1
|
Sevrain CM, Fontaine D, Bauduin A, Guéguinou M, Zhang BL, Chantôme A, Mahéo K, Pasqualin C, Maupoil V, Couthon H, Vandier C, Jaffrès PA. Thio-ether functionalized glycolipid amphiphilic compounds reveal a potent activator of SK3 channel with vasorelaxation effect. Org Biomol Chem 2021; 19:2753-2766. [PMID: 33687423 DOI: 10.1039/d1ob00021g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The modulation of SK3 ion channels can be efficiently and selectively achieved by using the amphiphilic compound Ohmline (a glyco-glycero-ether-lipid). We report herein a series of Ohmline analogues featuring the replacement of one ether function by a thioether function located at the same position or shifted close to its initial position. The variation of the lipid chain length and the preparation of two analogues featuring either one sulfoxide or one sulfone moiety complete this series. Patch clamp measurements indicate that the presence of the thioether function (compounds 7 and 17a) produces strong activators of SK3 channels, whereas the introduction of a sulfoxide or a sulfone function at the same place produces amphiphiles devoid of an effect on SK3 channels. Compounds 7 and 17a are the first amphiphilic compounds featuring strong activation of SK3 channels (close to 200% activation). The cytosolic calcium concentration determined from fluorescence at 3 different times for compound 7b (13 min, 1 h, 24 h) revealed that the effect is different suggesting that the compound could be metabolized over time. This compound could be used as a strong SK3 activator for a short time. The capacity of 7b to activate SK3 was then used to induce vasorelaxation via an endothelium-derived hyperpolarization (EDH) pathway. For the first time, we report that an amphiphilic compound can affect the endothelium dependent vasorelaxation.
Collapse
Affiliation(s)
- Charlotte M Sevrain
- Univ. Brest, CNRS, CEMCA UMR 6521, 6 Avenue Victor Le Gorgeu, Brest, F-29238 Brest, France.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
2
|
Coyne CP, Narayanan L. Carnosic Acid, Tangeretin, and Ginkgolide-B Anti-neoplastic Cytotoxicity in Dual Combination with Dexamethasone-[anti-EGFR] in Pulmonary Adenocarcinoma (A549). Anticancer Agents Med Chem 2019; 19:802-819. [DOI: 10.2174/1871520619666181204100226] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 06/06/2018] [Accepted: 10/08/2018] [Indexed: 12/18/2022]
Abstract
Background:Traditional chemotherapeutics of low-molecular weight diffuse passively across intact membrane structures of normal healthy cells found in tissues and organ systems in a non-specific unrestricted manner which largely accounts for the induction of most sequelae which restrict dosage, administration frequency, and duration of therapeutic intervention. Molecular strategies that offer enhanced levels of potency, greater efficacy and broader margins-of-safety include the discovery of alternative candidate therapeutics and development of methodologies capable of mediating properties of selective “targeted” delivery.Materials and Methods:The covalent immunopharmaceutical, dexamethasone-(C21-phosphoramidate)-[anti- EGFR] was synthesized utilizing organic chemistry reactions that comprised a multi-stage synthesis regimen. Multiple forms of analysis were implemented to vadliate the successful synthesis (UV spectrophotometric absorbance), purity and molar-incorporation-index (UV spectrophotometric absorbance, chemical-based protein determination), absence of fragmentation/polymerization (SDS-PAGE/chemiluminescent autoradiography), retained selective binding-avidity of IgG-immunoglobulin (cell-ELISA); and selectively “targeted” antineoplastic cytotoxicity (biochemistry-based cell vitality/viability assay).Results:The botanicals carnosic acid, ginkgolide-B and tangeretin, each individually exerted maximum antineoplastic cytotoxicity levels of 58.1%, 5.3%, and 41.1% respectively against pulmonary adenocarcinoma (A549) populations. Dexamethasone-(C21-phosphoramidate)-[anti-EGFR] formulated at corticosteroid/ glucocorticoid equivalent concentrations produced anti-neoplastic cytotoxicity at levels of 7.7% (10-9 M), 26.9% (10-8 M), 64.9% (10-7 M), 69.9% (10-6 M) and 73.0% (10-5 M). Ccarnosic acid, ginkgolide-B and tangeretin in simultaneous dual-combination with dexamethasone-(C21-phosphoramidate)-[anti-EGFR] exerted maximum anti-neoplastic cytotoxicity levels of 70.5%, 58.6%, and 69.7% respectively.Discussion:Carnosic acid, ginkgolide-B and tangeretin botanicals exerted anti-neoplastic cytotoxicity against pulmonary adenocarcinoma (A549) which additively contributed to the anti-neoplastic cytotoxic potency of the covalent immunopharmaceutical, dexamethasone-(C21-phosphoramidate)-[anti-EGFR]. Carnosic acid and tangeretin were most potent in this regard both individually and in dual-combination with dexamethasone-(C21- phosphoramidate)-[anti-EGFR]. Advantages and attributes of carnosic acid and tangeretin as potential monotherapeutics are a wider margin-of-safety of conventional chemotherapeutics which would readily complement the selective “targeted” delivery properties of dexamethasone-(C21-phosphoramidate)-[anti-EGFR] and possibly other covalent immunopharmaceuticals in addition to providing opportunities for the discovery of combination therapies that provide heightened levels of anti-neoplastic efficacy.
Collapse
Affiliation(s)
- Cody P. Coyne
- Department of Basic Sciences, College of Veterinary Medicine at Wise Center, Mississippi State University, Mississippi 39762, United States
| | - Lakshmi Narayanan
- Department of Basic Sciences, College of Veterinary Medicine at Wise Center, Mississippi State University, Mississippi 39762, United States
| |
Collapse
|
3
|
Markovic M, Ben-Shabat S, Keinan S, Aponick A, Zimmermann EM, Dahan A. Prospects and Challenges of Phospholipid-Based Prodrugs. Pharmaceutics 2018; 10:pharmaceutics10040210. [PMID: 30388756 PMCID: PMC6321354 DOI: 10.3390/pharmaceutics10040210] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 10/24/2018] [Accepted: 10/26/2018] [Indexed: 12/19/2022] Open
Abstract
Nowadays, the prodrug approach is used already at the early stages of drug development. Lipidic prodrug approach is a growing field for improving a number of drug properties/delivery/therapy aspects, and can offer solutions for various unmet needs. This approach includes drug moiety bound to the lipid carrier, which can be triglyceride, fatty acids, steroid, or phospholipid (PL). The focus of this article is PL-based prodrugs, which includes a PL carrier covalently bound to the active drug moiety. An overview of relevant physiological lipid processing pathways and absorption barriers is provided, followed by drug delivery/therapeutic application of PL-drug conjugates, as well as computational modeling techniques, and a modern bioinformatics tool that can aid in the optimization of PL conjugates. PL-based prodrugs have increased lipophilicity comparing to the parent drug, and can therefore significantly improve the pharmacokinetic profile and overall bioavailability of the parent drug, join the endogenous lipid processing pathways and therefore accomplish drug targeting, e.g., by lymphatic transport, drug release at specific target site(s), or passing the blood-brain barrier. Moreover, an exciting gateway for treating inflammatory diseases and cancer is presented, by utilizing the PL sn-2 position in the prodrug design, aiming for PLA₂-mediated activation. Overall, a PL-based prodrug approach shows great potential in improving different drug delivery/therapy aspects, and is expected to grow.
