1
|
Qin Y, Xu Y, Yi H, Shi L, Wang X, Wang W, Li F. Unique structural characteristics and biological activities of heparan sulfate isolated from the mantle of the scallop Chlamys farreri. Carbohydr Polym 2024; 324:121431. [PMID: 37985034 DOI: 10.1016/j.carbpol.2023.121431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 09/23/2023] [Indexed: 11/22/2023]
Abstract
Marine animals are a huge resource of various glycosaminoglycans (GAGs) with specific structures and functions. A large number of byproducts, such as low-edible mantle, are produced during the processing of Chlamys farreri, which is one of the most cultured scallops in China. In this study, a major GAG component was isolated from the mantle of C. farreri, and its structural characteristics and biological activities were determined in detail. Preliminary analysis by agarose electrophoresis combined with specific enzymatic degradation evaluations showed that this component was heparan sulfate and was named CMHS. Further analysis by HPLC and NMR revealed that CMHS has an average molecular weight of 35.9 kDa and contains a high proportion (80%) of 6-O-sulfated N-acetyl-D-glucosamine/N-sulfated-D-glucosamine (6-O-sulfated GlcNAc/GlcNS) residues and rare 3-O-sulfated β-D-glucuronic acid residues. Bioactivity analysis showed that CMHS has much lower anticoagulant activity than heparin and it can interact with various growth factors with high affinity. Moreover, CMHS binds strongly to the morphogen Wnt 3a to inhibit glypican-3-stimulated Wnt 3a signaling. Thus, the identification of CMHS with unique structural and bioactive features will provide a promising candidate for the development of GAG-type pharmaceutical products and promote the high-value utilization of C. farreri mantle.
Collapse
Affiliation(s)
- Yong Qin
- National Glycoengineering Research Center, Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology and State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Rd, Qingdao 266237, People's Republic of China
| | - Yingying Xu
- National Glycoengineering Research Center, Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology and State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Rd, Qingdao 266237, People's Republic of China
| | - Haixin Yi
- National Glycoengineering Research Center, Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology and State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Rd, Qingdao 266237, People's Republic of China
| | - Liran Shi
- CSPC Megalith Biopharmaceutical Co., Ltd., Shijiazhuang 050000, People's Republic of China
| | - Xu Wang
- National Glycoengineering Research Center, Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology and State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Rd, Qingdao 266237, People's Republic of China
| | - Wenshuang Wang
- National Glycoengineering Research Center, Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology and State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Rd, Qingdao 266237, People's Republic of China.
| | - Fuchuan Li
- National Glycoengineering Research Center, Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology and State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Rd, Qingdao 266237, People's Republic of China.
| |
Collapse
|
2
|
Sunil AA, Skaria T. Novel regulators of airway epithelial barrier function during inflammation: potential targets for drug repurposing. Expert Opin Ther Targets 2022; 26:119-132. [PMID: 35085478 DOI: 10.1080/14728222.2022.2035720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Endogenous inflammatory signaling molecules resulting from deregulated immune responses, can impair airway epithelial barrier function and predispose individuals with airway inflammatory diseases to exacerbations and lung infections. Targeting the specific endogenous factors disrupting the airway barrier therefore has the potential to prevent disease exacerbations without affecting the protective immune responses. AREAS COVERED Here, we review the endogenous factors and specific mechanisms disrupting airway epithelial barrier during inflammation and reflect on whether these factors can be specifically targeted by repurposed existing drugs. Literature search was conducted using PubMed, drug database of US FDA and European Medicines Agency until and including September 2021. EXPERT OPINION IL-4 and IL-13 signaling are the major pathways disrupting the airway epithelial barrier during airway inflammation. However, blocking IL-4/IL-13 signaling may adversely affect protective immune responses and increase susceptibility of host to infections. An alternate approach to modulate airway epithelial barrier function involves targeting specific downstream component of IL-4/IL-13 signaling or different inflammatory mediators responsible for regulation of airway epithelial barrier. Airway epithelium-targeted therapy using inhibitors of HDAC, HSP90, MIF, mTOR, IL-17A and VEGF may be a potential strategy to prevent airway epithelial barrier dysfunction in airway inflammatory diseases.
Collapse
Affiliation(s)
- Ahsan Anjoom Sunil
- School of Biotechnology, National Institute of Technology Calicut, Calicut, Kerala, India
| | - Tom Skaria
- School of Biotechnology, National Institute of Technology Calicut, Calicut, Kerala, India
| |
Collapse
|
3
|
Chhabra M, Doherty GG, See NW, Gandhi NS, Ferro V. From Cancer to COVID-19: A Perspective on Targeting Heparan Sulfate-Protein Interactions. CHEM REC 2021; 21:3087-3101. [PMID: 34145723 PMCID: PMC8441866 DOI: 10.1002/tcr.202100125] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 06/01/2021] [Indexed: 12/16/2022]
Abstract
Heparan sulfate (HS) is a complex, polyanionic polysaccharide ubiquitously expressed on cell surfaces and in the extracellular matrix. HS interacts with numerous proteins to mediate a vast array of biological and pathological processes. Inhibition of HS-protein interactions is thus an attractive approach for new therapeutic development for cancer and infectious diseases, including COVID-19; however, synthesis of well-defined native HS oligosaccharides remains challenging. This has aroused significant interest in the development of HS mimetics which are more synthetically tractable and have fewer side effects, such as undesired anticoagulant activity. This account provides a perspective on the design and synthesis of different classes of HS mimetics with useful properties, and the development of various assays and molecular modelling tools to progress our understanding of their interactions with HS-binding proteins.
Collapse
Affiliation(s)
- Mohit Chhabra
- School of Chemistry and Molecular BiosciencesThe University of Queensland4072BrisbaneQLDAustralia
| | - Gareth G. Doherty
- School of Chemistry and Molecular BiosciencesThe University of Queensland4072BrisbaneQLDAustralia
| | - Nicholas W. See
- School of Chemistry and Molecular BiosciencesThe University of Queensland4072BrisbaneQLDAustralia
| | - Neha S. Gandhi
- School of Chemistry and PhysicsQueensland University of Technology4000BrisbaneQLDAustralia
| | - Vito Ferro
- School of Chemistry and Molecular BiosciencesThe University of Queensland4072BrisbaneQLDAustralia
| |
Collapse
|
4
|
Kaur R, Deb PK, Diwan V, Saini B. Heparanase Inhibitors in Cancer Progression: Recent Advances. Curr Pharm Des 2021; 27:43-68. [PMID: 33185156 DOI: 10.2174/1381612826666201113105250] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Accepted: 08/25/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND An endo-β-glucuronidase enzyme, Heparanase (HPSE), degrades the side chains of polymeric heparan sulfate (HS), a glycosaminoglycan formed by alternate repetitive units of D-glucosamine and D-glucuronic acid/L-iduronic acid. HS is a major component of the extracellular matrix and basement membranes and has been implicated in processes of the tissue's integrity and functional state. The degradation of HS by HPSE enzyme leads to conditions like inflammation, angiogenesis, and metastasis. An elevated HPSE expression with a poor prognosis and its multiple roles in tumor growth and metastasis has attracted significant interest for its inhibition as a potential anti-neoplastic target. METHODS We reviewed the literature from journal publication websites and electronic databases such as Bentham, Science Direct, PubMed, Scopus, USFDA, etc., about HPSE, its structure, functions, and role in cancer. RESULTS The present review is focused on Heparanase inhibitors (HPIns) that have been isolated from natural resources or chemically synthesized as new therapeutics for metastatic tumors and chronic inflammatory diseases in recent years. The recent developments made in the HPSE structure and function are also discussed, which can lead to the future design of HPIns with more potency and specificity for the target. CONCLUSION HPIns can be a better target to be explored against various cancers.
Collapse
Affiliation(s)
- Rajwinder Kaur
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Pran Kishore Deb
- Faculty of Pharmacy, Philadelphia University, Philadelphia, Jordan
| | - Vishal Diwan
- Faculty of Medicine, The University of Queensland, Queensland, Australia
| | - Balraj Saini
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| |
Collapse
|
5
|
Chhabra M, Ferro V. PI-88 and Related Heparan Sulfate Mimetics. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1221:473-491. [PMID: 32274723 DOI: 10.1007/978-3-030-34521-1_19] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The heparan sulfate mimetic PI-88 (muparfostat) is a complex mixture of sulfated oligosaccharides that was identified in the late 1990s as a potent inhibitor of heparanase. In preclinical animal models it was shown to block angiogenesis, metastasis and tumor growth, and subsequently became the first heparanase inhibitor to enter clinical trials for cancer. It progressed to Phase III trials but ultimately was not approved for use. Herein we summarize the preparation, physicochemical and biological properties of PI-88, and discuss preclinical/clinical and structure-activity relationship studies. In addition, we discuss the PI-88-inspired development of related HS mimetic heparanase inhibitors with improved properties, ultimately leading to the discovery of PG545 (pixatimod) which is currently in clinical trials.
Collapse
Affiliation(s)
- Mohit Chhabra
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia.,Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Australia
| | - Vito Ferro
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia. .,Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Australia.
| |
Collapse
|
6
|
Jin W, He X, Long L, Fang Q, Wei B, Sun J, Zhang W, Wang H, Zhang F, Linhardt RJ. Structural characterization and anti-lung cancer activity of a sulfated glucurono-xylo-rhamnan from Enteromorpha prolifera. Carbohydr Polym 2020; 237:116143. [PMID: 32241440 DOI: 10.1016/j.carbpol.2020.116143] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 01/27/2020] [Accepted: 03/07/2020] [Indexed: 12/21/2022]
Abstract
A sulfated glucurono-xylo-rhamnan (EP-3-H) was purified from a green alga, Enteromorpha prolifera. EP-3-H and its oligomers were characterized by high performance liquid chromatography, mass spectrometry and one and two-dimensional nuclear magnetic resource spectroscopy. The structural analysis showed EP-3-H has a backbone of glucurono-xylo-rhamnan, branches with glucuronic acid and sulfated at C3 of rhamnose and/or C2 of xylose. The inhibition of EP-3-H on human lung cancer A549 cell proliferation in vitro and its therapeutic effects in BALB/c-nu mice in vivo were determined to evaluate the anti-lung cancer activity of EP-3-H. The tumor inhibition level was 59 %, suggesting that EP-3-H might be a good candidate for the treatment of lung cancer. Surface plasmon resonance (SPR) studies revealed the IC50 on the binding of fibroblast growth factors, (FGF1 and FGF2), to heparin were 0.85 and 1.47 mg/mL, respectively. These results suggest that EP-3-H inhibits cancer proliferation by interacting with these growth factors.
