1
|
Lu J, Bart AG, Wu Q, Criscione KR, McLeish MJ, Scott EE, Grunewald GL. Structure-Based Drug Design of Bisubstrate Inhibitors of Phenylethanolamine N-Methyltransferase Possessing Low Nanomolar Affinity at Both Substrate Binding Domains 1. J Med Chem 2020; 63:13878-13898. [PMID: 33147410 DOI: 10.1021/acs.jmedchem.0c01475] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The enzyme phenylethanolamine N-methyltransferase (PNMT, EC 2.1.1.28) catalyzes the final step in the biosynthesis of epinephrine and is a potential drug target, primarily for the control of hypertension. Unfortunately, many potent PNMT inhibitors also possess significant affinity for the a2-adrenoceptor, which complicates the interpretation of their pharmacology. A bisubstrate analogue approach offers the potential for development of highly selective inhibitors of PNMT. This paper documents the design, synthesis, and evaluation of such analogues, several of which were found to possess human PNMT (hPNMT) inhibitory potency <5 nM versus AdoMet. Site-directed mutagenesis studies were consistent with bisubstrate binding. Two of these compounds (19 and 29) were co-crystallized with hPNMT and the resulting structures revealed both compounds bound as predicted, simultaneously occupying both substrate binding domains. This bisubstrate inhibitor approach has resulted in one of the most potent (20) and selective (vs the a2-adrenoceptor) inhibitors of hPNMT yet reported.
Collapse
Affiliation(s)
- Jian Lu
- Department of Medicinal Chemistry, University of Kansas, Lawrence, Kansas 66045, United States
| | - Aaron G Bart
- Department of Medicinal Chemistry, University of Kansas, Lawrence, Kansas 66045, United States
| | - Qian Wu
- Department of Chemistry and Chemical Biology, Purdue School of Science, IUPUI, Indianapolis, Indiana 46202, United States
| | - Kevin R Criscione
- Department of Medicinal Chemistry, University of Kansas, Lawrence, Kansas 66045, United States
| | - Michael J McLeish
- Department of Chemistry and Chemical Biology, Purdue School of Science, IUPUI, Indianapolis, Indiana 46202, United States
| | - Emily E Scott
- Department of Medicinal Chemistry, University of Kansas, Lawrence, Kansas 66045, United States
| | - Gary L Grunewald
- Department of Medicinal Chemistry, University of Kansas, Lawrence, Kansas 66045, United States
| |
Collapse
|
2
|
Wu Q, McLeish MJ. Kinetic and pH studies on human phenylethanolamine N-methyltransferase. Arch Biochem Biophys 2013; 539:1-8. [PMID: 24018397 PMCID: PMC3853373 DOI: 10.1016/j.abb.2013.08.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Revised: 08/29/2013] [Accepted: 08/31/2013] [Indexed: 02/04/2023]
Abstract
Phenylethanolamine N-methyltransferase (PNMT) catalyzes the conversion of norepinephrine (noradrenaline) to epinephrine (adrenaline) while, concomitantly, S-adenosyl-L-methionine (AdoMet) is converted to S-adenosyl-L-homocysteine. This reaction represents the terminal step in catecholamine biosynthesis and inhibitors of PNMT have been investigated, inter alia, as potential antihypertensive agents. At various times the kinetic mechanism of PNMT has been reported to operate by a random mechanism, an ordered mechanism in which norepinephrine binds first, and an ordered mechanism in which AdoMet binds first. Here we report the results of initial velocity studies on human PNMT in the absence and presence of product and dead end inhibitors. These, coupled with isothermal titration calorimetry and fluorescence binding experiments, clearly shown that hPNMT operates by an ordered sequential mechanism in which AdoMet binds first. Although the logV pH-profile was not well defined, plots of logV/K versus pH for AdoMet and phenylethanolamine, as well as the pKi versus pH for the inhibitor, SK&F 29661, were all bell-shaped indicating that a protonated and an unprotonated group are required for catalysis.