Collapse
Affiliation(s)
- Milica Markovic
- Department of Clinical Pharmacology, School of Pharmacy, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel.
| | - Shimon Ben-Shabat
- Department of Clinical Pharmacology, School of Pharmacy, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel.
| | | | - Aaron Aponick
- Department of Chemistry, University of Florida, Gainesville, FL 32603, USA.
| | - Ellen M Zimmermann
- Department of Medicine, Division of Gastroenterology, University of Florida, Gainesville, FL 32610, USA.
| | - Arik Dahan
- Department of Clinical Pharmacology, School of Pharmacy, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel.
| |
Collapse
|
4
|
Öztürk S, Mudaber S, Yıldırım A. Synthesis of 2,3-Dihydroxypropylsulfanyl Derivative Nonionic Surfactants and Their Inhibition Activities Against Metal Corrosion in Acidic Media. JOURNAL OF THE TURKISH CHEMICAL SOCIETY, SECTION A: CHEMISTRY 2018. [DOI: 10.18596/jotcsa.309423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
5
|
Coyne CP, Narayanan L. Gemcitabine-(5'-phosphoramidate)-[anti-IGF-1R]: molecular design, synthetic organic chemistry reactions, and antineoplastic cytotoxic potency in populations of pulmonary adenocarcinoma (A549). Chem Biol Drug Des 2017; 89:379-399. [PMID: 27561602 PMCID: PMC5396302 DOI: 10.1111/cbdd.12845] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 08/12/2016] [Accepted: 08/19/2016] [Indexed: 02/06/2023]
Abstract
One molecular-based approach that increases potency and reduces dose-limited sequela is the implementation of selective 'targeted' delivery strategies for conventional small molecular weight chemotherapeutic agents. Descriptions of the molecular design and organic chemistry reactions that are applicable for synthesis of covalent gemcitabine-monophosphate immunochemotherapeutics have to date not been reported. The covalent immunopharmaceutical, gemcitabine-(5'-phosphoramidate)-[anti-IGF-1R] was synthesized by reacting gemcitabine with a carbodiimide reagent to form a gemcitabine carbodiimide phosphate ester intermediate which was subsequently reacted with imidazole to create amine-reactive gemcitabine-(5'-phosphorylimidazolide) intermediate. Monoclonal anti-IGF-1R immunoglobulin was combined with gemcitabine-(5'-phosphorylimidazolide) resulting in the synthetic formation of gemcitabine-(5'-phosphoramidate)-[anti-IGF-1R]. The gemcitabine molar incorporation index for gemcitabine-(5'-phosphoramidate)-[anti-IGF-R1] was 2.67:1. Cytotoxicity Analysis - dramatic increases in antineoplastic cytotoxicity were observed at and between the gemcitabine-equivalent concentrations of 10-9 M and 10-7 M where lethal cancer cell death increased from 0.0% to a 93.1% maximum (100.% to 6.93% residual survival), respectively. Advantages of the organic chemistry reactions in the multistage synthesis scheme for gemcitabine-(5'-phosphoramidate)-[anti-IGF-1R] include their capacity to achieve high chemotherapeutic molar incorporation ratios; option of producing an amine-reactive chemotherapeutic intermediate that can be preserved for future synthesis applications; and non-dedicated organic chemistry reaction scheme that allows substitutions of either or both therapeutic moieties, and molecular delivery platforms.
Collapse
Affiliation(s)
- Cody P. Coyne
- Department of Basic SciencesCollege of Veterinary MedicineWise CenterMississippi State UniversityMississippi StateMSUSA
- College of Veterinary MedicineWise CenterMississippi State UniversityMississippi StateMSUSA
| | - Lakshmi Narayanan
- Department of Basic SciencesCollege of Veterinary MedicineWise CenterMississippi State UniversityMississippi StateMSUSA
- College of Veterinary MedicineWise CenterMississippi State UniversityMississippi StateMSUSA
- Present address: Fishery and Wildlife Research CenterMississippi State UniversityLocksley Way 201Mississippi StateMSUSA
| |
Collapse
|
6
|
Coyne CP, Narayanan L. Dexamethasone-(C21-phosphoramide)-[anti-EGFR]: molecular design, synthetic organic chemistry reactions, and antineoplastic cytotoxic potency against pulmonary adenocarcinoma (A549). Drug Des Devel Ther 2016; 10:2575-97. [PMID: 27574398 PMCID: PMC4990379 DOI: 10.2147/dddt.s102075] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
PURPOSE Corticosteroids are effective in the management of a variety of disease states, such as several forms of neoplasia (leukemia and lymphoma), autoimmune conditions, and severe inflammatory responses. Molecular strategies that selectively "target" delivery of corticosteroids minimize or prevents large amounts of the pharmaceutical moiety from passively diffusing into normal healthy cell populations residing within tissues and organ systems. MATERIALS AND METHODS The covalent immunopharmaceutical, dexamethasone-(C21-phosphoramide)-[anti-EGFR] was synthesized by reacting dexamethasone-21-monophosphate with a carbodiimide reagent to form a dexamethasone phosphate carbodiimide ester that was subsequently reacted with imidazole to create an amine-reactive dexamethasone-(C21-phosphorylimidazolide) intermediate. Monoclonal anti-EGFR immunoglobulin was combined with the amine-reactive dexamethasone-(C21-phosphorylimidazolide) intermediate, resulting in the synthesis of the covalent immunopharmaceutical, dexamethasone-(C21-phosphoramide)-[anti-EGFR]. Following spectrophotometric analysis and validation of retained epidermal growth factor receptor type 1 (EGFR)-binding avidity by cell-ELISA, the selective anti-neoplasic cytotoxic potency of dexamethasone-(C21-phosphoramide)-[anti-EGFR] was established by MTT-based vitality stain methodology using adherent monolayer populations of human pulmonary adenocarcinoma (A549) known to overexpress the tropic membrane receptors EGFR and insulin-like growth factor receptor type 1. RESULTS The dexamethasone:IgG molar-incorporation-index for dexamethasone-(C21-phosphoramide)-[anti-EGFR] was 6.95:1 following exhaustive serial microfiltration. Cytotoxicity analysis: covalent bonding of dexamethasone to monoclonal anti-EGFR immunoglobulin did not significantly modify the ex vivo antineoplastic cytotoxicity of dexamethasone against pulmonary adenocarcinoma at and between the standardized dexamethasone equivalent concentrations of 10(-9) M and 10(-5) M. Rapid increases in antineoplastic cytotoxicity were observed at and between the dexamethasone equivalent concentrations of 10(-9) M and 10(-7) M where cancer cell death increased from 7.7% to a maximum of 64.9% (92.3%-35.1% residual survival), respectively, which closely paralleled values for "free" noncovalently bound dexamethasone. DISCUSSION Organic chemistry reaction regimens were optimized to develop a multiphase synthesis regimen for dexamethasone-(C21-phosphoramide)-[anti-EGFR]. Attributes of dexamethasone-(C21-phosphoramide)-[anti-EGFR] include a high dexamethasone molar incorporation-index, lack of extraneous chemical group introduction, retained EGFR-binding avidity ("targeted" delivery properties), and potential to enhance long-term pharmaceutical moiety effectiveness.
