1
|
Crnčević D, Ramić A, Kastelic AR, Odžak R, Krce L, Weber I, Primožič I, Šprung M. Naturally derived 3-aminoquinuclidine salts as new promising therapeutic agents. Sci Rep 2024; 14:26211. [PMID: 39482460 PMCID: PMC11528103 DOI: 10.1038/s41598-024-77647-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Accepted: 10/24/2024] [Indexed: 11/03/2024] Open
Abstract
Quaternary ammonium compounds (QACs) are a biologically active group of chemicals with a wide range of different applications. Due to their strong antibacterial properties and broad spectrum of activity, they are commonly used as ingredients in antiseptics and disinfectants. In recent years, the spread of bacterial resistance to QACs, exacerbated by the spread of infectious diseases, has seriously threatened public health and endangered human lives. Recent trends in this field have suggested the development of a new generation of QACs, in parallel with the study of bacterial resistance mechanisms. In this work, we present a new series of quaternary 3-substituted quinuclidine compounds that exhibit potent activity across clinically relevant bacterial strains. Most of the derivatives had minimal inhibitory concentrations (MICs) in the low single-digit micromolar range. Notably, QApCl and QApBr were selected for further investigation due to their strong antibacterial activity and low toxicity to human cells along with their minimal potential to induce bacterial resistance. These compounds were also able to inhibit the formation of bacterial biofilms more effectively than commercial standard, eradicating the bacterial population within just 15 min of treatment. The candidates employ a membranolytic mode of action, which, in combination with the generation of reactive oxygen species (ROS), destabilizes the bacterial membrane. This treatment results in a loss of cell volume and alterations in surface morphology, ultimately leading to bacterial cell death. The prominent antibacterial potential of quaternary 3-aminoquinuclidines, as exemplified by QApCl and QApBr, paves the way for new trends in the development of novel generation of QACs.
Collapse
Affiliation(s)
- Doris Crnčević
- Faculty of Science, Department of Chemistry, University of Split, R. Bošković 33, Split, Croatia
- Faculty of Science, Doctoral Study in Biophysics, University of Split, R. Bošković 33, Split, Croatia
| | - Alma Ramić
- Faculty of Science, Department of Chemistry, University of Zagreb, Horvatovac 102a, Zagreb, Croatia
| | - Andreja Radman Kastelic
- Faculty of Science, Department of Chemistry, University of Zagreb, Horvatovac 102a, Zagreb, Croatia
| | - Renata Odžak
- Faculty of Science, Department of Chemistry, University of Split, R. Bošković 33, Split, Croatia
| | - Lucija Krce
- Faculty of Science, Department of Physics, University of Split, R. Bošković 33, Split, Croatia
| | - Ivana Weber
- Faculty of Science, Department of Physics, University of Split, R. Bošković 33, Split, Croatia
| | - Ines Primožič
- Faculty of Science, Department of Chemistry, University of Zagreb, Horvatovac 102a, Zagreb, Croatia.
| | - Matilda Šprung
- Faculty of Science, Department of Chemistry, University of Split, R. Bošković 33, Split, Croatia.