Collapse
Affiliation(s)
- Qian Wu
- Department of Medicinal Chemistry, University of Michigan, 428 Church St, Ann Arbor, Michigan 48105
| | - Michael J. McLeish
- Department of Medicinal Chemistry, University of Michigan, 428 Church St, Ann Arbor, Michigan 48105
- Department of Chemistry and Chemical Biology, Indiana University-Purdue University Indianapolis, 402 N. Blackford St. Indianapolis, IN 46202
| |
Collapse
|
3
|
Reddy AR, Sangwan PL, Chinthakindi PK, Farooq S, Siddaiah V, Koul S. N-Iodosuccinimide: A Highly Effective Regioselective Reagent for Iodoesterification of Alkenes. Helv Chim Acta 2013. [DOI: 10.1002/hlca.201200383] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
4
|
Amperometric sensing of norepinephrine at picomolar concentrations using screen printed, high surface area mesoporous carbon. Anal Chim Acta 2013; 788:32-8. [DOI: 10.1016/j.aca.2013.06.019] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Revised: 06/06/2013] [Accepted: 06/16/2013] [Indexed: 11/21/2022]
|
5
|
Hou QQ, Wang JH, Gao J, Liu YJ, Liu CB. QM/MM studies on the catalytic mechanism of phenylethanolamine N-methyltransferase. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2012; 1824:533-41. [PMID: 22326747 DOI: 10.1016/j.bbapap.2012.01.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2011] [Revised: 01/05/2012] [Accepted: 01/26/2012] [Indexed: 02/06/2023]
Abstract
Epinephrine is a naturally occurring adrenomedullary hormone that transduces environmental stressors into cardiovascular actions. As the only route in the catecholamine biosynthetic pathway, Phenylethanolamine N-methyltransferase (PNMT) catalyzes the synthesis of epinephrine. To elucidate the detailed mechanism of enzymatic catalysis of PNMT, combined quantum-mechanical/molecular-mechanical (QM/MM) calculations were performed. The calculation results reveal that this catalysis contains three elementary steps: the deprotonation of protonated norepinphrine, the methyl transferring step and deprotonation of the methylated norepinphrine. The methyl transferring step was proved to be the rate-determining step undergoing a SN2 mechanism with an energy barrier of 16.4kcal/mol. During the whole catalysis, two glutamic acids Glu185 and Glu219 were proved to be loaded with different effects according to the calculations results of the mutants. These calculation results can be used to explain the experimental observations and make a good complementarity for the previous QM study.
Collapse
Affiliation(s)
- Q Q Hou
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, China
| | | | | | | | | |
Collapse
|
6
|
Klink TA, Staeben M, Twesten K, Kopp AL, Kumar M, Dunn RS, Pinchard CA, Kleman-Leyer KM, Klumpp M, Lowery RG. Development and validation of a generic fluorescent methyltransferase activity assay based on the transcreener AMP/GMP assay. ACTA ACUST UNITED AC 2011; 17:59-70. [PMID: 21956169 DOI: 10.1177/1087057111421624] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Methylation is a ubiquitous covalent modification used to control the function of diverse biomolecules including hormones, neurotransmitters, xenobiotics, proteins, nucleic acids, and lipids. Histone methyltransferases (HMTs) are currently of high interest as drug targets because of their role in epigenetic regulation; however, most HMT assay methods are either not amenable to a high-throughput screening (HTS) environment or are applicable to a limited number of enzymes. The authors developed a generic methyltransferase assay method using fluorescent immunodetection of adenosine monophosphate (AMP), which is formed from the MT reaction product S-adenosylhomocysteine in a dual-enzyme coupling step. The detection range of the assay; its suitability for HTS, including stability of reagents following dispensing and after addition to reactions; and the potential for interference from drug-like molecules was investigated. In addition, the use of the assay for measuring inhibitor potencies with peptide or intact protein substrates was examined through pilot screening with selected reference enzymes including HMT G9a. By combining a novel enzymatic coupling step with the well-characterized Transcreener AMP/GMP assay, the authors have developed a robust HTS assay for HMTs that should be broadly applicable to other types of methyltransferases as well.
Collapse
|
7
|
Böttcher J, Jestel A, Kiefersauer R, Krapp S, Nagel S, Steinbacher S, Steuber H. Key factors for successful generation of protein-fragment structures requirement on protein, crystals, and technology. Methods Enzymol 2011; 493:61-89. [PMID: 21371587 DOI: 10.1016/b978-0-12-381274-2.00003-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2023]
Abstract
In the past two decades, fragment-based approaches have evolved as a predominant strategy in lead discovery. The availability of structural information on the interaction geometries of binding fragments is key to successful structure-guided fragment-to-lead evolution. In this chapter, we illustrate methodological advances for protein-fragment crystal structure generation in order to offer general lessons on the importance of fragment properties and the most appropriate crystallographic setup to evaluate them. We analyze elaborate protocols, methods, and clues applied to challenging complex formation projects. The results should assist medicinal chemists to select the most promising targets and strategies for fragment-based crystallography as well as provide a tutorial to structural biologists who attempt to determine protein-fragment structures.