Collapse
Affiliation(s)
| | - Lakshmi Narayanan
- Department of Clinical Sciences, College of Veterinary Medicine, Mississippi State University, Starkville, MS, USA
| |
Collapse
|
7
|
De S, Groaz E, Margamuljana L, Herdewijn P. Syntheses of 5'-Nucleoside Monophosphate Derivatives with Unique Aminal, Hemiaminal, and Hemithioaminal Functionalities: A New Class of 5'-Peptidyl Nucleotides. Chemistry 2016; 22:8167-80. [PMID: 27136602 DOI: 10.1002/chem.201600721] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Indexed: 11/07/2022]
Abstract
A number of synthetically useful transformations have been developed to generate novel 5'-peptidyl nucleoside monophosphate analogues that incorporate sensitive phosphoaminal, -hemiaminal or -hemithioaminal functionalities. The strategies adopted entailed the coupling between dipeptides, which enclose a reactive Cα-functionalized glycine residue and phosphate or phosphorothioate moieties. These developments led to potentially powerful and general methodologies for the preparation of α-phosphorylated pseudopeptides as well as nucleoside monophosphate mimics. The resulting conjugates are of interest for a variety of important applications, which range from drug development to synthetic biology, as pronucleotides or artificial building blocks for the enzymatic synthesis of xenobiotic information systems. The potential of all dipeptide-TMP conjugates as pyrophosphate mimics in the DNA polymerization reaction was tested, and the influence of the nature of the linker was evaluated by in vitro chain elongation assay in the presence of wild-type microbial DNA polymerases.
Collapse
Affiliation(s)
- Swarup De
- KU Leuven, Rega Institute for Medical Research, Medicinal Chemistry, Minderbroedersstraat 10, 3000, Leuven, Belgium
| | - Elisabetta Groaz
- KU Leuven, Rega Institute for Medical Research, Medicinal Chemistry, Minderbroedersstraat 10, 3000, Leuven, Belgium
| | - Lia Margamuljana
- KU Leuven, Rega Institute for Medical Research, Medicinal Chemistry, Minderbroedersstraat 10, 3000, Leuven, Belgium
| | - Piet Herdewijn
- KU Leuven, Rega Institute for Medical Research, Medicinal Chemistry, Minderbroedersstraat 10, 3000, Leuven, Belgium.
| |
Collapse
|
8
|
Coyne CP, Narayanan L. Fludarabine- (C 2- methylhydroxyphosphoramide)- [anti-IGF-1R]: Synthesis and Selectively "Targeted"Anti-Neoplastic Cytotoxicity against Pulmonary Adenocarcinoma (A549). ACTA ACUST UNITED AC 2015; 4. [PMID: 26613088 DOI: 10.4172/2325-9604.1000129] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
INTRODUCTION Many if not most conventional small molecular weight chemotherapeutics are highly potent against many forms of neoplastic disease. Unfortunately, majority of an administered dose unintentionally diffuses passively into normal tissues and healthy organ systems following intravenous administration. One strategy for both increasing potency and reducing dose-limited sequela is the selective "targeted" delivery of conventional chemotherapeutic agents. MATERIALS AND METHODS The fludarabine-(C2- methylhydroxyphosphoramide)-[anti-IGF-1R] was synthesized by initially reacting fludarabine with a carbodiimide to form a fludarabine carbodiimide phosphate ester intermediate that was subsequently reacted with imidazole to create an amine-reactive fludarabine- (C2-phosphorylimidazolide) intermediate. Monoclonal anti-IGF-1R immunoglobulin was combined with the amine-reactive fludarabine- (C2-phosphorylimidazolide) intermediate resulting in the synthesis of covalent fludarabine-(C2-methylhydroxyphosphoramide)- [anti-IGF-1R] immunochemotherapeutic. Residual fludarabine and un-reacted reagents were removed by serial microfiltration (MWCO 10,000) and monitored by analytical-scale HP-TLC. Retained IGF-1R binding-avidity of fludarabine-(C2- methylhydroxyphosphoramide)-[anti-IGF-1R] was established by cell-ELISA using pulmonary adenocarcinoma cell (A549) which over-expresses IGF-1R and EGFR. Anti-neoplastic cytotoxic potency of fludarabine-(C2-methylhydroxyphosphoramide)-[anti- IGF-1R] was determined against pulmonary adenocarcinoma (A549) using an MTT-based vitality stain methodology. RESULTS The fludarabine molar-incorporation-index for fludarabine- (C2-methylhydroxyphosphoramide)-[anti-IGF-R1] was 3.67:1 while non-covalently bound fludarabine was not detected by analytical scale HP-TLC following serial micro-filtration. Size-separation fludarabine-(C2-methylhydroxyphosphoramide)-[anti- IGF-1R] by SDS-PAGE with chemo luminescent autoradiography detected only a single 150-kDa band. Cell-ELISA of fludarabine- (C2-methylhydroxyphosphoramide)-[anti-IGF-1R] measuring total immunoglobulin bound to exterior surface membranes of pulmonary adenocarcinoma (A549) increased with elevations in immunoglobulin-equivalent concentrations of the covalent fludarabine immunochemotherapeutic. Between the fludarabine-equivalent concentrations of 10-10 M and 10-5 M both fludarabine-(C2- methylhydroxyphosphoramide)-[anti-IGF-1R] and fludarabine had ex-vivo anti-neoplastic cytotoxic potency levels that increased rapidly between the fludarabine-equivalent concentrations of 10-6 M and 10-5 M where cancer cell death percentages increased from 24.4% to a maximum of 94.7% respectively. CONCLUSION The molecular design and organic chemistry reaction schemes were developed for synthesizing fludarabine-(C2- methylhydroxyphosphoramide)-[anti-IGF-1R] which possessed both properties of selective "targeted" delivery and anti-neoplastic cytotoxic potency equivalent to fludarabine chemotherapeutic.
