1
|
McCormick LA, McCormick JW, Park C, Follit CA, Wise JG, Vogel PD. Computationally accelerated identification of P-glycoprotein inhibitors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.05.583428. [PMID: 39345515 PMCID: PMC11430104 DOI: 10.1101/2024.03.05.583428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Overexpression of the polyspecific efflux transporter, P-glycoprotein (P-gp, MDR1, ABCB1 ), is a major mechanism by which cancer cells acquire multidrug resistance (MDR), the resistance to diverse chemotherapeutic drugs. Inhibiting drug transport by P-gp can resensitize cancer cells to chemotherapy, but there are no P-gp inhibitors available to patients. Clinically unsuccessful P-gp inhibitors tend to bind at the pump's transmembrane drug binding domains and are often P-gp transport substrates, resulting in lowered intracellular concentration of the drug and altered pharmacokinetics. In prior work, we used computationally accelerated drug discovery to identify novel P-gp inhibitors that target the pump's cytoplasmic nucleotide binding domains. Our first-draft study provided conclusive evidence that the nucleotide binding domains of P-gp are viable targets for drug discovery. Here we develop an enhanced, computationally accelerated drug discovery pipeline that expands upon our prior work by iteratively screening compounds against multiple conformations of P-gp with molecular docking. Targeted molecular dynamics simulations with our homology model of human P-gp were used to generate docking receptors in conformations mimicking a putative drug transport cycle. We offset the increased computational complexity using custom Tanimoto chemical datasets, which maximize the chemical diversity of ligands screened by docking. Using our expanded, virtual-assisted pipeline, we identified nine novel P-gp inhibitors that reverse MDR in two types of P-gp overexpressing human cancer cell lines, reflecting a 13.4% hit rate. Of these inhibitors, all were non-toxic to non-cancerous human cells, and six were not likely to be transport substrates of P-gp. Our novel P-gp inhibitors are chemically diverse and are good candidates for lead optimization. Our results demonstrate that the nucleotide binding domains of P-gp are an underappreciated target in the effort to reverse P-gp-mediated multidrug resistance in cancer.
Collapse
|
2
|
Hamaguchi-Suzuki N, Adachi N, Moriya T, Yasuda S, Kawasaki M, Suzuki K, Ogasawara S, Anzai N, Senda T, Murata T. Cryo-EM structure of P-glycoprotein bound to triple elacridar inhibitor molecules. Biochem Biophys Res Commun 2024; 709:149855. [PMID: 38579618 DOI: 10.1016/j.bbrc.2024.149855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 03/27/2024] [Indexed: 04/07/2024]
Abstract
P-glycoprotein (P-gp) is an ATP-binding cassette transporter known for its roles in expelling xenobiotic compounds from cells and contributing to cellular drug resistance through multidrug efflux. This mechanism is particularly problematic in cancer cells, where it diminishes the therapeutic efficacy of anticancer drugs. P-gp inhibitors, such as elacridar, have been developed to circumvent the decrease in drug efficacy due to P-gp efflux. An earlier study reported the cryo-EM structure of human P-gp-Fab (MRK-16) complex bound by two elacridar molecules, at a resolution of 3.6 Å. In this study, we have obtained a higher resolution (2.5 Å) structure of the P-gp- Fab (UIC2) complex bound by three elacridar molecules. This finding, which exposes a larger space for compound-binding sites than previously acknowledged, has significant implications for the development of more selective inhibitors and enhances our understanding of the compound recognition mechanism of P-gp.
Collapse
Affiliation(s)
- Norie Hamaguchi-Suzuki
- Department of Pharmacology, Chiba University Graduate School of Medicine, 1-8-1 Inohana, Chuo, Chiba, 260-8670, Japan; Department of Chemistry, Graduate School of Science, Chiba University, 1-33 Yayoi-cho, Inage, Chiba, 263-8522, Japan
| | - Naruhiko Adachi
- Structure Biology Research Center, Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), 1-1, Oho, Tsukuba, 305-0801, Japan; Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8577, Japan
| | - Toshio Moriya
- Structure Biology Research Center, Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), 1-1, Oho, Tsukuba, 305-0801, Japan
| | - Satoshi Yasuda
- Department of Chemistry, Graduate School of Science, Chiba University, 1-33 Yayoi-cho, Inage, Chiba, 263-8522, Japan; Membrane Protein Research Center, Chiba University, 1-33 Yayoi-cho, Inage, Chiba, 263-8522, Japan
| | - Masato Kawasaki
- Structure Biology Research Center, Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), 1-1, Oho, Tsukuba, 305-0801, Japan
| | - Kano Suzuki
- Department of Chemistry, Graduate School of Science, Chiba University, 1-33 Yayoi-cho, Inage, Chiba, 263-8522, Japan; Membrane Protein Research Center, Chiba University, 1-33 Yayoi-cho, Inage, Chiba, 263-8522, Japan
| | - Satoshi Ogasawara
- Department of Chemistry, Graduate School of Science, Chiba University, 1-33 Yayoi-cho, Inage, Chiba, 263-8522, Japan; Membrane Protein Research Center, Chiba University, 1-33 Yayoi-cho, Inage, Chiba, 263-8522, Japan
| | - Naohiko Anzai
- Department of Pharmacology, Chiba University Graduate School of Medicine, 1-8-1 Inohana, Chuo, Chiba, 260-8670, Japan
| | - Toshiya Senda
- Structure Biology Research Center, Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), 1-1, Oho, Tsukuba, 305-0801, Japan
| | - Takeshi Murata
- Department of Chemistry, Graduate School of Science, Chiba University, 1-33 Yayoi-cho, Inage, Chiba, 263-8522, Japan; Membrane Protein Research Center, Chiba University, 1-33 Yayoi-cho, Inage, Chiba, 263-8522, Japan.
| |
Collapse
|
3
|
Fessart D, Robert J. [Mechanisms of cancer drug resistance]. Bull Cancer 2024; 111:37-50. [PMID: 37679207 DOI: 10.1016/j.bulcan.2023.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/23/2023] [Accepted: 07/05/2023] [Indexed: 09/09/2023]
Abstract
Despite decades of research into the molecular mechanisms of cancer and the development of new treatments, drug resistance persists as a major problem. This is in part due to the heterogeneity of cancer, including the diversity of tumor cell lineage and cell plasticity, the spectrum of somatic mutations, the complexity of microenvironments, and immunosuppressive characteristic, then necessitating the use of many different therapeutic approaches. We summarize here the biological causes of resistance, thus offering new perspectives for tackle drug resistance.
Collapse
Affiliation(s)
- Delphine Fessart
- ARTiSt lab, Université de Bordeaux, Inserm U1312 BRIC, 33000 Bordeaux, France.
| | - Jacques Robert
- ARTiSt lab, Université de Bordeaux, Inserm U1312 BRIC, 33000 Bordeaux, France
| |
Collapse
|
4
|
Basu SM, Chauhan M, Giri J. pH-Responsive Polypropylene Sulfide Magnetic Nanocarrier-Mediated Chemo-Hyperthermia Kills Breast Cancer Stem Cells by Long-Term Reversal of Multidrug Resistance and Chemotherapy Resensitization. ACS APPLIED MATERIALS & INTERFACES 2023; 15:58151-58165. [PMID: 38063494 DOI: 10.1021/acsami.3c12303] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2023]
Abstract
Cancer stem cells (CSCs) present a formidable challenge in cancer treatment due to their inherent resistance to chemotherapy, primarily driven by the overexpression of ABC transporters and multidrug resistance (MDR). Despite extensive research on pharmacological small-molecule inhibitors, effectively managing MDR and improving chemotherapeutic outcomes remain elusive. On the other hand, magnetic hyperthermia (MHT) holds great promise as a cancer therapeutic, but there is limited research on its potential to reverse MDR in breast CSCs and effectively eliminate CSCs through combined chemo-hyperthermia. To address these gaps, we developed tumor microenvironment-sensitive, drug-loaded poly(propylene sulfide) (PPS)-coated magnetic nanoparticles (PPS-MnFe). These nanoparticles were employed to investigate hyperthermia sensitivity and MDR reversion in breast CSCs, comparing their performance to that of small-molecule inhibitors. Additionally, we explored the efficacy of combined chemo-hyperthermia in killing CSCs. CSC-enriched breast cancer cells were subjected to low-dose MHT at 42 °C for 30 min and then treated with the chemical MDR inhibitor salinomycin (SAL). The effectiveness of each treatment in inhibiting MDR was assessed by measuring the efflux of the MDR substrate, rhodamine 123 (R123) dye. Notably, MHT induced a prolonged reversal of MDR activity compared with SAL treatment alone. After successfully inhibiting MDR, the breast CSCs were exposed to chemotherapy using paclitaxel to trigger synergistic cell death. The combination of MHT and chemotherapy demonstrated remarkable reductions in stemness properties, MDR reversal, and the effective eradication of breast CSCs in this innovative dual-modality approach.
Collapse
Affiliation(s)
- Suparna Mercy Basu
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Telangana 502285, India
| | - Meenakshi Chauhan
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Telangana 502285, India
| | - Jyotsnendu Giri
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Telangana 502285, India
| |
Collapse
|
5
|
Schäfer J, Klösgen VJ, Omer EA, Kadioglu O, Mbaveng AT, Kuete V, Hildebrandt A, Efferth T. In Silico and In Vitro Identification of P-Glycoprotein Inhibitors from a Library of 375 Phytochemicals. Int J Mol Sci 2023; 24:10240. [PMID: 37373385 DOI: 10.3390/ijms241210240] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 06/12/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023] Open
Abstract
Cancer therapy with clinically established anticancer drugs is frequently hampered by the development of drug resistance of tumors and severe side effects in normal organs and tissues. The demand for powerful, but less toxic, drugs is high. Phytochemicals represent an important reservoir for drug development and frequently exert less toxicity than synthetic drugs. Bioinformatics can accelerate and simplify the highly complex, time-consuming, and expensive drug development process. Here, we analyzed 375 phytochemicals using virtual screenings, molecular docking, and in silico toxicity predictions. Based on these in silico studies, six candidate compounds were further investigated in vitro. Resazurin assays were performed to determine the growth-inhibitory effects towards wild-type CCRF-CEM leukemia cells and their multidrug-resistant, P-glycoprotein (P-gp)-overexpressing subline, CEM/ADR5000. Flow cytometry was used to measure the potential to measure P-gp-mediated doxorubicin transport. Bidwillon A, neobavaisoflavone, coptisine, and z-guggulsterone all showed growth-inhibitory effects and moderate P-gp inhibition, whereas miltirone and chamazulene strongly inhibited tumor cell growth and strongly increased intracellular doxorubicin uptake. Bidwillon A and miltirone were selected for molecular docking to wildtype and mutated P-gp forms in closed and open conformations. The P-gp homology models harbored clinically relevant mutations, i.e., six single missense mutations (F336Y, A718C, Q725A, F728A, M949C, Y953C), three double mutations (Y310A-F728A; F343C-V982C; Y953A-F978A), or one quadruple mutation (Y307C-F728A-Y953A-F978A). The mutants did not show major differences in binding energies compared to wildtypes. Closed P-gp forms generally showed higher binding affinities than open ones. Closed conformations might stabilize the binding, thereby leading to higher binding affinities, while open conformations may favor the release of compounds into the extracellular space. In conclusion, this study described the capability of selected phytochemicals to overcome multidrug resistance.
Collapse
Affiliation(s)
- Julia Schäfer
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany
| | - Vincent Julius Klösgen
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany
- Institute of Bioinformatics, Johannes Gutenberg University, 55131 Mainz, Germany
| | - Ejlal A Omer
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany
| | - Onat Kadioglu
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany
| | - Armelle T Mbaveng
- Department of Biochemistry, Faculty of Science, University of Dschang, Dschang P.O. Box 67, Cameroon
| | - Victor Kuete
- Department of Biochemistry, Faculty of Science, University of Dschang, Dschang P.O. Box 67, Cameroon
| | - Andreas Hildebrandt
- Institute of Bioinformatics, Johannes Gutenberg University, 55131 Mainz, Germany
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany
| |
Collapse
|
6
|
In silico study of novel niclosamide derivatives, SARS-CoV-2 nonstructural proteins catalytic residue-targeting small molecules drug candidates. ARAB J CHEM 2023; 16:104654. [PMID: 36777994 PMCID: PMC9904858 DOI: 10.1016/j.arabjc.2023.104654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 01/31/2023] [Accepted: 02/02/2023] [Indexed: 02/10/2023] Open
Abstract
The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2)-mediated coronavirus disease 2019 (COVID-19) infection remains a global pandemic and health emergency with overwhelming social and economic impacts throughout the world. Therapeutics for COVID-19 are limited to only remdesivir; therefore, there is a need for combined, multidisciplinary efforts to develop new therapeutic molecules and explore the effectiveness of existing drugs against SARS-CoV-2. In the present study, we reported eight (SCOV-L-02, SCOV-L-09, SCOV-L-10, SCOV-L-11, SCOV-L-15, SCOV-L-18, SCOV-L-22, and SCOV-L-23) novel structurally related small-molecule derivatives of niclosamide (SCOV-L series) for their targeting potential against angiotensin-converting enzyme-2 (ACE2), type II transmembrane serine protease (TMPRSS2), and SARS-COV-2 nonstructural proteins (NSPs) including NSP5 (3CLpro), NSP3 (PLpro), and RdRp. Our correlation analysis suggested that ACE2 and TMPRSS2 modulate host immune response via regulation of immune-infiltrating cells at the site of tissue/organs entries. In addition, we identified some TMPRSS2 and ACE2 microRNAs target regulatory networks in SARS-CoV-2 infection and thus open up a new window for microRNAs-based therapy for the treatment of SARS-CoV-2 infection. Our in vitro study revealed that with the exception of SCOV-L-11 and SCOV-L-23 which were non-active, the SCOV-L series exhibited strict antiproliferative activities and non-cytotoxic effects against ACE2- and TMPRSS2-expressing cells. Our molecular docking for the analysis of receptor-ligand interactions revealed that SCOV-L series demonstrated high ligand binding efficacies (at higher levels than clinical drugs) against the ACE2, TMPRSS2, and SARS-COV-2 NSPs. SCOV-L-18, SCOV-L-15, and SCOV-L-09 were particularly found to exhibit strong binding affinities with three key SARS-CoV-2's proteins: 3CLpro, PLpro, and RdRp. These compounds bind to the several catalytic residues of the proteins, and satisfied the criteria of drug-like candidates, having good adsorption, distribution, metabolism, excretion, and toxicity (ADMET) pharmacokinetic profile. Altogether, the present study suggests the therapeutic potential of SCOV-L series for preventing and managing SARs-COV-2 infection and are currently under detailed investigation in our lab.