Collapse
Affiliation(s)
- Weihua Jin
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China; Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA.
| | - Xinyue He
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Liufei Long
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Qiufu Fang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Bin Wei
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals & College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Jiadong Sun
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI, 02881, USA; Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health, Bethesda, MD, 20878, USA
| | - Wenjing Zhang
- Department of Endocrinology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
| | - Hong Wang
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals & College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Fuming Zhang
- Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| | - Robert J Linhardt
- Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA; Department of Biological Science, Departments of Chemistry and Chemical Biology and Biomedical Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| |
Collapse
|
7
|
Fu K, Bai Z, Chen L, Ye W, Wang M, Hu J, Liu C, Zhou W. Antitumor activity and structure-activity relationship of heparanase inhibitors: Recent advances. Eur J Med Chem 2020; 193:112221. [PMID: 32222663 DOI: 10.1016/j.ejmech.2020.112221] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 03/08/2020] [Accepted: 03/08/2020] [Indexed: 12/26/2022]
Abstract
Heparanase (HPSE)-directed tumor progression plays a crucial role in mediating tumor-host crosstalk and priming the tumor microenvironment, leading to tumor growth, metastasis and chemo-resistance. HPSE-mediated breakdown of structural heparan sulfate (HS) networks in the extracellular matrix (ECM) and basement membranes (BM) directly facilitates tumor growth and metastasis. Lysosome HPSE also induces multi-drug resistance via enhanced autophagy. Therefore, HPSE inhibitors development has become an attractive topic to block tumor growth and metastasis or eliminate drug resistance. In this review, we summarize HPSE inhibitors applied experimentally and clinically according to interaction with the binding sites of HPSE and participation of growth factors. The antitumor activity and structure-activity relationship (SAR) are also emphasized.
Collapse
Affiliation(s)
- Kaishuo Fu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, E. 232, University Town, Waihuan Rd, Panyu, Guangzhou, 510006, China
| | - Zhifeng Bai
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, E. 232, University Town, Waihuan Rd, Panyu, Guangzhou, 510006, China
| | - Lanlan Chen
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, E. 232, University Town, Waihuan Rd, Panyu, Guangzhou, 510006, China
| | - Wenchong Ye
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, E. 232, University Town, Waihuan Rd, Panyu, Guangzhou, 510006, China
| | - Meizhu Wang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, E. 232, University Town, Waihuan Rd, Panyu, Guangzhou, 510006, China
| | - Jiliang Hu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, E. 232, University Town, Waihuan Rd, Panyu, Guangzhou, 510006, China
| | - Chunhui Liu
- Key Laboratory of Chemical Biology (Ministry of Education), Institute of Biochemical and Biotechnological Drugs, School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, Shandong, PR China.
| | - Wen Zhou
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, E. 232, University Town, Waihuan Rd, Panyu, Guangzhou, 510006, China.
| |
Collapse
|
8
|
Dual Action of Sulfated Hyaluronan on Angiogenic Processes in Relation to Vascular Endothelial Growth Factor-A. Sci Rep 2019; 9:18143. [PMID: 31792253 PMCID: PMC6889296 DOI: 10.1038/s41598-019-54211-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 11/05/2019] [Indexed: 01/13/2023] Open
Abstract
Pathological healing characterized by abnormal angiogenesis presents a serious burden to patients’ quality of life requiring innovative treatment strategies. Glycosaminoglycans (GAG) are important regulators of angiogenic processes. This experimental and computational study revealed how sulfated GAG derivatives (sGAG) influence the interplay of vascular endothelial growth factor (VEGF)165 and its heparin-binding domain (HBD) with the signaling receptor VEGFR-2 up to atomic detail. There was profound evidence for a HBD-GAG-HBD stacking configuration. Here, the sGAG act as a “molecular glue” leading to recognition modes in which sGAG interact with two VEGF165-HBDs. A 3D angiogenesis model demonstrated the dual regulatory role of high-sulfated derivatives on the biological activity of endothelial cells. While GAG alone promote sprouting, they downregulate VEGF165-mediated signaling and, thereby, elicit VEGF165-independent and -dependent effects. These findings provide novel insights into the modulatory potential of sGAG derivatives on angiogenic processes and point towards their prospective application in treating abnormal angiogenesis.
Collapse
|
9
|
Mohan CD, Hari S, Preetham HD, Rangappa S, Barash U, Ilan N, Nayak SC, Gupta VK, Basappa, Vlodavsky I, Rangappa KS. Targeting Heparanase in Cancer: Inhibition by Synthetic, Chemically Modified, and Natural Compounds. iScience 2019; 15:360-390. [PMID: 31103854 PMCID: PMC6548846 DOI: 10.1016/j.isci.2019.04.034] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 04/11/2019] [Accepted: 04/26/2019] [Indexed: 01/23/2023] Open
Abstract
Heparanase is an endoglycosidase involved in remodeling the extracellular matrix and thereby in regulating multiple cellular processes and biological activities. It cleaves heparan sulfate (HS) side chains of HS proteoglycans into smaller fragments and hence regulates tissue morphogenesis, differentiation, and homeostasis. Heparanase is overexpressed in various carcinomas, sarcomas, and hematological malignancies, and its upregulation correlates with increased tumor size, tumor angiogenesis, enhanced metastasis, and poor prognosis. In contrast, knockdown or inhibition of heparanase markedly attenuates tumor progression, further underscoring the potential of anti-heparanase therapy. Heparanase inhibitors were employed to interfere with tumor progression in preclinical studies, and selected heparin mimetics are being examined in clinical trials. However, despite tremendous efforts, the discovery of heparanase inhibitors with high clinical benefit and minimal adverse effects remains a therapeutic challenge. This review discusses the key roles of heparanase in cancer progression focusing on the status of natural, chemically modified, and synthetic heparanase inhibitors in various types of malignancies.
Collapse
Affiliation(s)
| | - Swetha Hari
- Department of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore 570006, India
| | - Habbanakuppe D Preetham
- Department of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore 570006, India
| | - Shobith Rangappa
- Adichunchanagiri Institute for Molecular Medicine, AIMS Campus, B. G. Nagar, Nagamangala Taluk, Mandya District 571448, India
| | - Uri Barash
- Technion Integrated Cancer Center (TICC), The Bruce Rappaport Faculty of Medicine, Technion, Haifa 31096, Israel
| | - Neta Ilan
- Technion Integrated Cancer Center (TICC), The Bruce Rappaport Faculty of Medicine, Technion, Haifa 31096, Israel
| | - S Chandra Nayak
- Department of Studies in Biotechnology, University of Mysore, Manasagangotri, Mysore 570006, India
| | - Vijai K Gupta
- Department of Chemistry and Biotechnology, ERA Chair of Green Chemistry, School of Science, Tallinn University of Technology, Tallinn, Estonia
| | - Basappa
- Department of Studies in Organic Chemistry, University of Mysore, Manasagangotri, Mysore 570006, India
| | - Israel Vlodavsky
- Technion Integrated Cancer Center (TICC), The Bruce Rappaport Faculty of Medicine, Technion, Haifa 31096, Israel.
| | | |
Collapse
|
10
|
Ma H, Qiu P, Xu H, Xu X, Xin M, Chu Y, Guan H, Li C, Yang J. The Inhibitory Effect of Propylene Glycol Alginate Sodium Sulfate on Fibroblast Growth Factor 2-Mediated Angiogenesis and Invasion in Murine Melanoma B16-F10 Cells In Vitro. Mar Drugs 2019; 17:E257. [PMID: 31035725 PMCID: PMC6562581 DOI: 10.3390/md17050257] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 04/06/2019] [Accepted: 04/23/2019] [Indexed: 01/16/2023] Open
Abstract
Melanoma is one of the most malignant and aggressive types of cancer worldwide. Fibroblast growth factor 2 (FGF2) is one of the critical regulators of melanoma angiogenesis and metastasis; thus, it might be an effective anti-cancer strategy to explore FGF2-targeting drug candidates from existing drugs. In this study, we evaluate the effect of the marine drug propylene glycol alginate sodium sulfate (PSS) on FGF2-mediated angiogenesis and invasion. The data shows that FGF2 selectively bound to PSS with high affinity. PSS inhibited FGF2-mediated angiogenesis in a rat aortic ring model and suppressed FGF2-mediated invasion, but not the migration of murine melanoma B16-F10 cells. The further mechanism study indicates that PSS decreased the expression of activated matrix metalloproteinase 2 (MMP-2) and matrix metalloproteinase 9 (MMP-9), and also suppressed their activity. In addition, PSS was found to decrease the level of Vimentin in B16-F10 cells, which is known to participate in the epithelial-mesenchymal transition. Notably, PSS did not elicit any changes in cancer cell viability. Based on the results above, we conclude that PSS might be a potential drug to regulate the tumor microenvironment in order to facilitate the recovery of melanoma patients.
Collapse
Affiliation(s)
- He Ma
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Provincial, Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China.
| | - Peiju Qiu
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Provincial, Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China.
- Innovation Center for Marine Drug Screening & Evaluation, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China.
- Laboratory for Marine Drugs and Bioproducts of Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China.
- Marine Biomedical Research Institute of Qingdao, Qingdao 266071, China.
| | - Huixin Xu
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Provincial, Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China.
| | - Ximing Xu
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Provincial, Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China.
- Innovation Center for Marine Drug Screening & Evaluation, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China.
- Laboratory for Marine Drugs and Bioproducts of Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China.
- Marine Biomedical Research Institute of Qingdao, Qingdao 266071, China.
| | - Meng Xin
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Provincial, Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China.
- Innovation Center for Marine Drug Screening & Evaluation, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China.
- Laboratory for Marine Drugs and Bioproducts of Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China.
- Marine Biomedical Research Institute of Qingdao, Qingdao 266071, China.
| | - Yanyan Chu
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Provincial, Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China.
- Innovation Center for Marine Drug Screening & Evaluation, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China.
- Laboratory for Marine Drugs and Bioproducts of Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China.
- Marine Biomedical Research Institute of Qingdao, Qingdao 266071, China.
| | - Huashi Guan
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Provincial, Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China.
- Innovation Center for Marine Drug Screening & Evaluation, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China.
- Laboratory for Marine Drugs and Bioproducts of Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China.
- Marine Biomedical Research Institute of Qingdao, Qingdao 266071, China.
| | - Chunxia Li
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Provincial, Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China.