Collapse
Affiliation(s)
- C P Coyne
- Department of Basic Sciences, College of Veterinary Medicine, Wise Center, Mississippi State University, Mississippi State, Mississippi, USA ; College of Veterinary Medicine, Mississippi State University, Mississippi, USA
| | - Lakshmi Narayanan
- Department of Basic Sciences, College of Veterinary Medicine, Wise Center, Mississippi State University, Mississippi State, Mississippi, USA
| |
Collapse
|
9
|
Coyne CP, Jones T, Bear R. Simultaneous Dual Selective Targeted Delivery of Two Covalent Gemcitabine Immunochemotherapeutics and Complementary Anti-Neoplastic Potency of [Se]-Methylselenocysteine. JOURNAL OF CANCER THERAPY 2015; 6:62-89. [PMID: 25821636 PMCID: PMC4376018 DOI: 10.4236/jct.2015.61009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The anti-metabolite chemotherapeutic, gemcitabine is relatively effective for a spectrum of neoplastic conditions that include various forms of leukemia and adenocarcinoma/carcinoma. Rapid systemic deamination of gemcitabine accounts for a brief plasma half-life but its sustained administration is often curtailed by sequelae and chemotherapeutic-resistance. A molecular strategy that diminishes these limitations is the molecular design and synthetic production of covalent gemcitabine immunochemotherapeutics that possess properties of selective "targeted" delivery. The simultaneous dual selective "targeted" delivery of gemcitabine at two separate sites on the external surface membrane of a single cancer cell types represents a therapeutic approach that can increase cytosol chemotherapeutic deposition; prolong chemotherapeutic plasma half-life (reduces administration frequency); minimize innocent exposure of normal tissues and healthy organ systems; and ultimately enhance more rapid and thorough resolution of neoplastic cell populations. MATERIALS AND METHODS A light-reactive gemcitabine intermediate synthesized utilizing succinimidyl 4,4-azipentanoate was covalently bound to anti-EGFR or anti-HER2/neu IgG by exposure to UV light (354-nm) resulting in the synthesis of covalent immunochemotherapeutics, gemcitabine-(C4-amide)-[anti-EGFR] and gemcitabine-(C4-amide)-[anti-HER2/neu]. Cytotoxic anti-neoplastic potency of gemcitabine-(C4-amide)-[anti-EGFR] and gemcitabine-(C4-amide)-[anti-HER2/neu] between gemcitabine-equivalent concentrations of 10-12 M and 10-6 M was determined utilizing chemotherapeutic-resistant mammary adenocarcinoma (SKRr-3). The organoselenium compound, [Se]-methylselenocysteine was evaluated to determine if it complemented the anti-neoplastic potency of the covalent gemcitabine immunochemotherapeutics. RESULTS Gemcitabine-(C4-amide)-[anti-EGFR], gemcitabine-(C4-amide)-[anti-HER2/neu] and the dual simultaneous combination of gemcitabine-(C4-amide)-[anti-EGFR] with gemcitabine-(C4-amide)-[anti-HER2/neu] all had anti-neoplastic cytotoxic potency against mammary adenocarcinoma. Gemcitabine-(C4-amide)-[anti-EGFR] and gemcitabine-(C4-amide)-[anti-HER2/neu] produced progressive increases in anti-neoplastic cytotoxicity that were greatest between gemcitabine-equivalent concentrations of 10-9 M and 10-6 M. Dual simultaneous combinations of gemcitabine-(C4-amide)-[anti-EGFR] with gemcitabine-(C4-amide)-[anti-HER2/neu] produced levels of anti-neoplastic cytotoxicity intermediate between each of the individual covalent gemcitabine immunochemotherapeutics. Total anti-neoplastic cytotoxicity of the dual simultaneous combination of gemcitabine-(C4-amide)-[anti-EGFR] and gemcitabine-(C4-amide)-[anti-HER2/neu] against chemotherapeutic-resistant mammary adenocarcinoma (SKBr-3) was substantially higher when formulated with [Se]-methylsele-nocysteine.
Collapse
Affiliation(s)
- C P Coyne
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, USA
| | - Toni Jones
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, USA
| | - Ryan Bear
- Wise Center, Mississippi State University, Mississippi State, USA
| |
Collapse
|
10
|
Nguyen ST, Williams JD, Butler MM, Ding X, Mills DM, Tashjian TF, Panchal RG, Weir SK, Moon C, Kim HO, Marsden JA, Peet NP, Bowlin TL. Synthesis and antibacterial evaluation of new, unsymmetrical triaryl bisamidine compounds. Bioorg Med Chem Lett 2014; 24:3366-72. [PMID: 24969013 PMCID: PMC4096051 DOI: 10.1016/j.bmcl.2014.05.094] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Revised: 05/26/2014] [Accepted: 05/28/2014] [Indexed: 01/30/2023]
Abstract
Herein we describe the synthesis and antibacterial evaluation of a new, unsymmetrical triaryl bisamidine compound series, [Am]-[indole]-[linker]-[HetAr/Ar]-[Am], in which [Am] is an amidine or amino group, [linker] is a benzene, thiophene or pyridine ring, and [HetAr/Ar] is a benzimidazole, imidazopyridine, benzofuran, benzothiophene, pyrimidine or benzene ring. When the [HetAr/Ar] unit is a 5,6-bicyclic heterocycle, it is oriented such that the 5-membered ring portion is connected to the [linker] unit and the 6-membered ring portion is connected to the [Am] unit. Among the 34 compounds in this series, compounds with benzofuran as the [HetAr/Ar] unit showed the highest potencies. Introduction of a fluorine atom or a methyl group to the triaryl core led to the more potent analogs. Bisamidines are more active toward bacteria while the monoamidines are more active toward mammalian cells (as indicated by low CC50 values). Importantly, we identified compound P12a (MBX 1887) with a relatively narrow spectrum against bacteria and a very high CC50 value. Compound P12a has been scaled up and is currently undergoing further evaluations for therapeutic applications.
Collapse
Affiliation(s)
- Son T Nguyen
- Microbiotix, Inc., 1 Innovation Drive, Worcester, MA 01604, USA.
| | - John D Williams
- Microbiotix, Inc., 1 Innovation Drive, Worcester, MA 01604, USA
| | | | - Xiaoyuan Ding
- Microbiotix, Inc., 1 Innovation Drive, Worcester, MA 01604, USA
| | - Debra M Mills
- Microbiotix, Inc., 1 Innovation Drive, Worcester, MA 01604, USA
| | | | - Rekha G Panchal
- United States Army Medical Research Institute of Infectious Diseases, 1425 Porter Street, Frederick, MD 21702, USA
| | - Susan K Weir
- Department of Medicine, Boston University School of Medicine, 88 E. Newton Street, Boston, MA 02118, USA
| | - Chaeho Moon
- CreaGen Biosciences, Inc., 23 Rainin Road, Woburn, MA 01801, USA
| | - Hwa-Ok Kim
- CreaGen Biosciences, Inc., 23 Rainin Road, Woburn, MA 01801, USA
| | - Jeremiah A Marsden
- Organic Consultants, Inc., 132 E. Broadway, Suite 107, Eugene, OR 97401, USA
| | - Norton P Peet
- Microbiotix, Inc., 1 Innovation Drive, Worcester, MA 01604, USA
| | - Terry L Bowlin
- Microbiotix, Inc., 1 Innovation Drive, Worcester, MA 01604, USA
| |
Collapse
|
11
|
Coyne CP, Jones T, Bear R. Anti-Neoplastic Cytotoxicity of Gemcitabine-(C 4- amide)-[anti-EGFR] in Dual-combination with Epirubicin-(C 3- amide)-[anti-HER2/ neu] against Chemotherapeutic-Resistant Mammary Adenocarcinoma (SKBr-3) and the Complementary Effect of Mebendazole. JOURNAL OF CANCER RESEARCH AND THERAPEUTIC ONCOLOGY 2014; 2:203. [PMID: 25844392 PMCID: PMC4381351 DOI: 10.17303/jcrto.2014.203] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