Collapse
|
7
|
Veneziani AC, Scott C, Wakefield MJ, Tinker AV, Lheureux S. Fighting resistance: post-PARP inhibitor treatment strategies in ovarian cancer. Ther Adv Med Oncol 2023; 15:17588359231157644. [PMID: 36872947 PMCID: PMC9983116 DOI: 10.1177/17588359231157644] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 01/30/2023] [Indexed: 03/06/2023] Open
Abstract
Poly (ADP-ribose) polymerase inhibitors (PARPis) represent a therapeutic milestone in the management of epithelial ovarian cancer. The concept of 'synthetic lethality' is exploited by PARPi in tumors with defects in DNA repair pathways, particularly homologous recombination deficiency. The use of PARPis has been increasing since its approval as maintenance therapy, particularly in the first-line setting. Therefore, resistance to PARPi is an emerging issue in clinical practice. It brings an urgent need to elucidate and identify the mechanisms of PARPi resistance. Ongoing studies address this challenge and investigate potential therapeutic strategies to prevent, overcome, or re-sensitize tumor cells to PARPi. This review aims to summarize the mechanisms of resistance to PARPi, discuss emerging strategies to treat patients post-PARPi progression, and discuss potential biomarkers of resistance.
Collapse
Affiliation(s)
- Ana C. Veneziani
- Division of Medical Oncology and Haematology,
Princess Margaret Cancer Centre, Toronto, ON, Canada
| | - Clare Scott
- Walter and Eliza Hall Institute of Medical
Research, Parkville, VIC, Australia
- Department of Medical Biology, University of
Melbourne, Parkville, VIC, Australia
- Royal Women’s Hospital, Parkville, VIC,
Australia
- Sir Peter MacCallum Department of Oncology,
Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | | | | | - Stephanie Lheureux
- Division of Medical Oncology and Haematology,
Princess Margaret Cancer Centre, 610 University Ave, Toronto, ON M5B 2M9,
Canada
| |
Collapse
|
8
|
Semi-Synthetic Dihydrotestosterone Derivatives Modulate Inherent Multidrug Resistance and Sensitize Colon Cancer Cells to Chemotherapy. Pharmaceutics 2023; 15:pharmaceutics15020584. [PMID: 36839907 PMCID: PMC9966060 DOI: 10.3390/pharmaceutics15020584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/21/2023] [Accepted: 02/06/2023] [Indexed: 02/12/2023] Open
Abstract
Multidrug resistance (MDR) is a serious hurdle to successful cancer therapy. Here, we examined the efficiency of novel semi-synthetic dihydrotestosterone derivatives, more specifically androstano-arylpyrimidines in inhibiting the efflux activity of ATP-binding cassette (ABC) transporters and sensitizing inherently MDR colon cancer cells to various chemotherapy drugs. Using the Rhodamine123 accumulation assay, we evaluated the efflux activity of cancer cells following treatments with androstano-arylpyrimidines. We found that acetylated compounds were capable of attenuating the membrane efflux of inherently MDR cells; however, deacetylated counterparts were ineffective. To delineate the possible molecular mechanisms underlying these unique activities of androstano-arylpyrimidines, the degree of apoptosis induction was assessed by AnnexinV-based assays, both upon the individual as well as by steroid and chemotherapy agent combination treatments. Five dihydrotestosterone derivatives applied in combination with Doxorubicin or Epirubicin triggered massive apoptosis in MDR cells, and these combinations were more efficient than chemotherapy drugs together with Verapamil. Furthermore, our results revealed that androstano-arylpyrimidines induced significant endoplasmic reticulum stress (ER stress) but did not notably modulate ABC transporter expression. Therefore, ER stress triggered by acetylated androstano-arylpyrimidines is probably involved in the mechanism of efflux pump inhibition and drug sensitization which can be targeted in future drug developments to defeat inherently multidrug-resistant cancer.
Collapse
|
9
|
Lee KR, Chang JE, Yoon J, Jin H, Chae YJ. Findings on In Vitro Transporter-Mediated Drug Interactions and Their Follow-Up Actions for Labeling: Analysis of Drugs Approved by US FDA between 2017 and 2021. Pharmaceutics 2022; 14:pharmaceutics14102078. [PMID: 36297514 PMCID: PMC9607947 DOI: 10.3390/pharmaceutics14102078] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/08/2022] [Accepted: 09/26/2022] [Indexed: 12/02/2022] Open
Abstract
Understanding possible follow-up actions on in vitro findings helps determine the necessity of labeling for drug interactions. We analyzed information for in vitro findings on transporter-mediated interactions of drugs approved by the U.S. Food and Drug Administration’s Center for Drug Evaluation and Research for the last five years (i.e., 2017–2021) and their follow-up actions for labeling. Higher R values than the pre-defined cut-off were observed with 3.7–39.1% inhibitor drugs in a simple prediction. Among these drugs, 16–41.7% were labeled with their potential drug interactions, while results of supporting studies or scientific rationales were submitted for the other drugs leading to no interaction labeling. In vitro transporter substrates were reported with 1.7–67.6% of drugs. The interaction labels for these substrate drugs were observed in up to 40% of drugs, while the other drugs were not labeled on the drug interactions with claims for their low interaction potential, evidenced by clinical studies or scientific rationales. The systematic and comprehensive analysis in this study will provide insight into the management of in vitro findings for transporter substrate or inhibitor drugs.
Collapse
Affiliation(s)
- Kyeong-Ryoon Lee
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 28116, Korea
- Department of Bioscience, University of Science and Technology, Daejeon 34113, Korea
| | - Ji-Eun Chang
- College of Pharmacy, Dongduk Women’s University, Seoul 02748, Korea
| | - Jongmin Yoon
- College of Pharmacy, Woosuk University, Wanju 55338, Korea
| | - Hyojeong Jin
- College of Pharmacy, Woosuk University, Wanju 55338, Korea
| | - Yoon-Jee Chae
- College of Pharmacy, Woosuk University, Wanju 55338, Korea
- Research Institute of Pharmaceutical Sciences, Woosuk University, Wanju 55338, Korea
- Correspondence:
| |
Collapse
|
10
|
Lawal B, Sani S, Onikanni AS, Ibrahim YO, Agboola AR, Lukman HY, Olawale F, Jigam AA, Batiha GES, Babalola SB, Mostafa-Hedeab G, Lima CMG, Wu ATH, Huang HS, Conte-Junior CA. Preclinical anti-inflammatory and antioxidant effects of Azanza garckeana in STZ-induced glycemic-impaired rats, and pharmacoinformatics of it major phytoconstituents. Biomed Pharmacother 2022; 152:113196. [PMID: 35667233 DOI: 10.1016/j.biopha.2022.113196] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 05/22/2022] [Accepted: 05/23/2022] [Indexed: 12/15/2022] Open
Abstract
The quest for novel anti-diabetic medication from medicinal plants is very important since they contain bioactive phytochemicals that offer better activity and safety compared to conventional therapy. In the present study, in vitro, in vivo and in silico approaches were explored to evaluate the anti-inflammatory, antioxidants, and hypoglycemic activities of the crude methanol extract of Azanza garckeana pulp. Our in vitro analysis revealed that the extract contains total phenols (260.80 ± 2.23 mg/100 g) and total flavonoids (10.28 ± 1.29 mg/100 g) contents, and demonstrated dose-dependent in vitro antioxidants activities in; DPPH (IC50 =141.30 ± 1.64 µg/mL), FRAP (IC50 =155.07 ± 1.03 µg/mL), LPO (IC50 =184.96 ± 2.01 µg/mL), and ABTS (IC50 =162.56 ± 1.14 µg/mL) assays; anti-inflammatory activities in: membrane stabilization (IC50 =141.34 ± 0.46 µg/mL), protein denaturation (IC50 =203.61 ± 2.35 µg/mL) and proteinase activities (IC50=f 171.35 ± 1.56 µg/mL) assays; and hypoglycemic activities in: α- amylase (IC50 277.85 ± 2.51 µg/mL), and glucose uptake by yeast cells assays. In vivo analysis revealed that the extract exhibited dose-dependent anti-inflammatory, hypoglycemic activities and improved the weight gain in STZ-induced diabetic rats. In addition, the extract attenuated oxidative stress and increased the activities of SOD, catalase, GSH while depleting the level of LPO in STZ induced diabetic rats. Consequently, the liquid chromatography mass spectrometry (LC-MS) characterization of A. garckeana pulp, revealed the presence of 2-Hexadecen-1-ol,3,7,11,15-tetramethyl-,(2E,7 R,11 R)-, nonyl flavanone, testolactone and 6-(Benzyloxy)- 4,4-Dimethyl-2-Chromanone. These compounds were subjected to pharmacoinformatics analysis among which testolactone and 6-(Benzyloxy)- 4,4-Dimethyl-2-Chromanone demonstrated the best drug-likeness, pharmacokinetics, and also exhibited potential hypoglycemic and anti-inflammatory properties. Altogether, the present study provides preclinical evidence of the antioxidant, anti-inflammatory and antidiabetic activities of A. garckeana extract suggesting its potential applications for the development of alternative therapy for diabetes and its associated inflammatory condition.
Collapse
Affiliation(s)
- Bashir Lawal
- Ph.D. Program for Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei 11031, Taiwan; Graduate Institute for Cancer Biology & Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
| | - Saidu Sani
- Department of Biochemistry and Molecular Biology, Faculty of Sciences, Federal University Ndufu-Alike Ikwo, P.M.B 1010, Abakaliki, Ebonyi State, Nigeria
| | - Amos S Onikanni
- Department of Chemical Sciences, Biochemistry Unit, Afe Babalola University, Ado-Ekiti, Ekiti State, Nigeria; College of Medicine, Graduate Institute of Biomedical Sciences, China Medical University, Taiwan
| | - Yunusa O Ibrahim
- Department of Biochemistry, Federal University of Technology, Minna Nigeria
| | - Abdulhakeem R Agboola
- Department of Biochemistry, Faculty of Basic Medical Sciences, University of Calabar Nigeria
| | - Halimat Yusuf Lukman
- Department of Chemical Sciences, Biochemistry Unit, College of Natural and Applied Sciences, Summit University, Offa, PMB 4412, Nigeria
| | - Femi Olawale
- Nano gene and Drug Delivery Group, University of Kwazulu Natal, South Africa
| | - Ali A Jigam
- Department of Biochemistry, Federal University of Technology, Minna Nigeria
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, AlBeheira, Egypt
| | | | - Gomaa Mostafa-Hedeab
- Pharmacology Department & Health Research Unit, Medical College, Jouf University, Jouf, Saudai Arabia; Pharmacology Department, Faculty of Medicine, Beni-Suef University, Egypt
| | | | - Alexander T H Wu
- The PhD Program of Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan; Clinical Research Center, Taipei Medical University Hospital, Taipei Medical University, Taipei 11031, Taiwan; TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei 11031, Taiwan; Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei 114, Taiwan.
| | - Hsu-Shan Huang
- Ph.D. Program for Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei 11031, Taiwan; Graduate Institute for Cancer Biology & Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan; Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei 114, Taiwan; School of Pharmacy, National Defense Medical Center, Taipei 11490, Taiwan; PhD Program in Biotechnology Research and Development, College of Pharmacy, Taipei Medical University, Taipei 11031, Taiwan.
| | - Carlos Adam Conte-Junior
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-598, Brazil
| |
Collapse
|
11
|
Luteolin-Rich Extract of Thespesia garckeana F. Hoffm. (Snot Apple) Contains Potential Drug-Like Candidates and Modulates Glycemic and Oxidoinflammatory Aberrations in Experimental Animals. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:1215097. [PMID: 35941904 PMCID: PMC9356851 DOI: 10.1155/2022/1215097] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 06/16/2022] [Accepted: 07/13/2022] [Indexed: 12/16/2022]
Abstract
The present study evaluated the polyphenolic contents and hypoglycemic, antioxidant, and anti-inflammatory effects of the diethyl ether fraction of Thespesia garckeana using various in vitro and in vivo models. Total phenol and flavonoid contents of the extract were
and
mg/100 g dry weight, respectively. The extract exhibited in vitro antioxidant activities against DPPH, FRAP, LPO, and ABTS with respective half-maximal inhibitory concentration (IC50) values of
,
,
, and
μg/mL. In vitro anti-inflammatory studies using membrane stabilization, protein denaturation, and proteinase activities revealed the effectiveness of the extract with respective IC50 values of
,
, and
μg/mL, while in vitro hypoglycemic analysis of the extract revealed inhibition of α-amylase (IC50
μg/mL) and enhancement of glucose uptake by yeast cells. Interestingly, the extract demonstrated in vivo hypoglycemic and anti-inflammatory effects in streptozotocin- (STZ-) induced diabetic and xylene-induced ear swelling models, respectively. In addition, the extract improved insulin secretion, attenuated pancreatic tissue distortion and oxidative stress, and increased the activities of superoxide dismutase (SOD), catalase, and reduced glutathione (GSH), while reducing the concentration of LPO in the diabetic rats. A high-performance liquid chromatography (HPLC) analysis identified the presence of catechin (
ppm), rutin (
ppm), myricetin, apigenin (
ppm), and luteolin (15.09 ppm) with respective retention times (RTs) of 13.64, 24.269, 27.781, 29.58, and 32.23 min, and these were subjected to a pharmacoinformatics analysis, which revealed their drug-likeness and good pharmacokinetic properties. A docking analysis hinted at the potential of luteolin, the most abundant compound in the extract, for targeting glucose-metabolizing enzymes. Thus, the present study provides preclinical insights into the bioactive constituents of T. garckeana, its antioxidant and anti-inflammatory effects, and its potential for the treatment of diabetes.