- Laboratory for Marine Drugs and Bioproducts of Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China.
| | - Jinbo Yang
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Provincial, Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China.
- Innovation Center for Marine Drug Screening & Evaluation, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China.
- Laboratory for Marine Drugs and Bioproducts of Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China.
- Marine Biomedical Research Institute of Qingdao, Qingdao 266071, China.
| |
Collapse
|
11
|
Lanzi C, Cassinelli G. Heparan Sulfate Mimetics in Cancer Therapy: The Challenge to Define Structural Determinants and the Relevance of Targets for Optimal Activity. Molecules 2018; 23:E2915. [PMID: 30413079 PMCID: PMC6278363 DOI: 10.3390/molecules23112915] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 11/06/2018] [Accepted: 11/06/2018] [Indexed: 12/21/2022] Open
Abstract
Beyond anticoagulation, the therapeutic potential of heparin derivatives and heparan sulfate (HS) mimetics (functionally defined HS mimetics) in oncology is related to their ability to bind and modulate the function of a vast array of HS-binding proteins with pivotal roles in cancer growth and progression. The definition of structural/functional determinants and the introduction of chemical modifications enabled heparin derivatives to be identified with greatly reduced or absent anticoagulant activity, but conserved/enhanced anticancer activity. These studies paved the way for the disclosure of structural requirements for the inhibitory effects of HS mimetics on heparanase, selectins, and growth factor receptor signaling, as well as for the limitation of side effects. Actually, HS mimetics affect the tumor biological behavior via a multi-target mechanism of action based on their effects on tumor cells and various components of the tumor microenvironment. Emerging evidence indicates that immunomodulation can participate in the antitumor activity of these agents. Significant ability to enhance the antitumor effects of combination treatments with standard therapies was shown in several tumor models. While the first HS mimetics are undergoing early clinical evaluation, an improved understanding of the molecular contexts favoring the antitumor action in certain malignancies or subgroups is needed to fully exploit their potential.
Collapse
Affiliation(s)
- Cinzia Lanzi
- Molecular Pharmacology Unit, Department of Applied Research and Technological Development, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy.
| | - Giuliana Cassinelli
- Molecular Pharmacology Unit, Department of Applied Research and Technological Development, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy.
| |
Collapse
|
12
|
Elli S, Stancanelli E, Handley PN, Carroll A, Urso E, Guerrini M, Ferro V. Structural and conformational studies of the heparan sulfate mimetic PI-88. Glycobiology 2018; 28:731-740. [DOI: 10.1093/glycob/cwy068] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 07/24/2018] [Indexed: 02/07/2023] Open
Affiliation(s)
- Stefano Elli
- Istituto Scientifico di Chimica e Biochimica “G. Ronzoni”, Milan, Italy
| | | | - Paul N Handley
- Progen Pharmaceuticals Ltd, Darra, Queensland, Australia
| | - Anthony Carroll
- Griffith Research Institute for Drug Discovery, Griffith University, Nathan, Qld, Australia
| | - Elena Urso
- Istituto Scientifico di Chimica e Biochimica “G. Ronzoni”, Milan, Italy
| | - Marco Guerrini
- Istituto Scientifico di Chimica e Biochimica “G. Ronzoni”, Milan, Italy
| | - Vito Ferro
- Istituto Scientifico di Chimica e Biochimica “G. Ronzoni”, Milan, Italy
| |
Collapse
|
13
|
Sanden C, Mori M, Jogdand P, Jönsson J, Krishnan R, Wang X, Erjefält JS. Broad Th2 neutralization and anti-inflammatory action of pentosan polysulfate sodium in experimental allergic rhinitis. IMMUNITY INFLAMMATION AND DISEASE 2017; 5:300-309. [PMID: 28497614 PMCID: PMC5569365 DOI: 10.1002/iid3.164] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 04/04/2017] [Accepted: 04/07/2017] [Indexed: 01/21/2023]
Abstract
Background Th2 cytokines like interleukin‐4, ‐5, and ‐13 are regarded as important drivers of the immunopathology underlying allergic rhinitis (AR) and asthma. The present study explores the capacity of pentosan polysulfate sodium (PPS), a semi‐synthetic heparin‐like macromolecular carbohydrate, to bind Th2 cytokines and exert biological neutralization in vitro, as well as anti‐inflammatory actions in vivo. Methodology The capacity of PPS to bind recombinant Th2 cytokines was tested with surface plasmon resonance (SPR) technology and biological Th2 neutralization was assessed by Th2‐dependent proliferation assays. The in vivo anti‐inflammatory action of PPS was studied using a validated Guinea‐pig model of AR. Results Binding studies revealed a strong and specific binding of PPS to IL‐4, IL‐5, and IL‐13 with IC values suggesting as stronger cytokine binding than for heparin. Cytokine binding translated to a biological neutralization as PPS dose dependently inhibited Th2‐dependent cell proliferation. Topical administration of PPS 30 min prior to nasal allergen challenge of sensitized animals significantly reduced late phase plasma extravasation, luminal influx of eosinophils, neutrophils, and total lavage leukocytes. Similar, albeit not statistically secured, effects were found for tissue leukocytes and mucus hyper‐secretion. The anti‐inflammatory effects of PPS compared favorably with established topical nasal steroid treatment. Conclusion This study points out PPS as a potent Th2 cytokine‐binding molecule with biological neutralization capacity and broad anti‐inflammatory effects in vivo. As such PPS fulfills the role as a potential candidate molecule for the treatment of AR and further studies of clinical efficacy seems highly warranted.
Collapse
Affiliation(s)
- Caroline Sanden
- Unit of Airway Inflammation, Department of Experimental Medical Science, Lund University, Lund, Sweden.,Medetect AB, Lund, Sweden
| | - Michiko Mori
- Unit of Airway Inflammation, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Prajakta Jogdand
- Unit of Airway Inflammation, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Jimmie Jönsson
- Unit of Airway Inflammation, Department of Experimental Medical Science, Lund University, Lund, Sweden.,Medetect AB, Lund, Sweden
| | - Ravi Krishnan
- Paradigm Biopharmaceuticals Ltd., Melbourne, Victoria, Australia
| | - Xiangdong Wang
- Zhongshan Hospital Institute of Clinical Science, Shanghai Institute of Clinical Bioinformatics, Shanghai, China
| | - Jonas S Erjefält
- Unit of Airway Inflammation, Department of Experimental Medical Science, Lund University, Lund, Sweden
| |
Collapse
|
14
|
Rother S, Samsonov SA, Moeller S, Schnabelrauch M, Rademann J, Blaszkiewicz J, Köhling S, Waltenberger J, Pisabarro MT, Scharnweber D, Hintze V. Sulfated Hyaluronan Alters Endothelial Cell Activation in Vitro by Controlling the Biological Activity of the Angiogenic Factors Vascular Endothelial Growth Factor-A and Tissue Inhibitor of Metalloproteinase-3. ACS APPLIED MATERIALS & INTERFACES 2017; 9:9539-9550. [PMID: 28248081 DOI: 10.1021/acsami.7b01300] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Several pathologic conditions such as rheumatoid arthritis, ocular neovascularization, cancer, or atherosclerosis are often associated with abnormal angiogenesis, which requires innovative biomaterial-based treatment options to control the activity of angiogenic factors. Here, we studied how sulfated hyaluronan (sHA) and oversulfated chondroitin sulfate derivatives as potential components of functional biomaterials modulate vascular endothelial growth factor-A (VEGF-A) signaling and endothelial cell activity in vitro. Tissue inhibitor of metalloproteinase-3 (TIMP-3), an effective angiogenesis inhibitor, exerts its activity by competing with VEGF-A for binding to VEGF receptor-2 (VEGFR-2). However, even though TIMP-3 and VEGF-A are known to interact with glycosaminoglycans (GAGs), the potential role and mechanism by which GAGs alter the VEGF-A/TIMP-3 regulated VEGFR-2 signaling remains unclear. Combining surface plasmon resonance, immunobiochemical analysis, and molecular modeling, we demonstrate the simultaneous binding of VEGF-A and TIMP-3 to sHA-coated surfaces and identified a novel mechanism by which sulfated GAG derivatives control angiogenesis: GAG derivatives block the binding of VEGF-A and TIMP-3 to VEGFR-2 thereby reducing their biological activity in a defined, sulfation-dependent manner. This effect was stronger for sulfated GAG derivatives than for native GAGs. The simultaneous formation of TIMP-3/sHA complexes partially rescues the sHA inhibited VEGF-A/VEGFR-2 signaling and endothelial cell activation. These results provide novel insights into the regulation of angiogenic factors by GAG derivatives and highlight the potential of sHA derivatives for the treatment of diseases associated with increased VEGF-A and VEGFR-2 levels.