AIMS Delineate the feasibility of simultaneous, dual selective "targeted" chemotherapeutic delivery and determine if this molecular strategy can promote higher levels anti-neoplastic cytotoxicity than if only one covalent immunochemotherapeutic is selectively "targeted" for delivery at a single membrane associated receptor over-expressed by chemotherapeutic-resistant mammary adenocarcinoma. METHODOLOGY Gemcitabine and epirubicin were covalently bond to anti-EGFR and anti-HER2/neu utilizing a rapid multi-phase synthetic organic chemistry reaction scheme. Determination that 96% or greater gemcitabine or epirubicin content was covalently bond to immunoglobulin fractions following size separation by micro-scale column chromatography was established by methanol precipitation analysis. Residual binding-avidity of gemcitabine-(C4-amide)-[anti-EG-FR] applied in dual-combination with epirubicin-(C3-amide)-[anti-HER2/neu] was determined by cell-ELIZA utilizing chemotherapeutic-resistant mammary adenocarcinoma (SKBr-3) populations. Lack of fragmentation or polymerization was validated by SDS-PAGE/immunodetection/chemiluminescent autoradiography. Anti-neoplastic cytotoxic potency was determined by vitality stain analysis of chemotherapeutic-resistant mammary adenocarcinoma (SKBr-3) monolayers known to uniquely over-express EGFR (2 × 105/cell) and HER2/neu (1 × 106/cell) receptor complexes. The covalent immunochemotherapeutics gemcitabine-(C4-amide)-[anti-EGFR] and epirubicin-(C3-amide)-[anti-HER2/neu] were applied simultaneously in dual-combination to determine their capacity to collectively evoke elevated levels of anti-neoplastic cytotoxicity. Lastly, the tubulin/microtubule inhibitor mebendazole evaluated to determine if it's potential to complemented the anti-neoplastic cytotoxic properties of gemcitabine-(C4-amide)-[anti-EGFR] in dual-combination with epirubicin-(C3-amide)-[anti-HER2/neu]. RESULTS Dual-combination of gemcitabine-(C4-amide)-[anti-EGFR] with epirubicin-(C3-amide)-[anti-HER2/neu] produced greater levels of anti-neoplastic cytotoxicity than either of the covalent immunochemotherapeutics alone. The benzimidazole microtubule/tubulin inhibitor, mebendazole complemented the anti-neoplastic cytotoxicity of gemcitabine-(C4-amide)-[anti-EGFR] in dual-combination with epirubicin-(C3-amide)-[anti-HER2/neu]. CONCLUSIONS The dual-combination of gemcitabine-(C4-amide)-[anti-EGFR] with epirubicin-(C3-amide)-[anti-HER2/neu] produced higher levels of selectively "targeted" anti-neoplastic cytotoxicity against chemotherapeutic-resistant mammary adenocarcinoma (SKBr-3) than either covalent immunochemotherapeutic alone. The benzimidazole tubulin/microtubule inhibitor, mebendazole also possessed anti-neoplastic cytotoxicity against chemotherapeutic-resistant mammary adenocarcinoma (SKBr-3) and complemented the potency and efficacy of gemcitabine-(C4-amide)-[anti-EGFR] in dual-combination with epirubicin-(C3-amide)-[anti-HER2/neu].
Collapse
Affiliation(s)
- CP Coyne
- Department of Basic Sciences, College of Veterinary Medicine at Wise Center, Mississippi State University, Mississippi State, Mississippi 39762, USA
| | - Toni Jones
- Department of Basic Sciences, College of Veterinary Medicine at Wise Center, Mississippi State University, Mississippi State, Mississippi 39762, USA
| | - Ryan Bear
- Department of Basic Sciences, College of Veterinary Medicine at Wise Center, Mississippi State University, Mississippi State, Mississippi 39762, USA
| |
Collapse
|
12
|
Tsybulskaya I, Kulak T, Baranovsky A, Golubeva M, Kuzmitsky B, Kalinichenko E. Synthesis and in vitro cytostatic activity of 1,2- and 1,3-diacylglycerophosphates of clofarabine. Bioorg Med Chem 2013; 21:5414-9. [PMID: 23820572 DOI: 10.1016/j.bmc.2013.06.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Revised: 05/31/2013] [Accepted: 06/06/2013] [Indexed: 10/26/2022]
Abstract
The conjugates of anticancer nucleoside clofarabine [2-chloro-9-(2-deoxy-2-fluoro-β-d-arabinofuranosyl)adenine] with 1,2- and 1,3-diacylglycerophosphates have been prepared by the phosphoramidite method using a combination of 1,1,3,3-tetraisopropyldisiloxane-1,3-diyl protecting group for the sugar moiety of the nucleoside and 2-cyanoethyl protection for the phosphate fragment. Some of the synthesized conjugates exhibited cytostatic activity against HL-60, A-549, MCF-7, and HeLa tumor cell lines.
Collapse
Affiliation(s)
- Ilona Tsybulskaya
- Institute of Bioorganic Chemistry, National Academy of Sciences of Belarus, BY-220141 Minsk, Belarus.
| | | | | | | | | | | |
Collapse
|
13
|
Coyne CP, Jones T, Bear R. Anti-Neoplastic Cytotoxicity of Gemcitabine-(C 4- amide)-[anti-HER2/ neu] in Combination with Griseofulvin against Chemotherapeutic-Resistant Mammary Adenocarcinoma (SKBr-3). Med Chem 2013. [PMID: 26225219 PMCID: PMC4516389 DOI: 10.4172/2161-0444.1000141] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Introduction Gemcitabine is a pyrimidine nucleoside analog that becomes triphosphorylated and in this form it competitively inhibits cytidine incorporation into DNA strands. Diphosphorylated gemcitabine irreversibly inhibits ribonucleotide reductase thereby preventing deoxyribonucleotide synthesis. Functioning as a potent chemotherapeutic, gemcitabine decreases neoplastic cell proliferation and induces apoptosis which accounts for its effectiveness in the clinical treatment of several leukemia and carcinoma cell types. A brief plasma half-life due to rapid deamination, chemotherapeuticresistance and sequelae restricts gemcitabine utility in clinical oncology. Selective “targeted” gemcitabine delivery represents a molecular strategy for prolonging its plasma half-life and minimizing innocent tissue/organ exposure. Methods A previously described organic chemistry scheme was applied to synthesize a UV-photoactivated gemcitabine intermediate for production of gemcitabine-(C4-amide)-[anti-HER2/neu]. Immunodetection analysis (Western-blot) was applied to detect the presence of any degradative fragmentation or polymerization. Detection of retained binding-avidity for gemcitabine-(C4-amide)-[anti-HER2/neu] was determined by cell-ELISA using populations of chemotherapeutic-resistant mammary adenocarcinoma (SKBr-3) that highly over-express the HER2/neu trophic membrane receptor. Anti-neoplastic cytotoxicity of gemcitabine-(C4-amide)-[anti-HER2/neu] and the tubulin/microtubule inhibitor, griseofulvin was established against chemotherapeutic-resistant mammary adenocarcinoma (SKBr-3). Related investigations evaluated the potential for gemcitabine-(C4-amide)-[anti-HER2/neu] in dual combination with griseofulvin to evoke increased levels of anti-neoplastic cytotoxicity compared to gemcitabine-(C4-amide)-[anti-HER2/neu]. Results Covalent gemcitabine-(C4-amide)-[anti-HER2/neu] immunochemotherapeutic and griseofulvin exerted anti-neoplastic cytotoxicity against chemotherapeutic-resistant mammary adenocarcinoma (SKBr-3). Covalent gemcitabine-(C4-amide)-[anti-HER2/neu] immunochemotherapeutic or gemcitabine in dual combination with griseofulvin created increased levels of anti-neoplastic cytotoxicity that were greater than was attainable with gemcitabine-(C4-amide)-[anti-HER2/neu] or gemcitabine alone. Conclusion Gemcitabine-(C4-amide)-[anti-HER2/neu] in dual combination with griseofulvin can produce enhanced levels of anti-neoplastic cytotoxicity and potentially provide a basis for treatment regimens with a wider margin-of-safety. Such benefits would be possible through the collective properties of; [i] selective “targeted” gemcitabine delivery; [ii] relatively lower toxicity of griseofulvin compared to many if not most conventional chemotherapeutics; [iii] reduced total dosage requirements faciliated by additive or synergistic anti-cancer properties; and [iv] differences in sequelae for gemcitabine-(C4-amide)-[anti-HER2/neu] compared to griseofulvin functioning as a tubulin/microtubule inhibitor.