Collapse
Affiliation(s)
- Jark Böttcher
- Proteros biostructures GmbH, Am Klopferspitz 19, Martinsried, Germany
| | | | | | | | | | | | | |
Collapse
|
8
|
Fragment-based screening by X-ray crystallography, MS and isothermal titration calorimetry to identify PNMT (phenylethanolamine N-methyltransferase) inhibitors. Biochem J 2010; 431:51-61. [PMID: 20642456 DOI: 10.1042/bj20100651] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
CNS (central nervous system) adrenaline (epinephrine) is implicated in a wide range of physiological and pathological conditions. PNMT (phenylethanolamine N-methyltransferase) catalyses the final step in the biosynthesis of adrenaline, the conversion of noradrenaline (norepinephrine) to adrenaline by methylation. To help elucidate the role of CNS adrenaline, and to develop potential drug leads, potent, selective and CNS-active inhibitors are required. The fragment screening approach has advantages over other lead discovery methods including high hit rates, more efficient hits and the ability to sample chemical diversity more easily. In the present study we applied fragment-based screening approaches to the enzyme PNMT. We used crystallography as the primary screen and identified 12 hits from a small commercial library of 384 drug-like fragments. The hits include nine chemicals with two fused rings and three single-ring chemical systems. Eight of the hits come from three chemical classes: benzimidazoles (a known class of PNMT inhibitor), purines and quinolines. Nine of the hits have measurable binding affinities (~5-700 μM) as determined by isothermal titration calorimetry and all nine have ligand efficiencies of 0.39 kcal/mol per heavy atom or better (1 kcal≈4.184 kJ). We synthesized five elaborated benzimidazole compounds and characterized their binding to PNMT, showing for the first time how this class of inhibitors interact with the noradrenaline-binding site. Finally, we performed a pilot study with PNMT for fragment-based screening by MS showing that this approach could be used as a fast and efficient first-pass screening method prior to characterization of binding mode and affinity of hits.
Collapse
|
9
|
Georgieva P, Wu Q, McLeish MJ, Himo F. The reaction mechanism of phenylethanolamine N-methyltransferase: a density functional theory study. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2009; 1794:1831-7. [PMID: 19733262 DOI: 10.1016/j.bbapap.2009.08.022] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2009] [Revised: 08/05/2009] [Accepted: 08/26/2009] [Indexed: 02/06/2023]
Abstract
Hybrid density functional theory methods were used to investigate the reaction mechanism of human phenylethanolamine N-methyltransferase (hPNMT). This enzyme catalyzes the S-adenosyl-L-methionine-dependent conversion of norepinephrine to epinephrine, which constitutes the terminal step in the catecholamine biosynthesis. Several models of the active site were constructed based on the X-ray structure. Geometries of the stationary points along the reaction path were optimized and the reaction barrier and energy were calculated and compared to the experimental values. The calculations demonstrate that the reaction takes place via an SN2 mechanism with methyl transfer being rate-limiting, a suggestion supported by mutagenesis studies. Optimal agreement with experimental data is reached using a model in which both active site glutamates are protonated. Overall, the mechanism of hPNMT is more similar to those of catechol O-methyltransferase and glycine N-methyltransferase than to that of guanidinoacetate N-methyltransferase in which methyl transfer is coupled to proton transfer.
Collapse
Affiliation(s)
- Polina Georgieva
- Department of Theoretical Chemistry, School of Biotechnology, Royal Institute of Technology, SE-106 91 Stockholm, Sweden
| | | | | | | |
Collapse
|
10
|
Molecular recognition of physiological substrate noradrenaline by the adrenaline-synthesizing enzyme PNMT and factors influencing its methyltransferase activity. Biochem J 2009; 422:463-71. [PMID: 19570037 DOI: 10.1042/bj20090702] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Substrate specificity is critically important for enzyme catalysis. In the adrenaline-synthesizing enzyme PNMT (phenylethanolamine N-methyltransferase), minor changes in substituents can convert substrates into inhibitors. Here we report the crystal structures of six human PNMT complexes, including the first structure of the enzyme in complex with its physiological ligand R-noradrenaline. Determining this structure required rapid soak methods because of the tendency for noradrenaline to oxidize. Comparison of the PNMT-noradrenaline complex with the previously determined PNMT-p-octopamine complex demonstrates that these two substrates form almost equivalent interactions with the enzyme and show that p-octopamine is a valid model substrate for PNMT. The crystal structures illustrate the adaptability of the PNMT substrate binding site in accepting multi-fused ring systems, such as substituted norbornene, as well as noradrenochrome, the oxidation product of noradrenaline. These results explain why only a subset of ligands recognized by PNMT are methylated by the enzyme; bulky substituents dictate the binding orientation of the ligand and can thereby place the acceptor amine too far from the donor methyl group for methylation to occur. We also show how the critical Glu(185) catalytic residue can be replaced by aspartic acid with a loss of only 10-fold in catalytic efficiency. This is because protein backbone movements place the Asp(185) carboxylate almost coincident with the carboxylate of Glu(185). Conversely, replacement of Glu(185) by glutamine reduces catalytic efficiency almost 300-fold, not only because of the loss of charge, but also because the variant residue does not adopt the same conformation as Glu(185).