Collapse
|
12
|
Lawal B, Kuo YC, Rachmawati Sumitra M, Wu ATH, Huang HS. Identification of a novel immune-inflammatory signature of COVID-19 infections, and evaluation of pharmacokinetics and therapeutic potential of RXn-02, a novel small-molecule derivative of quinolone. Comput Biol Med 2022; 148:105814. [PMID: 35841781 PMCID: PMC9272679 DOI: 10.1016/j.compbiomed.2022.105814] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 06/07/2022] [Accepted: 07/03/2022] [Indexed: 01/18/2023]
Abstract
Coronavirus disease 2019 (COVID-19) is a global pandemic and respiratory infection that has enormous damage to human lives and economies. It is caused by SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2), a non-pair-stranded positive-sense RNA virus. With increasing global threats and few therapeutic options, the discovery of new potential drug targets and the development of new therapy candidates against COVID-19 are urgently needed. Based on these premises, we conducted an analysis of transcriptomic datasets from SARS-CoV-2-infected patients and identified several SARS-CoV-2 infection signatures, among which TNFRSF5/PTPRC/IDO1/MKI67 appeared to be the most pertinent signature. Subsequent integrated bioinformatics analysis identified the signature as an important immunomodulatory and inflammatory signature of SARS-CoV-2 infection. It was suggested that this gene signature mediates the interplay of immune and immunosuppressive cells leading to infiltration-exclusion of effector memory T cells in the lungs, which is of translation relevance for developing novel SARS-CoV-2 drug and vaccine candidates. Consequently, we designed and synthesized a novel small-molecule quinoline derivative (RXn-02) and evaluated its pharmacokinetics in rats, revealing a peak plasma concentration (Cmax) and time to Cmax (Tmax) of 1.756 μg/mL and 0.6 h, respectively. Values of the area under the curve (AUC) (0–24 h) and AUC (0 h∼∞) were 18.90 and 71.20 μg h/mL, respectively. Drug absorption from the various regional segments revealed that the duodenum (49.84%), jejunum (47.885%), cecum (1.82%), and ileum (0.32%) were prime sites of RXn-02 absorption. No absorption was detected from the stomach, and the least was from the colon (0.19%). Interestingly, RXn-02 exhibited in vitro antiproliferative activities against hub gene hyper-expressing cell lines; A549 (IC50 = 48.1 μM), K-562 (IC50 = 100 μM), and MCF7 (IC50 = 0.047 μM) and against five cell lines originating from human lungs (IC50 range of 33.2–69.5 μM). In addition, RXn-02 exhibited high binding efficacies for targeting the TNFRSF5/PTPRC/IDO1/MK signature with binding affinities (ΔG) of −6.6, −6.0, −9.9, −6.9 kcal/mol respectively. In conclusion, our study identified a novel signature of SARS-CoV-2 pathogenesis. RXn-02 is a drug-like candidate with good in vivo pharmacokinetics and hence possesses great translational relevance worthy of further preclinical and clinical investigations for treating SARS-CoV-2 infections.
Collapse
Affiliation(s)
- Bashir Lawal
- PhD Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei 11031, Taiwan; Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
| | - Yu-Cheng Kuo
- Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan; School of Post-baccalaureate Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung, 40402, Taiwan
| | - Maryam Rachmawati Sumitra
- PhD Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei 11031, Taiwan; Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
| | - Alexander T H Wu
- The PhD Program of Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan; Clinical Research Center, Taipei Medical University Hospital, Taipei Medical University, Taipei, 11031, Taiwan; TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, 11031, Taiwan; Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei 11490, Taiwan.
| | - Hsu-Shan Huang
- PhD Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei 11031, Taiwan; Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan; Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei 11490, Taiwan; School of Pharmacy, National Defense Medical Center, Taipei, 11490, Taiwan; PhD Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taipei 11031, Taiwan.
| |
Collapse
|
13
|
Md S, Alhakamy NA, Sharma P, Ansari MS, Gorain B. Nanocarrier-based co-delivery approaches of chemotherapeutics with natural P-glycoprotein inhibitors in the improvement of multidrug resistance cancer therapy. J Drug Target 2022; 30:801-818. [DOI: 10.1080/1061186x.2022.2069782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Shadab Md
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Center of Excellence for Drug Research & Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Nabil A. Alhakamy
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Center of Excellence for Drug Research & Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Priyanka Sharma
- Center for Innovation in Personalized Medicine, King Fahad Medical Research Center, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | | | - Bapi Gorain
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi 835215, India
| |
Collapse
|
14
|
Rathod S, Desai H, Patil R, Sarolia J. Non-ionic Surfactants as a P-Glycoprotein(P-gp) Efflux Inhibitor for Optimal Drug Delivery-A Concise Outlook. AAPS PharmSciTech 2022; 23:55. [PMID: 35043278 DOI: 10.1208/s12249-022-02211-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 01/03/2022] [Indexed: 12/11/2022] Open
Abstract
Significant research efforts have been devoted to unraveling the mystery of P-glycoprotein(P-gp) in drug delivery applications. The efflux membrane transporter P-gp is widely distributed in the body and accountable for restricting drug absorption and bioavailability. For these reasons, it is the primary cause of developing multidrug resistance (MDR) in most drug delivery applications. Therefore, P-gp inhibitors must be explored to address MDR and the low bioavailability of therapeutic substrates. Several experimental models in kinetics and dynamic studies identified the sensitivity of drug molecules and excipients as a P-gp inhibitor. In this review, we aimed to emphasize nonionic surface-active agents for effective reversal of P-gp inhibition. As it is inert, non-toxic, noncharged, and quickly reaching the cytosolic lipid membrane (the point of contact with P-gp efflux protein) enables it to be more efficient as P-gp inhibitors. Moreover, nonionic surfactant improves drug absorption and bioavailability through the various mechanism, involving (i) association of drug with surfactant improves solubilization, facilitating its cell penetration and absorption; (ii) weakening the lateral membrane packing density, facilitating the passive drug influx; and (iii) inhibition of the ATP binding cassette of transporter P-glycoprotein. The application of nonionic surfactant as P-gp inhibitors is well established and supported by various experiments. Altogether, herein, we have primarily focused on various nonionic surfactants and their development strategies to conquer the MDR-causing effects of P-gp efflux protein in drug delivery. Graphical Abstract.
Collapse
|
15
|
Yuan S, Wang B, Dai QQ, Zhang XN, Zhang JY, Zuo JH, Liu H, Chen ZS, Li GB, Wang S, Liu HM, Yu B. Discovery of New 4-Indolyl Quinazoline Derivatives as Highly Potent and Orally Bioavailable P-Glycoprotein Inhibitors. J Med Chem 2021; 64:14895-14911. [PMID: 34546748 DOI: 10.1021/acs.jmedchem.1c01452] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The major drawbacks of P-glycoprotein (P-gp) inhibitors at the clinical stage make the development of new P-gp inhibitors challenging and desirable. In this study, we reported our structure-activity relationship studies of 4-indolyl quinazoline, which led to the discovery of a highly effective and orally active P-gp inhibitor, YS-370. YS-370 effectively reversed multidrug resistance (MDR) to paclitaxel and colchicine in SW620/AD300 and HEK293T-ABCB1 cells. YS-370 bound directly to P-gp, did not alter expression or subcellular localization of P-gp in SW620/AD300 cells, but increased the intracellular accumulation of paclitaxel. Furthermore, YS-370 stimulated the P-gp ATPase activity and had moderate inhibition against CYP3A4. Significantly, oral administration of YS-370 in combination with paclitaxel achieved much stronger antitumor activity in a xenograft model bearing SW620/Ad300 cells than either drug alone. Taken together, our data demonstrate that YS-370 is a promising P-gp inhibitor capable of overcoming MDR and represents a unique scaffold for the development of new P-gp inhibitors.
Collapse
Affiliation(s)
- Shuo Yuan
- School of Pharmaceutical Sciences & Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou 450001, China
| | - Bo Wang
- School of Pharmaceutical Sciences & Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou 450001, China
| | - Qing-Qing Dai
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xiao-Nan Zhang
- School of Pharmaceutical Sciences & Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou 450001, China
| | - Jing-Ya Zhang
- School of Pharmaceutical Sciences & Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou 450001, China
| | - Jia-Hui Zuo
- School of Pharmaceutical Sciences & Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou 450001, China
| | - Hui Liu
- School of Pharmaceutical Sciences & Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou 450001, China
| | - Zhe-Sheng Chen
- College of Pharmacy and Health Sciences, St. John's University, Queens, New York 11439, United States
| | - Guo-Bo Li
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan 610041, China
| | - Shaomeng Wang
- Departments of Internal Medicine, Pharmacology, and Medicinal Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Hong-Min Liu
- School of Pharmaceutical Sciences & Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou 450001, China
| | - Bin Yu
- School of Pharmaceutical Sciences & Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
16
|
Sahin K, Saripinar E, Durdagi S. Combined 4D-QSAR and target-based approaches for the determination of bioactive Isatin derivatives. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2021; 32:769-792. [PMID: 34530651 DOI: 10.1080/1062936x.2021.1971760] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 08/19/2021] [Indexed: 06/13/2023]
Abstract
The hybrid method of the Electron-Conformational Genetic Algorithm (EC-GA) was used to determine the pharmacophore groups and to estimate anticancer activity in isatin derivatives using a robust 4D-QSAR software (EMRE). To build the model, each compound is represented by a set of conformers rather than a single conformation. The Electron Conformational Matrix of Congruity (ECMC) is composed via EMRE software. Electron Conformational Submatrix of Activity (ECSA) was calculated by the comparison of these matrices. Genetic algorithm was used to select important variables to predict theoretical activity. The model with the best seven parameters produced satisfactory results. The E statistics technique was applied to the generated EC-GA model to evaluate the individual contribution of each of the descriptors on biological activity. The r2 and q2 values of the training set compounds were found to be 0.95 and 0.93, respectively. Because no previous 4D-QSAR studies on isatin derivatives have been conducted, this study is important in the development of new isatin derivatives. In this study, 27 isatin derivatives whose activities were estimated using the hybrid EC-GA method were also investigated through molecular docking and molecular dynamics simulations for their BCL-2 inhibitory activity.
Collapse
Affiliation(s)
- K Sahin
- Computational Biology and Molecular Simulations Laboratory, Department of Biophysics, School of Medicine, Bahcesehir University, Istanbul, Turkey
| | - E Saripinar
- Faculty of Science, Department of Chemistry, Erciyes University, Kayseri, Turkey
| | - S Durdagi
- Computational Biology and Molecular Simulations Laboratory, Department of Biophysics, School of Medicine, Bahcesehir University, Istanbul, Turkey
| |
Collapse
|
17
|
Hu YW, Liu Y, Guo EY, Wang YY, Xu WQ, Gao Y, Jiang XY, Feng F, Xu J, Liu WY. Naphtho-γ-pyrone Dimers from an Endozoic Aspergillus niger and the Effects of Coisolated Monomers in Combination with Cisplatin on a Cisplatin-Resistant A549 Cell Line. JOURNAL OF NATURAL PRODUCTS 2021; 84:1889-1897. [PMID: 34156846 DOI: 10.1021/acs.jnatprod.0c01262] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Chemotherapy resistance is one of the main causes of lung cancer treatment failure, and a combination regimen may be an effective way to overcome this. Here we report 5 new (1-3, 7, and 9) and 15 known polyketides, isolated from an endozoic Aspergillus niger. The structures of the new compounds were determined by the interpretation of IR, HRESIMS, NMR, and ECD spectra. The ESI-MS/MS fragmentation of the isolated naphtho-γ-pyrone isomers in positive mode is discussed. The effects of isolated compounds in combination with cisplatin (DDP) on a DDP-resistant A549 cell line (A459/DDP) are investigated. The most active compound, 12, could reduce the ratio of GSH/GSSG, promote the generation of intracellular ROS, and cooperate with DDP to down-regulated levels of Nrf2, Akt, HO-1, and NQO1, suggesting that inhibition of Nrf2 and Akt pathways might be involved in the combined effect of 12 and DDP in A549/DDP cells.
Collapse
Affiliation(s)
- Yun-Wei Hu
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Ying Liu
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Er-Yan Guo
- Department of Natural Medicinal Chemistry, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Yu-Ying Wang
- Department of Natural Medicinal Chemistry, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Wan-Qi Xu
- Department of Natural Medicinal Chemistry, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Yan Gao
- Department of Natural Medicinal Chemistry, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Xue-Yang Jiang
- Department of Natural Medicinal Chemistry, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Feng Feng
- Department of Natural Medicinal Chemistry, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China
- Jiangsu Food & Pharmaceutical Science College, Huaian 223003, People's Republic of China
| | - Jian Xu
- Department of Traditional Chinese Medicine, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Wen-Yuan Liu
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| |
Collapse
|
18
|
Mahmud S, Islam MJ, Parves MR, Khan MA, Tabussum L, Ahmed S, Ali MA, Fakayode SO, Halim MA. Designing potent inhibitors against the multidrug resistance P-glycoprotein. J Biomol Struct Dyn 2021; 40:9403-9415. [PMID: 34060432 DOI: 10.1080/07391102.2021.1930159] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The multidrug transporter P-glycoprotein is an ATP binding cassette (ABC) exporter responsible for resistance to tumor cells during chemotherapy. This study was designed with computational approaches aimed at identifying the best potent inhibitors of P-glycoprotein. Although many compounds have been suggested to inhibit P-glycoprotein, however, their information on bioavailability, selectivity, ADMET properties, and molecular interactions has not been revealed. Molecular docking, ADMET analysis, molecular dynamics, Principal component analysis (PCA), and binding free energy calculations were performed. Two compounds D1 and D2 showed the best docking score against P-glycoprotein and both compounds have 4-thiazolidinone derivatives containing indolin-3 one moiety are novel anti-tumor compounds. ADMET calculation analysis predicted D1 and D2 to have acceptable pharmacokinetic properties. The MD simulation discloses that D1-P-glycoprotein and D2-P-glycoprotein complexes are in stable conformation as apo-form. Hydrophobic amino acid such as phenylalanine plays significant on the interactions of inhibitors. Principal component analysis shows that both complexes are relatively similar variables as apo-form except planarity and Columbo energy profile. In addition, Quantitative Structural Activity Relationship (QSAR) of the ligand candidates were subjected to the principal component analysis (PCA) for pattern recognition. Partial-least-square (PLS) regression analysis was further utilized to model drug candidates' QSAR for subsequent prediction of the binding energy of validated drug candidates. PCA revealed groupings of the drug candidates based on the similarity or differences in drug candidates QSAR. Moreover, the developed PLS regression accurately predicted the values of the binding energy of drug candidates, with low residual error of prediction.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Shafi Mahmud
- Division of Computer Aided Drug-Design, The Red-Green Research Center, BICCB, Tejgaon, Dhaka, Bangladesh.,Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi, Bangladesh
| | - Md Jahirul Islam
- Division of Computer Aided Drug-Design, The Red-Green Research Center, BICCB, Tejgaon, Dhaka, Bangladesh
| | - Md Rimon Parves
- Division of Computer Aided Drug-Design, The Red-Green Research Center, BICCB, Tejgaon, Dhaka, Bangladesh.,Department of Biochemistry and Biotechnology, University of Science and Technology Chittagong (USTC), Chittagong, Bangladesh
| | - Md Arif Khan
- Division of Computer Aided Drug-Design, The Red-Green Research Center, BICCB, Tejgaon, Dhaka, Bangladesh.,Department of Biotechnology and Genetic Engineering, University of Development Alternative (UODA), Dhaka, Bangladesh
| | - Lamiya Tabussum
- Division of Computer Aided Drug-Design, The Red-Green Research Center, BICCB, Tejgaon, Dhaka, Bangladesh.,Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi, Bangladesh
| | - Sinthyia Ahmed
- Division of Computer Aided Drug-Design, The Red-Green Research Center, BICCB, Tejgaon, Dhaka, Bangladesh
| | - Md Ackas Ali
- Division of Computer Aided Drug-Design, The Red-Green Research Center, BICCB, Tejgaon, Dhaka, Bangladesh
| | - Sayo O Fakayode
- Department of Physical Sciences, University of Arkansas-Fort Smith, Fort Smith, Arkansas, USA
| | - Mohammad A Halim
- Department of Physical Sciences, University of Arkansas-Fort Smith, Fort Smith, Arkansas, USA
| |
Collapse
|
19
|
El-Readi MZ, Al-Abd AM, Althubiti MA, Almaimani RA, Al-Amoodi HS, Ashour ML, Wink M, Eid SY. Multiple Molecular Mechanisms to Overcome Multidrug Resistance in Cancer by Natural Secondary Metabolites. Front Pharmacol 2021; 12:658513. [PMID: 34093189 PMCID: PMC8176113 DOI: 10.3389/fphar.2021.658513] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 04/12/2021] [Indexed: 12/20/2022] Open
Abstract
Plant secondary metabolites (SMs) common natural occurrences and the significantly lower toxicities of many SM have led to the approaching development and use of these compounds as effective pharmaceutical agents; especially in cancer therapy. A combination of two or three of plant secondary metabolites together or of one SM with specific anticancer drugs, may synergistically decrease the doses needed, widen the chemotherapeutic window, mediate more effective cell growth inhibition, and avoid the side effects of high drug concentrations. In mixtures they can exert additive or even synergistic activities. Many SM can effectively increase the sensitivity of cancer cells to chemotherapy. In phytotherapy, secondary metabolites (SM) of medicinal plants can interact with single or multiple targets. The multi-molecular mechanisms of plant secondary metabolites to overcome multidrug resistance (MDR) are highlighted in this review. These mechanisms include interaction with membrane proteins such as P-glycoprotein (P-gp/MDR1); an ATP-binding cassette (ABC) transporter, nucleic acids (DNA, RNA), and induction of apoptosis. P-gp plays an important role in the development of MDR in cancer cells and is involved in potential chemotherapy failure. Therefore, the ingestion of dietary supplements, food or beverages containing secondary metabolites e.g., polyphenols or terpenoids may alter the bioavailability, therapeutic efficacy and safety of the drugs that are P-gp substrates.