Collapse
Affiliation(s)
- Sandra Rother
- Institute of Materials Science, Max Bergmann Center of Biomaterials, Technische Universität Dresden , 01069 Dresden, Germany
| | - Sergey A Samsonov
- Structural Bioinformatics, BIOTEC Technische Universität Dresden , Tatzberg 47-51, 01307 Dresden, Germany
| | | | | | - Jörg Rademann
- Institute of Pharmacy & Institute of Chemistry and Biochemistry, Freie Universität Berlin , Königin-Luise-Strasse 2, 14195 Berlin, Germany
- Institute of Medical Physics and Biophysics, Universität Leipzig , Härtelstrasse 16/18, 04107 Leipzig, Germany
| | - Joanna Blaszkiewicz
- Institute of Pharmacy & Institute of Chemistry and Biochemistry, Freie Universität Berlin , Königin-Luise-Strasse 2, 14195 Berlin, Germany
- Institute of Medical Physics and Biophysics, Universität Leipzig , Härtelstrasse 16/18, 04107 Leipzig, Germany
| | - Sebastian Köhling
- Institute of Pharmacy & Institute of Chemistry and Biochemistry, Freie Universität Berlin , Königin-Luise-Strasse 2, 14195 Berlin, Germany
- Institute of Medical Physics and Biophysics, Universität Leipzig , Härtelstrasse 16/18, 04107 Leipzig, Germany
| | - Johannes Waltenberger
- Department of Cardiovascular Medicine, University of Münster , Albert-Schweitzer-Campus 1, 48149 Münster, Germany
| | - M Teresa Pisabarro
- Structural Bioinformatics, BIOTEC Technische Universität Dresden , Tatzberg 47-51, 01307 Dresden, Germany
| | - Dieter Scharnweber
- Institute of Materials Science, Max Bergmann Center of Biomaterials, Technische Universität Dresden , 01069 Dresden, Germany
| | - Vera Hintze
- Institute of Materials Science, Max Bergmann Center of Biomaterials, Technische Universität Dresden , 01069 Dresden, Germany
| |
Collapse
|
15
|
Zhou J, Lv S, Zhang D, Xia F, Hu W. Deactivating Influence of 3-O-Glycosyl Substituent on Anomeric Reactivity of Thiomannoside Observed in Oligomannoside Synthesis. J Org Chem 2017; 82:2599-2621. [DOI: 10.1021/acs.joc.6b03017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Jun Zhou
- Shanghai Engineering Research
Center of Molecular Therapeutics and New Drug Development, School
of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, China
| | - Siying Lv
- Shanghai Engineering Research
Center of Molecular Therapeutics and New Drug Development, School
of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, China
| | - Dan Zhang
- Shanghai Engineering Research
Center of Molecular Therapeutics and New Drug Development, School
of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, China
| | - Fei Xia
- Shanghai Engineering Research
Center of Molecular Therapeutics and New Drug Development, School
of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, China
| | - Wenhao Hu
- Shanghai Engineering Research
Center of Molecular Therapeutics and New Drug Development, School
of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, China
| |
Collapse
|
16
|
Heyman B, Yang Y. Mechanisms of heparanase inhibitors in cancer therapy. Exp Hematol 2016; 44:1002-1012. [PMID: 27576132 DOI: 10.1016/j.exphem.2016.08.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 08/09/2016] [Accepted: 08/19/2016] [Indexed: 12/26/2022]
Abstract
Heparanase is an endo-β-D-glucuronidase capable of cleaving heparan sulfate side chains contributing to breakdown of the extracellular matrix. Increased expression of heparanase has been observed in numerous malignancies and is associated with a poor prognosis. It has generated significant interest as a potential antineoplastic target because of the multiple roles it plays in tumor growth and metastasis. The protumorigenic effects of heparanase are enhanced by the release of heparan sulfate side chains, with subsequent increase in bioactive fragments and cytokine levels that promote tumor invasion, angiogenesis, and metastasis. Preclinical experiments have found heparanase inhibitors to substantially reduce tumor growth and metastasis, leading to clinical trials with heparan sulfate mimetics. In this review, we examine the role of heparanase in tumor biology and its interaction with heparan surface proteoglycans, specifically syndecan-1, as well as the mechanism of action for heparanase inhibitors developed as antineoplastic therapeutics.
Collapse
Affiliation(s)
- Benjamin Heyman
- Division of Hematologic Malignancies and Cellular Therapy, Department of Medicine, Duke University, Durham, North Carolina, USA
| | - Yiping Yang
- Division of Hematologic Malignancies and Cellular Therapy, Department of Medicine, Duke University, Durham, North Carolina, USA; Department of Immunology, Duke University, Durham, North Carolina, USA.
| |
Collapse
|
17
|
Heparanase: a rainbow pharmacological target associated to multiple pathologies including rare diseases. Future Med Chem 2016; 8:647-80. [PMID: 27057774 DOI: 10.4155/fmc-2016-0012] [Citation(s) in RCA: 135] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
In recent years, heparanase has attracted considerable attention as a promising target for innovative pharmacological applications. Heparanase is a multifaceted protein endowed with enzymatic activity, as an endo-β-D-glucuronidase, and nonenzymatic functions. It is responsible for the cleavage of heparan sulfate side chains of proteoglycans, resulting in structural alterations of the extracellular matrix. Heparanase appears to be involved in major human diseases, from the most studied tumors to chronic inflammation, diabetic nephropathy, bone osteolysis, thrombosis and atherosclerosis, in addition to more recent investigation in various rare diseases. The present review provides an overview on heparanase, its biological role, inhibitors and possible clinical applications, covering the latest findings in these areas.
Collapse
|
18
|
Kuhnast B, El Hadri A, Boisgard R, Hinnen F, Richard S, Caravano A, Nancy-Portebois V, Petitou M, Tavitian B, Dollé F. Synthesis, radiolabeling with fluorine-18 and preliminary in vivo evaluation of a heparan sulphate mimetic as potent angiogenesis and heparanase inhibitor for cancer applications. Org Biomol Chem 2016; 14:1915-20. [DOI: 10.1039/c5ob02513c] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
A rationally designed, fully synthetic, octasaccharide-based, HS mimetic has been synthesized, in vitro characterized, labeled with fluorine-18, and in vivo imaged with PET in rats.
Collapse
Affiliation(s)
- B. Kuhnast
- CEA
- Institut d'imagerie biomédicale
- Service Hospitalier Frédéric Joliot
- 91400 Orsay
- France
| | - A. El Hadri
- Endotis Pharma
- Biocitech Park
- 93230 Romainville
- France
- CarboMimetics
| | - R. Boisgard
- CEA
- Institut d'imagerie biomédicale
- Service Hospitalier Frédéric Joliot
- 91400 Orsay
- France
| | - F. Hinnen
- CEA
- Institut d'imagerie biomédicale
- Service Hospitalier Frédéric Joliot
- 91400 Orsay
- France
| | - S. Richard
- Endotis Pharma
- Biocitech Park
- 93230 Romainville
- France
| | - A. Caravano
- Endotis Pharma
- Biocitech Park
- 93230 Romainville
- France
| | | | - M. Petitou
- Endotis Pharma
- Biocitech Park
- 93230 Romainville
- France
| | - B. Tavitian
- Laboratoire PARCC UMR 970 Inserm/Université Paris Descartes
- Sorbonne Paris Cité
- Assistance Publique – Hôpitaux de Paris
- Hôpital Européen Georges Pompidou
- 75015 Paris
| | - F. Dollé
- CEA
- Institut d'imagerie biomédicale
- Service Hospitalier Frédéric Joliot
- 91400 Orsay
- France
| |
Collapse
|
19
|
|
20
|
Angiogenic growth factors interactome and drug discovery: The contribution of surface plasmon resonance. Cytokine Growth Factor Rev 2014; 26:293-310. [PMID: 25465594 DOI: 10.1016/j.cytogfr.2014.11.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Revised: 11/10/2014] [Accepted: 11/11/2014] [Indexed: 11/21/2022]
Abstract
Angiogenesis is implicated in several pathological conditions, including cancer, and in regenerative processes, including the formation of collateral blood vessels after stroke. Physiological angiogenesis is the outcome of a fine balance between the action of angiogenic growth factors (AGFs) and anti-angiogenic molecules, while pathological angiogenesis occurs when this balance is pushed toward AGFs. AGFs interact with multiple endothelial cell (EC) surface receptors inducing cell proliferation, migration and proteases upregulation. On the contrary, free or extracellular matrix-associated molecules inhibit angiogenesis by sequestering AGFs (thus hampering EC stimulation) or by interacting with specific EC receptors inducing apoptosis or decreasing responsiveness to AGFs. Thus, angiogenesis results from an intricate network of interactions among pro- and anti-angiogenic molecules, EC receptors and various modulators. All these interactions represent targets for the development of pro- or anti-angiogenic therapies. These aims call for suitable technologies to study the countless interactions occurring during neovascularization. Surface plasmon resonance (SPR) is a label-free optical technique to study biomolecular interactions in real time. It has become the golden standard technology for interaction analysis in biomedical research, including angiogenesis. From a survey of the literature it emerges that SPR has already contributed substantially to the better understanding of the neovascularization process, laying the basis for the decoding of the angiogenesis "interactome" and the identification of "hub molecules" that may represent preferential targets for an efficacious modulation of angiogenesis. Here, the still unexploited full potential of SPR is enlightened, pointing to improvements in its use for a deeper understanding of the mechanisms of neovascularization and the identification of novel anti-angiogenic drugs.
Collapse
|
21
|
Fan L, Xie H, Chen L, Ye H, Ying S, Wang C, Wu X, Li W, Wu J, Liang G, Li X. A novel FGF2 antagonist peptide P8 with potent antiproliferation activity. Tumour Biol 2014; 35:10571-9. [PMID: 25062723 DOI: 10.1007/s13277-014-2356-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Accepted: 07/14/2014] [Indexed: 12/23/2022] Open
Abstract
Some fibroblast growth factors (FGFs) play a critical role in tumorigenesis and progression. Among them, FGF2 was highly expressed in some tumors, and antagonists binding to FGF2 can suppress the growth of tumor cells. Therefore, FGF2 has been considered as an important target in cancer therapy. In this study, we identified a novel FGF2-binding short peptide (P8, PLLQATAGGGS-NH2) using phage display technology and alanine scanning. The P8 peptide suppressed FGF2-induced proliferation with no cytotoxic effect on cells, arrested the cycle at the G0/G1 phase in B16-F10 cells, and downregulated the activation of fibroblast growth factor receptor substrate 2α (FRS2α)/ERK cascade in B16-F10, NIH-H460, and SGC-7901 cells. Besides, P8 peptide can also inhibit the phosphorylation of FRS2α stimulated by FGF1 and KGF2. These implied that P8 peptide may develop as a multi-target antagonist peptide contributing to tumor treatment.
Collapse
Affiliation(s)
- Lei Fan
- Chemical Biology Research Center, College of Pharmaceutical Sciences, Wenzhou Medical University, 325035, Wenzhou, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Liu C, Alwarappan S, Badr HA, Zhang R, Liu H, Zhu JJ, Li CZ. Live cell integrated surface plasmon resonance biosensing approach to mimic the regulation of angiogenic switch upon anti-cancer drug exposure. Anal Chem 2014; 86:7305-10. [PMID: 25005895 PMCID: PMC4372114 DOI: 10.1021/ac402659j] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
![]()
In this work, we report a novel surface
plasmon resonance (SPR)
based live-cell biosensing platform to measure and compare the binding
affinity of vascular endothelial growth factor (VEGF) to vascular
endothelial growth factor receptor (VEGFR) and VEGF to bevacizumab.
Results have shown that bevacizumab binds VEGF with a higher association
rate and affinity compared to VEGFR. Further, this platform has been
employed to mimic the in vivo condition of the VEGF–VEGFR
angiogenic switch. Competitive binding to VEGF between VEGFR and bevacizumab
was monitored in real-time using this platform. Results demonstrated
a significant blockage of VEGF–VEGFR binding by bevacizumab.
From the results, it is evident that the proposed strategy is simple
and highly sensitive for the direct and real-time measurements of
bevacizumab drug efficacy to the VEGF–VEGFR angiogenic switch
in living SKOV-3 cells.