Collapse
|
11
|
Grunewald GL, Seim MR, Bhat SR, Wilson ME, Criscione KR. Synthesis of 4,5,6,7-tetrahydrothieno[3,2-c]pyridines and comparison with their isosteric 1,2,3,4-tetrahydroisoquinolines as inhibitors of phenylethanolamine N-methyltransferase. Bioorg Med Chem 2008; 16:542-59. [PMID: 18024134 PMCID: PMC2269732 DOI: 10.1016/j.bmc.2007.08.066] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2007] [Revised: 08/23/2007] [Accepted: 08/28/2007] [Indexed: 11/30/2022]
Abstract
A series of substituted 4,5,6,7-tetrahydrothieno[3,2-c]pyridines (THTPs) was synthesized and evaluated for their human phenylethanolamine N-methyltransferase (hPNMT) inhibitory potency and affinity for the alpha(2)-adrenoceptor. The THTP nucleus was suggested as an isosteric replacement for the 1,2,3,4-tetrahydroisoquinoline (THIQ) ring system on the basis that 3-thienylmethylamine (18) was more potent as an inhibitor of hPNMT and more selective toward the alpha(2)-adrenoceptor than benzylamine (15). Although the isosterism was confirmed, with similar influence of functional groups and chirality in both systems on hPNMT inhibitory potency and selectivity, the THTP compounds proved, in general, to be less potent as inhibitors of hPNMT than their THIQ counterparts, with the drop in potency being primarily attributed to the electronic properties of the thiophene ring. A hypothesis for the reduced hPNMT inhibitory potency of these compounds has been formed on the basis of molecular modeling and docking studies using the X-ray crystal structures of hPNMT co-crystallized with THIQ-type inhibitors and S-adenosyl-L-homocysteine as a template.
Collapse
Affiliation(s)
- Gary L Grunewald
- Department of Medicinal Chemistry, The University of Kansas, Lawrence, KS 66045, USA.
| | | | | | | | | |
Collapse
|
12
|
Gee CL, Drinkwater N, Tyndall JDA, Grunewald GL, Wu Q, McLeish MJ, Martin JL. Enzyme adaptation to inhibitor binding: a cryptic binding site in phenylethanolamine N-methyltransferase. J Med Chem 2007; 50:4845-53. [PMID: 17845018 DOI: 10.1021/jm0703385] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Shape complementarity is a fundamental principle of inhibitor design. Here we show that an enzyme for which the crystal structure has been determined (phenylethanolamine N-methyltransferase, PNMT) conceals a cryptic binding site. This site is revealed upon binding of inhibitors that are double the size of the physiological substrate. These large inhibitors are not predicted to bind in that they protrude through the accessible surface calculated from a PNMT/7-aminosulfonyl-1,2,3,4-tetrahydroisoquinoline (SK&F 29661) crystal structure, yet they are potent inhibitors of PNMT. We determined structures of the enzyme complexed with large inhibitors and found that the volume of the active site increases by 140 A3 upon binding. Changes in active site size and shape are brought about by unfavorable side chain conformations and rigid body helix motions. The energetic cost is modest, estimated at 2-3 kcal/mol from mutational analyses. Our findings further underline the importance of protein flexibility in structure-based inhibitor design studies.
Collapse
Affiliation(s)
- Christine L Gee
- Institute for Molecular Bioscience and ARC Special Research Centre for Functional and Applied Genomics, University of Queensland, Brisbane, Qld, 4072 Australia
| | | | | | | | | | | | | |
Collapse
|
13
|
Grunewald GL, Seim MR, Regier RC, Criscione KR. Exploring the active site of phenylethanolamine N-methyltransferase with 1,2,3,4-tetrahydrobenz[h]isoquinoline inhibitors. Bioorg Med Chem 2006; 15:1298-310. [PMID: 17126018 PMCID: PMC1861820 DOI: 10.1016/j.bmc.2006.11.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2006] [Revised: 11/06/2006] [Accepted: 11/08/2006] [Indexed: 10/23/2022]
Abstract
1,2,3,4-Tetrahydrobenz[h]isoquinoline (THBQ, 11) is a potent, inhibitor of phenylethanolamine N-methyltransferase (PNMT). Docking studies indicated that the enhanced PNMT inhibitory potency of 11 (hPNMT K(i)=0.49microM) versus 1,2,3,4-tetrahydroisoquinoline (5, hPNMT K(i)=5.8microM) was likely due to hydrophobic interactions with Val53, Met258, Val272, and Val269 in the PNMT active site. These studies also suggested that the addition of substituents to the 7-position of 11 that are capable of forming hydrogen bonds to the enzyme could lead to compounds (14-18) having enhanced PNMT inhibitory potency. However, these compounds are in fact less potent at PNMT than 11. Furthermore, 7-bromo-THBQ (19, hPNMT K(i)=0.22mM), which has a lipophilic 7-substituent that cannot hydrogen bond to the enzyme, is twice as potent at PNMT than 11. This once again illustrates the limitations of docking studies for lead optimization.