Collapse
Affiliation(s)
- Mahmoud Zaki El-Readi
- Department of Biochemistry, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia.,Department of Biochemistry, Faculty of Pharmacy, Al-Azhar University, Assiut, Egypt
| | - Ahmed M Al-Abd
- Department of Pharmaceutical Sciences, College of Pharmacy & Thumbay Research Institute for Precision Medicine, Gulf Medical University, Ajman, United Arab Emirates.,Pharmacology Department, Medical Division, National Research Centre, Cairo, Egypt
| | - Mohammad A Althubiti
- Department of Biochemistry, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Riyad A Almaimani
- Department of Biochemistry, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Hiba Saeed Al-Amoodi
- Department of Biochemistry, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Mohamed Lotfy Ashour
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, Jeddah, Saudi Arabia.,Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Michael Wink
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Heidelberg, Germany
| | - Safaa Yehia Eid
- Department of Biochemistry, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| |
Collapse
|
20
|
Sawant AS, Kamble SS, Pisal PM, Sawant SS, Hese SV, Bagul KT, Pinjari RV, Kamble VT, Meshram RJ, Gacche RN. Synthesis and evaluation of N-(4-(substituted)-3-(trifluoromethyl) phenyl) isobutyramides and their N-ethyl analogous as anticancer, anti-angiogenic & antioxidant agents: In vitro and in silico analysis. Comput Biol Chem 2021; 92:107484. [PMID: 33865034 DOI: 10.1016/j.compbiolchem.2021.107484] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 04/01/2021] [Accepted: 04/04/2021] [Indexed: 11/17/2022]
Abstract
N-(4-(substituted)-3-(trifluoromethyl) phenyl) isobutyramides and their N-ethyl analogues (flutamides) are versatile scaffolds with a wide spectrum of biological activities. A series of new N-(4-(substituted)-3-(trifluoromethyl) phenyl) isobutyramides (8a-t) and their N-ethyl analogous (9a-t) were synthesized and characterized. The inhibitory potential of the synthesized compounds on the viability of three human cancer cell lines HEP3BPN 11 (liver), MDA-MB 453 (breast), and HL 60 (leukemia) were assessed. Among all the compounds 8 L, 8q, 9n and 9p showed higher inhibitory activity on the viability of HL 60 than the standard methotrexate. These lead molecules were then tested for their potential to inhibit the activity of proangiogenic cytokines. The compound 9n showed significantly better inhibition against two cytokines viz. TNFα and Leptin as compared to the standard suramin, while 9p has activity comparable to suramin against IGF1, VEGF, FGFb, and Leptin. The 8q is found to be strong antiangiogenic agent against IGF1, VEGF and TGFβ; while 8 L has showed activity against TNFα, VEGF, and Leptin inhibition. Furthermore antioxidant potential of 8a-t and 9a-t compounds was screened using DPPH, OH and SOR radical scavenging activities. The OH radical scavenging activity of 8c and DPPH activities of 9n as well as 9o are significant as compared to respective standards ascorbic acid and α-tocopherol. The 8c, 9p and 9 h have also exhibited potential antioxidant activity. Additionally, we present in silico molecular docking data to provide the structural rationale of observed TNFα inhibition against newly synthesized compounds. Overall, the synthesized flutamide derivatives have not only anticancer activity, but also possess dual inhibitory effect (anti-angiogenesis and antioxidant) and hence can act as a promising avenue to develop further anticancer agents.
Collapse
Affiliation(s)
- Ajay S Sawant
- School of Chemical Sciences, Swami Ramanand Teerth Marathwada University, Nanded-431 606, MS, India
| | - Sonali S Kamble
- Gramin Science (Vocational) College, Vishnupuri, Nanded-431 606, MS, India
| | - Parshuram M Pisal
- School of Chemical Sciences, Swami Ramanand Teerth Marathwada University, Nanded-431 606, MS, India
| | - Sanjay S Sawant
- School of Chemical Sciences, Swami Ramanand Teerth Marathwada University, Nanded-431 606, MS, India
| | - Shrikant V Hese
- DD Bhoyar College of Arts and Science Mouda, Nagpur, 441104, MS, India
| | - Kamini T Bagul
- Bioinformatics Centre, Savitribai Phule Pune University, Pune, 411007, India
| | - Rahul V Pinjari
- School of Chemical Sciences, Swami Ramanand Teerth Marathwada University, Nanded-431 606, MS, India
| | - Vinod T Kamble
- Organic Chemistry Research Laboratory, Department of Chemistry, Institute of Science, Nagpur, MS, India.
| | - Rohan J Meshram
- Bioinformatics Centre, Savitribai Phule Pune University, Pune, 411007, India
| | - Rajesh N Gacche
- Department of Biotechnology, Savitribai Phule Pune University, Pune, 411007, MS, India.
| |
Collapse
|
21
|
Gopisetty MK, Adamecz DI, Nagy FI, Baji Á, Lathira V, Szabó MR, Gáspár R, Csont T, Frank É, Kiricsi M. Androstano-arylpyrimidines: Novel small molecule inhibitors of MDR1 for sensitizing multidrug-resistant breast cancer cells. Eur J Pharm Sci 2021; 156:105587. [PMID: 33039566 DOI: 10.1016/j.ejps.2020.105587] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 08/07/2020] [Accepted: 10/04/2020] [Indexed: 11/19/2022]
Abstract
Apart from the numerous physiological functions of MDR1, it is widely known for its role in granting multidrug resistance to cancer cells. This ATP-driven transmembrane protein exports a wide range of chemotherapeutic agents from cancer cells, thereby deterring drugs to reach effective intracellular concentrations. Thus, inhibition of MDR1 expression or function would be a viable option to enhance the accumulation of cytotoxic agents in cancer cells which in turn could improve significantly the success rate of chemotherapy. Although, several pharmacological inhibitors have been designed and tested in the past, due to their unsuccessful translation to clinical application, there is still ongoing research to find suitable compounds to manipulate MDR1 function and potentially overturn multidrug resistance. In the present study, we demonstrate that novel DHT-derived A-ring-fused arylpyrimidinone derivatives, based on their acetylation status, can inhibit MDR1 efflux activity in MDR1 overexpressing multidrug-resistant breast adenocarcinoma cells. Strikingly, all derivatives carrying an acetoxy group on the sterane d-ring were highly potent in hindering Rhodamine 123 export via MDR1, however deacetylated molecules were not capable to exert a similar effect on multidrug resistant cancer cells. The possible molecular and cellular mechanisms underlying the efflux pump inhibiting function of acetylated derivatives were dissected using the most potent MDR1 inhibitor, compound 10g and its deacetylated counterpart (11g). Importantly, molecule 10g was able to sensitize drug resistant cells to doxorubicin-induced apoptosis, further verifying the highly advantageous nature of efflux pump inhibition upon chemotherapy. Our experiments also revealed that neither mitochondrial damage, nor MDR1 gene regulation could lay behind the MDR1 inhibitory function of compound 10g. Molecular docking studies were carried out to analyze the interactions of 10g and 11g with MDR1, however no significant differences in their binding properties were observed. Nevertheless, our results indicate that the ER stress inducing potential of molecule 10g might be the fundamental mechanism behind its inhibitory action on MDR1. With additional studies, our work can yield a structural platform for a new generation of small molecule MDR1 inhibitors to sensitize drug resistant cancer cells and at the same time it elucidates the exemplary involvement of endoplasmic reticulum stress in the molecular events to defeat multidrug resistance.
Collapse
Affiliation(s)
- Mohana Krishna Gopisetty
- Department of Biochemistry and Molecular Biology, Doctoral School of Biology, University of Szeged, Közép fasor 52, H-6726, Szeged, Hungary
| | - Dóra Izabella Adamecz
- Department of Biochemistry and Molecular Biology, Doctoral School of Biology, University of Szeged, Közép fasor 52, H-6726, Szeged, Hungary
| | - Ferenc István Nagy
- Department of Biochemistry and Molecular Biology, Doctoral School of Biology, University of Szeged, Közép fasor 52, H-6726, Szeged, Hungary
| | - Ádám Baji
- Department of Organic Chemistry, University of Szeged, Dóm tér 8., Szeged H-6720, Hungary
| | - Vasiliki Lathira
- School of Biology, Faculty of Sciences, Aristotle University of Thessaloniki, University Campus, Thessaloniki 54124, Greece
| | - Márton Richárd Szabó
- Metabolic Diseases and Cell Signaling (MEDICS) Research Group, Institute of Biochemistry, Interdisciplinary Center of Excellence, University of Szeged, Dóm tér 9., Szeged H-6720, Hungary
| | - Renáta Gáspár
- Metabolic Diseases and Cell Signaling (MEDICS) Research Group, Institute of Biochemistry, Interdisciplinary Center of Excellence, University of Szeged, Dóm tér 9., Szeged H-6720, Hungary
| | - Tamás Csont
- Metabolic Diseases and Cell Signaling (MEDICS) Research Group, Institute of Biochemistry, Interdisciplinary Center of Excellence, University of Szeged, Dóm tér 9., Szeged H-6720, Hungary
| | - Éva Frank
- Department of Organic Chemistry, University of Szeged, Dóm tér 8., Szeged H-6720, Hungary
| | - Mónika Kiricsi
- Department of Biochemistry and Molecular Biology, Doctoral School of Biology, University of Szeged, Közép fasor 52, H-6726, Szeged, Hungary.
| |
Collapse
|
22
|
Yokoe H, Mizumura Y, Sugiyama K, Yan K, Hashizume Y, Endo Y, Yoshida S, Kiriyama A, Tsubuki M, Kanoh N. Rapid Access to Dispirocyclic Scaffolds Enabled by Diastereoselective Intramolecular Double Functionalization of Benzene Rings. Chem Asian J 2020; 15:4271-4274. [PMID: 33029940 PMCID: PMC7756633 DOI: 10.1002/asia.202001179] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Indexed: 01/19/2023]
Abstract
Here we describe the diastereoselective synthesis of (5r,8r)-1,9-diazadispiro[4.2.48 .25 ]tetradecatrienes via domino double spirocyclization of N-arylamide derivatives. This reaction can serve as a fast way to synthesize diazadispirocycles, which are found in the core structures of bioactive natural products. Product diversification via Suzuki-Miyaura cross coupling and application to the synthesis of 1-oxa-9-azadispiro[4.2.48 .25 ]tetradecatrienes were also conducted.
Collapse
Affiliation(s)
- Hiromasa Yokoe
- Institute of Medicinal Chemistry, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan
| | - Yuka Mizumura
- Institute of Medicinal Chemistry, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan
| | - Kana Sugiyama
- Institute of Medicinal Chemistry, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan
| | - Kejia Yan
- Institute of Medicinal Chemistry, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan
| | - Yuna Hashizume
- Institute of Medicinal Chemistry, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan
| | - Yuto Endo
- Institute of Medicinal Chemistry, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan
| | - Sae Yoshida
- Institute of Medicinal Chemistry, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan
| | - Akiko Kiriyama
- Institute of Medicinal Chemistry, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan
| | - Masayoshi Tsubuki
- Institute of Medicinal Chemistry, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan
| | - Naoki Kanoh
- Institute of Medicinal Chemistry, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan
| |
Collapse
|
23
|
Venom peptides in cancer therapy: An updated review on cellular and molecular aspects. Pharmacol Res 2020; 164:105327. [PMID: 33276098 DOI: 10.1016/j.phrs.2020.105327] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 11/25/2020] [Accepted: 11/27/2020] [Indexed: 02/07/2023]
Abstract
Based on the high incidence and mortality rates of cancer, its therapy remains one of the most vital challenges in the field of medicine. Consequently, enhancing the efficacy of currently applied treatments and finding novel strategies are of great importance for cancer treatment. Venoms are important sources of a variety of bioactive compounds including salts, small molecules, macromolecules, proteins, and peptides that are defined as toxins. They can exhibit different pharmacological effects, and in recent years, their anti-tumor activities have gained significant attention. Several different compounds are responsible for the anti-tumor activity of venoms, and peptides are one of them. In the present review, we discuss the possible anti-tumor activities of venom peptides by highlighting molecular pathways and mechanisms through which these molecules can act effectively. Venom peptides can induce cell death in cancer cells and can substantially enhance the efficacy of chemotherapy and radiotherapy. Also, the venom peptides can mitigate the migration of cancer cells via suppression of angiogenesis and epithelial-to-mesenchymal transition. Notably, nanoparticles have been applied in enhancing the bioavailability of venom peptides and providing targeted delivery, thereby leading to their elevated anti-tumor activity and potential application for cancer therapy.
