of the modified compound for several kinases, owing to the elimination of hydrogen bond donor moiety of NH-group from 4'-methylamine and/or steric hindrance by acyl moiety. Based on this structural information, we designed and synthesized a novel staurosporine-based probe without methyl group in order to retain the hydrogen bond donor, similar to unmodified staurosporine. The broad range of the kinase binding assay demonstrated that our novel fluorescent probe is an excellent tool for developing broad-ranging kinase binding assay.
Collapse
Affiliation(s)
- Yoshihiko Hirozane
- innovative Biology Laboratories, Neuroscience Drug Discovery Unit, Japan; Biomolecular Research Laboratories, Pharmaceutical Research Division, Japan.
| | - Masashi Toyofuku
- Drug Discovery Chemistry Laboratories, Neuroscience Drug Discovery Unit, Japan
| | - Takatoshi Yogo
- Drug Discovery Chemistry Laboratories, Neuroscience Drug Discovery Unit, Japan
| | - Yukiya Tanaka
- Biomolecular Research Laboratories, Pharmaceutical Research Division, Japan
| | - Tomoya Sameshima
- Drug Safety Research Laboratories, Japan; Biomolecular Research Laboratories, Pharmaceutical Research Division, Japan
| | - Ikuo Miyahisa
- Biomolecular Research Laboratories, Pharmaceutical Research Division, Japan
| | - Masato Yoshikawa
- Drug Discovery Chemistry Laboratories, Neuroscience Drug Discovery Unit, Japan
| |
Collapse
|
41
|
Yuan M, Xu LF, Zhang J, Kong SY, Wu M, Lao YZ, Zhou H, Zhang L, Xu H. SRC and MEK Co-inhibition Synergistically Enhances the Anti-tumor Effect in Both Non-small-cell Lung Cancer (NSCLC) and Erlotinib-Resistant NSCLC. Front Oncol 2019; 9:586. [PMID: 31428570 PMCID: PMC6689998 DOI: 10.3389/fonc.2019.00586] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 06/17/2019] [Indexed: 01/29/2023] Open
Abstract
Non-small-cell lung cancer (NSCLC) is the predominant form of lung cancer, and it is regulated by a complex signal transduction network. Single-agent targeted therapy often results in acquired resistance, which leads to treatment failure. In this study, we demonstrated that a combination of the kinase inhibitors trametinib and bosutinib can synergistically suppress the growth of NSCLC by inhibiting both the mitogen-activated protein kinase (MAPK) and proto-oncogene tyrosine-protein kinase (SRC) pathways. The combination was profiled against a panel of 22 NSCLC cell lines, including one erlotinib-resistant cell line, and this combination was found to show synergistic effects against 16 cell lines. NSCLC cell lines (HCC827, HCC827-erlotinib-resistant, and H1650) were treated with trametinib, bosutinib, or a combination of these drugs. The drug combination inhibited colony formation and induced cell apoptosis. A mechanism study showed that the phosphorylation of multiple kinases in the epidermal growth factor receptor (EGFR) signaling pathway in NSCLC was down-regulated. In addition, the combination significantly attenuated tumor growth of HCC827 xenografts with low toxicity. Our findings provide a theoretical basis for further study of the combination of MAPK and SRC pathway inhibitors in NSCLC, especially in the treatment of erlotinib-resistant NSCLC.
Collapse
Affiliation(s)
- Man Yuan
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lin-Feng Xu
- Shanghai Chempartner Co., Ltd, Shanghai, China
| | - Juan Zhang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Si-Yuan Kong
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Man Wu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yuan-Zhi Lao
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hua Zhou
- Institute of Cardiovascular Disease of Integrated Traditional Chinese Medicine and Western Medicine, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Li Zhang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hongxi Xu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Institute of Cardiovascular Disease of Integrated Traditional Chinese Medicine and Western Medicine, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
42
|
Mekheimer RA, Al-Sheikh MA, Medrasi HY, Bahatheg GA, Sadek KU. Chloroquinoline-3-carbonitriles: Synthesis and Reactions. CURR ORG CHEM 2019. [DOI: 10.2174/1385272823666190516120946] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We herein describe the first review which aims to focus soberly the various
synthetic methods and chemical reactions of chloroquinoline-3-carbonitrile derivatives.
The reactions are subdivided into groups that cover reactions of chloro substituent at 2 or
4 and 2,4 positions, as well as cyano substituent at 3 position and reactions which involve
both groups. Most types of reactions have been successfully applied and used in the production
of biologically active compounds.