Collapse
Affiliation(s)
- Chang Liu
- Nanobioengineering/Bioelectronics Laboratory, Department of Biomedical Engineering, Florida International University , Miami, Florida, 33174, United States
| | | | | | | | | | | | | |
Collapse
|
23
|
Macchione G, Maza S, Mar Kayser M, de Paz JL, Nieto PM. Synthesis of Chondroitin Sulfate Oligosaccharides UsingN-(Tetrachlorophthaloyl)- andN-(Trifluoroacetyl)galactosamine Building Blocks. European J Org Chem 2014. [DOI: 10.1002/ejoc.201402222] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
24
|
van Wijk XMR, van Kuppevelt TH. Heparan sulfate in angiogenesis: a target for therapy. Angiogenesis 2013; 17:443-62. [PMID: 24146040 DOI: 10.1007/s10456-013-9401-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Accepted: 10/15/2013] [Indexed: 01/02/2023]
Abstract
Heparan sulfate (HS), a long linear polysaccharide of alternating disaccharide residues, interacts with a wide variety of proteins, including many angiogenic factors. The involvement of HS in signaling of pro-angiogenic factors (e.g. vascular endothelial growth factor and fibroblast growth factor 2), as well as interaction with anti-angiogenic factors (e.g. endostatin), warrants its role as an important modifier of (tumor) angiogenesis. This review summarizes our current understanding of the role of HS in angiogenic growth factor signaling, and discusses therapeutic strategies to target HS and modulate angiogenesis.
Collapse
Affiliation(s)
- Xander M R van Wijk
- Department of Biochemistry (280), Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, PO. Box 9101, 6500 HB, Nijmegen, The Netherlands
| | | |
Collapse
|
25
|
Whalen DM, Malinauskas T, Gilbert RJC, Siebold C. Structural insights into proteoglycan-shaped Hedgehog signaling. Proc Natl Acad Sci U S A 2013; 110:16420-5. [PMID: 24062467 PMCID: PMC3799379 DOI: 10.1073/pnas.1310097110] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Hedgehog (Hh) morphogens play fundamental roles during embryogenesis and adulthood, in health and disease. Multiple cell surface receptors regulate the Hh signaling pathway. Among these, the glycosaminoglycan (GAG) chains of proteoglycans shape Hh gradients and signal transduction. We have determined crystal structures of Sonic Hh complexes with two GAGs, heparin and chondroitin sulfate. The interaction determinants, confirmed by site-directed mutagenesis and binding studies, reveal a previously not identified Hh site for GAG binding, common to all Hh proteins. The majority of Hh residues forming this GAG-binding site have been previously implicated in developmental diseases. Crystal packing analysis, combined with analytical ultracentrifugation of Sonic Hh-GAG complexes, suggests a potential mechanism for GAG-dependent Hh multimerization. Taken together, these results provide a direct mechanistic explanation of the observed correlation between disease and impaired Hh gradient formation. Moreover, GAG binding partially overlaps with the site of Hh interactions with an array of protein partners including Patched, hedgehog interacting protein, and the interference hedgehog protein family, suggesting a unique mechanism of Hh signaling modulation.
Collapse
Affiliation(s)
- Daniel M. Whalen
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, United Kingdom
| | - Tomas Malinauskas
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, United Kingdom
| | - Robert J. C. Gilbert
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, United Kingdom
| | - Christian Siebold
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, United Kingdom
| |
Collapse
|
26
|
Ohmae M, Fujita Y, Takada J, Kimura S. Development of Novel Inhibitors Specific for Human Heparanase-1. CHEM LETT 2013. [DOI: 10.1246/cl.130231] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Masashi Ohmae
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University
| | - Yuki Fujita
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University
| | - Junko Takada
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University
| | - Shunsaku Kimura
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University
| |
Collapse
|
27
|
Day ES, Capili AD, Borysenko CW, Zafari M, Whitty A. Determining the affinity and stoichiometry of interactions between unmodified proteins in solution using Biacore. Anal Biochem 2013; 440:96-107. [PMID: 23711722 DOI: 10.1016/j.ab.2013.05.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Revised: 05/03/2013] [Accepted: 05/10/2013] [Indexed: 11/30/2022]
Abstract
We describe a general Biacore method for measuring equilibrium binding affinities and stoichiometries for interactions between unmodified proteins and their unmodified ligands free in solution. Mixtures of protein and ligand are preequilibrated at different ratios in solution and then analyzed by Biacore using a sensor chip surface that detects only unbound analyte. Performing the Biacore analysis under mass transport limited conditions allows the concentration of unbound analyte to be determined from the initial velocity of binding. Plots of initial velocity versus the concentration of the varied binding partner are fitted to a quadratic binding equation to give the affinity and stoichiometry of binding. We demonstrate the method using soluble Her2 extracellular domain binding to monovalent, bivalent, and trivalent forms of an anti-Her2 antibody. The affinity we measured agrees with that obtained from conventional Biacore kinetic analysis, and the stoichiometries for the resulting 1:1, 1:2, and 1:3 complexes were confirmed by gel filtration with in-line light scattering. The method is applicable over an affinity range of approximately 100 pM to 1 μM and is particularly useful when there is concern that covalently modifying one or the other binding partner might affect its binding properties or where multivalency might otherwise complicate a quantitative analysis of binding.
Collapse
|
28
|
Vlodavsky I, Blich M, Li JP, Sanderson RD, Ilan N. Involvement of heparanase in atherosclerosis and other vessel wall pathologies. Matrix Biol 2013; 32:241-51. [PMID: 23499530 DOI: 10.1016/j.matbio.2013.03.002] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2012] [Revised: 01/24/2013] [Accepted: 03/04/2013] [Indexed: 01/04/2023]
Abstract
Heparanase, the sole mammalian endoglycosidase degrading heparan sulfate, is causally involved in cancer metastasis, angiogenesis, inflammation and kidney dysfunction. Despite the wide occurrence and impact of heparan sulfate proteoglycans in vascular biology, the significance of heparanase in vessel wall disorders is underestimated. Blood vessels are highly active structures whose morphology rapidly adapts to maintain vascular function under altered systemic and local conditions. In some pathologies (restenosis, thrombosis, atherosclerosis) this normally beneficial adaptation may be detrimental to overall function. Enzymatic dependent and independent effects of heparanase on arterial structure mechanics and repair closely regulate arterial compliance and neointimal proliferation following endovascular stenting. Additionally, heparanase promotes thrombosis after vascular injury and contributes to a pro-coagulant state in human carotid atherosclerosis. Importantly, heparanase is closely associated with development and progression of atherosclerotic plaques, including stable to unstable plaque transition. Consequently, heparanase levels are markedly increased in the plasma of patients with acute myocardial infarction. Noteworthy, heparanase activates macrophages, resulting in marked induction of cytokine expression associated with plaque progression towards vulnerability. Together, heparanase emerges as a regulator of vulnerable lesion development and potential target for therapeutic intervention in atherosclerosis and related vessel wall complications.
Collapse
Affiliation(s)
- Israel Vlodavsky
- Cancer and Vascular Biology Research Center, The Rappaport Faculty of Medicine and Research Institute, Technion, Haifa, Israel.
| | | | | | | | | |
Collapse
|
29
|
Ramani VC, Purushothaman A, Stewart MD, Thompson CA, Vlodavsky I, Au JLS, Sanderson RD. The heparanase/syndecan-1 axis in cancer: mechanisms and therapies. FEBS J 2013; 280:2294-306. [PMID: 23374281 DOI: 10.1111/febs.12168] [Citation(s) in RCA: 147] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Revised: 01/25/2013] [Accepted: 01/28/2013] [Indexed: 12/21/2022]
Abstract
Heparanase is an endoglucuronidase that cleaves heparan sulfate chains of proteoglycans. In many malignancies, high heparanase expression and activity correlate with an aggressive tumour phenotype. A major consequence of heparanase action in cancer is a robust up-regulation of growth factor expression and increased shedding of syndecan-1 (a transmembrane heparan sulfate proteoglycan). Substantial evidence indicates that heparanase and syndecan-1 work together to drive growth factor signalling and regulate cell behaviours that enhance tumour growth, dissemination, angiogenesis and osteolysis. Preclinical and clinical studies have demonstrated that therapies targeting the heparanase/syndecan-1 axis hold promise for blocking the aggressive behaviour of cancer.
Collapse
Affiliation(s)
- Vishnu C Ramani
- Department of Pathology, University of Alabama at Birmingham, AL 35294, USA
| | | | | | | | | | | | | |
Collapse
|
30
|
Liu L, Li C, Cochran S, Feder D, Guddat LW, Ferro V. A focused sulfated glycoconjugate Ugi library for probing heparan sulfate-binding angiogenic growth factors. Bioorg Med Chem Lett 2012; 22:6190-4. [DOI: 10.1016/j.bmcl.2012.08.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Revised: 07/23/2012] [Accepted: 08/01/2012] [Indexed: 11/30/2022]
|
31
|
Abstract
Explorations of the therapeutic potential of heparin mimetics, anionic compounds that are analogues of glycosaminoglycans (GAGs), have gone hand-in-hand with the emergence of understanding as to the role of GAGs in many essential biological processes. A myriad of structurally different heparin mimetics have been prepared and examined in many diverse applications. They range in complexity from heterogeneous polysaccharides that have been chemically sulphated to well-defined compounds, designed in part to mimic the natural ligand, but with binding specificity and potency increased by conjugation to non-carbohydrate pharmacophores. The maturity of the field is illustrated by the seven heparin mimetics that have achieved marketing approval and there are several more in late-stage clinical development. An overview of the structural determinants of heparin mimetics is presented together with an indication of their activities. The challenges in developing heparin mimetics as drugs, specificity and potential toxicity issues, are highlighted. Finally, the development path of three structurally very different mimetics, PI-88(®), GMI-1070 and RGTAs, each of which is in clinical trials, is described.