Collapse
|
24
|
Ghoshal T, Patel TM. Anticancer activity of benzoxazole derivative (2015 onwards): a review. FUTURE JOURNAL OF PHARMACEUTICAL SCIENCES 2020. [DOI: 10.1186/s43094-020-00115-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Abstract
Background
According to the report published recently by the World Health Organization, the number of cancer cases in the world will increase to 22 million by 2030. So the anticancer drug research and development is taking place in the direction where the new entities are developed which are low in toxicity and are with improved activity. Benzoxazole and its derivative represent a very important class of heterocyclic compounds, which have a diverse therapeutic area. Recently, many active compounds synthesized are very effective; natural products isolated with benzoxazole moiety have also shown to be potent towards cancer.
Main text
In the last few years, many research groups have designed and developed many novel compounds with benzoxazole as their backbone and checked their anticancer activity. In the review article, the recent developments (mostly after 2015) made in the direction of design and synthesis of new scaffolds with very potent anticancer activity are briefly described. The effect of various heterocycles attached to the benzoxazole and their effect on the anticancer activity are thoroughly studied and recorded in the review.
Conclusion
These compiled data in the article will surely update the scientific community with the recent development in this area and will provide direction for further research in this area.
Collapse
|
25
|
Shi X, Zhao Y, Zhou L, Yin H, Liu J, Ma L. Design, Synthesis and Biological Evaluation of Dimethyl Cardamonin (DMC) Derivatives as P-glycoprotein-mediated Multidrug Resistance Reversal Agents. LETT DRUG DES DISCOV 2020. [DOI: 10.2174/1570180817999200531162015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Background:
P-glycoprotein (P-gp) has been regarded as an important factor in the multidrug
resistance (MDR) of tumor cells within the last decade, which can be solved by inhibiting Pgp
to reverse MDR. Thus, it is an effective strategy to develop inhibitor of P-gp.
Objective:
In this study, the synthesis of a series of derivatives had been carried out by bioisosterism
design on the basis of Dimethyl Cardamonin (DMC). Subsequently, we evaluated their reversal activities
as potential P-glycoprotein (P-gp)-mediated Multidrug Resistance (MDR) agents.
Methods:
Dimethyl cardamonin derivatives were synthesized from acetophenones and the corresponding
benzaldehydes in the presence of 40% KOH by Claisen-Schmidt reaction. Their cytotoxicity
and reversal activities in vitro were assessed with MTT. Moreover, the compound B4 was evaluated
by Doxorubicin (DOX) accumulation, Western blot and wound-healing assays deeply.
Results and Conclusion:
The results showed that compounds B2, B4 and B6 had the potency of
MDR reversers with little intrinsic cytotoxicity. Meanwhile, these compounds also demonstrated the
capability to inhibit MCF-7 and MCF-7/DOX cells migration. Besides, the most compound B4 was
selected for further study, which promoted the accumulation of DOX in MCF-7/DOX cells and inhibited
the expressionof P-gp at protein levels.
Conclusion:
The above findings may provide new insights for the research and development of Pgp-
mediated MDR reversal agents.
Collapse
Affiliation(s)
- Ximeng Shi
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Yuyu Zhao
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Licheng Zhou
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Huanhuan Yin
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Jianwen Liu
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Lei Ma
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| |
Collapse
|
26
|
Cryo-EM structures reveal distinct mechanisms of inhibition of the human multidrug transporter ABCB1. Proc Natl Acad Sci U S A 2020; 117:26245-26253. [PMID: 33020312 DOI: 10.1073/pnas.2010264117] [Citation(s) in RCA: 170] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
ABCB1 detoxifies cells by exporting diverse xenobiotic compounds, thereby limiting drug disposition and contributing to multidrug resistance in cancer cells. Multiple small-molecule inhibitors and inhibitory antibodies have been developed for therapeutic applications, but the structural basis of their activity is insufficiently understood. We determined cryo-EM structures of nanodisc-reconstituted, human ABCB1 in complex with the Fab fragment of the inhibitory, monoclonal antibody MRK16 and bound to a substrate (the antitumor drug vincristine) or to the potent inhibitors elacridar, tariquidar, or zosuquidar. We found that inhibitors bound in pairs, with one molecule lodged in the central drug-binding pocket and a second extending into a phenylalanine-rich cavity that we termed the "access tunnel." This finding explains how inhibitors can act as substrates at low concentration, but interfere with the early steps of the peristaltic extrusion mechanism at higher concentration. Our structural data will also help the development of more potent and selective ABCB1 inhibitors.
Collapse
|
27
|
Ma Y, Yin D, Ye J, Wei X, Pei Y, Li X, Si G, Chen XY, Chen ZS, Dong Y, Zou F, Shi W, Qiu Q, Qian H, Liu G. Discovery of Potent Inhibitors against P-Glycoprotein-Mediated Multidrug Resistance Aided by Late-Stage Functionalization of a 2-(4-(Pyridin-2-yl)phenoxy)pyridine Analogue. J Med Chem 2020; 63:5458-5476. [PMID: 32329342 DOI: 10.1021/acs.jmedchem.0c00337] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
SIS3 is a specific inhibitor of Smad3 that inhibits the TGFβ1-induced phosphorylation of Smad3. In this article, a variety of SIS3 derivatives were designed and synthesized to discover potential inhibitors against P-glycoprotein-mediated multidrug resistance aided by late-stage functionalization of a 2-(4-(pyridin-2-yl)phenoxy)pyridine analogue. A novel class of potent P-gp reversal agents were investigated, and a lead compound 37 was identified as a potent P-gp reversal agent with strong bioactivity and outstanding affinity for P-gp.
Collapse
Affiliation(s)
- Yao Ma
- Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, 2A Nanwei Road, Xicheng District, Beijing 100050, P. R. China
| | - Dawei Yin
- School of Pharmaceutical Sciences, Tsinghua University, Haidian District, Beijing 100084, P. R. China
| | - Jingjia Ye
- School of Pharmaceutical Sciences, Tsinghua University, Haidian District, Beijing 100084, P. R. China
| | - Xiduan Wei
- School of Pharmaceutical Sciences, Tsinghua University, Haidian District, Beijing 100084, P. R. China
| | - Yameng Pei
- School of Pharmaceutical Sciences, Tsinghua University, Haidian District, Beijing 100084, P. R. China
| | - Xueyuan Li
- School of Pharmaceutical Sciences, Tsinghua University, Haidian District, Beijing 100084, P. R. China
| | - Guangxu Si
- School of Pharmaceutical Sciences, Tsinghua University, Haidian District, Beijing 100084, P. R. China
| | - Xuan-Yu Chen
- College of Pharmacy and Health Science, St. John's University, Queens, New York, New York 11439, United States.,College of Integrated Chinese and Western Medicine, Hebei Medical University, Shijiazhuang, Hebei 050017, China
| | - Zhe-Sheng Chen
- College of Pharmacy and Health Science, St. John's University, Queens, New York, New York 11439, United States
| | - Yi Dong
- Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, 2A Nanwei Road, Xicheng District, Beijing 100050, P. R. China
| | - Feng Zou
- Center of Drug Discovery, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, P. R. China
| | - Wei Shi
- Center of Drug Discovery, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, P. R. China
| | - Qianqian Qiu
- Center of Drug Discovery, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, P. R. China
| | - Hai Qian
- Center of Drug Discovery, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, P. R. China
| | - Gang Liu
- School of Pharmaceutical Sciences, Tsinghua University, Haidian District, Beijing 100084, P. R. China
| |
Collapse
|
28
|
Fattahian M, Ghanadian M, Ali Z, Khan IA. Jatrophane and rearranged jatrophane-type diterpenes: biogenesis, structure, isolation, biological activity and SARs (1984-2019). PHYTOCHEMISTRY REVIEWS : PROCEEDINGS OF THE PHYTOCHEMICAL SOCIETY OF EUROPE 2020; 19:265-336. [PMID: 32292314 PMCID: PMC7152985 DOI: 10.1007/s11101-020-09667-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 02/29/2020] [Indexed: 05/12/2023]
Abstract
Diterpene compounds specially macrocyclic ones comprising jatrophane, lathyrane, terracinolide, ingenane, pepluane, paraliane, and segetane skeletons occurring in plants of the Euphorbiaceae family are of considerable interest in the context of natural product drug discovery programs. They possess diverse complex skeletons and a broad spectrum of therapeutically relevant biological activities including anti-inflammatory, anti-chikungunya virus, anti-HIV, cytotoxic, and multidrug resistance-reversing activities as well as curative effects on thrombotic diseases. Among macrocyclic diterpenes of Euphorbia, the discovery of jatrophane and modified jatrophane diterpenes with a wide range of structurally unique polyoxygenated polycyclic derivatives and as a new class of powerful inhibitors of P-glycoprotein has opened new frontiers for research studies on this genus. In this review, an attempt has been made to give in-depth coverage of the articles on the naturally occurring jatrophanes and rearranged jatrophane-type diterpenes isolated from species belonging to the Euphorbiaceae family published from 1984 to March 2019, with emphasis on the biogenesis, isolation methods, structure, biological activity, and structure-activity relationship.
Collapse
Affiliation(s)
- Maryam Fattahian
- School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mustafa Ghanadian
- School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
- National Center for Natural Products Research, School of Pharmacy, University of Mississippi, University, MS 38677 USA
| | - Zulfiqar Ali
- National Center for Natural Products Research, School of Pharmacy, University of Mississippi, University, MS 38677 USA
| | - Ikhlas A. Khan
- National Center for Natural Products Research, School of Pharmacy, University of Mississippi, University, MS 38677 USA
| |
Collapse
|
29
|
Venkatapathy K, Magesh CJ, Lavanya G, Perumal PT, Prema S. Design, synthesis, molecular docking, and spectral studies of new class of carbazolyl polyhydroquinoline derivatives as promising antibacterial agents with noncytotoxicity towards human mononuclear cells from peripheral blood. J Heterocycl Chem 2020. [DOI: 10.1002/jhet.3921] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Karuppan Venkatapathy
- PG & Research Department of ChemistryArignar Anna Government Arts and Science College Cheyyar India
| | - Chinnaiyan J. Magesh
- PG & Research Department of ChemistryArignar Anna Government Arts and Science College Cheyyar India
| | - Gnanamani Lavanya
- PG & Research Department of ChemistryArignar Anna Government Arts and Science College Cheyyar India
| | - Paramasivam T. Perumal
- Department of ChemistryB.S. Abdur Rahman Crescent Institute of Science and Technology Chennai India
| | - Sekar Prema
- PG & Research Department of ChemistryArignar Anna Government Arts and Science College Cheyyar India
| |
Collapse
|
30
|
Sahin K, Saripinar E. A novel hybrid method named electron conformational genetic algorithm as a 4D QSAR investigation to calculate the biological activity of the tetrahydrodibenzazosines. J Comput Chem 2020; 41:1091-1104. [PMID: 32058616 DOI: 10.1002/jcc.26154] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 12/18/2019] [Accepted: 12/18/2019] [Indexed: 11/11/2022]
Abstract
To understand the structure-activity correlation of a group of tetrahydrodibenzazocines as inhibitors of 17β-hydroxysteroid dehydrogenase type 3, we have performed a combined genetic algorithm (GA) and four-dimensional quantitative structure-activity relationship (4D-QSAR) modeling study. The computed electronic and geometry structure descriptors were regulated as a matrix and named as electron-conformational matrix of contiguity (ECMC). A chemical property-based pharmacophore model was developed for series of tetrahydrodibenzazocines by EMRE software package. GA was employed to choose an optimal combination of parameters. A model has been developed for estimating anticancer activity quantitatively. All QSAR models were established with 40 compounds (training set), then they were considered for selective capability with additional nine compounds (test set). A statistically valid 4D-QSAR ( R training 2 = 0.856 , R test 2 = 0.851 and q2 = 0.650) with good external set prediction was obtained.