| |
Collapse
|
2
|
Ren K, Ke X, Zhang M, Ding Y, Wang H, Chen H, Xie J, Li J. A Janus Adhesive Hydrogel with Integrated Attack and Defense for Bacteria Killing and Antifouling. BME FRONTIERS 2024; 5:0059. [PMID: 39360182 PMCID: PMC11445787 DOI: 10.34133/bmef.0059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/28/2024] [Accepted: 08/02/2024] [Indexed: 10/04/2024] Open
Abstract
Objective: Skin wound exposed to complex external environment for a long time is highly susceptible to bacterial infection. Impact Statement: This work designs a Janus adhesive dual-layer hydrogel containing in situ silver nanoparticles (named PSAP/DXP@AgNPs) with integrated attack and defense to simultaneously kill the existing bacteria and prevent foreign bacterial contamination. Introduction: The current gauze dressing fixed by tape fails to well fit at skin wound and lacks intrinsic antibacterial property, making it highly prone to causing secondary infection. Moreover, foreign bacteria may contaminate the wound dressing during use, further increasing the risk of secondary infection. Methods: In this work, a Janus adhesive dual-layer PSAP/DXP@AgNPs hydrogel is prepared by sequentially building the PSAP gel layer containing zwitterionic poly(sulfobetaine methacrylamide) (PSBMA) on the DXP@AgNPs gel layer containing in situ catechol-reduced AgNPs. Results: The flexible PSAP/DXP@AgNPs can adapt shape change of skin and adhere to skin tissue with interfacial toughness of 153.38 J m-2 relying on its DXP@AgNPs layer, which is beneficial to build favorable fit. The in situ reduced AgNPs released from the DXP@AgNPs layer of PSAP/DXP@AgNPs exhibit obvious antibacterial effects against Escherichia coli and Staphylococcus aureus, with antibacterial rates of 99% and 88%, respectively. Meanwhile, the hydrated PSAP layer of PSAP/DXP@AgNPs containing PSBMA is able to prevent the bacterial contamination, decreasing the risk of secondary infection. Besides, cell experiments demonstrate that PSAP/DXP@AgNPs is biocompatible. Conclusion: The PSAP/DXP@AgNPs hydrogel with integrated attack and defense simultaneously possessing bacteria-killing and bacteria-antifouling properties is a potential alternative in treating infected skin wound.
Collapse
Affiliation(s)
- Kai Ren
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering,
Sichuan University, Chengdu 610065, P.R. China
| | - Xiang Ke
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering,
Sichuan University, Chengdu 610065, P.R. China
| | - Miao Zhang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering,
Sichuan University, Chengdu 610065, P.R. China
| | - Yuan Ding
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering,
Sichuan University, Chengdu 610065, P.R. China
| | - Hao Wang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering,
Sichuan University, Chengdu 610065, P.R. China
| | - Hong Chen
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering,
Sichuan University, Chengdu 610065, P.R. China
| | - Jing Xie
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering,
Sichuan University, Chengdu 610065, P.R. China
| | - Jianshu Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering,
Sichuan University, Chengdu 610065, P.R. China
- State Key Laboratory of Oral Diseases, West Chin Hospital of Stomatology,
Sichuan University, Chengdu 610041, P.R. China
- Med-X Center for Materials,
Sichuan University, Chengdu 610041, P.R. China
| |
Collapse
|
3
|
Mohan M, Kaur H, Rosenberg M, Duvanova E, Lukk T, Ivask A, Karpichev Y. Synthesis and Antibacterial Properties of Novel Quaternary Ammonium Lignins. ACS OMEGA 2024; 9:39134-39145. [PMID: 39310135 PMCID: PMC11411688 DOI: 10.1021/acsomega.4c06000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/17/2024] [Accepted: 08/27/2024] [Indexed: 09/25/2024]
Abstract
The ongoing demand for effective antimicrobial materials persists, and lignin emerges as a promising natural antibacterial material with renewable properties. The adaptability of lignin to various chemical modifications offers avenues to enhance its antimicrobial activity. Here, we employed chloromethylation and subsequent functionalization with variable tertiary N-alkyl dimethyl amines to produce C6-C18 quaternary ammonium lignins (QALs) from hardwood (aspen), softwood (pine), and grass (barley straw). Successful synthesis of QALs was confirmed through NMR and FTIR analysis results along with an increase in the surface ζ-potential. Antibacterial activity of QALs against clinical strains of Klebsiella pneumoniae and methicillin-resistant Staphylococcus aureus was assessed using minimal bactericidal concentration (MBC) assay and agar growth inhibition zone (ZOI) test. The antibacterial activity of QALs was found to be higher than that of the unmodified lignins. QALs with longer alkyl chains demonstrated an MBC of 0.012 mg/L against K. pneumoniae already after 1 h of exposure with similar effect size reached after 24 h for S. aureus. For all the lignins, an increase in alkyl chain length resulted in an increase in their bactericidal activity. MBC values of C14-C18 QALs were consistently lower than the MBC values of QALs with shorter alkyl chains. Besides the alkyl chain length, MBC values of barley and pine QALs were negatively correlated with the surface ζ-potential. While alkyl chain length was one of the key properties affecting the MBC values in a liquid-based test, the agar-based ZOI test demonstrated an antibacterial optimum of QALs at C12-C14, likely due to limited diffusion of QALs with longer alkyl chains in a semisolid medium.