Collapse
|
32
|
Liu L, Li C, Cochran S, Jimmink S, Ferro V. Synthesis of a Heparan Sulfate Mimetic Library Targeting FGF and VEGF via Click Chemistry on a Monosaccharide Template. ChemMedChem 2012; 7:1267-75. [DOI: 10.1002/cmdc.201200151] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2012] [Revised: 04/26/2012] [Indexed: 11/07/2022]
|
33
|
Ferro V, Liu L, Johnstone KD, Wimmer N, Karoli T, Handley P, Rowley J, Dredge K, Li CP, Hammond E, Davis K, Sarimaa L, Harenberg J, Bytheway I. Discovery of PG545: A Highly Potent and Simultaneous Inhibitor of Angiogenesis, Tumor Growth, and Metastasis. J Med Chem 2012; 55:3804-13. [DOI: 10.1021/jm201708h] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Vito Ferro
- Drug Design Group, Progen Pharmaceuticals Limited, Brisbane, Queensland
4076, Australia
| | - Ligong Liu
- Drug Design Group, Progen Pharmaceuticals Limited, Brisbane, Queensland
4076, Australia
| | - Ken D. Johnstone
- Drug Design Group, Progen Pharmaceuticals Limited, Brisbane, Queensland
4076, Australia
| | - Norbert Wimmer
- Drug Design Group, Progen Pharmaceuticals Limited, Brisbane, Queensland
4076, Australia
| | - Tomislav Karoli
- Drug Design Group, Progen Pharmaceuticals Limited, Brisbane, Queensland
4076, Australia
| | - Paul Handley
- Drug Design Group, Progen Pharmaceuticals Limited, Brisbane, Queensland
4076, Australia
| | - Jessica Rowley
- Drug Design Group, Progen Pharmaceuticals Limited, Brisbane, Queensland
4076, Australia
| | - Keith Dredge
- Drug Design Group, Progen Pharmaceuticals Limited, Brisbane, Queensland
4076, Australia
| | - Cai Ping Li
- Drug Design Group, Progen Pharmaceuticals Limited, Brisbane, Queensland
4076, Australia
| | - Edward Hammond
- Drug Design Group, Progen Pharmaceuticals Limited, Brisbane, Queensland
4076, Australia
| | - Kat Davis
- Drug Design Group, Progen Pharmaceuticals Limited, Brisbane, Queensland
4076, Australia
| | - Laura Sarimaa
- Drug Design Group, Progen Pharmaceuticals Limited, Brisbane, Queensland
4076, Australia
| | - Job Harenberg
- Clinical
Pharmacology, Faculty
of Medicine Mannheim, Ruprecht-Karls University of Heidelberg, Mannheim, Germany
| | - Ian Bytheway
- Drug Design Group, Progen Pharmaceuticals Limited, Brisbane, Queensland
4076, Australia
| |
Collapse
|
34
|
Maza S, Macchione G, Ojeda R, López-Prados J, Angulo J, de Paz JL, Nieto PM. Synthesis of amine-functionalized heparin oligosaccharides for the investigation of carbohydrate-protein interactions in microtiter plates. Org Biomol Chem 2012; 10:2146-63. [PMID: 22294265 DOI: 10.1039/c2ob06607f] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The synthesis of well-defined oligosaccharides is crucial for the establishment of structure-activity relationships for specific sequences of heparin, contributing to the understanding of the biological role of this polysaccharide. It is highly convenient that the synthetic oligosaccharides contain an orthogonal functional group that allows selective conjugation of the probes and expands their use as chemical tools in glycobiology. We present here the synthesis of a series of amine-functionalized heparin oligosaccharides using an n+2 modular approach. The conditions of the glycosylation reactions were carefully optimized to produce efficiently the desired synthetic intermediates with an N-benzyloxycarbonyl-protected aminoethyl spacer at the reducing end. The use of microwave heating greatly facilitates O- and N-sulfation steps, avoiding experimental problems associated with these reactions. The synthesized oligosaccharides were immobilized in 384-well microtiter plates and successfully probed with a heparin-binding protein, the basic fibroblast growth factor FGF-2. The use of hexadecyltrimethylammonium bromide minimized the amount of sugar required for attachment to the solid support. Using this approach we quantified heparin-protein interactions, and surface dissociation constants for the synthetic heparin derivatives were determined.
Collapse
Affiliation(s)
- Susana Maza
- Glycosystems Laboratory, Instituto de Investigaciones Químicas, Centro de Investigaciones Científicas Isla de La Cartuja, CSIC and Universidad de Sevilla, Américo Vespucio, 49, 41092 Sevilla, Spain
| | | | | | | | | | | | | |
Collapse
|
35
|
Krylov VB, Ustyuzhanina NE, Nifantiev NE. Synthesis of low-molecular-weight carbohydrate mimetics of heparin. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2011; 37:745-79. [DOI: 10.1134/s1068162011060100] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
36
|
Lundin A, Bergström T, Andrighetti-Fröhner CR, Bendrioua L, Ferro V, Trybala E. Potent anti-respiratory syncytial virus activity of a cholestanol-sulfated tetrasaccharide conjugate. Antiviral Res 2011; 93:101-9. [PMID: 22101246 DOI: 10.1016/j.antiviral.2011.11.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2011] [Revised: 10/14/2011] [Accepted: 11/06/2011] [Indexed: 10/15/2022]
Abstract
A number of different viruses including respiratory syncytial virus (RSV) initiate infection of cells by binding to cell surface glycosaminoglycans and sulfated oligo- and polysaccharide mimetics of these receptors exhibit potent antiviral activity in cultured cells. We investigated whether the introduction of different lipophilic groups to the reducing end of sulfated oligosaccharides would modulate their anti-RSV activity. Our results demonstrate that the cholestanol-conjugated tetrasaccharide (PG545) exhibited ∼5- to 16-fold enhanced anti-RSV activity in cultured cells compared with unmodified sulfated oligosaccharides. Furthermore, PG545 displayed virus-inactivating (virucidal) activity, a feature absent in sulfated oligosaccharides. To inhibit RSV infectivity PG545 had to be present during the initial steps of viral infection of cells. The anti-RSV activity of PG545 was due to both partial inhibition of the virus attachment to cells and a more profound interference with some post-attachment steps as PG545 efficiently neutralized infectivity of the cell-adsorbed virus. The anti-RSV activity of PG545 was reduced when tested in the presence of human nasal secretions. Serial passages of RSV in the presence of increasing concentrations of PG545 selected for weakly resistant viral variants that comprised the F168S and the P180S amino acid substitutions in the viral G protein. Altogether we identified a novel and potent inhibitor of RSV, which unlike sulfated oligo- and polysaccharide compounds, could irreversibly inactivate RSV infectivity.
Collapse
Affiliation(s)
- Anna Lundin
- Department of Clinical Virology, University of Gothenburg, Guldhedsgatan 10B, S-413 46 Göteborg, Sweden
| | | | | | | | | | | |
Collapse
|
37
|
Porcheron G, Kut E, Canepa S, Maurel MC, Schouler C. Regulation of fructooligosaccharide metabolism in an extra-intestinal pathogenic Escherichia coli strain. Mol Microbiol 2011; 81:717-33. [PMID: 21692876 DOI: 10.1111/j.1365-2958.2011.07725.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A gene cluster involved in the metabolism of prebiotic short-chain fructooligosaccharides (scFOS) has recently been identified in the extra-intestinal avian pathogenic Escherichia coli strain BEN2908. This gene cluster, called the fos locus, plays a major role in the initiation stage of chicken intestinal colonization. This locus is composed of six genes organized as an operon encoding a sugar transporter and enzymes involved in scFOS metabolism, and of a divergently transcribed gene encoding a transcriptional regulator, FosR, belonging to the LacI/GalR family. To decipher the regulation of scFOS metabolism, we monitored the fos operon promoter activity using a luciferase reporter gene assay. We demonstrated that the expression of fos genes is repressed by FosR, controlled by catabolite repression and induced in the presence of scFOS. Using electrophoretic mobility shift assays and surface plasmon resonance experiments, we showed that FosR binds to two operator sequences of the fos operon promoter region. This binding to DNA was inhibited in the presence of scFOS, especially by GF2. We then propose a model of scFOS metabolism regulation in a pathogenic bacterium, which will help to identify the environmental conditions required for fos gene expression and to understand the role of this locus in intestinal colonization.
Collapse
Affiliation(s)
- Gaëlle Porcheron
- INRA, UR1282 Infectiologie Animale et Santé Publique, F-37380 Nouzilly, France
| | | | | | | | | |
Collapse
|
38
|
Sriram R, Yadav AR, Mace CR, Miller BL. Validation of arrayed imaging reflectometry biosensor response for protein-antibody interactions: cross-correlation of theory, experiment, and complementary techniques. Anal Chem 2011; 83:3750-7. [PMID: 21517019 DOI: 10.1021/ac2001302] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
One of the critical steps in the development of an analytical technique is to confirm that its experimental response correlates with predictions derived from the theoretical framework on which it is based. This validates the technique quantitatively and, in the case of a biosensor, facilitates a correlation of the sensor's output signal to the concentration of the analyte being tested. Herein we report studies demonstrating that the quantitative response of arrayed imaging reflectometry (AIR), a highly sensitive label-free biosensing method, is a predictable function of the probe and analyte properties. We first incorporated a standard one-site Langmuir binding model describing probe-analyte interactions at the surface into the theoretical model for thickness-dependent reflectance in AIR. This established a hypothetical correlation between the analyte concentration and the AIR response. Spectroscopic ellipsometry, surface plasmon resonance, and AIR were then used to validate this model for two biomedically important proteins, fibroblast growth factor-2 and vascular endothelial growth factor. While our studies demonstrated that the 1:1 one-site Langmuir model accurately described the observed response of macrospot AIR arrays, either a two-site Langmuir model or a Sips isotherm better described the behavior of AIR microarrays. These studies confirmed the quantitative performance of AIR across a range of probe-analyte affinities. Furthermore, the methodology developed here can be extended to other label-free biosensing platforms, thus facilitating a more accurate and quantitative interpretation of the sensor response.