Collapse
Affiliation(s)
- Kader Sahin
- Computational Biology and Molecular Simulations Laboratory, Department of Biophysics, School of Medicine, Bahcesehir University, Istanbul, Turkey
| | - Emin Saripinar
- Science Faculty, Department of Chemistry, Erciyes University, Kayseri, Turkey
| |
Collapse
|
31
|
Nobili S, Lapucci A, Landini I, Coronnello M, Roviello G, Mini E. Role of ATP-binding cassette transporters in cancer initiation and progression. Semin Cancer Biol 2020; 60:72-95. [PMID: 31412294 DOI: 10.1016/j.semcancer.2019.08.006] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 08/07/2019] [Accepted: 08/07/2019] [Indexed: 12/18/2022]
|
32
|
Synthesis, in vitro antimicrobial assessment, and computational investigation of pharmacokinetic and bioactivity properties of novel trifluoromethylated compounds using in silico ADME and toxicity prediction tools. MONATSHEFTE FUR CHEMIE 2020. [DOI: 10.1007/s00706-020-02550-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
33
|
Guillon J, Nim S, Moreau S, Ronga L, Savrimoutou S, Thivet E, Marchivie M, Di Pietro A, Prasad R, Le Borgne M. Synthesis of new piperazinyl-pyrrolo[1,2- a]quinoxaline derivatives as inhibitors of Candida albicans multidrug transporters by a Buchwald-Hartwig cross-coupling reaction. RSC Adv 2020; 10:2915-2931. [PMID: 35496110 PMCID: PMC9048445 DOI: 10.1039/c9ra09348f] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Accepted: 12/30/2019] [Indexed: 11/21/2022] Open
Abstract
Two series of piperazinyl-pyrrolo[1,2-a]quinoxaline derivatives were prepared via a Buchwald–Hartwig cross-coupling reaction and then evaluated for their ability to inhibit the drug efflux activity of CaCdr1p and CaMdr1p transporters of Candida albicans overexpressed in a Saccharomyces cerevisiae strain. In the initial screening of twenty-nine piperazinyl-pyrrolo[1,2-a]quinoxaline derivatives, twenty-three compounds behaved as dual inhibitors of CaCdr1p and CaMdr1p. Only four compounds showed exclusive inhibition of CaCdr1p or CaMdr1p. Further biological investigations were developed and for example, their antifungal potential was evaluated by measuring the growth of control yeast cells (AD1-8u−) and efflux pump-overexpressing cells (AD-CDR1 and AD-MDR1) after exposition to variable concentrations of the tested compounds. The MIC80 values of nineteen compounds ranging from 100 to 901 μM for AD-CDR1 demonstrated that relative resistance index (RI) values were between 8 and 274. In comparison, only seven compounds had RI values superior to 4 in cells overexpressing Mdr1p. These results indicated substrate behavior for nineteen compounds for CaCdr1p and seven compounds for CaMdr1p, as these compounds were transported via MDR transporter overexpressing cells and not by the AD1-8u− cells. Finally, in a combination assay with fluconazole, two compounds (1d and 1f) have shown a synergistic effect (fractional inhibitory concentration index (FICI) values ≤ 0.5) at micromolar concentrations in the AD-MDR1 yeast strain overexpressing CaMdr1p-protein, indicating an excellent potency toward chemosensitization. Two series of piperazinyl-pyrrolo[1,2-a]quinoxaline derivatives were prepared via a Buchwald–Hartwig cross-coupling reaction and then evaluated for their ability to inhibit the drug efflux activity of two Candida albicans transporters.![]()
Collapse
Affiliation(s)
- Jean Guillon
- Univ. Bordeaux, INSERM U1212 - UMR CNRS 5320, ARNA Laboratory, UFR des Sciences Pharmaceutiques F-33076 Bordeaux Cedex France
| | - Shweta Nim
- School of Life Sciences, Jawaharlal Nehru University 110067 New Delhi India
| | - Stéphane Moreau
- Univ. Bordeaux, INSERM U1212 - UMR CNRS 5320, ARNA Laboratory, UFR des Sciences Pharmaceutiques F-33076 Bordeaux Cedex France
| | - Luisa Ronga
- Univ. Bordeaux, INSERM U1212 - UMR CNRS 5320, ARNA Laboratory, UFR des Sciences Pharmaceutiques F-33076 Bordeaux Cedex France
| | - Solène Savrimoutou
- Univ. Bordeaux, INSERM U1212 - UMR CNRS 5320, ARNA Laboratory, UFR des Sciences Pharmaceutiques F-33076 Bordeaux Cedex France
| | - Elisabeth Thivet
- Univ. Bordeaux, INSERM U1212 - UMR CNRS 5320, ARNA Laboratory, UFR des Sciences Pharmaceutiques F-33076 Bordeaux Cedex France
| | - Mathieu Marchivie
- CNRS, Univ. Bordeaux, Bordeaux INP, ICMCB, UMR 5026 F-33608 Pessac Cedex France
| | - Attilio Di Pietro
- DRMP Group, IBCP, UMR 5086 (MMSB), CNRS/Lyon I University 69367 Lyon France
| | - Rajendra Prasad
- Amity Institute of Integrative Sciences and Health, Amity University Education Valley Gurgaon 122413 India
| | - Marc Le Borgne
- Université de Lyon, Université Claude Bernard Lyon 1, Faculté de Pharmacie - ISPB, EA 4446 Bioactive Molecules and Medicinal Chemistry, SFR Santé Lyon-Est CNRS UMS3453 - INSERM US7 Lyon France
| |
Collapse
|
34
|
Chandra S, Michael Nguyen H, Wiltz K, Hall N, Chaudhry S, Olverson G, Mandal T, Dash S, Kundu A. Aptamer-functionalized Hybrid Nanoparticles to Enhance the Delivery of Doxorubicin into Breast Cancer Cells by Silencing P-glycoprotein. JOURNAL OF CANCER TREATMENT & DIAGNOSIS 2020; 4:1-13. [PMID: 32395707 PMCID: PMC7213597 DOI: 10.29245/2578-2967/2020/1.1176] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
OBJECTIVE The MDR of metastatic breast cancer cells is accompanied by the overexpression of P-gp transporter. This study has been focused to determine whether silencing the expression of P-gp by aptamer-labeled siRNA nanoparticles could enhance the delivery of doxorubicin into breast cancer cells in culture. METHODOLOGY The nanoparticle F-31 was prepared using DOTAP, cholesterol, and PLGA, and then incorporating Mal-PEG to facilitate aptamer-binding. The nanoparticles were surface-functionalized with aptamer A6, which targets Her-2 receptors overexpressed on the surface of breast cancer cells. RESULTS This study has shown that the uptake of Dox by Dox-resistant 4T1-R is significantly less than Dox-sensitive 4T1-S which is partly attributed to the higher expression of drug-efflux pump P-gp on the surface of the resistant cells. The targeted knockdown of P-gp has been enhanced when the particles carrying P-gp siRNA was labeled with aptamer. Concurrently, the uptake of Dox into the Dox-resistant 4T1-R breast cancer cells has increased significantly when the P-gp was silenced by P-gp siRNA-encapsulated aptamer-labeled nanoparticles. CONCLUSIONS This preliminary study concludes that downregulating P-gp expression by targeted delivery of P-gp siRNA using aptamer-labeled lipid-based hybrid nanoparticles could effectively increase the intracellular trafficking of doxorubicin in Dox-resistant mouse breast cancer cells.
Collapse
Affiliation(s)
- Sruti Chandra
- Department of Biology, Xavier University of Louisiana, New Orleans, Louisiana
| | | | - Kylar Wiltz
- Department of Biology, Xavier University of Louisiana, New Orleans, Louisiana
| | - Nicholas Hall
- Department of Biology, Xavier University of Louisiana, New Orleans, Louisiana
| | - Shanzay Chaudhry
- Department of Biology, Xavier University of Louisiana, New Orleans, Louisiana
| | - George Olverson
- Department of Biology, Xavier University of Louisiana, New Orleans, Louisiana
| | - Tarun Mandal
- Center for Nanomedicine and Drug Delivery, Xavier University College of Pharmacy, New Orleans, Louisiana
| | - Srikanta Dash
- Department of Pathology and Laboratory Medicine, Tulane University Health Sciences Center, New Orleans, Louisiana
| | - Anup Kundu
- Department of Biology, Xavier University of Louisiana, New Orleans, Louisiana
| |
Collapse
|
35
|
Levy ES, Samy KE, Lamson NG, Whitehead KA, Kroetz DL, Desai TA. Reversible inhibition of efflux transporters by hydrogel microdevices. Eur J Pharm Biopharm 2019; 145:76-84. [PMID: 31639417 PMCID: PMC6919324 DOI: 10.1016/j.ejpb.2019.10.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 10/09/2019] [Accepted: 10/18/2019] [Indexed: 01/10/2023]
Abstract
Oral drug delivery is a preferred administration route due to its low cost, high patient compliance and fewer adverse events compared to intravenous administration. However, many pharmaceuticals suffer from poor solubility and low oral bioavailability. One major factor that contributes to low bioavailability are efflux transporters which prevent drug absorption through intestinal epithelial cells. P-glycoprotein (P-gp) and Breast Cancer Resistance Protein (BCRP) are two important efflux transporters in the intestine functioning to prevent toxic materials from entering systemic circulation. However, due to its broad substrate specificity, P-gp limits the absorption of many therapeutics, including chemotherapeutics and antibacterial agents. Methods to inhibit P-gp with competitive inhibitors have not been clinically successful. Here, we show that micron scale devices (microdevices) made from a commonly used biomaterial, polyethylene glycol (PEG), inhibit P-gp through a biosimilar mucus in Caco-2 cells and that transporter function is restored when the microdevices are removed. Microdevices were shown to inhibit P-gp mediated transport of calcein AM, doxorubicin, and rhodamine 123 (R123) and BCRP mediated transport of BODIPY-FL-prazosin. When in contact with Caco-2 cells, microdevices decrease the cell surface amount of P-gp without affecting the passive transport. Moreover, there was an increase in mucosal to serosal transport of R123 with microdevices in an ex-vivo mouse model and increased absorption in vivo. This biomaterial-based approach to inhibit efflux transporters can be applied to a range of drug delivery systems and allows for a nonpharmacologic method to increase intestinal drug absorption while limiting toxic effects.
Collapse
Affiliation(s)
- Elizabeth S Levy
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA, USA; Pharmaceutical Sciences and Pharmacogenomics Graduate Program, University of California, San Francisco, CA, USA
| | - Karen E Samy
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA, USA; UC Berkeley - UCSF Graduate Program in Bioengineering, UCSF Mission Bay Campus, San Francisco, CA, USA
| | - Nicholas G Lamson
- Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Kathryn A Whitehead
- Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA; Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Deanna L Kroetz
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA, USA.
| | - Tejal A Desai
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA, USA; UC Berkeley - UCSF Graduate Program in Bioengineering, UCSF Mission Bay Campus, San Francisco, CA, USA.
| |
Collapse
|
36
|
Zhang C, He LJ, Zhu YB, Fan QZ, Miao DD, Zhang SP, Zhao WY, Liu XP. Piperlongumine Inhibits Akt Phosphorylation to Reverse Resistance to Cisplatin in Human Non-Small Cell Lung Cancer Cells via ROS Regulation. Front Pharmacol 2019; 10:1178. [PMID: 31680961 PMCID: PMC6798055 DOI: 10.3389/fphar.2019.01178] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 09/13/2019] [Indexed: 12/25/2022] Open
Abstract
Resistance is a major concern when administering chemotherapy to patients with non-small cell lung cancer (NSCLC). Chemosensitizer are agents that can reverse resistance to chemotherapeutic drugs, thereby enhancing the chemosensitivity of tumor cells. Thus, their development will improve therapeutic efficacy in cancer. However, few effective chemosensitizer have been identified to date. Piperlongumine (PL) has been shown to effectively reverse resistance to chemotherapeutic drugs in several types of cancers. However, the mechanisms associated with the chemotherapy resistance reversal effect of PL and its regulation of target factors in chemotherapy resistance cells are still unclear. This study investigated the reversal effect of PL both in vitro and in vivo, and provided evidence that PL inhibited the phosphorylation of Akt via the accumulation of reactive oxygen species in chemotherapy resistance cells. Consequently, various Akt activation-dependent genes caused a reduction of drug efflux and induction of apoptosis in cisplatin-resistant A549 NSCLC cells. Our results indicate that Akt phosphorylation may play a functional role in the reversal effect of PL and contribute, at least in part, to the treatment outcomes of patients with chemotherapy resistance.
Collapse
Affiliation(s)
- Chao Zhang
- Center of Drug Screening and Evaluation, Wannan Medical College, Wuhu, China.,Anhui Provincial Engineering Research Center for Polysaccharide Drugs, Wannan Medical College, Wuhu, China
| | - Lian-Jun He
- Center of Drug Screening and Evaluation, Wannan Medical College, Wuhu, China
| | - Yi-Bao Zhu
- Center of Drug Screening and Evaluation, Wannan Medical College, Wuhu, China
| | - Qing-Zhu Fan
- Center of Drug Screening and Evaluation, Wannan Medical College, Wuhu, China
| | - Dong-Dong Miao
- Center of Drug Screening and Evaluation, Wannan Medical College, Wuhu, China
| | - Sheng-Peng Zhang
- Center of Drug Screening and Evaluation, Wannan Medical College, Wuhu, China
| | - Wen-Ying Zhao
- Oncology Department, The First Affiliated Hospital of Wannan Medical College, Wuhu, China
| | - Xiao-Ping Liu
- Center of Drug Screening and Evaluation, Wannan Medical College, Wuhu, China.,Anhui Provincial Engineering Research Center for Polysaccharide Drugs, Wannan Medical College, Wuhu, China
| |
Collapse
|
37
|
Dei S, Braconi L, Romanelli MN, Teodori E. Recent advances in the search of BCRP- and dual P-gp/BCRP-based multidrug resistance modulators. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2019; 2:710-743. [PMID: 35582565 PMCID: PMC8992508 DOI: 10.20517/cdr.2019.31] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 06/03/2019] [Accepted: 06/13/2019] [Indexed: 02/06/2023]
Abstract
The development of multidrug resistance (MDR) is one of the major challenges to the success of chemotherapy treatment of cancer. This phenomenon is often associated with the overexpression of the ATP-binding cassette (ABC) transporters P-gp (P-glycoprotein, ABCB1), multidrug resistance-associated protein 1, ABCC1 and breast cancer resistance protein, ABCG2 (BCRP). These transporters are constitutively expressed in many tissues playing relevant protective roles by the regulation of the permeability of biological membranes, but they are also overexpressed in malignant tissues. P-gp is the first efflux transporter discovered to be involved in cancer drug resistance, and over the years, inhibitors of this pump have been disclosed to administer them in combination with chemotherapeutic agents. Three generations of inhibitors of P-gp have been examined in preclinical and clinical studies; however, these trials have largely failed to demonstrate that coadministration of pump inhibitors elicits an improvement in therapeutic efficacy of antitumor agents, although some of the latest compounds show better results. Therefore, new and innovative strategies, such as the fallback to natural products and the discover of dual activity ligands emerged as new perspectives. BCRP is the most recently ABC protein identified to be involved in multidrug resistance. It is overexpressed in several haematological and solid tumours together with P-gp, threatening the therapeutic effectiveness of different chemotherapeutic drugs. The chemistry of recently described BCRP inhibitors and dual P-gp/BCRP inhibitors, as well as their preliminary pharmacological evaluation are discussed, and the most recent advances concerning these kinds of MDR modulators are reviewed.
Collapse
Affiliation(s)
- Silvia Dei
- Department of Neuroscience, Psychology, Drug Research and Child's Health - Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, via Ugo Schiff 6, Sesto Fiorentino (FI) 50019, Italy
| | - Laura Braconi
- Department of Neuroscience, Psychology, Drug Research and Child's Health - Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, via Ugo Schiff 6, Sesto Fiorentino (FI) 50019, Italy
| | - Maria Novella Romanelli
- Department of Neuroscience, Psychology, Drug Research and Child's Health - Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, via Ugo Schiff 6, Sesto Fiorentino (FI) 50019, Italy
| | - Elisabetta Teodori
- Department of Neuroscience, Psychology, Drug Research and Child's Health - Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, via Ugo Schiff 6, Sesto Fiorentino (FI) 50019, Italy
| |
Collapse
|
38
|
Xu Z, Zhao SJ, Liu Y. 1,2,3-Triazole-containing hybrids as potential anticancer agents: Current developments, action mechanisms and structure-activity relationships. Eur J Med Chem 2019; 183:111700. [PMID: 31546197 DOI: 10.1016/j.ejmech.2019.111700] [Citation(s) in RCA: 291] [Impact Index Per Article: 48.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 09/08/2019] [Accepted: 09/12/2019] [Indexed: 12/15/2022]
Abstract
Anticancer agents are critical for the cancer treatment, but side effects and the drug resistance associated with the currently used anticancer agents create an urgent need to explore novel drugs with low side effects and high efficacy. 1,2,3-Triazole is privileged building block in the discovery of new anticancer agents, and some of its derivatives have already been applied in clinics or under clinical trials for fighting against cancers. Hybrid molecules occupy an important position in cancer control, and hybridization of 1,2,3-triazole framework with other anticancer pharmacophores may provide valuable therapeutic intervention for the treatment of cancer, especially drug-resistant cancer. This review emphasizes the recent advances in 1,2,3-triazole-containing hybrids with anticancer potential, covering articles published between 2015 and 2019, and the structure-activity relationships, together with mechanisms of action are also discussed.