Collapse
Affiliation(s)
- Gary L Grunewald
- Department of Medicinal Chemistry, University of Kansas, Lawrence, KS 66045, USA.
| | | | | | | |
Collapse
|
14
|
Grunewald GL, Seim MR, Lu J, Makboul M, Criscione KR. Application of the Goldilocks effect to the design of potent and selective inhibitors of phenylethanolamine N-methyltransferase: balancing pKa and steric effects in the optimization of 3-methyl-1,2,3,4-tetrahydroisoquinoline inhibitors by beta-fluorination. J Med Chem 2006; 49:2939-52. [PMID: 16686536 PMCID: PMC2770873 DOI: 10.1021/jm051262k] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
3-Methyl-1,2,3,4-tetrahydroisoquinolines (3-methyl-THIQs) are potent inhibitors of phenylethanolamine N-methyltransferase (PNMT), but are not selective due to significant affinity for the alpha(2)-adrenoceptor. Fluorination of the methyl group lowers the pK(a) of the THIQ amine from 9.53 (CH(3)) to 7.88 (CH(2)F), 6.42 (CHF(2)), and 4.88 (CF(3)). This decrease in pK(a) results in a reduction in affinity for the alpha(2)-adrenoceptor. However, increased fluorination also results in a reduction in PNMT inhibitory potency, apparently due to steric and electrostatic factors. Biochemical evaluation of a series of 3-fluoromethyl-THIQs and 3-trifluoromethyl-THIQs showed that the former were highly potent inhibitors of PNMT, but were often nonselective due to significant affinity for the alpha(2)-adrenoceptor, while the latter were devoid of alpha(2)-adrenoceptor affinity, but also lost potency at PNMT. 3-Difluoromethyl-7-substituted-THIQs have the proper balance of both steric and pK(a) properties and thus have enhanced selectivity versus the corresponding 3-fluoromethyl-7-substituted-THIQs and enhanced PNMT inhibitory potency versus the corresponding 3-trifluoromethyl-7-substituted-THIQs. Using the "Goldilocks Effect" analogy, the 3-fluoromethyl-THIQs are too potent (too hot) at the alpha(2)-adrenoceptor and the 3-trifluoromethyl-THIQs are not potent enough (too cold) at PNMT, but the 3-difluoromethyl-THIQs are just right. They are both potent inhibitors of PNMT and highly selective due to low affinity for the alpha(2)-adrenoceptor. This seems to be the first successful use of the beta-fluorination of aliphatic amines to impart selectivity to a pharmacological agent while maintaining potency at the site of interest.
Collapse
Affiliation(s)
- Gary L Grunewald
- Department of Medicinal Chemistry, University of Kansas, Lawrence, Kansas 66045, USA.
| | | | | | | | | |
Collapse
|
15
|
Gee CL, Tyndall JDA, Grunewald GL, Wu Q, McLeish MJ, Martin JL. Mode of binding of methyl acceptor substrates to the adrenaline-synthesizing enzyme phenylethanolamine N-methyltransferase: implications for catalysis. Biochemistry 2006; 44:16875-85. [PMID: 16363801 DOI: 10.1021/bi051636b] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Here we report three crystal structure complexes of human phenylethanolamine N-methyltransferase (PNMT), one bound with a substrate that incorporates a flexible ethanolamine side chain (p-octopamine), a second bound with a semirigid analogue substrate [cis-(1R,2S)-2-amino-1-tetralol, cis-(1R,2S)-AT], and a third with trans-(1S,2S)-2-amino-1-tetralol [trans-(1S,2S)-AT] that acts as an inhibitor of PNMT rather than a substrate. A water-mediated interaction between the critical beta-hydroxyl of the flexible ethanolamine group of p-octopamine and an acidic residue, Asp267, is likely to play a key role in positioning the side chain correctly for methylation to occur at the amine. A second interaction with Glu219 may play a lesser role. Catalysis likely occurs via deprotonation of the amine through the action of Glu185; mutation of this residue significantly reduced the kcat without affecting the Km. The mode of binding of cis-(1R,2S)-AT supports the notion that this substrate is a conformationally restrained analogue of flexible PNMT substrates, in that it forms interactions with the enzyme similar to those observed for p-octopamine. By contrast, trans-(1S,2S)-AT, an inhibitor rather than a substrate, binds in an orientation that is flipped by 180 degrees compared with cis-(1R,2S)-AT. A consequence of this flipped binding mode is that the interactions between the hydroxyl and Asp267 and Glu219 are lost. However, the amines of inhibitor trans-(1S,2S)-AT and substrate cis-(1R,2S)-AT are both within methyl transfer distance of the cofactor. These results suggest that PNMT catalyzes transfer of methyl to ligand amines only when "anchor" interactions, such as those identified for the beta-hydroxyls of p-octopamine and cis-AT, are present.