Collapse
Affiliation(s)
- Rashmi Sriram
- Department of Biomedical Engineering, University of Rochester, Rochester, New York 14642, USA
| | | | | | | |
Collapse
|
39
|
Johnstone KD, Karoli T, Liu L, Dredge K, Copeman E, Li CP, Davis K, Hammond E, Bytheway I, Kostewicz E, Chiu FCK, Shackleford DM, Charman SA, Charman WN, Harenberg J, Gonda TJ, Ferro V. Synthesis and Biological Evaluation of Polysulfated Oligosaccharide Glycosides as Inhibitors of Angiogenesis and Tumor Growth. J Med Chem 2010; 53:1686-99. [DOI: 10.1021/jm901449m] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Ken D. Johnstone
- Drug Design Group, Progen Pharmaceuticals Limited, Toowong, Queensland 4066, Australia
| | - Tomislav Karoli
- Drug Design Group, Progen Pharmaceuticals Limited, Toowong, Queensland 4066, Australia
| | - Ligong Liu
- Drug Design Group, Progen Pharmaceuticals Limited, Toowong, Queensland 4066, Australia
| | - Keith Dredge
- Drug Design Group, Progen Pharmaceuticals Limited, Toowong, Queensland 4066, Australia
| | - Elizabeth Copeman
- Drug Design Group, Progen Pharmaceuticals Limited, Toowong, Queensland 4066, Australia
| | - Cai Ping Li
- Drug Design Group, Progen Pharmaceuticals Limited, Toowong, Queensland 4066, Australia
| | - Kat Davis
- Drug Design Group, Progen Pharmaceuticals Limited, Toowong, Queensland 4066, Australia
| | - Edward Hammond
- Drug Design Group, Progen Pharmaceuticals Limited, Toowong, Queensland 4066, Australia
| | - Ian Bytheway
- Drug Design Group, Progen Pharmaceuticals Limited, Toowong, Queensland 4066, Australia
| | - Edmund Kostewicz
- Centre for Drug Candidate Optimisation, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Francis C. K. Chiu
- Centre for Drug Candidate Optimisation, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - David M. Shackleford
- Centre for Drug Candidate Optimisation, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Susan A. Charman
- Centre for Drug Candidate Optimisation, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - William N. Charman
- Centre for Drug Candidate Optimisation, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Job Harenberg
- Clinical Pharmacology, Faculty of Medicine Mannheim, Ruprecht-Karls University of Heidelberg, Mannheim, Germany
| | - Thomas J. Gonda
- Molecular Oncogenesis Group, Diamantina Institute for Cancer, Immunology and Metabolic Medicine, The University of Queensland, Brisbane, Queensland, Australia
| | - Vito Ferro
- Drug Design Group, Progen Pharmaceuticals Limited, Toowong, Queensland 4066, Australia
- School of Physical and Chemical Sciences, Queensland University of Technology, Brisbane, Queensland 4001, Australia
| |
Collapse
|
40
|
Tanino Y, Coombe DR, Gill SE, Kett WC, Kajikawa O, Proudfoot AEI, Wells TNC, Parks WC, Wight TN, Martin TR, Frevert CW. Kinetics of chemokine-glycosaminoglycan interactions control neutrophil migration into the airspaces of the lungs. THE JOURNAL OF IMMUNOLOGY 2010; 184:2677-85. [PMID: 20124102 DOI: 10.4049/jimmunol.0903274] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Chemokine-glycosaminoglycan (GAG) interactions are thought to result in the formation of tissue-bound chemokine gradients. We hypothesized that the binding of chemokines to GAGs would increase neutrophil migration toward CXC chemokines instilled into lungs of mice. To test this hypothesis we compared neutrophil migration toward recombinant human CXCL8 (rhCXCL8) and two mutant forms of CXCL8, which do not bind to heparin immobilized on a sensor chip. Unexpectedly, when instilled into the lungs of mice the CXCL8 mutants recruited more neutrophils than rhCXCL8. The CXCL8 mutants appeared in plasma at significantly higher concentrations and diffused more rapidly across an extracellular matrix in vitro. A comparison of the murine CXC chemokines, KC and MIP-2, revealed that KC was more effective in recruiting neutrophils into the lungs than MIP-2. KC appeared in plasma at significantly higher concentrations and diffused more rapidly across an extracellular matrix in vitro than MIP-2. In kinetic binding studies, KC, MIP-2, and rhCXCL8 bound heparin differently, with KC associating and dissociating more rapidly from immobilized heparin than the other chemokines. These data suggest that the kinetics of chemokine-GAG interactions contributes to chemokine function in tissues. In the lungs, it appears that chemokines, such as CXCL8 or MIP-2, which associate and disassociate slowly from GAGs, form gradients relatively slowly compared with chemokines that either bind GAGs poorly or interact with rapid kinetics. Thus, different types of chemokine gradients may form during an inflammatory response. This suggests a new model, whereby GAGs control the spatiotemporal formation of chemokine gradients and neutrophil migration in tissue.
Collapse
Affiliation(s)
- Yoshi Tanino
- Veterans Affairs Puget Sound Medical Center, Seattle, WA 98108, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
The role of heparanase in diseases of the glomeruli. Arch Immunol Ther Exp (Warsz) 2010; 58:45-56. [PMID: 20049646 DOI: 10.1007/s00005-009-0061-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2009] [Accepted: 07/30/2009] [Indexed: 12/28/2022]
Abstract
The glomerular basement membrane (GBM) is a kind of net that remains in a state of dynamic equilibrium. Heparan sulfate proteoglycans (HSPGs) are among its most important components. There are much data indicating the significance of these proteoglycans in protecting proteins such as albumins from penetrating to the urine, although some new data indicate that loss of proteoglycans does not always lead to proteinuria. Heparanase is an enzyme which cleaves beta 1,4 D: -glucuronic bonds in sugar groups of HSPGs. Thus it is supposed that heparanase may have an important role in the pathogenesis of proteinuria. Increased heparanase expression and activity in the course of many glomerular diseases was observed. The most widely documented is the significance of heparanase in the pathogenesis of diabetic nephropathy. Moreover, heparanase acts as a signaling molecule and may influence the concentrations of active growth factors in the GBM. It is being investigated whether heparanase inhibition may cause decreased proteinuria. The heparanase inhibitor PI-88 (phosphomannopentaose sulfate) was effective as an antiproteinuric drug in an experimental model of membranous nephropathy. Nevertheless, this drug is burdened by some toxicity, so further investigations should be considered.
Collapse
|
42
|
Abstract
Carbohydrate microarrays have become crucial tools for revealing the biological interactions and functions of glycans, primarily because the microarray format enables the investigation of large numbers of carbohydrates at a time. Heparan sulfate (HS) and heparin are the most structurally complex glycosaminoglycans (GAGs). In this chapter, we describe the preparation of a small library of HS/heparin oligosaccharides, and the fabrication of HS/heparin microarrays that have been used to establish HS/heparin-binding profiles. Fibroblast growth factors (FGFs), natural cytotoxicity receptors (NCRs), and chemokines were screened to illuminate the very important biological functions of these glycans.
Collapse
Affiliation(s)
- Jian Yin
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Research Campus Potsdam-Golm, Potsdam, Germany
| | | |
Collapse
|
43
|
Rusnati M, Bugatti A, Mitola S, Leali D, Bergese P, Depero LE, Presta M. Exploiting Surface Plasmon Resonance (SPR) Technology for the Identification of Fibroblast Growth Factor-2 (FGF2) Antagonists Endowed with Antiangiogenic Activity. SENSORS (BASEL, SWITZERLAND) 2009; 9:6471-503. [PMID: 22454596 PMCID: PMC3312455 DOI: 10.3390/s90806471] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2009] [Revised: 08/17/2009] [Accepted: 08/19/2009] [Indexed: 12/31/2022]
Abstract
Angiogenesis, the process of new blood vessel formation, is implicated in various physiological/pathological conditions, including embryonic development, inflammation and tumor growth. Fibroblast growth factor-2 (FGF2) is a heparin-binding angiogenic growth factor involved in various physiopathological processes, including tumor neovascularization. Accordingly, FGF2 is considered a target for antiangiogenic therapies. Thus, numerous natural/synthetic compounds have been tested for their capacity to bind and sequester FGF2 in the extracellular environment preventing its interaction with cellular receptors. We have exploited surface plasmon resonance (SPR) technique in search for antiangiogenic FGF2 binders/antagonists. In this review we will summarize our experience in SPR-based angiogenesis research, with the aim to validate SPR as a first line screening for the identification of antiangiogenic compounds.
Collapse
Affiliation(s)
- Marco Rusnati
- Unit of General Pathology and Immunology, Department of Biomedical Sciences and Biotechnology, School of Medicine, University of Brescia, Brescia, 25123, Italy; E-Mails: (M.R.); (A.B.); (S.M.); (D.L.)
| | - Antonella Bugatti
- Unit of General Pathology and Immunology, Department of Biomedical Sciences and Biotechnology, School of Medicine, University of Brescia, Brescia, 25123, Italy; E-Mails: (M.R.); (A.B.); (S.M.); (D.L.)
| | - Stefania Mitola
- Unit of General Pathology and Immunology, Department of Biomedical Sciences and Biotechnology, School of Medicine, University of Brescia, Brescia, 25123, Italy; E-Mails: (M.R.); (A.B.); (S.M.); (D.L.)
| | - Daria Leali
- Unit of General Pathology and Immunology, Department of Biomedical Sciences and Biotechnology, School of Medicine, University of Brescia, Brescia, 25123, Italy; E-Mails: (M.R.); (A.B.); (S.M.); (D.L.)
| | - Paolo Bergese
- Chemistry for Technologies Laboratory and Department of Mechanical and Industrial Engineering, School of Engineering, University of Brescia, Brescia, 25123, Italy; E-Mails: (P.B.); (L.E.D.)
| | - Laura E. Depero
- Chemistry for Technologies Laboratory and Department of Mechanical and Industrial Engineering, School of Engineering, University of Brescia, Brescia, 25123, Italy; E-Mails: (P.B.); (L.E.D.)
| | - Marco Presta
- Unit of General Pathology and Immunology, Department of Biomedical Sciences and Biotechnology, School of Medicine, University of Brescia, Brescia, 25123, Italy; E-Mails: (M.R.); (A.B.); (S.M.); (D.L.)
| |
Collapse
|
44
|
Liu CJ, Lee PH, Lin DY, Wu CC, Jeng LB, Lin PW, Mok KT, Lee WC, Yeh HZ, Ho MC, Yang SS, Lee CC, Yu MC, Hu RH, Peng CY, Lai KL, Chang SSC, Chen PJ. Heparanase inhibitor PI-88 as adjuvant therapy for hepatocellular carcinoma after curative resection: a randomized phase II trial for safety and optimal dosage. J Hepatol 2009; 50:958-68. [PMID: 19303160 DOI: 10.1016/j.jhep.2008.12.023] [Citation(s) in RCA: 125] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2008] [Revised: 11/16/2008] [Accepted: 12/16/2008] [Indexed: 12/15/2022]
Abstract
BACKGROUND/AIMS Hepatocellular carcinoma recurrence after curative treatment adversely influences clinical outcome. It is important to explore adjuvant therapies. This phase II/stage 1 multi-center, randomized trial investigated the safety, optimal dosage and preliminary efficacy of PI-88, a novel heparanase inhibitor, in the setting of post-operative recurrence of HCC according to a Simon's 2-stage design. METHODS Three groups were included: one untreated arm (Group A) and two PI-88 arms (Group B: 160 mg/day; Group C: 250 mg/day). Treatment groups received PI-88 over nine 4-week treatment cycles, followed by a 12-week treatment-free period. Safety and optimal dosage were assessed. RESULTS Overall, 172 patients were randomized and 168 were included in the intention-to-treat (ITT) population. Treatment-related adverse effects included cytopenia, injection site hemorrhage, PT prolongation, etc. Four serious adverse events were possibly related to PI-88 treatment. One (1.8%) group B patients and six (10.5%) group C had hepatotoxicity-related withdrawals. Among the ITT population, 29 patients (50%) in Group A, 35 (63%) in Group B, and 22 (41%) in Group C remained recurrence-free at completion. Calculated T(1) value suggested 160 mg/day treatment satisfied the criteria for the next stage of the trial. CONCLUSIONS PI-88 at 160 mg/day is optimal and safe, and shows preliminary efficacy as an adjunct therapy for post-operative HCC.