Collapse
Affiliation(s)
- C P Coyne
- Department of Basic Sciences, College of Veterinary Medicine at Wise Center, Mississippi State University, Mississippi State, Mississippi 39762, USA
| | - Toni Jones
- Department of Basic Sciences, College of Veterinary Medicine at Wise Center, Mississippi State University, Mississippi State, Mississippi 39762, USA
| | - Ryan Bear
- Department of Basic Sciences, College of Veterinary Medicine at Wise Center, Mississippi State University, Mississippi State, Mississippi 39762, USA
| |
Collapse
|
14
|
Oleynikova IA, Kulak TI, Bolibrukh DA, Kalinichenko EN. Synthesis of PhospholipidRibavirinConjugates. Helv Chim Acta 2013. [DOI: 10.1002/hlca.201200203] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
15
|
Coyne CP, Jones T, Bear R. Synthesis of Gemcitabine-(C 4- amide)-[anti-HER2/ neu] Utilizing a UV-Photoactivated Gemcitabine Intermediate: Cytotoxic Anti-Neoplastic Activity against Chemotherapeutic-Resistant Mammary Adenocarcinoma SKBr-3. ACTA ACUST UNITED AC 2012. [PMID: 26225216 DOI: 10.4236/jct.2012.325089] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Gemcitabine is a pyrimidine nucleoside analog that becomes triphosphorylated intracellularly where it competitively inhibits cytidine incorporation into DNA strands. Another mechanism-of-action of gemcitabine (diphosphorylated form) involves irreversible inhibition of the enzyme ribonucleotide reductase thereby preventing deoxyribonucleotide synthesis. Functioning as a potent chemotherapeutic gemcitabine promote decreases in neoplastic cell proliferation and apoptosis which is frequently found to be effective for the treatment of several leukemias and a wide spectrum of carcinomas. A brief plasma half-life in part due to rapid deamination and chemotherapeutic-resistance restricts the utility of gemcit-abine in clinical oncology. Selective "targeted" delivery of gemcitabine represents a potential molecular strategy for simultaneously prolonging its plasma half-life and minimizing innocient tissues and organ systems exposure to chemotherapy. The molecular design and an organic chemistry based synthesis reaction is described that initially generates a UV-photoactivated gemcitabine intermediate. In a subsequent phase of the synthesis method the UV-photoactivated gemcitabine intermediate is covalently bonded to a monoclonal immunoglobulin yielding an end-product in the form of gemcitabine-(C4-amide)-[anti-HER2/neu]. Analysis by SDS-PAGE/chemiluminescent auto-radiography did not detect evidence of gemcitabine-(C4-amide)-[anti-HER2/neu] polymerization or degradative fragmentation while cell-ELISA demonstrated retained binding-avidity for HER2/neu trophic membrane receptor complexes highly over-expressed by chemotherapeutic-resistant mammary adenocarcinoma (SKBr-3). Compared to chemotherapeutic-resistant mammary adenocarcinoma (SKBr-3), the covalent immunochemotherapeutic, gemcitabine-(C4-amide)-[anti-HER2/neu] is anticipated to exert greater levels of cytotoxic anti-neoplastic potency against other neoplastic cell types like pancreatic carcinoma, small-cell lung carcinoma, neuroblastoma, glioblastoma, oral squamous cell carcinoma, cervical epitheliod carcinoma, or leukemia/lymphoid neoplastic cell types based on their reported sensitivity to gemcitabine and gemcitabine covalent conjugates.
Collapse
Affiliation(s)
- Cody P Coyne
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Oktibbeha County, USA
| | - Toni Jones
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Oktibbeha County, USA
| | - Ryan Bear
- Wise Center, Mississippi State University, Oktibbeha County, USA
| |
Collapse
|
16
|
Lansakara-P DSP, Rodriguez BL, Cui Z. Synthesis and in vitro evaluation of novel lipophilic monophosphorylated gemcitabine derivatives and their nanoparticles. Int J Pharm 2012; 429:123-34. [PMID: 22425885 DOI: 10.1016/j.ijpharm.2012.03.014] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2011] [Revised: 03/06/2012] [Accepted: 03/07/2012] [Indexed: 01/18/2023]
Abstract
Gemcitabine hydrochloride (HCl) is approved for the treatment of a wide spectrum of solid tumors. However, the rapid development of resistance often makes gemcitabine less efficacious. In the present study, we synthesized several novel lipophilic monophosphorylated gemcitabine derivatives, incorporated them into solid lipid nanoparticles, and then evaluated their ability to overcome major known gemcitabine resistance mechanisms by evaluating their in vitro cytotoxicities in cancer cells that are deficient in deoxycytidine kinase (dCK), deficient in human equilibrative nucleoside transporter (hENT1), over-expressing ribonucleotide reductase M1 subunit (RRM1), or over-expressing RRM2. In dCK deficient cells, the monophosphorylated gemcitabine derivatives and their nanoparticles were up to 86-fold more cytotoxic than gemcitabine HCl. The majority of the gemcitabine derivatives and their nanoparticles were more cytotoxic than gemcitabine HCl in cells that over-expressing RRM1 or RRM2, and the gemcitabine derivatives in nanoparticles were also resistant to deamination by deoxycytidine deaminase. The gemcitabine derivatives (in nanoparticles) hold a great potential in overcoming gemcitabine resistance.