Collapse
Affiliation(s)
- Ramadan A. Mekheimer
- Department of Chemistry, Faculty of Science, Minia University, Minia 61519, Egypt
| | - Mariam A. Al-Sheikh
- Department of Chemistry, Faculty of Science, University of Jeddah, P.O. Box 80327, Jeddah 21589, Saudi Arabia
| | - Hanadi Y. Medrasi
- Department of Chemistry, Faculty of Science, University of Jeddah, P.O. Box 80327, Jeddah 21589, Saudi Arabia
| | - Ghayah A. Bahatheg
- Department of Chemistry, Faculty of Science, University of Jeddah, P.O. Box 80327, Jeddah 21589, Saudi Arabia
| | - Kamal U. Sadek
- Department of Chemistry, Faculty of Science, Minia University, Minia 61519, Egypt
| |
Collapse
|
43
|
Liu D, Xue A, Liu Z, Zhang Y, Peng P, Wang H. Synthesis and Anti-Tumor Activity Evaluation of Novel 7-Fluoro-4-(1- Piperazinyl) Quinolines. LETT DRUG DES DISCOV 2019. [DOI: 10.2174/1570180815666180820131036] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
Three series of new 7-fluoro-4-(1-piperazinyl) quinolines (I1~I6, II1~II2 and
IV1~IV4) were synthesized. Their anti-tumor activity was evaluated in vitro against three human
carcinoma cell lines, namely SGC-7901 cells, BEL-7402 cells and A549 cells expressing high levels of
EGFR by Methyl Thiazolyl Terazolium (MTT) assay.
Methods:
Three series of quinoline derivatives were synthesized, characterized and evaluated for their
in vitro anti-tumor activities.
Results and Discussion:
Structures of the newly synthesized compounds were confirmed by spectral
analysis. The preliminary bioassay indicated that compounds I1, I10 and II1 exhibited better anti-tumor
activity than the rest of the target compounds and gefitinib against A549 cell based assay, which
demonstrated that compounds I1, I10 and II1 are potential agents for cancer therapy. Results suggested
that the substitutes on piperazinyl influenced anti-tumor activities remarkably.
Conclusion:
These results are useful for discovering more potent novel anti-tumor compounds and
further studies are ongoing.
Collapse
Affiliation(s)
- Dan Liu
- College of Pharmaceutical and Biological Engineering, Shenyang University of Chemical Technology, Shenyang 110142, China
| | - Aiqi Xue
- College of Pharmaceutical and Biological Engineering, Shenyang University of Chemical Technology, Shenyang 110142, China
| | - Zhixin Liu
- College of Pharmaceutical and Biological Engineering, Shenyang University of Chemical Technology, Shenyang 110142, China
| | - Yi Zhang
- College of Pharmaceutical and Biological Engineering, Shenyang University of Chemical Technology, Shenyang 110142, China
| | - Penghui Peng
- College of Pharmaceutical and Biological Engineering, Shenyang University of Chemical Technology, Shenyang 110142, China
| | - Haifeng Wang
- College of Pharmaceutical and Biological Engineering, Shenyang University of Chemical Technology, Shenyang 110142, China
| |
Collapse
|
44
|
Zhan W, Tong M, Ji L, Zhang H, Ge Z, Wang X, Li R. Continuous-flow synthesis of nitriles from aldehydes via Schmidt reaction. CHINESE CHEM LETT 2019. [DOI: 10.1016/j.cclet.2019.01.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
45
|
Agnello S, Brand M, Chellat MF, Gazzola S, Riedl R. Eine strukturelle Evaluierung medizinalchemischer Strategien gegen Wirkstoffresistenzen. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201802416] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Stefano Agnello
- Institut für Chemie und Biotechnologie; FS Organische Chemie und Medizinalchemie; Zürcher Hochschule für Angewandte Wissenschaften (ZHAW); Einsiedlerstrasse 31 CH-8820 Wädenswil Schweiz
| | - Michael Brand
- Institut für Chemie und Biotechnologie; FS Organische Chemie und Medizinalchemie; Zürcher Hochschule für Angewandte Wissenschaften (ZHAW); Einsiedlerstrasse 31 CH-8820 Wädenswil Schweiz
| | - Mathieu F. Chellat
- Institut für Chemie und Biotechnologie; FS Organische Chemie und Medizinalchemie; Zürcher Hochschule für Angewandte Wissenschaften (ZHAW); Einsiedlerstrasse 31 CH-8820 Wädenswil Schweiz
| | - Silvia Gazzola
- Institut für Chemie und Biotechnologie; FS Organische Chemie und Medizinalchemie; Zürcher Hochschule für Angewandte Wissenschaften (ZHAW); Einsiedlerstrasse 31 CH-8820 Wädenswil Schweiz
| | - Rainer Riedl
- Institut für Chemie und Biotechnologie; FS Organische Chemie und Medizinalchemie; Zürcher Hochschule für Angewandte Wissenschaften (ZHAW); Einsiedlerstrasse 31 CH-8820 Wädenswil Schweiz
| |
Collapse
|
46
|
Agnello S, Brand M, Chellat MF, Gazzola S, Riedl R. A Structural View on Medicinal Chemistry Strategies against Drug Resistance. Angew Chem Int Ed Engl 2019; 58:3300-3345. [PMID: 29846032 DOI: 10.1002/anie.201802416] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 04/24/2018] [Indexed: 12/31/2022]
Abstract
The natural phenomenon of drug resistance is a widespread issue that hampers the performance of drugs in many major clinical indications. Antibacterial and antifungal drugs are affected, as well as compounds for the treatment of cancer, viral infections, or parasitic diseases. Despite the very diverse set of biological targets and organisms involved in the development of drug resistance, the underlying molecular mechanisms have been identified to understand the emergence of resistance and to overcome this detrimental process. Detailed structural information on the root causes for drug resistance is nowadays frequently available, so next-generation drugs can be designed that are anticipated to suffer less from resistance. This knowledge-based approach is essential for fighting the inevitable occurrence of drug resistance.