Collapse
Affiliation(s)
- Chun-Jen Liu
- Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine and National Taiwan University Hospital, 1 Chang-Te Street, Taipei 10002, Taiwan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
The PG500 series: novel heparan sulfate mimetics as potent angiogenesis and heparanase inhibitors for cancer therapy. Invest New Drugs 2009; 28:276-83. [PMID: 19357810 DOI: 10.1007/s10637-009-9245-5] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2009] [Accepted: 03/16/2009] [Indexed: 10/20/2022]
Abstract
Heparan sulfate mimetics, which we have called the PG500 series, have been developed to target the inhibition of both angiogenesis and heparanase activity. This series extends the technology underpinning PI-88, a mixture of highly sulfated oligosaccharides which reached Phase III clinical development for hepatocellular carcinoma. Advances in the chemistry of the PG500 series provide numerous advantages over PI-88. These new compounds are fully sulfated, single entity oligosaccharides attached to a lipophilic moiety, which have been optimized for drug development. The rational design of these compounds has led to vast improvements in potency compared to PI-88, based on in vitro angiogenesis assays and in vivo tumor models. Based on these and other data, PG545 has been selected as the lead clinical candidate for oncology and is currently undergoing formal preclinical development as a novel treatment for advanced cancer.
Collapse
|
46
|
Ma P, Luo Y, Zhu X, Ma H, Hu J, Tang S. Phosphomannopentaose sulfate (PI-88) inhibits retinal leukostasis in diabetic rat. Biochem Biophys Res Commun 2009; 380:402-6. [PMID: 19250642 DOI: 10.1016/j.bbrc.2009.01.092] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2009] [Accepted: 01/20/2009] [Indexed: 10/21/2022]
Abstract
Retinal leukostasis, mediated by intracellular adhesion molecule-1 (ICAM-1) and vascular endothelial growth factor (VEGF), has been implicated in the pathogenesis of early diabetic retinopathy. Phosphomannopentaose sulfate (PI-88) is a highly sulfonated oligosaccharide which inhibits heparanase activity and competes with heparan sulfate binding to growth factors. In this study, we evaluated whether PI-88 could inhibit retinal leukostasis in strepotzotocin(STZ)-induced diabetic rat and elucidated the possible mechanisms. Diabetes was induced in Sprague-Dawley rats by intraperitoneal injection (i.p.) of STZ. Three months after induction, diabetic rats were administered PI-88 (25 mg/kg body weight) or vehicle solution daily via i.p. for 14 consecutive days. Leukostasis was analyzed on retinal flatmounts by concanavalin A and CD45 immunofluorescence staining. Retinal function was analyzed by electroretinography (ERG). ICAM-1 and VEGF levels in retinas were studied by Western blot and enzyme-linked immunosorbent assay (ELISA) respectively. The systemic administration of PI-88, but not vehicle, significantly decreased the number of adherent leukocytes in retinas by 52.24% (P<0.001) and led to significant preservation (about 50%, P<0.001) of scotopic ERG a- and b-wave amplitudes in treated diabetic rats as compared to those of diabetic control rats. These changes were associated with downregulation of ICAM-1 (45%, P<0.001) and VEGF (26.83+/-2.01 versus 40.8+/-3.24 pg/mg, P<0.01) in retinas of PI-88 treated diabetic rats as compared to those of diabetic control rats. PI-88 significantly inhibited retinal leukostasis and reversed retinal dysfunction by a mechanism that may include decreased ICAM-1 and VEGF expression in diabetic rats. Our data suggests that PI-88 is a promising agent for the treatment of diabetic retinopathy.
Collapse
Affiliation(s)
- Pingping Ma
- State Key Laboratory of Ophthalmology, Zhongshan Opthalmic Center, Sun Yat-sen University, 54S, Xianlie Road, Guangzhou 510060, China
| | | | | | | | | | | |
Collapse
|
47
|
A surface plasmon resonance-based solution affinity assay for heparan sulfate-binding proteins. Glycoconj J 2008; 26:577-87. [DOI: 10.1007/s10719-008-9210-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2008] [Revised: 10/05/2008] [Accepted: 10/27/2008] [Indexed: 12/15/2022]
|
48
|
Liu L, Bytheway I, Karoli T, Fairweather JK, Cochran S, Li C, Ferro V. Design, synthesis, FGF-1 binding, and molecular modeling studies of conformationally flexible heparin mimetic disaccharides. Bioorg Med Chem Lett 2008; 18:344-9. [DOI: 10.1016/j.bmcl.2007.10.071] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2007] [Revised: 10/19/2007] [Accepted: 10/20/2007] [Indexed: 11/15/2022]
|
49
|
de Paz JL, Moseman EA, Noti C, Polito L, von Andrian UH, Seeberger PH. Profiling heparin-chemokine interactions using synthetic tools. ACS Chem Biol 2007; 2:735-44. [PMID: 18030990 DOI: 10.1021/cb700159m] [Citation(s) in RCA: 134] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Glycosaminoglycans (GAGs), such as heparin or heparan sulfate, are required for the in vivo function of chemokines. Chemokines play a crucial role in the recruitment of leukocyte subsets to sites of inflammation and lymphocytes trafficking. GAG-chemokine interactions mediate cell migration and determine which leukocyte subsets enter tissues. Identifying the exact GAC sequences that bind to particular chemokines is key to understand chemokine function at the molecular level and develop strategies to interfere with chemokine-mediated processes. Here, we characterize the heparin binding profiles of eight chemokines (CCL21, IL-8, CXCL12, CXCL13, CCL19, CCL25, CCL28, and CXCL16) by employing heparin microarrays containing a small library of synthetic heparin oligosaccharides. The chemokines differ significantly in their interactions with heparin oligosaccharides: While some chemokines, (e.g., CCL21) strongly bind to a hexasaccharide containing the GlcNSO3(6-OSO3)-IdoA(2-OSO3) repeating unit, CCL19 does not bind and CXCL12 binds only weakly. The carbohydrate microarray binding results were validated by surface plasmon resonance experiments. In vitro chemotaxis assays revealed that dendrimers coated with the fully sulfated heparin hexasaccharide inhibit lymphocyte migration toward CCL21. Migration toward CXCL12 or CCL19 was not affected. These in vitro homing assays indicate that multivalent synthetic heparin dendrimers inhibit the migration of lymphocytes toward certain chemokine gradients by blocking the formation of a chemokine concentration gradient on GAG endothelial chains. These findings are in agreement with preliminary in vivo measurements of circulating lymphocytes. The results presented here contribute to the understanding of GAG-chemokine interactions, a first step toward the design of novel drugs that modulate chemokine activity.
Collapse
Affiliation(s)
- Jose L. de Paz
- Laboratory for Organic Chemistry, Swiss Federal Institute of Technology (ETH) Zürich, Wolfgang-Pauli-Strasse 10, HCI F315, 8093 Zürich, Switzerland
| | - E. Ashley Moseman
- The Center for Blood Research, Department of Pathology, Harvard Medical School, NRB 836, Boston, Massachusetts 02115
| | - Christian Noti
- Laboratory for Organic Chemistry, Swiss Federal Institute of Technology (ETH) Zürich, Wolfgang-Pauli-Strasse 10, HCI F315, 8093 Zürich, Switzerland
| | - Laura Polito
- Laboratory for Organic Chemistry, Swiss Federal Institute of Technology (ETH) Zürich, Wolfgang-Pauli-Strasse 10, HCI F315, 8093 Zürich, Switzerland
| | - Ulrich H. von Andrian
- The Center for Blood Research, Department of Pathology, Harvard Medical School, NRB 836, Boston, Massachusetts 02115
| | - Peter H. Seeberger
- Laboratory for Organic Chemistry, Swiss Federal Institute of Technology (ETH) Zürich, Wolfgang-Pauli-Strasse 10, HCI F315, 8093 Zürich, Switzerland
| |
Collapse
|
50
|
de Paz JL, Noti C, Böhm F, Werner S, Seeberger PH. Potentiation of fibroblast growth factor activity by synthetic heparin oligosaccharide glycodendrimers. ACTA ACUST UNITED AC 2007; 14:879-87. [PMID: 17719487 DOI: 10.1016/j.chembiol.2007.07.007] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2007] [Revised: 07/06/2007] [Accepted: 07/06/2007] [Indexed: 10/22/2022]
Abstract
Heparin is a highly sulfated polysaccharide that regulates a variety of cellular processes by interaction with a host of proteins. We report the preparation of synthetic heparin oligosaccharide glycodendrimers and their use as heparin mimetics to regulate heparin-protein interactions. The multivalent display of sugar epitopes mimics the naturally occurring glycans found on cell surfaces and enhances their binding capacity. Binding of the heparin dendrimers to basic fibroblast growth factor (FGF-2) was analyzed using heparin microarray experiments and surface plasmon resonance measurements on gold chips. Heparin-coated dendrimers bind FGF-2 significantly more effectively than monovalent heparin oligosaccharides. Dendrimer 1, which displays multiple copies of the sulfated hexasaccharide (GlcNSO(3)[6-OSO(3)]-IdoA[2-OSO(3)])3, was employed to promote FGF-2-mediated mitogen-activated kinase activation, demonstrating the utility of glycodendrimers to modulate heparin-protein interactions.
Collapse
Affiliation(s)
- Jose L de Paz
- Laboratory of Organic Chemistry, Swiss Federal Institute of Technology (ETH) Zürich, 8093 Zürich, Switzerland
| | | | | | | | | |
Collapse
|