Collapse
Affiliation(s)
- Mahendra
K. Mohan
- Department
of Chemistry and Biotechnology, Tallinn
University of Technology (TalTech), 15 Akadeemia Road, 12618 Tallinn, Estonia
| | - Harleen Kaur
- Institute
of Molecular and Cell Biology, University
of Tartu, 23 Riia Street, 51010 Tartu, Estonia
| | - Merilin Rosenberg
- Institute
of Molecular and Cell Biology, University
of Tartu, 23 Riia Street, 51010 Tartu, Estonia
| | - Ella Duvanova
- Department
of Chemistry and Biotechnology, Tallinn
University of Technology (TalTech), 15 Akadeemia Road, 12618 Tallinn, Estonia
- Vasyl’
Stus Donetsk National University, 21 600-richchia Vul., 21027 Vinnytsia, Ukraine
| | - Tiit Lukk
- Department
of Chemistry and Biotechnology, Tallinn
University of Technology (TalTech), 15 Akadeemia Road, 12618 Tallinn, Estonia
| | - Angela Ivask
- Institute
of Molecular and Cell Biology, University
of Tartu, 23 Riia Street, 51010 Tartu, Estonia
| | - Yevgen Karpichev
- Department
of Chemistry and Biotechnology, Tallinn
University of Technology (TalTech), 15 Akadeemia Road, 12618 Tallinn, Estonia
| |
Collapse
|
4
|
Fedorowicz J, Sączewski J. Advances in the Synthesis of Biologically Active Quaternary Ammonium Compounds. Int J Mol Sci 2024; 25:4649. [PMID: 38731869 PMCID: PMC11083083 DOI: 10.3390/ijms25094649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 04/14/2024] [Accepted: 04/19/2024] [Indexed: 05/13/2024] Open
Abstract
This review provides a comprehensive overview of recent advancements in the design and synthesis of biologically active quaternary ammonium compounds (QACs). The covered scope extends beyond commonly reviewed antimicrobial derivatives to include synthetic agents with antifungal, anticancer, and antiviral properties. Additionally, this review highlights examples of quaternary ammonium compounds exhibiting activity against protozoa and herbicidal effects, as well as analgesic and anesthetic derivatives. The article also embraces the quaternary-ammonium-containing cholinesterase inhibitors and muscle relaxants. QACs, marked by their inherent permanent charge, also find widespread usage across diverse domains such as fabric softeners, hair conditioners, detergents, and disinfectants. The effectiveness of QACs hinges greatly on finding the right equilibrium between hydrophilicity and lipophilicity. The ideal length of the alkyl chain varies according to the unique structure of each QAC and its biological settings. It is expected that this review will provide comprehensive data for medicinal and industrial chemists to design and develop novel QAC-based products.
Collapse
Affiliation(s)
- Joanna Fedorowicz
- Department of Chemical Technology of Drugs, Faculty of Pharmacy, Medical University of Gdańsk, Al. Gen. J. Hallera 107, 80-416 Gdańsk, Poland
| | - Jarosław Sączewski
- Department of Organic Chemistry, Faculty of Pharmacy, Medical University of Gdańsk, Al. Gen. J. Hallera 107, 80-416 Gdańsk, Poland;
| |
Collapse
|
5
|
He X, Wang R, Zhou F, Liu H. Recent advances in photo-crosslinkable methacrylated silk (Sil-MA)-based scaffolds for regenerative medicine: A review. Int J Biol Macromol 2024; 256:128031. [PMID: 37972833 DOI: 10.1016/j.ijbiomac.2023.128031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 11/08/2023] [Accepted: 11/09/2023] [Indexed: 11/19/2023]
Abstract
Silks fibroin can be chemically modified through amino acid side chains to obtain methacrylated silk (Sil-MA). Sil-MA could be processed into a variety of scaffold forms and combine synergistically with other biomaterials to form composites vehicle. The advent of Sil-MA material has enabled impressive progress in the development of various scaffolds based on Sil-MA type to imitate the structural and functional characteristics of natural tissues. This review highlights the reasonable design and bio-fabrication strategies of diverse Sil-MA-based tissue constructs for regenerative medicine. First, we elucidate modification methodology and characteristics of Sil-MA. Next, we describe characteristics of Sil-MA hydrogels, and focus on the design approaches and formation of different types of Sil-MA-based hydrogels. Thereafter, we present an overview of the recent advances in the application of Sil-MA based scaffolds for regenerative medicine, including detailed strategies for the engineering methods and materials used. Finally, we summarize the current research progress and future directions of Sil-MA in regenerative medicine. This review not only delineates the representative design strategies and their application in regenerative medicine, but also provides new direction in the fabrication of biomaterial constructs for the clinical translation in order to stimulate the future development of implants.