Collapse
Affiliation(s)
- Stefano Agnello
- Institute of Chemistry and Biotechnology, Center for Organic and Medicinal Chemistry, Zurich University of Applied Sciences (ZHAW), Einsiedlerstrasse 31, 8820, Wädenswil, Switzerland
| | - Michael Brand
- Institute of Chemistry and Biotechnology, Center for Organic and Medicinal Chemistry, Zurich University of Applied Sciences (ZHAW), Einsiedlerstrasse 31, 8820, Wädenswil, Switzerland
| | - Mathieu F Chellat
- Institute of Chemistry and Biotechnology, Center for Organic and Medicinal Chemistry, Zurich University of Applied Sciences (ZHAW), Einsiedlerstrasse 31, 8820, Wädenswil, Switzerland
| | - Silvia Gazzola
- Institute of Chemistry and Biotechnology, Center for Organic and Medicinal Chemistry, Zurich University of Applied Sciences (ZHAW), Einsiedlerstrasse 31, 8820, Wädenswil, Switzerland
| | - Rainer Riedl
- Institute of Chemistry and Biotechnology, Center for Organic and Medicinal Chemistry, Zurich University of Applied Sciences (ZHAW), Einsiedlerstrasse 31, 8820, Wädenswil, Switzerland
| |
Collapse
|
47
|
Kennedy JA, Hobbs G. Tyrosine Kinase Inhibitors in the Treatment of Chronic-Phase CML: Strategies for Frontline Decision-making. Curr Hematol Malig Rep 2018; 13:202-211. [PMID: 29687320 DOI: 10.1007/s11899-018-0449-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
PURPOSE OF REVIEW Over the past two decades, the introduction of tyrosine kinase inhibitors (TKIs) has transformed the treatment of chronic myeloid leukemia (CML). With four agents currently approved for frontline use in chronic-phase (CP) disease, it follows that treatment decision-making has been rendered more challenging. Here we will review recent advances that help inform the selection of a first-line TKI. RECENT FINDINGS Extended follow-up of the seminal CML trials has demonstrated the long-term efficacy of TKIs, while also highlighting significant differences in their respective toxicity profiles and potency. Dasatinib and nilotinib generate deeper molecular responses than imatinib, particularly among patients with higher risk disease, but this has not translated into a significant survival advantage. Similar results have been obtained at 1 year with bosutinib; its efficacy and toxicity were well balanced at a dose of 400 mg daily, prompting its recent approval for this indication. Lastly, multiple studies have demonstrated that TKIs can be safely discontinued in select individuals who have maintained deep responses for extended periods, establishing treatment-free remission as a novel goal in CP CML. The careful consideration of parameters such as disease risk, the potency, and toxicity profile of each TKI, as well as each patient's unique comorbidities and preferences, enables truly individualized therapeutic decision-making in CP CML, with the goal of ensuring that a high quality of life accompanies the survival advantage conferred by these agents.