Collapse
Affiliation(s)
- Dharmika S P Lansakara-P
- The University of Texas at Austin, College of Pharmacy, Pharmaceutics Division, Austin, TX 78712, United States
| | | | | |
Collapse
|
17
|
Caron J, Lepeltier E, Reddy LH, Lepêtre-Mouelhi S, Wack S, Bourgaux C, Couvreur P, Desmaële D. Squalenoyl Gemcitabine Monophosphate: Synthesis, Characterisation of Nanoassemblies and Biological Evaluation. European J Org Chem 2011. [DOI: 10.1002/ejoc.201100036] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
18
|
Coyne CP, Jones T, Pharr T. Synthesis of a covalent gemcitabine-(carbamate)-[anti-HER2/neu] immunochemotherapeutic and its cytotoxic anti-neoplastic activity against chemotherapeutic-resistant SKBr-3 mammary carcinoma. Bioorg Med Chem 2010; 19:67-76. [PMID: 21169024 DOI: 10.1016/j.bmc.2010.11.046] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2010] [Revised: 11/15/2010] [Accepted: 11/22/2010] [Indexed: 02/06/2023]
Abstract
UNLABELLED Gemcitabine is a potent chemotherapeutic that exerts cytotoxic activity against several leukemias and a wide spectrum of carcinomas. A brief plasma half-life in part due to rapid deamination and chemotherapeutic-resistance frequently limit the utility of gemcitabine in clinical oncology. Selective 'targeted' delivery of gemcitabine represents a potential molecular strategy for simultaneously prolonging its plasma half-life and minimizing exposure of innocent tissues and organ systems. MATERIALS AND METHODS Gemcitabine was combined in molar excess with N-[p-maleimidophenyl]-isocyanate (PMPI) so that the isocyanate moiety of PMPI which exclusively reacts with hydroxyl groups preferentially created a carbamate covalent bond at the terminal C(5)-methylhydroxy group of gemcitabine. Monoclonal immunoglobulin with binding-avidity specifically for HER2/neu was thiolated with 2-iminothiolane at the terminal ε-amine group of lysine amino acid residues. The gemcitabine-(carbamate)-PMPI intermediate with a maleimide moiety that exclusively reacts with reduced sulfhydryl groups was then combined with thiolated anti-HER2/neu monoclonal immunoglobulin. Western-blot analysis was utilized to delineate the molecular weight profile for gemcitabine-(carbamate)-[anti-HER2/neu] while cell binding characteristics were determined by cell-ELISA utilizing SKBr-3 mammary carcinoma which highly over-expresses HER2/neu receptors. Cytotoxic anti-neoplastic potency of gemcitabine-(carbamate)-[anti-HER2/neu] between the gemcitabine-equivalent concentrations of 10(-12) and 10(-6)M was determined utilizing vitality staining analysis of chemotherapeutic-resistant SKBr-3 mammary carcinoma. RESULTS Gemcitabine-(carbamate)-[anti-HER2/neu] was synthesized at a molar incorporation index of 1:1.1 (110%) and had a molecular weight of 150kDa that was indistinguishable from reference control immunoglobulin fractions. Cell-ELISA detected progressive increases in SKBr-3 mammary carcinoma associated immunoglobulin with corresponding increases in covalent gemcitabine immunochemotherapeutic concentrations. The in vitro cytotoxic anti-neoplastic potency of gemcitabine-(carbamate)-[anti-HER2/neu] was approximately 20% and 32% at 10(-7) and 10(-6)M (gemcitabine-equivalent concentrations) after a 182-h incubation period. DISCUSSION The investigations describes for the first time a methodology for synthesizing a gemcitabine anti-HER2/neu immunochemotherapeutic by creating a covalent bond structure between the C(5)-methylhydroxy group of gemcitabine and thiolated lysine amino acid residues of monoclonal antibody or other biologically active protein fractions. Gemcitabine-(carbamate)-[anti-HER2/neu] possessed binding-avidity at HER2/neu receptors highly over-expressed by chemotherapeutic-resistant SKBr-3 mammary carcinoma. Alternatively, gemcitabine can be covalently linked at its C(5)-methylhydroxy group to monoclonal immunoglobulin fractions that possess binding-avidity for other receptors and membrane complexes uniquely highly over-expressed by a variety of neoplastic cell types. Compared to chemotherapeutic-resistant SKBr-3 mammary carcinoma, gemcitabine-(carbamate)-[anti-HER2/neu] immunochemotherapeutic is anticipated to exert higher levels of cytotoxic anti-neoplastic potency against other neoplastic cell types like pancreatic carcinoma, small-cell lung carcinoma, neuroblastoma, glioblastoma, oral squamous cell carcinoma, cervical epithelioid carcinoma, or leukemia/lymphoid neoplastic cell types based on their reportedly greater sensitivity to gemcitabine and gemcitabine covalent conjugates.
Collapse
Affiliation(s)
- C P Coyne
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS 39762, United States.
| | | | | |
Collapse
|
19
|
Lucas R, Elchinger PH, Faugeras PA, Zerrouki R. Pyrimidine-purine and pyrimidine heterodinucleosides synthesis containing a triazole linkage. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2010; 29:168-77. [PMID: 20408048 DOI: 10.1080/15257771003708579] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
This article describes a synthetic route to generate two purine-pyrimidine and pyrimidine heterodinucleosides. Both microwave activated regioselective alkylation using hydride and copper-catalyzed-azide-alkyne-cycloaddition (CuAAC) were used in order to perform the synthesis.
Collapse
Affiliation(s)
- R Lucas
- Faculte des Sciences et Techniques, Universite de Limoges, Laboratoire de Chimie des Substances Naturelles, Limoges, France
| | | | | | | |
Collapse
|
20
|
Caron J, Reddy LH, Lepêtre-Mouelhi S, Wack S, Clayette P, Rogez-Kreuz C, Yousfi R, Couvreur P, Desmaële D. Squalenoyl nucleoside monophosphate nanoassemblies: new prodrug strategy for the delivery of nucleotide analogues. Bioorg Med Chem Lett 2010; 20:2761-4. [PMID: 20363623 DOI: 10.1016/j.bmcl.2010.03.070] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2010] [Revised: 03/16/2010] [Accepted: 03/16/2010] [Indexed: 10/19/2022]
Abstract
4-(N)-1,1',2-trisnor-squalenoyldideoxycytidine monophosphate (SQddC-MP) and 4-(N)-1,1',2-trisnor-squalenoylgemcitabine monophosphate (SQdFdC-MP) were synthesized using phosphoramidite chemistry. These amphiphilic molecules self-assembled to about hundred nanometers size nanoassemblies in aqueous medium. Nanoassemblies of SQddC-MP displayed significant anti-HIV activity whereas SQdFdC-MP nanoassemblies displayed promising anticancer activity on leukemia cells. These results suggested that squalene conjugate of negatively charged nucleotide analogues efficiently penetrated within cells. Thus, we propose a new prodrug strategy for improved delivery of nucleoside analogues to ameliorate their biological efficacy.
Collapse
Affiliation(s)
- Joachim Caron
- Université Paris-Sud, Faculté de Pharmacie, UMR CNRS 8076, 5 rue J.-B. Clément, 92296 Châtenay-Malabry, France
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Chelation-controlled regioselective alkylation of pyrimidine 2'-deoxynucleosides. Carbohydr Res 2009; 345:199-207. [PMID: 19932891 DOI: 10.1016/j.carres.2009.10.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2009] [Revised: 10/23/2009] [Accepted: 10/27/2009] [Indexed: 11/22/2022]
Abstract
Protection-deprotection steps, which are usually needed for regioselective alkylation of pyrimidine deoxynucleosides, can be avoided by choosing the appropriate solvent. The combined effects of low dielectric constant and possible sodium chelation by pyrimidine nucleosides may account for the unexpected regioselectivity observed in THF.
Collapse
|
22
|
Smith DB, Kalayanov G, Sund C, Winqvist A, Maltseva T, Leveque VJP, Rajyaguru S, Le Pogam S, Najera I, Benkestock K, Zhou XX, Kaiser AC, Maag H, Cammack N, Martin JA, Swallow S, Johansson NG, Klumpp K, Smith M. The design, synthesis, and antiviral activity of monofluoro and difluoro analogues of 4'-azidocytidine against hepatitis C virus replication: the discovery of 4'-azido-2'-deoxy-2'-fluorocytidine and 4'-azido-2'-dideoxy-2',2'-difluorocytidine. J Med Chem 2009; 52:2971-8. [PMID: 19341305 DOI: 10.1021/jm801595c] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The discovery of 4'-azidocytidine (3) (R1479) (J. Biol. Chem. 2006, 281, 3793; Bioorg. Med. Chem. Lett. 2007, 17, 2570) as a potent inhibitor of RNA synthesis by NS5B (EC(50) = 1.28 microM), the RNA polymerase encoded by hepatitis C virus (HCV), has led to the synthesis and biological evaluation of several monofluoro and difluoro derivatives of 4'-azidocytidine. The most potent compounds in this series were 4'-azido-2'-deoxy-2',2'-difluorocytidine and 4'-azido-2'-deoxy-2'-fluoroarabinocytidine with antiviral EC(50) of 66 nM and 24 nM in the HCV replicon system, respectively. The structure-activity relationships within this series were discussed, which led to the discovery of these novel nucleoside analogues with the most potent compound, showing more than a 50-fold increase in antiviral potency as compared to 4'-azidocytidine (3).