Collapse
Affiliation(s)
- Xi He
- Key Laboratory for Biomechanics and Mechanobiology (Beihang University) of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, PR China
| | - RuiDeng Wang
- Peking University Third Hospital, Department of Orthopaedics, PR China; Peking University Third Hospital, Engineering Research Center of Bone and Joint Precision Medicine, PR China
| | - Fang Zhou
- Peking University Third Hospital, Department of Orthopaedics, PR China
| | - Haifeng Liu
- Key Laboratory for Biomechanics and Mechanobiology (Beihang University) of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, PR China.
| |
Collapse
|
6
|
Jacukowicz-Sobala I, Kociołek-Balawejder E, Stanisławska E, Seniuk A, Paluch E, Wiglusz RJ, Dworniczek E. Biocidal activity of multifunctional cuprite-doped anion exchanger - Influence of bacteria type and medium composition. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 891:164667. [PMID: 37286010 DOI: 10.1016/j.scitotenv.2023.164667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 06/01/2023] [Accepted: 06/02/2023] [Indexed: 06/09/2023]
Abstract
The study presents unconventional, bifunctional, heterogeneous antimicrobial agents - Cu2O-loaded anion exchangers. The synergetic effect of a cuprous oxide deposit and polymeric support with trimethyl ammonium groups was studied against the reference strains of Enterococcus faecalis ATCC 29212 and Pseudomonas aeruginosa ATCC 27853. Biological testing (minimum bactericidal concentration, MBC), time- and dose-dependent bactericidal effect (under different conditions - medium composition and static/dynamic culture) demonstrated promising antimicrobial activity and confirmed its multimode character. The standard values of MBC, for all studied hybrid polymers and bacteria, were similar (64-128 mg/mL). However, depending on the medium conditions, due to the copper release into the bulk solution, bacteria were actively killed even at much lower doses of the hybrid polymer (25 mg/mL) and low Cu(II) concentrations in solution (0.01 mg/L). Simultaneously, confocal microscopic studies confirmed the effective inhibition of bacterial adhesion and biofilm formation on their surface. The studies conducted under different conditions showed also the influence of the structure and physical properties of studied materials on the biocidal efficacy and an antimicrobial action mechanism was proposed that could be significantly affected by electrostatic interactions and copper release to the solution. Although the antibacterial activity was also dependent on various strategies of bacterial cell resistance to heavy metals present in the aqueous medium, the studied hybrid polymers are versatile and efficient biocidal agents against bacteria of both types, Gram-positive and Gram-negative. Therefore, they can be a convenient alternative for point-of-use water disinfection systems providing water quality in medical devices such as dental units, spa equipment, and aesthetic devices used in the cosmetic sector.