Collapse
Affiliation(s)
- Christine L Gee
- Institute for Molecular Bioscience and ARC Special Research Centre for Functional and Applied Genomics, University of Queensland, Brisbane, Queensland, 4072 Australia
| | | | | | | | | | | |
Collapse
|
16
|
Grunewald GL, Lu J, Criscione KR, Okoro CO. Inhibitors of phenylethanolamine N-methyltransferase devoid of α2-adrenoceptor affinity. Bioorg Med Chem Lett 2005; 15:5319-23. [PMID: 16169723 DOI: 10.1016/j.bmcl.2005.08.033] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2005] [Revised: 08/05/2005] [Accepted: 08/09/2005] [Indexed: 11/19/2022]
Abstract
A series of 3-trifluoromethyl-1,2,3,4-tetrahydroisoquinolines was synthesized and evaluated for their phenylethanolamine N-methyltransferase (PNMT) inhibitory potency and affinity for the alpha(2)-adrenoceptor. Although their PNMT inhibitory potency decreased compared with corresponding 3-methyl-, 3-hydroxymethyl- or 3-unsubstituted-THIQs, some of them showed good selectivity due to their extremely low alpha(2)-adrenoceptor affinity.
Collapse
Affiliation(s)
- Gary L Grunewald
- Department of Medicinal Chemistry, University of Kansas, 1251 Wescoe Hall Drive, Lawrence, KS 66045, USA.
| | | | | | | |
Collapse
|
17
|
Wu Q, Gee CL, Lin F, Tyndall JD, Martin JL, Grunewald GL, McLeish MJ. Structural, Mutagenic, and Kinetic Analysis of the Binding of Substrates and Inhibitors of Human Phenylethanolamine N-Methyltransferase. J Med Chem 2005; 48:7243-52. [PMID: 16279783 DOI: 10.1021/jm050568o] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The X-ray structure of human phenylethanolamine N-methyltransferase (hPNMT) complexed with its product, S-adenosyl-L-homocysteine (4), and the most potent inhibitor reported to date, SK&F 64139 (7), was used to identify the residues involved in inhibitor binding. Four of these residues, Val53, Lys57, Glu219 and Asp267, were replaced, in turn, with alanine. All variants had increased Km values for phenylethanolamine (10), but only D267A showed a noteworthy (20-fold) decrease in its kcat value. Both WT hPNMT and D267A had similar kcat values for a rigid analogue, anti-9-amino-6-(trifluoromethyl)benzonorbornene (12), suggesting that Asp267 plays an important role in positioning the substrate but does not participate directly in catalysis. The Ki values for the binding of inhibitors such as 7 to the E219A and D267A variants increased by 2-3 orders of magnitude. Further, the inhibitors were shown to bind up to 50-fold more tightly in the presence of S-adenosyl-L-methionine (3), suggesting that the binding of the latter brings about a conformational change in the enzyme.
Collapse
Affiliation(s)
- Qian Wu
- Department of Medicinal Chemistry, University of Michigan, 428 Church Street, Ann Arbor, Michigan 48109, USA
| | | | | | | | | | | | | |
Collapse
|
18
|
Grunewald GL, Romero FA, Seim MR, Criscione KR, Deupree JD, Spackman CC, Bylund DB. Exploring the active site of phenylethanolamine N-methyltransferase with 3-hydroxyethyl- and 3-hydroxypropyl-7-substituted-1,2,3,4-tetrahydroisoquinolines. Bioorg Med Chem Lett 2005; 15:1143-7. [PMID: 15686930 DOI: 10.1016/j.bmcl.2004.12.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2004] [Revised: 11/30/2004] [Accepted: 12/06/2004] [Indexed: 11/16/2022]
Abstract
3-Hydroxyethyl- and 3-hydroxypropyl-7-substituted-tetrahydroisoquinolines (9, 10, 16, and 17) were synthesized and evaluated for their phenylethanolamine N-methyltransferase (PNMT) inhibitory potency and affinity for the alpha(2)-adrenoceptor. Although alpha(2)-adrenoceptor affinity decreased for these compounds, selectivity was not gained over the parent 3-hydroxymethyl compounds (1, 2) due to a loss in PNMT inhibitory potency.