Collapse
Affiliation(s)
- David B Smith
- Roche Palo Alto LLC, 3431 Hillview Avenue, Palo Alto, California 94304, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Pickin K, Alexander R, Morrow C, Morris-Natschke S, Ishaq K, Fleming R, Kucera G. Phospholipid/deoxycytidine analogue prodrugs for the treatment of cancer. J Drug Deliv Sci Technol 2009. [DOI: 10.1016/s1773-2247(09)50004-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
24
|
Abstract
Major advances in the use of carrier vehicles delivering pharmacologic agents and enzymes to sites of disease have occurred over the past 10 years. This review focuses on the concepts and clinical evaluation of carrier-mediated anticancer agents that are administered i.v. or orally. The primary types of carrier-mediated anticancer agents are nanoparticles, nanosomes, which are nanoparticle-sized liposomes, and conjugated agents. Nanosomes are further subdivided into stabilized and nonstabilized or conventional nanosomes. Nanospheres and dendrimers are subclasses of nanoparticles. Conjugated agents consist of polymer-linked and pegylated agents. The theoretical advantages of carrier-mediated drugs are greater solubility, longer duration of exposure, selective delivery of entrapped drug to the site of action, superior therapeutic index, and the potential to overcome resistance associated with the regular anticancer agent. The pharmacokinetic disposition of carrier-mediated agents depends on the physiochemical characteristics of the carrier, such as size, surface charge, membrane lipid packing, steric stabilization, dose, and route of administration. The primary sites of accumulation of carrier-mediated agents are the tumor, liver, and spleen, compared with noncarrier formulations. The drug that remains encapsulated in or linked to the carrier (e.g., the nanosome or nanoparticle) is an inactive prodrug, and thus the drug must be released from the carrier to be active. The factors affecting the pharmacokinetic and pharmacodynamic variability of these agents remain unclear, but most likely include the reticuloendothelial system, which has also been called the mononuclear phagocyte system. Future studies need to evaluate the mechanism of clearance of carrier-mediated agents and identify the factors associated with the pharmacokinetic and pharmacodynamic variability of carrier agents in patients and specifically in tumors.
Collapse
Affiliation(s)
- William C Zamboni
- Division of Pharmacotherapy and Experimental Therapeutics, School of Pharmacy, University of North Carolina, 3308 Kerr Hall CB 7360, 311 Pharmacy Lane, Chapel Hill, NC 27599-7360, USA.
| |
Collapse
|
25
|
|
26
|
Antitumoral activity of PEG–gemcitabine prodrugs targeted by folic acid. J Control Release 2008; 127:239-48. [DOI: 10.1016/j.jconrel.2008.02.002] [Citation(s) in RCA: 133] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2007] [Revised: 02/01/2008] [Accepted: 02/10/2008] [Indexed: 11/17/2022]
|
27
|
Davy JA, Wang Z, Notter RH, Schwan AL. Synthesis of sulfur-containing glycerophospholipids. J Sulphur Chem 2007. [DOI: 10.1080/17415990601080166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
28
|
Birichevskaya LL, Kvach SV, Sivets GG, Kalinichenko EN, Zinchenko AI, Mikhailopulo IA. A comparison of enzymatic phosphorylation and phosphatidylation of β-l- and β-d-nucleosides. Biotechnol Lett 2007; 29:585-91. [PMID: 17206374 DOI: 10.1007/s10529-006-9271-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2006] [Revised: 11/20/2006] [Accepted: 11/27/2006] [Indexed: 11/30/2022]
Abstract
Enzymatic 5'-monophosphorylation and 5'-phosphatidylation of a number of beta-L- and beta-D-nucleosides was investigated. The first reaction, catalyzed by nucleoside phosphotransferase (NPT) from Erwinia herbicola, consisted of the transfer of the phosphate residue from p-nitrophenylphosphate (p-NPP) to the 5'-hydroxyl group of nucleoside; the second was the phospholipase D (PLD)-catalyzed transphosphatidylation of L-alpha-lecithin with a series of beta-L- and beta-D-nucleosides as the phosphatidyl acceptor resulted in the formation of the respective phospholipid-nucleoside conjugates. Some beta-L-nucleosides displayed similar or even higher substrate activity compared to the beta-D-enantiomers.
Collapse
|
29
|
Ali SM, Khan AR, Ahmad MU, Chen P, Sheikh S, Ahmad I. Synthesis and biological evaluation of gemcitabine-lipid conjugate (NEO6002). Bioorg Med Chem Lett 2005; 15:2571-4. [PMID: 15863318 DOI: 10.1016/j.bmcl.2005.03.046] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2005] [Revised: 03/08/2005] [Accepted: 03/14/2005] [Indexed: 01/22/2023]
Abstract
A novel gemcitabine-lipid conjugate 5 was synthesized and tested for its in vivo efficacy and toxicity. Compound 5 was tested in BxPC-3 human pancreatic tumor model in SCID mice and exhibited promising activity and lower toxicity when compared with Gemzar.
Collapse
Affiliation(s)
- Shoukath M Ali
- NeoPharm Inc., Research and Development Facility, 1850 Lakeside Drive, Waukegan, IL 60085, USA
| | | | | | | | | | | |
Collapse
|
30
|
Alexander RL, Greene BT, Torti SV, Kucera GL. A novel phospholipid gemcitabine conjugate is able to bypass three drug-resistance mechanisms. Cancer Chemother Pharmacol 2005; 56:15-21. [PMID: 15789226 DOI: 10.1007/s00280-004-0949-0] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2004] [Accepted: 06/24/2004] [Indexed: 11/28/2022]
Abstract
We have previously synthesized a phospholipid-gemcitabine conjugate and a phospholipid-cytosine arabinoside conjugate that we tested in different human cancer cell lines. The gemcitabine conjugate was more cytotoxic to the cancer cells tested than the cytosine arabinoside (ara-C) conjugate. The focus here was to elucidate the mechanism of action of the conjugate molecule and its ability to bypass certain drug-resistance mechanisms. In contrast to gemcitabine, the gemcitabine conjugate did not enter the cell via the human equilibrative nucleoside transporter (hENT1). Additionally, the gemcitabine conjugate was not a substrate for the multidrug resistance efflux pump, MDR-1, even though the molecule is more lipophilic. Finally, we showed that deoxycytidine kinase (dCK) was not required for the activation of the gemcitabine conjugate. As expected, cells overexpressing dCK were more sensitive to gemcitabine whereas cells overexpressing dCK were not more sensitive to the gemcitabine conjugate. Taken together, these results suggest that the gemcitabine conjugate may be therapeutically superior to gemcitabine due to the conjugate's ability to bypass three resistance mechanisms that often render gemcitabine ineffective as an anticancer agent.
Collapse
Affiliation(s)
- Richard L Alexander
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | | | | | | |
Collapse
|