Collapse
Affiliation(s)
- Irena Jacukowicz-Sobala
- Department of Industrial Chemistry, Wroclaw University of Economics and Business, 53-345 Wroclaw, Poland.
| | | | - Ewa Stanisławska
- Department of Industrial Chemistry, Wroclaw University of Economics and Business, 53-345 Wroclaw, Poland
| | - Alicja Seniuk
- Department of Microbiology, Faculty of Medicine, Wroclaw Medical University, 50-368 Wroclaw, Poland
| | - Emil Paluch
- Department of Microbiology, Faculty of Medicine, Wroclaw Medical University, 50-368 Wroclaw, Poland
| | - Rafal J Wiglusz
- Institute of Low Temperature and Structure Research, Polish Academy of Sciences, 50-422 Wroclaw, Poland
| | - Ewa Dworniczek
- Department of Microbiology, Faculty of Medicine, Wroclaw Medical University, 50-368 Wroclaw, Poland
| |
Collapse
|
7
|
Kociołek-Balawejder E, Stanisławska E, Mucha I, Ociński D, Jacukowicz-Sobala I. Multifunctional Composite Materials Based on Anion Exchangers Modified with Copper Compounds-A Review of Their Synthesis Methods, Characteristics and Applications. Polymers (Basel) 2023; 15:3606. [PMID: 37688232 PMCID: PMC10490266 DOI: 10.3390/polym15173606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/21/2023] [Accepted: 08/26/2023] [Indexed: 09/10/2023] Open
Abstract
As copper and its compounds are of fundamental importance for the development of innovative materials, the synthesis of composites intended for water purification was undertaken in which submicron copper containing particles were dispersed within the matrix of a strongly basic anion exchanger, with a macroporous and gel-like structure. Due to their trimethylammonium functional groups, the host materials alone exhibited an affinity to anionic water contaminants and antimicrobial properties. The introduction of such particles as CuO, Cu2O, metallic Cu, CuO/FeO(OH), Cu4O3, Cu(OH)2, Cu4(OH)6SO4, Cu2(OH)3Cl increased these properties and demonstrated new properties. The composites were obtained unconventionally, in ambient conditions, using eco-friendly reagents. Alternative synthesis methods were compared and optimized, as a result of which a new group of hybrid ion exchangers was created (HIXs) containing 3.5-12.5 wt% of Cu. As the arrangement of the inorganic phase in the resin matrix was atypical, i.e., close to the surface of the beads, the obtained HIXs exhibited excellent kinetic properties in the process of oxidation and adsorption of As(III), as well as catalytic properties for the synthesis of triazoles via click reaction, and also antimicrobial properties in relation to Gram-positive Enterococcus faecalis and Gram-negative Pseudomonas aeruginosa and Escherichia coli, preventing biofilm formation. Using thermogravimetry, the effect of the inorganic phase on decomposition of the polymeric phase was evaluated for the first time and comprehensively, confirming the relationship and finding numerous regularities. It was also found that, depending on the oxidation state (CuO, Cu2O, Cu), copper-containing particles affected the textural properties of the polymeric phase endowing a tighter structure, limiting the porosity and reducing the affinity for water.
Collapse
Affiliation(s)
- Elżbieta Kociołek-Balawejder
- Department of Chemical Technology, Wroclaw University of Economics and Business, 53-345 Wrocław, Poland; (E.S.); (D.O.); (I.J.-S.)
| | - Ewa Stanisławska
- Department of Chemical Technology, Wroclaw University of Economics and Business, 53-345 Wrocław, Poland; (E.S.); (D.O.); (I.J.-S.)
| | - Igor Mucha
- Department of Basic Chemical Sciences, Wroclaw Medical University, 50-556 Wrocław, Poland;
| | - Daniel Ociński
- Department of Chemical Technology, Wroclaw University of Economics and Business, 53-345 Wrocław, Poland; (E.S.); (D.O.); (I.J.-S.)
| | - Irena Jacukowicz-Sobala
- Department of Chemical Technology, Wroclaw University of Economics and Business, 53-345 Wrocław, Poland; (E.S.); (D.O.); (I.J.-S.)
| |
Collapse
|
8
|
Jiang Y, Lin W, Tan S, Wang Y, Wu W, Lu Z. Synthesis and Antibacterial Evaluation of Novel Vancomycin Derivatives Containing Quaternary Ammonium Moieties. ACS OMEGA 2023; 8:28511-28518. [PMID: 37576623 PMCID: PMC10413833 DOI: 10.1021/acsomega.3c02879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 07/14/2023] [Indexed: 08/15/2023]
Abstract
A series of novel vancomycin analogues with quaternary ammonium moieties have been designed and synthesized for fighting with clinically isolated drug-resistant bacteria. Partial target molecules exhibited potent activity against the tested strains. Among all of the compounds, a triazole quaternary ammonium vancomycin (QAV) derivative QAV-a1 exerted the best antibacterial activities. QAV-a1 was found to be 4- to 32-fold more efficacious than vancomycin against MRSA. Meanwhile, QAV-a1 showed a good pharmacokinetic profile with a half-life of 5.19 ± 0.10 h, which is longer than that of vancomycin (4.3 ± 1.9 h). These results provided guidance for the further exploitation of vancomycin derivatives against drug-resistant bacteria.