Collapse
Affiliation(s)
- Gary L Grunewald
- Department of Medicinal Chemistry, University of Kansas, 1251 Wescoe Hall Drive, Lawrence, KS 66045, USA.
| | | | | | | | | | | | | |
Collapse
|
19
|
Gee CL, Nourse A, Hsin AY, Wu Q, Tyndall JD, Grunewald GL, McLeish MJ, Martin JL. Disulfide-linked dimers of human adrenaline synthesizing enzyme PNMT are catalytically active. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2005; 1750:82-92. [PMID: 15893506 DOI: 10.1016/j.bbapap.2005.03.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2005] [Revised: 03/11/2005] [Accepted: 03/14/2005] [Indexed: 10/25/2022]
Abstract
The crystal structure of human phenylethanolamine N-methyltransferase (hPNMT) reveals a disulfide-linked dimer, despite the presence of reducing agent in the crystallisation conditions. By removing the reducing agent, hPNMT crystals grow more rapidly and at lower protein concentrations. However, it was unclear whether the disulfide bonds are only present in the crystal form or whether these affect enzyme activity. The solution oligomeric state of hPNMT was investigated using biochemical techniques and activity assays. We found that in the absence of reducing agent, hPNMT forms dimers in solution. Furthermore, the solution dimer of hPNMT incorporates disulfide bonds, since this form is sensitive to reducing agent. The C48A and C139A mutants of hPNMT, which are incapable of forming the disulfide bond observed in the crystal structure, have a decreased propensity to form dimer in solution. Those dimers that do form are also sensitive to reducing agent. Further, the C48A/C139A double mutant shows only monomeric behaviour. Both dimeric and monomeric hPNMT, as well as mutants have wildtype enzyme activity. These results show that a variety of disulfides, including those observed in the crystal structure, can form in solution. In addition, disulfide-linked dimers are as active as the monomeric enzyme indicating that the crystal structure of the protein is a valid target for inhibitor design.
Collapse
Affiliation(s)
- Christine L Gee
- Institute for Molecular Bioscience and ARC Special Research Centre for Functional and Applied Genomics, University of Queensland, Brisbane Qld, 4072 Australia
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Xhaard H, Nyrönen T, Rantanen VV, Ruuskanen JO, Laurila J, Salminen T, Scheinin M, Johnson MS. Model structures of α-2 adrenoceptors in complex with automatically docked antagonist ligands raise the possibility of interactions dissimilar from agonist ligands. J Struct Biol 2005; 150:126-43. [PMID: 15866736 DOI: 10.1016/j.jsb.2004.12.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2004] [Revised: 12/20/2004] [Indexed: 11/28/2022]
Abstract
Antagonist binding to alpha-2 adrenoceptors (alpha2-ARs) is not well understood. Structural models were constructed for the three human alpha2-AR subtypes based on the bovine rhodopsin X-ray structure. Twelve antagonist ligands (including covalently binding phenoxybenzamine) were automatically docked to the models. A hallmark of agonist binding is the electrostatic interaction between a positive charge on the agonist and the negatively charged side chain of D3.32. For antagonist binding, ion-pair formation would require deviations of the models from the rhodopsin structural template, e.g., a rotation of TM3 to relocate D3.32 more centrally within the binding cavity, and/or creation of new space near TM2/TM7 such that antagonists would be shifted away from TM5. Thus, except for the quinazolines, antagonist ligands automatically docked to the model structures did not form ion-pairs with D3.32. This binding mode represents a valid alternative, whereby the positive charge on the antagonists is stabilized by cation-pi interactions with aromatic residues (e.g., F6.51) and antagonists interact with D3.32 via carboxylate-aromatic interactions. This binding mode is in good agreement with maps derived from a molecular interaction library that predicts favorable atomic contacts; similar interaction environments are seen for unrelated proteins in complex with ligands sharing similarities with the alpha2-AR antagonists.