Collapse
Affiliation(s)
- James A Kennedy
- Division of Hematology, Brigham and Women's Hospital, 77 Avenue Louis Pasteur - HIM 770, Boston, MA, 02115, USA.,Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, 700 University Ave., Toronto, ON, M5G1Z5, Canada
| | - Gabriela Hobbs
- Massachusetts General Hospital, 100 Blossom Street, Cox-1, Boston, MA, 02114, USA.
| |
Collapse
|
48
|
Liu X, Wang B, Chen C, Jiang Z, Hu C, Wu H, Zhang Y, Liu X, Wang W, Wang J, Hu Z, Wang A, Huang T, Liu Q, Wang W, Wang L, Wang W, Ren T, Li L, Xia R, Ge J, Liu Q, Liu J. Discovery of (E)-N-(4-((4-methylpiperazin-1-yl)methyl)-3-(trifluoromethyl)phenyl)-3-((3-(2-(pyridin-2-yl)vinyl)-1H-indazol-6-yl)thio)propanamide (CHMFL-ABL-121) as a highly potent ABL kinase inhibitor capable of overcoming a variety of ABL mutants including T315I for chronic myeloid leukemia. Eur J Med Chem 2018; 160:61-81. [DOI: 10.1016/j.ejmech.2018.10.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 09/27/2018] [Accepted: 10/01/2018] [Indexed: 12/20/2022]
|
49
|
Hoang TT, Tanrikulu IC, Vatland QA, Hoang TM, Raines RT. A Human Ribonuclease Variant and ERK-Pathway Inhibitors Exhibit Highly Synergistic Toxicity for Cancer Cells. Mol Cancer Ther 2018; 17:2622-2632. [PMID: 30282811 DOI: 10.1158/1535-7163.mct-18-0724] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Revised: 08/15/2018] [Accepted: 09/27/2018] [Indexed: 12/20/2022]
Abstract
Pancreatic-type ribonucleases (ptRNases) are prevalent secretory enzymes that catalyze the cleavage of RNA. Ribonuclease inhibitor (RI) is a cytosolic protein that has femtomolar affinity for ptRNases, affording protection from the toxic catalytic activity of ptRNases, which can invade human cells. A human ptRNase variant that is resistant to inhibition by RI is a cytotoxin that is undergoing a clinical trial as a cancer chemotherapeutic agent. We find that the ptRNase and protein kinases in the ERK pathway exhibit strongly synergistic toxicity toward lung cancer cells (including a KRASG12C variant) and melanoma cells (including BRAFV600E variants). The synergism arises from inhibiting the phosphorylation of RI and thereby diminishing its affinity for the ptRNase. These findings link seemingly unrelated cellular processes, and suggest that the use of a kinase inhibitor to unleash a cytotoxic enzyme could lead to beneficial manifestations in the clinic.
Collapse
Affiliation(s)
- Trish T Hoang
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin
| | - I Caglar Tanrikulu
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin.,Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Quinn A Vatland
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin
| | - Trieu M Hoang
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin
| | - Ronald T Raines
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin. .,Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts.,Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin
| |
Collapse
|
50
|
Rossari F, Minutolo F, Orciuolo E. Past, present, and future of Bcr-Abl inhibitors: from chemical development to clinical efficacy. J Hematol Oncol 2018; 11:84. [PMID: 29925402 PMCID: PMC6011351 DOI: 10.1186/s13045-018-0624-2] [Citation(s) in RCA: 236] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 06/01/2018] [Indexed: 01/08/2023] Open
Abstract
Bcr-Abl inhibitors paved the way of targeted therapy epoch. Imatinib was the first tyrosine kinase inhibitor to be discovered with high specificity for Bcr-Abl protein resulting from t(9, 22)-derived Philadelphia chromosome. Although the specific targeting of that oncoprotein, several Bcr-Abl-dependent and Bcr-Abl-independent mechanisms of resistance to imatinib arose after becoming first-line therapy in chronic myelogenous leukemia (CML) treatment.Consequently, new specific drugs, namely dasatinib, nilotinib, bosutinib, and ponatinib, were rationally designed and approved for clinic to override resistances. Imatinib fine mechanisms of action had been elucidated to rationally develop those second- and third-generation inhibitors. Crystallographic and structure-activity relationship analysis, jointly to clinical data, were pivotal to shed light on this topic. More recently, preclinical evidence on bafetinib, rebastinib, tozasertib, danusertib, HG-7-85-01, GNF-2, and 1,3,4-thiadiazole derivatives lay promising foundations for better inhibitors to be approved for clinic in the near future.Notably, structural mechanisms of action and drug design exemplified by Bcr-Abl inhibitors have broad relevance to both break through resistances in CML treatment and develop inhibitors against other kinases as targeted chemotherapeutics.
Collapse
Affiliation(s)
- Federico Rossari
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Piazza Martiri della Libertà, 33, 56127, Pisa, PI, Italy. .,University of Pisa, Pisa, Italy.
| | | | - Enrico Orciuolo
- Department of Clinical and Experimental Medicine, Section of Hematology, Azienda Ospedaliero Universitaria Pisana, Pisa, Italy
| |
Collapse
|