Collapse
Affiliation(s)
- Yongwei Jiang
- Key
Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Weixin Lin
- College
of Pharmacy, Nanjing University of Chinese
Medicine, Nanjing 210023, China
| | - Subei Tan
- State
Key Laboratory of Genetic Engineering, Collaborative Innovation Center
for Genetics and Development, School of Life Sciences, Institute of
Biomedical Sciences, and Human Phenome Institute, Fudan University, Shanghai 200433, China
| | - Yuxuan Wang
- College
of Pharmacy, Nanjing University of Chinese
Medicine, Nanjing 210023, China
| | - Wei Wu
- Key
Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Zhigang Lu
- Key
Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing 210023, China
- College
of Pharmacy, Nanjing University of Chinese
Medicine, Nanjing 210023, China
| |
Collapse
|
9
|
Odžak R, Crnčević D, Sabljić A, Krce L, Paladin A, Primožič I, Šprung M. Further Study of the Polar Group's Influence on the Antibacterial Activity of the 3-Substituted Quinuclidine Salts with Long Alkyl Chains. Antibiotics (Basel) 2023; 12:1231. [PMID: 37627651 PMCID: PMC10451673 DOI: 10.3390/antibiotics12081231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/20/2023] [Accepted: 07/24/2023] [Indexed: 08/27/2023] Open
Abstract
Quaternary ammonium compounds (QACs) are among the most potent antimicrobial agents increasingly used by humans as disinfectants, antiseptics, surfactants, and biological dyes. As reports of bacterial co- and cross-resistance to QACs and their toxicity have emerged in recent years, new attempts are being made to develop soft QACs by introducing hydrolyzable groups that allow their controlled degradation. However, the development of such compounds has been hindered by the structural features that affect the bioactivity of QACs, one of them being polarity of the substituent near the quaternary center. To further investigate the influence of the polar group on the bioactivity of QACs, we synthesized 3-aminoquinuclidine salts for comparison with their structural analogues, 3-acetamidoquinuclidines. We found that the less polar amino-substituted compounds exhibited improved antibacterial activity over their more polar amide analogues. In addition to their better minimum inhibitory concentrations, the candidates were excellent at suppressing Staphylococcus aureus biofilm formation and killing bacteria almost immediately, as shown by the flow cytometry measurements. In addition, two candidates, namely QNH2-C14 and QNH2-C16, effectively suppressed bacterial growth even at concentrations below the MIC. QNH2-C14 was particularly effective at subinhibitory concentrations, inhibiting bacterial growth for up to 6 h. In addition, we found that the compounds targeted the bacterial membrane, leading to its perforation and subsequent cell death. Their low toxicity to human cells and low potential to develop bacterial resistance suggest that these compounds could serve as a basis for the development of new QACs.
Collapse
Affiliation(s)
- Renata Odžak
- Department of Chemistry, Faculty of Science, University of Split, R. Bošković 33, 21000 Split, Croatia; (R.O.); (D.C.); (A.S.)
| | - Doris Crnčević
- Department of Chemistry, Faculty of Science, University of Split, R. Bošković 33, 21000 Split, Croatia; (R.O.); (D.C.); (A.S.)
- Doctoral Study of Biophysics, Faculty of Science, University of Split, R. Bošković 33, 21000 Split, Croatia
| | - Antonio Sabljić
- Department of Chemistry, Faculty of Science, University of Split, R. Bošković 33, 21000 Split, Croatia; (R.O.); (D.C.); (A.S.)