Collapse
Affiliation(s)
- Zhi Xu
- Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, PR China.
| | - Shi-Jia Zhao
- Wuhan University of Science and Technology, Wuhan, PR China
| | - Yi Liu
- Wuhan University of Science and Technology, Wuhan, PR China.
| |
Collapse
|
39
|
Inhibition of PINK1/Parkin-dependent mitophagy sensitizes multidrug-resistant cancer cells to B5G1, a new betulinic acid analog. Cell Death Dis 2019; 10:232. [PMID: 30850585 PMCID: PMC6408511 DOI: 10.1038/s41419-019-1470-z] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Revised: 01/17/2019] [Accepted: 02/20/2019] [Indexed: 12/28/2022]
Abstract
Betulinic acid (BA) and its derivatives are a class of high-profile drug candidates, but their anticancer effects on resistant cancer have rarely been reported. Although a few studies indicated mitophagy is related with drug resistance, its role in different cancer types and anticancer agents treatment remains largely unclear. Here, we find that B5G1, a new derivative of BA, induces cell death in multidrug resistant cancer cells HepG2/ADM and MCF-7/ADR through mitochondrial-apoptosis pathway. B5G1 also triggers mitophagy independent on Atg5/Beclin 1. Further mechanistic study indicates that B5G1 upregulates PTEN-induced putative kinase 1 (PINK1) to recruit Parkin to mitochondria followed by ubiquitination of Mfn2 to initiate mitophagy. Inhibition of mitophagy by PINK1 siRNA, mdivi-1, or bafilomycin A1 (Baf A1) promotes B5G1-induced cell death. In addition, ROS production and mitochondrial damage in B5G1-treated HepG2/ADM cells cause mitochondrial apoptosis and mitophagy. In vivo study shown that B5G1 dramatically inhibits HepG2/ADM xenograft growth accompanied by apoptosis and mitophagy induction. Together, our results provide the first demonstration that B5G1, as a novel mitophagy inducer, has the potential to be developed into a drug candidate for treating multidrug resistant cancer.
Collapse
|
40
|
Alameh G, Emptoz-Bonneton A, Rolland de Ravel M, Matera EL, Mappus E, Balaguer P, Rocheblave L, Lomberget T, Dumontet C, Le Borgne M, Pugeat M, Grenot C, Cuilleron CY. In vitro modulation of multidrug resistance by pregnane steroids and in vivo inhibition of tumour development by 7α-OBz-11α(R)-OTHP-5β-pregnanedione in K562/R7 and H295R cell xenografts. J Enzyme Inhib Med Chem 2019; 34:684-691. [PMID: 30777494 PMCID: PMC6383615 DOI: 10.1080/14756366.2019.1575825] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Synthetic progesterone and 5α/β-pregnane-3,20-dione derivatives were evaluated as in vitro and in vivo modulators of multidrug-resistance (MDR) using two P-gp-expressing human cell lines, the non-steroidogenic K562/R7 erythroleukaemia cells and the steroidogenic NCI-H295R adrenocortical carcinoma cells, both resistant to doxorubicin. The maximal effect in both cell lines was observed for 7α-O-benzoyloxy,11α(R)-O-tetrahydropyranyloxy-5β-pregnane-3,20-dione 4. This modulator co-injected with doxorubicin significantly decreased the tumour size and increased the survival time of immunodeficient mice xenografted with NCI-H295R or K562/R7 cells.
Collapse
Affiliation(s)
- Ghina Alameh
- a ISPB-Faculté de Pharmacie , Université de Lyon, Université Lyon 1 , Lyon , France
| | - Agnès Emptoz-Bonneton
- a ISPB-Faculté de Pharmacie , Université de Lyon, Université Lyon 1 , Lyon , France.,b Fédération d'Endocrinologie du pôle Est, Hospices Civils de Lyon , Lyon , France
| | - Marc Rolland de Ravel
- a ISPB-Faculté de Pharmacie , Université de Lyon, Université Lyon 1 , Lyon , France.,c Centre de Recherche en Cancérologie de Lyon, Université Claude Bernard Lyon 1, INSERM, Centre Léon Bérard , Lyon , France
| | - Eva L Matera
- c Centre de Recherche en Cancérologie de Lyon, Université Claude Bernard Lyon 1, INSERM, Centre Léon Bérard , Lyon , France
| | - Elisabeth Mappus
- a ISPB-Faculté de Pharmacie , Université de Lyon, Université Lyon 1 , Lyon , France
| | - Patrick Balaguer
- d Institut de Recherche en Cancérologie de Montpellier, Université de Montpellier , Montpellier , France
| | - Luc Rocheblave
- a ISPB-Faculté de Pharmacie , Université de Lyon, Université Lyon 1 , Lyon , France.,e Faculté de Pharmacie-ISPB, Department of Bioactive Molecules and Medicinal Chemistry , Université de Lyon, Université Claude Bernard Lyon 1 , Lyon , France
| | - Thierry Lomberget
- a ISPB-Faculté de Pharmacie , Université de Lyon, Université Lyon 1 , Lyon , France.,e Faculté de Pharmacie-ISPB, Department of Bioactive Molecules and Medicinal Chemistry , Université de Lyon, Université Claude Bernard Lyon 1 , Lyon , France
| | - Charles Dumontet
- c Centre de Recherche en Cancérologie de Lyon, Université Claude Bernard Lyon 1, INSERM, Centre Léon Bérard , Lyon , France
| | - Marc Le Borgne
- e Faculté de Pharmacie-ISPB, Department of Bioactive Molecules and Medicinal Chemistry , Université de Lyon, Université Claude Bernard Lyon 1 , Lyon , France
| | - Michel Pugeat
- a ISPB-Faculté de Pharmacie , Université de Lyon, Université Lyon 1 , Lyon , France.,b Fédération d'Endocrinologie du pôle Est, Hospices Civils de Lyon , Lyon , France
| | - Catherine Grenot
- a ISPB-Faculté de Pharmacie , Université de Lyon, Université Lyon 1 , Lyon , France
| | - Claude Y Cuilleron
- a ISPB-Faculté de Pharmacie , Université de Lyon, Université Lyon 1 , Lyon , France
| |
Collapse
|
41
|
Li H, Krstin S, Wink M. Modulation of multidrug resistant in cancer cells by EGCG, tannic acid and curcumin. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2018; 50:213-222. [PMID: 30466981 DOI: 10.1016/j.phymed.2018.09.169] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Revised: 08/10/2018] [Accepted: 09/17/2018] [Indexed: 06/09/2023]
Abstract
BACKGROUND Cancer is one of the most common life-threatening diseases worldwide; many patients develop multidrug resistance after treatment with anticancer drugs. The main mechanism leading to multidrug resistance is the overexpression of ABC transporters in cancer cells. Chemosensitizers are needed to inhibit the activity of ABC transporters, resulting in higer intracellular concentration of anticancer drugs. Some secondary metabolites have been reported to be chemosensitizers by inhibiting ABC transporters. Epigallocatechin gallate (EGCG), tannic acid, and curcumin were employed in this study. Different assays were used to detect whether they have the ability to inhibit P-gp activity and overcome multidrug resistance in cancer cells overexpressing P-gp. Hypothesis/Purpose: CEM/ADR 5000 and Caco-2 cell lines, which overexpress P-gp, are multidrug resistant cell lines. We first detected whether the combination of polyphenols (EGCG, tannic acid, curcumin) and doxorubicin, an anticancer drug, is synergistic or not. To further understand the potential mechanism, EGCG, tannic acid, and curcumin were tested to check whether they have the ability to inhibit P-gp activity. When P-gp activity is inhibited, the intracellular concentration of doxorubicin is higher, resulting in enhanced cytotoxicity of doxorubicin. STUDY DESIGN The P-gp overexpressing human colon cancer cell line Caco-2 and human T-lymphoblastic leukemia cell line CEM/ADR 5000 were used in this study. Two-drug combinations (doxorubicin + polyphenol) and three-drug combinations (doxorubicin + polyphenol + digitonin) were tested to examine potential synergism. The potential mechanism leading to synergism would be the inhibition of P-gp activity. A Rhodamine 123 assay and Calcein-AM assay in Caco-2 and CEM/ADR 5000, respectively, were used to detect P-gp inhibition by EGCG, curcumin, and tannic acid. METHODS MTT assay was used to determine the cytotoxicity of doxorubicin, polyphenols and digitonin alone, and then their combinations. Furthermore, Rhodamine 123 and Calcein-AM were used to detect the effects of polyphenols on the activity of P-gp. RESULTS The results demonstrated that a combination of non-toxic concentrations of each polyphenol with doxorubicin synergistically sensitized Caco-2 and CEM/ADR 5000 cells. Furthermore, three-drug combinations (doxorubicin + polyphenol + digitonin) were much more effective. In addition, the activity of P-gp in Caco-2 and CEM/ADR 5000 cells was measured. Consistent with the combination results, tannic acid and curcumin decreased the activity of P-gp both in Caco-2 and CEM/ADR 5000. EGCG, which weakly affected the activity of P-gp in CEM/ADR 5000, only had an effect on P-gp under higher concentration in Caco-2 cells. CONCLUSION Our results show that EGCG, curcumin, and tannic acid, when combined with doxorubicin, can exert synergism, mediated by a reduced activity of P-gp. This study suggests that polyphenols, by modulating the activity of P-gp, may be used as chemosensitisers.
Collapse
Affiliation(s)
- Hanmei Li
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Im Neuenheimer Feld 364, D-69120, Heidelberg, Germany
| | - Sonja Krstin
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Im Neuenheimer Feld 364, D-69120, Heidelberg, Germany
| | - Michael Wink
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Im Neuenheimer Feld 364, D-69120, Heidelberg, Germany.
| |
Collapse
|
42
|
Discovery of traditional Chinese medicine monomers and their synthetic intermediates, analogs or derivatives for battling P-gp-mediated multi-drug resistance. Eur J Med Chem 2018; 159:381-392. [DOI: 10.1016/j.ejmech.2018.09.061] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 09/22/2018] [Accepted: 09/25/2018] [Indexed: 12/15/2022]
|
43
|
Zhang C, He LJ, Ye HZ, Liu DF, Zhu YB, Miao DD, Zhang SP, Chen YY, Jia YW, Shen J, Liu XP. Nrf2 is a key factor in the reversal effect of curcumin on multidrug resistance in the HCT‑8/5‑Fu human colorectal cancer cell line. Mol Med Rep 2018; 18:5409-5416. [PMID: 30365132 PMCID: PMC6236280 DOI: 10.3892/mmr.2018.9589] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 09/17/2018] [Indexed: 01/08/2023] Open
Abstract
Multidrug resistance (MDR) is a major concern when using chemotherapy for the treatment of patients with colorectal cancer. MDR modulators are agents that can reverse MDR and, thus, enhance the chemosensitivity of tumor cells. The development of MDR modulators can improve the therapeutic efficacies of MDR in cancer. However, few effective MDR modulators have been identified so far. Curcumin has been reported to be an effective compound in the reversal of MDR in colorectal cancer cells. However, the mechanisms associated with the reversal effect of curcumin on MDR and its regulation of target factors in MDR cells remain to be fully elucidated. 3-(4,5-dimethyl-2-thiazol)-2,5-diphenyltetrazolium bromide assays, flow cytometer apoptosis assays as well as mRNA and protein expression assays were performed in the present study, and the results confirmed the reversal effect of curcumin on HCT-8/5-Fu cells and provided evidence that activated nuclear factor erythroid 2-related factor (Nrf2) deficiency induced by the curcumin altered the B-cell lymphoma 2 (Bcl-2) associated X protein/Bcl-2 expression ratio, which led to the induction of apoptosis in HCT-8/5-Fu cells. These results indicated that Nrf2 may have a functional in the reversal effect of curcumin and contribute, at least in part, to the outcomes of chemotherapy in patients with MDR.
Collapse
Affiliation(s)
- Chao Zhang
- Center of Drug Screening and Evaluation, Wannan Medical College, Wuhu, Anhui 241000, P.R. China
| | - Lian-Jun He
- School of Clinical Medicine, Wannan Medical College, Wuhu, Anhui 241000, P.R. China
| | - Hai-Zhu Ye
- School of Clinical Medicine, Wannan Medical College, Wuhu, Anhui 241000, P.R. China
| | - Ding-Feng Liu
- School of Pharmacy, Wannan Medical College, Wuhu, Anhui 241000, P.R. China
| | - Yi-Bao Zhu
- School of Clinical Medicine, Wannan Medical College, Wuhu, Anhui 241000, P.R. China
| | - Dong-Dong Miao
- School of Pharmacy, Wannan Medical College, Wuhu, Anhui 241000, P.R. China
| | - Sheng-Peng Zhang
- Center of Drug Screening and Evaluation, Wannan Medical College, Wuhu, Anhui 241000, P.R. China
| | - Yun-Yu Chen
- Center of Drug Screening and Evaluation, Wannan Medical College, Wuhu, Anhui 241000, P.R. China
| | - Yuan-Wei Jia
- Center of Drug Screening and Evaluation, Wannan Medical College, Wuhu, Anhui 241000, P.R. China
| | - Jie Shen
- Center of Drug Screening and Evaluation, Wannan Medical College, Wuhu, Anhui 241000, P.R. China
| | - Xiao-Ping Liu
- Center of Drug Screening and Evaluation, Wannan Medical College, Wuhu, Anhui 241000, P.R. China
| |
Collapse
|
44
|
Sharma A, Lee MG, Shi H, Won M, Arambula JF, Sessler JL, Lee JY, Chi SG, Kim JS. Overcoming Drug Resistance by Targeting Cancer Bioenergetics with an Activatable Prodrug. Chem 2018; 4:2370-2383. [PMID: 39830500 PMCID: PMC11741667 DOI: 10.1016/j.chempr.2018.08.002] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Nearly without exception, all known cancer chemotherapeutics elicit a resistance response over time. The resulting resistance is correlated with poor clinical outcomes. Here, we report an approach to overcoming resistance through reprogramming oncogene-directed alterations in mitochondrial metabolism before drug activation while simultaneously circumventing drug efflux pumps. Conjugate C1 increases cancer cell apoptosis and inhibits regrowth of drug-resistant tumors, as inferred from efficacy studies carried out in human cancer cells and in Dox-resistant xenograft tumor models. It also displays minimal whole-animal toxicity. These benefits are ascribed to an ability to evade chemoresistance by switching cancer cell metabolism back to normal mitochondrial oxidative phosphorylation while helping target the active Dox to first the mitochondrion and then the nucleus.