Collapse
Affiliation(s)
- Henri Xhaard
- Department of Biochemistry and Pharmacy, Abo Akademi University, Tykistökatu 6 A, FIN-20520 Turku, Finland
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Grunewald GL, Romero FA, Chieu AD, Fincham KJ, Bhat SR, Criscione KR. Exploring the active site of phenylethanolamine N-methyltransferase: 3-alkyl-7-substituted-1,2,3,4-tetrahydroisoquinoline inhibitors. Bioorg Med Chem 2005; 13:1261-73. [PMID: 15670935 DOI: 10.1016/j.bmc.2004.11.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2004] [Revised: 11/08/2004] [Accepted: 11/08/2004] [Indexed: 11/26/2022]
Abstract
A series of 3-alkyl-7-substituted-1,2,3,4-tetrahydroisoquinolines was synthesized and these compounds were evaluated for their PNMT inhibitory potency and affinity for the alpha2-adrenoceptor. 7-Nitro-, 7-bromo-, 7-aminosulfonyl-, or 7-N-2,2,2-trifluoroethylaminosulfonyl-THIQs that possess a 3-alkyl substituent that is longer than a methyl group showed decreased PNMT inhibitory potency, except for 3-propyl-7-aminosulfonyl-THIQ, which displayed excellent PNMT inhibitory potency. The rank order for selectivity (PNMT vs the alpha2-adrenoceptor) is 3-alkyl-7-aminosulfonyl-THIQs congruent with 3-alkyl-7-N-2,2,2-trifluoroethylaminosulfonyl-THIQs>3-alkyl-7-nitro-THIQs>3-alkyl-7-bromo-THIQs.
Collapse
Affiliation(s)
- Gary L Grunewald
- Department of Medicinal Chemistry, School of Pharmacy, Malott Hall, Room 4060, University of Kansas, 1251 Wescoe Hall Dr., Lawrence, KS 66045-7582, USA
| | | | | | | | | | | |
Collapse
|
22
|
Romero FA, Vodonick SM, Criscione KR, McLeish MJ, Grunewald GL. Inhibitors of Phenylethanolamine N-Methyltransferase That Are Predicted To Penetrate the Blood−Brain Barrier: Design, Synthesis, and Evaluation of 3-Fluoromethyl-7-(N-substituted aminosulfonyl)-1,2,3,4-tetrahydroisoquinolines That Possess Low Affinity toward the α2-Adrenoceptor. J Med Chem 2004; 47:4483-93. [PMID: 15317460 DOI: 10.1021/jm0400653] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
(+/-)-7-Aminosulfonyl-3-fluoromethyl-1,2,3,4-tetrahydroisoquinoline (7) is one of the most potent and selective inhibitors of phenylethanolamine N-methyltransferase (PNMT) reported to date, but a blood-brain barrier (BBB) model indicates that it cannot penetrate the BBB. To increase the lipophilicity of 7 by addition of a nonpolar substituent to the sulfonamide nitrogen, a small library of (+/-)-3-fluoromethyl-7-(N-substituted aminosulfonyl)-1,2,3,4-tetrahydroisoquinolines was synthesized and evaluated as inhibitors of PNMT and for affinity at the alpha2-adrenoceptor. In addition, this library probed the PNMT active site surrounding the sulfonamide nitrogen of 7. Bulky substituents on the sulfonamide nitrogen are disfavored at the PNMT active site more so than at the alpha2-adrenoceptor (thus reducing selectivity). On the other hand, alkyl chains on the sulfonamide nitrogen that contain an electron dense atom, such as a fluorine, are favored in the PNMT active site and possess little alpha2-adrenoceptor affinity, thereby conferring good selectivity (>500). Several members of the library (8, 14, 17, and 18) have excellent PNMT inhibitory potency and selectivity and are predicted, on the basis of their ClogP value (>0.5), to penetrate the BBB to a significant extent. Compounds 17 and 18 are the most potent and selective PNMT inhibitors reported to date.
Collapse
Affiliation(s)
- F Anthony Romero
- Department of Medicinal Chemistry, University of Kansas, Lawrence, Kansas 66045, USA
| | | | | | | | | |
Collapse
|
23
|
Wu Q, Criscione KR, Grunewald GL, McLeish MJ. Phenylethanolamine N-methyltransferase inhibition: re-evaluation of kinetic data. Bioorg Med Chem Lett 2004; 14:4217-20. [PMID: 15261273 DOI: 10.1016/j.bmcl.2004.06.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2004] [Revised: 06/03/2004] [Accepted: 06/07/2004] [Indexed: 10/26/2022]
Abstract
Inhibitors of phenylethanolamine N-methyltransferase [PNMT, the enzyme that catalyzes the final step in the biosynthesis of epinephrine (Epi)] may be of use in determining the role of Epi in the central nervous system. Here we demonstrate that a routinely used assay for screening PNMT inhibitors is not appropriate for those inhibitors having K(i) values less than 1 microM. A revised assay has been developed that shows some inhibitors bind two orders of magnitude more tightly than previously reported.
Collapse
Affiliation(s)
- Qian Wu
- College of Pharmacy, University of Michigan, 428 Church Street, Ann Arbor, MI 48109, USA
| | | | | | | |
Collapse
|