- Doctoral Study of Biophysics, Faculty of Science, University of Split, R. Bošković 33, 21000 Split, Croatia
| | - Lucija Krce
- Department of Physics, Faculty of Science, University of Split, R. Bošković 33, 21000 Split, Croatia;
| | - Antonela Paladin
- Department of Biology, Faculty of Science, University of Split, R. Bošković 33, 21000 Split, Croatia;
| | - Ines Primožič
- Department of Chemistry, Faculty of Science, University of Zagreb, Horvatovac 102a, 10000 Zagreb, Croatia;
| | - Matilda Šprung
- Department of Chemistry, Faculty of Science, University of Split, R. Bošković 33, 21000 Split, Croatia; (R.O.); (D.C.); (A.S.)
| |
Collapse
|
10
|
Zhou H, Li Q, Zhang Z, Wang X, Niu H. Recent Advances in Superhydrophobic and Antibacterial Cellulose-Based Fibers and Fabrics: Bio-inspiration, Strategies, and Applications. ADVANCED FIBER MATERIALS 2023; 5:1-37. [PMID: 37361104 PMCID: PMC10201051 DOI: 10.1007/s42765-023-00297-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 05/03/2023] [Indexed: 06/28/2023]
Abstract
Cellulose-based fabrics are ubiquitous in our daily lives. They are the preferred choice for bedding materials, active sportswear, and next-to-skin apparels. However, the hydrophilic and polysaccharide characteristics of cellulose materials make them vulnerable to bacterial attack and pathogen infection. The design of antibacterial cellulose fabrics has been a long-term and on-going effort. Fabrication strategies based on the construction of surface micro-/nanostructure, chemical modification, and the application of antibacterial agents have been extensively investigated by many research groups worldwide. This review systematically discusses recent research on super-hydrophobic and antibacterial cellulose fabrics, focusing on morphology construction and surface modification. First, natural surfaces showing liquid-repellent and antibacterial properties are introduced and the mechanisms behind are explained. Then, the strategies for fabricating super-hydrophobic cellulose fabrics are summarized, and the contribution of the liquid-repellent function to reducing the adhesion of live bacteria and removing dead bacteria is elucidated. Representative studies on cellulose fabrics functionalized with super-hydrophobic and antibacterial properties are discussed in detail, and their potential applications are also introduced. Finally, the challenges in achieving super-hydrophobic antibacterial cellulose fabrics are discussed, and the future research direction in this area is proposed. Graphical Abstract The figure summarizes the natural surfaces and the main fabrication strategies of superhydrophobic antibacterial cellulose fabrics and their potential applications. Supplementary Information The online version contains supplementary material available at 10.1007/s42765-023-00297-1.
Collapse
Affiliation(s)
- Hua Zhou
- College of Textiles and Clothing, Qingdao University, Qingdao, 266071 China
- Collaborative Innovation Center for Eco-Textiles of Shandong Province and the Ministry of Education Collaborative, Qingdao University, Qingdao, 266071 China
| | - Qingshuo Li
- College of Textiles and Clothing, Qingdao University, Qingdao, 266071 China
- Collaborative Innovation Center for Eco-Textiles of Shandong Province and the Ministry of Education Collaborative, Qingdao University, Qingdao, 266071 China
| | - Zhong Zhang
- College of Textiles and Clothing, Qingdao University, Qingdao, 266071 China
- Collaborative Innovation Center for Eco-Textiles of Shandong Province and the Ministry of Education Collaborative, Qingdao University, Qingdao, 266071 China
| | - Xungai Wang
- JC STEM Lab of Sustainable Fibers and Textiles, School of Fashion and Textiles, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Haitao Niu
- College of Textiles and Clothing, Qingdao University, Qingdao, 266071 China
- Collaborative Innovation Center for Eco-Textiles of Shandong Province and the Ministry of Education Collaborative, Qingdao University, Qingdao, 266071 China
| |
Collapse
|
11
|