Collapse
Affiliation(s)
- Amit Sharma
- Department of Chemistry, Korea University, Seoul 02841 Korea
- These authors contributed equally
| | - Min-Goo Lee
- Department of Life Sciences, Korea University, Seoul 02841, Korea
- These authors contributed equally
| | - Hu Shi
- Department of Chemistry, Sungkyunkwan University, Suwon 16419, Korea
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, 030006, China
- These authors contributed equally
| | - Miae Won
- Department of Chemistry, Korea University, Seoul 02841 Korea
| | - Jonathan F. Arambula
- Department of Chemistry, University of Texas at Austin, Austin, TX 78712-1224, USA
| | - Jonathan L. Sessler
- Department of Chemistry, University of Texas at Austin, Austin, TX 78712-1224, USA
- Lead Contact
| | - Jin Yong Lee
- Department of Chemistry, Sungkyunkwan University, Suwon 16419, Korea
| | - Sung-Gil Chi
- Department of Life Sciences, Korea University, Seoul 02841, Korea
| | - Jong Seung Kim
- Department of Chemistry, Korea University, Seoul 02841 Korea
| |
Collapse
|
45
|
Ning N, Yu Y, Wu M, Zhang R, Zhang T, Zhu C, Huang L, Yun CH, Benes CH, Zhang J, Deng X, Chen Q, Ren R. A Novel Microtubule Inhibitor Overcomes Multidrug Resistance in Tumors. Cancer Res 2018; 78:5949-5957. [PMID: 30135190 DOI: 10.1158/0008-5472.can-18-0455] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Revised: 07/12/2018] [Accepted: 08/16/2018] [Indexed: 02/05/2023]
Abstract
Microtubule inhibitors as chemotherapeutic drugs are widely used for cancer treatment. However, the development of multidrug resistance (MDR) in cancer is a major challenge for microtubule inhibitors in their clinical implementation. From a high-throughput drug screen using cells transformed by oncogenic RAS, we identify a lead heteroaryl amide compound that blocks cell proliferation. Analysis of the structure-activity relationship indicated that this series of scaffolds (exemplified by MP-HJ-1b) represents a potent inhibitor of tumor cell growth. MP-HJ-1b showed activities against a panel of more than 1,000 human cancer cell lines with a wide variety of tissue origins. This compound depolymerized microtubules and affected spindle formation. It also induced the spike-like conformation of microtubules in vitro and in vivo, which is different from typical microtubule modulators. Structural analysis revealed that this series of compounds bound the colchicine pocket at the intra-dimer interface, although mostly not overlapping with colchicine binding. MP-HJ-1b displayed favorable pharmacological properties for overcoming tumor MDR, both in vitro and in vivo Taken together, our data reveal a novel scaffold represented by MP-HJ-1b that can be developed as a cancer therapeutic against tumors with MDR.Significance: Paclitaxel is a widely used chemotherapeutic drug in patients with multiple types of cancer. However, resistance to paclitaxel is a challenge. This study describes a novel class of microtubule inhibitors with the ability to circumvent multidrug resistance across multiple tumor cell lines. Cancer Res; 78(20); 5949-57. ©2018 AACR.
Collapse
Affiliation(s)
- Nannan Ning
- State Key Laboratory for Medical Genomics, Shanghai Institute of Hematology, Collaborative Innovation Center of Hematology, Collaborative Innovation Center of System Biology, Ruijin Hospital, School of Life Sciences and Biotechnology and School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yamei Yu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Collaborative Innovation Center for Biotherapy, Sichuan University, Chengdu, China
| | - Min Wu
- State Key Laboratory for Medical Genomics, Shanghai Institute of Hematology, Collaborative Innovation Center of Hematology, Collaborative Innovation Center of System Biology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ruihong Zhang
- State Key Laboratory for Medical Genomics, Shanghai Institute of Hematology, Collaborative Innovation Center of Hematology, Collaborative Innovation Center of System Biology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ting Zhang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Changjun Zhu
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin, China
| | - Lei Huang
- Key Laboratory of Cell Differentiation and Apoptosis of The Chinese Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Cai-Hong Yun
- Institute of Systems Biomedicine, Department of Biophysics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Cyril H Benes
- Massachusetts General Hospital, Charlestown, Massachusetts
| | - Jianming Zhang
- State Key Laboratory for Medical Genomics, Shanghai Institute of Hematology, Collaborative Innovation Center of Hematology, Collaborative Innovation Center of System Biology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Massachusetts General Hospital, Charlestown, Massachusetts
| | - Xianming Deng
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian, China.
| | - Qiang Chen
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Collaborative Innovation Center for Biotherapy, Sichuan University, Chengdu, China.
| | - Ruibao Ren
- State Key Laboratory for Medical Genomics, Shanghai Institute of Hematology, Collaborative Innovation Center of Hematology, Collaborative Innovation Center of System Biology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Department of Biology, Brandeis University, Waltham, Massachusetts
| |
Collapse
|
46
|
Mamizadeh R, Hosseinzadeh Z, Razzaghi-Asl N, Ramazani A. In silico analysis of a few dietary phytochemicals as potential tumor chemo-sensitizers. Struct Chem 2018. [DOI: 10.1007/s11224-018-1098-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
47
|
Sharif Makhmal Zadeh B, Esfahani G, Salimi A. Permeability of Ciprofloxacin-Loaded Polymeric Micelles Including Ginsenoside as P-glycoprotein Inhibitor through a Caco-2 Cells Monolayer as an Intestinal Absorption Model. Molecules 2018; 23:E1904. [PMID: 30065147 PMCID: PMC6222528 DOI: 10.3390/molecules23081904] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 06/06/2018] [Accepted: 06/07/2018] [Indexed: 11/24/2022] Open
Abstract
The low oral bioavailability of ciprofloxacin is associated with two distinct challenges: its low aqueous solubility and efflux by p-glycoproteins (P-gp) in the intestinal membrane. Several studies were conducted in order to improve its solubility and permeability through the gastrointestinal membrane. In this study, in a full factorial design study, eight polymeric micelles were prepared and their characteristics, including particle size, loading and release rate were evaluated. Polymeric micelles demonstrated particle sizes below 190 nm and 27⁻88% loading efficiency. Drug release was affected by drug solubility, polymeric micelle erosion and swelling in simulated gastrointestinal fluids. An optimized polymeric micelle was prepared based on appropriate characteristics such as high drug loading and low particle size; and was used for a permeation study on Caco-2 cells. Optimized polymeric micelles with and without ginsenoside and ginsenoside alone enhanced drug permeability through Caco-2 cells significantly in the absorptive direction. The effect of ginsenoside was dose dependent and the maximum effect was seen in 0.23 mg/mL concentration. Results showed that P-gp may not be responsible for ciprofloxacin secretion into the gut. The main mechanism of ciprofloxacin transport through Caco-2 cells in both directions is active diffusion and P-gp has inhibitory effects on ciprofloxacin permeability in the absorptive direction that was blocked by ginsenoside and micelles without ginsenoside.
Collapse
Affiliation(s)
- Behzad Sharif Makhmal Zadeh
- Nanotechnology Research Center, School of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Golestan Ave, Ahvaz 67123, Iran.
| | - Golbarg Esfahani
- Nanotechnology Research Center, School of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Golestan Ave, Ahvaz 67123, Iran.
| | - Anayatollah Salimi
- Nanotechnology Research Center, School of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Golestan Ave, Ahvaz 67123, Iran.
| |
Collapse
|
48
|
Liu FJ, Sun TT, Yang YG, Huang C, Chen XB. Divergent synthesis of dual 1,4-dihydropyridines with different substituted patterns from enaminones and aldehydes through domino reactions. RSC Adv 2018; 8:12635-12640. [PMID: 35541228 PMCID: PMC9079339 DOI: 10.1039/c8ra01236a] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 03/26/2018] [Indexed: 11/21/2022] Open
Abstract
A concise and efficient protocol for the regioselective synthesis of dual 1,4-dihydropyridines with several substituted patterns has been developed from a cascade cyclization of enaminones and aldehydes in different media (EtOH/CH3CN). The one-pot cascade reaction involves at least five reactive sites and generates multiple C-C and C-N bonds. The established protocol explores the chemistry of enaminones by employing their three reactive sites. The method has several advantages including mild conditions, operational simplicity, and high bond-forming efficiency. It may offer promise in a variety of biochemical applications.
Collapse
Affiliation(s)
- Fu-Jun Liu
- Key Laboratory of Natural Pharmaceutical and Chemical Biology of Yunnan Province, School of Science, Honghe University Mengzi Yunnan 661100 China
| | - Tian-Tian Sun
- Key Laboratory of Natural Pharmaceutical and Chemical Biology of Yunnan Province, School of Science, Honghe University Mengzi Yunnan 661100 China
| | - Yun-Gang Yang
- Key Laboratory of Natural Pharmaceutical and Chemical Biology of Yunnan Province, School of Science, Honghe University Mengzi Yunnan 661100 China
| | - Chao Huang
- School of Chemistry and Environment, Engineering Research Center of Biopolymer Functional Materials of Yunnan, Yunnan Minzu University Kunming Yunnan 650503 China
| | - Xue-Bing Chen
- Key Laboratory of Natural Pharmaceutical and Chemical Biology of Yunnan Province, School of Science, Honghe University Mengzi Yunnan 661100 China
| |
Collapse
|
49
|
Gao M, Miao L, Liu M, Li C, Yu C, Yan H, Yin Y, Wang Y, Qi X, Ren J. miR-145 sensitizes breast cancer to doxorubicin by targeting multidrug resistance-associated protein-1. Oncotarget 2018; 7:59714-59726. [PMID: 27487127 PMCID: PMC5312343 DOI: 10.18632/oncotarget.10845] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 06/09/2016] [Indexed: 12/17/2022] Open
Abstract
Multidrug resistance-associated protein 1 (MRP1) is an important efflux transporter and overexpression of MRP1 usually leads to chemoresistance in breast cancer. Here, we found MRP1 overexpressed in human breast cancer tissues and breast cancer cell lines (compared with normal breast tissues and cell line, respectively). And MRP1 level increased in doxorubicin resistant MCF-7 cells compared with parental MCF-7 cells. Increasing evidences suggest microRNAs (miRNAs) influence chemotherapy response. We found miR-145 level decreased in human breast cancer tissues, breast cancer cell lines and doxorubicin resistant MCF-7 cells, and inversely correlated with MRP1 expression level. In the process of constructing MCF-7 doxorubicin resistant cell line, escalating doxorubicin markedly decreased miR-145 level, following by increased MRP1 level. Further study showed, miR-145 suppressed MRP1 expression by directly targeting MRP1 3'-untranslated regions. Overexpression of miR-145 sensitized breast cancer cells to doxorubicin in vitro and enhanced to doxorubicin chemotherapy in vivo through inducing intracellular doxorubicin accumulation via inhibiting MRP1. Taken together, our study revealed miR-145 sensitizes breast cancer to doxorubicin by targeting MRP1 and indicated the potential application in developing MRP1 inhibitor.
Collapse
Affiliation(s)
- Man Gao
- Center for Drug Safety Evaluation and Research, Shanghai Institute of Materia Medica, CAS., Shanghai, China
| | - Lingling Miao
- Center for Drug Safety Evaluation and Research, Shanghai Institute of Materia Medica, CAS., Shanghai, China
| | - Mingxia Liu
- Center for Drug Safety Evaluation and Research, Shanghai Institute of Materia Medica, CAS., Shanghai, China
| | - Chenggang Li
- Center for Drug Safety Evaluation and Research, Shanghai Institute of Materia Medica, CAS., Shanghai, China
| | - Cunzhi Yu
- Center for Drug Safety Evaluation and Research, Shanghai Institute of Materia Medica, CAS., Shanghai, China
| | - Hong Yan
- Center for Drug Safety Evaluation and Research, Shanghai Institute of Materia Medica, CAS., Shanghai, China
| | - Yongxiang Yin
- Department of Pathology, Wuxi Maternity and Children Health Hospital Affiliated Nanjing Medical University, Wuxi, China
| | - Yizheng Wang
- The Brain Science Center, Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Xinming Qi
- Center for Drug Safety Evaluation and Research, Shanghai Institute of Materia Medica, CAS., Shanghai, China
| | - Jin Ren
- Center for Drug Safety Evaluation and Research, Shanghai Institute of Materia Medica, CAS., Shanghai, China
| |
Collapse
|
50
|
Patel BA, Abel B, Barbuti AM, Velagapudi UK, Chen ZS, Ambudkar SV, Talele TT. Comprehensive Synthesis of Amino Acid-Derived Thiazole Peptidomimetic Analogues to Understand the Enigmatic Drug/Substrate-Binding Site of P-Glycoprotein. J Med Chem 2018; 61:834-864. [PMID: 29251928 DOI: 10.1021/acs.jmedchem.7b01340] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A novel set of 64 analogues based on our lead compound 1 was designed and synthesized with an initial objective of understanding the structural requirements of ligands binding to a highly perplexing substrate-binding site of P-glycoprotein (P-gp) and their effect on modulating the ATPase function of the efflux pump. Compound 1, a stimulator of P-gp ATPase activity, was transformed to ATPase inhibitory compounds 39, 53, and 109. The ATPase inhibition by these compounds was predominantly contributed by the presence of a cyclohexyl group in lieu of the 2-aminobenzophenone moiety of 1. The 4,4-difluorocyclohexyl analogues, 53 and 109, inhibited the photolabeling by [125I]-IAAP, with IC50 values of 0.1 and 0.76 μM, respectively. Selected compounds were shown to reverse paclitaxel resistance in HEK293 cells overexpressing P-gp and were selective toward P-gp over CYP3A4. Induced-fit docking highlighted a plausible binding pattern of inhibitory compounds in the putative-binding pocket of P-gp. The current study underscores the stringent requirement by P-gp to bind to chemically similar molecules.
Collapse
Affiliation(s)
- Bhargav A Patel
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University , Queens, New York 11439, United States
| | - Biebele Abel
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health , Bethesda, Maryland 20892, United States
| | - Anna Maria Barbuti
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University , Queens, New York 11439, United States
| | - Uday Kiran Velagapudi
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University , Queens, New York 11439, United States
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University , Queens, New York 11439, United States
| | - Suresh V Ambudkar
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health , Bethesda, Maryland 20892, United States
| | - Tanaji T Talele
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University , Queens, New York 11439, United States
| |
Collapse
|