Metzcar C, Leyva Gutierrez F, Ownley BH, Johnson JG, Wakim M, Ye XP, Wang T. Synthesis and Evaluation of Antimicrobial Biobased Waxes as Coating Materials. ACS APPLIED BIO MATERIALS 2023. [PMID: 37205783 DOI: 10.1021/acsabm.3c00104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The objective of this study was to synthesize and evaluate the efficacy of antimicrobial waxes to be used as both physical and biological protection to perishable fruits and vegetables. The existing wax materials used in postharvest coating applications do not provide this antimicrobial functionality. One class of such waxes was obtained by covalently linking quaternary ammonium compounds (QACs) featuring alkyl, benzyl, and stearyl ester hydrophobic side groups to the terminal position of a bromo stearyl ester. A second class was obtained by linking these QACs to the pendant hydroxyl group of an aliphatic diamide made of 12-hydroxystearic acid, stearic acid, and ethylene diamine. In total, six distinct structures having three different QAC groups were synthesized. Compounds containing QACs with C8 alkyl groups exhibited potent inhibition toward the growth of both bacteria and fungi. Notably, the complete inhibition of Penicillium italicum and Geotrichum candidum, two fungi detrimental to the postharvest quality of fruits, as well as the complete destruction of viable cells for Gram-positive and Gram-negative bacteria was observed when these organisms were incubated in contact with QAC waxes or dispersed in an aqueous system at a concentration of 1.0 mM. Comparatively, benzalkonium chloride with an alkyl chain length of 10 carbon can completely inhibit Staphylococcus aureus at a concentration of 1.44 mM. The properties of the attached hydrophobic groups appeared to exert a strong influence on antimicrobial activity presumably due to differences in molecular orientation, size, and differences among microbial cellular structures.
Collapse
Affiliation(s)
- Caleb Metzcar
- Department of Food Science, The University of Tennessee, 207 Food Science Building, Knoxville, Tennessee 37996, United States
| | - Francisco Leyva Gutierrez
- Department of Food Science, The University of Tennessee, 207 Food Science Building, Knoxville, Tennessee 37996, United States
| | - Bonnie H Ownley
- Department of Entomology and Plant Pathology, The University of Tennessee, 414 Plant Biotechnology Building, Knoxville, Tennessee 37996, United States
| | - Jeremiah Gene Johnson
- Department of Microbiology, The University of Tennessee, 516 Ken and Blaire Mossman Building, Knoxville, Tennessee 37996, United States
| | - Mary Wakim
- Department of Microbiology, The University of Tennessee, 516 Ken and Blaire Mossman Building, Knoxville, Tennessee 37996, United States
| | - Xiaofei Philip Ye
- Department of Biosystems Engineering and Soil Science, The University of Tennessee, 101 Biosystems Engineering and Soil Sciences Office Building, Knoxville, Tennessee 37996, United States
| | - Tong Wang
- Department of Food Science, The University of Tennessee, 207 Food Science Building, Knoxville, Tennessee 37996, United States
| |
Collapse
|
12
|
Qiao Y, Han Y, Guan R, Liu S, Bi X, Liu S, Cui W, Zhang T, He T. Inorganic hollow mesoporous spheres-based delivery for antimicrobial agents. FRONTIERS OF MATERIALS SCIENCE 2023; 17:230631. [PMID: 36911597 PMCID: PMC9991883 DOI: 10.1007/s11706-023-0631-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 11/10/2022] [Indexed: 06/18/2023]
Abstract
Microorganisms coexist with human beings and have formed a complex relationship with us. However, the abnormal spread of pathogens can cause infectious diseases thus demands antibacterial agents. Currently available antimicrobials, such as silver ions, antimicrobial peptides and antibiotics, have diverse concerns in chemical stability, biocompatibility, or triggering drug resistance. The "encapsulate-and-deliver" strategy can protect antimicrobials against decomposing, so to avoid large dose release induced resistance and achieve the controlled release. Considering loading capacity, engineering feasibility, and economic viability, inorganic hollow mesoporous spheres (iHMSs) represent one kind of promising and suitable candidates for real-life antimicrobial applications. Here we reviewed the recent research progress of iHMSs-based antimicrobial delivery. We summarized the synthesis of iHMSs and the drug loading method of various antimicrobials, and discussed the future applications. To prevent and mitigate the spread of an infective disease, multilateral coordination at the national level is required. Moreover, developing effective and practicable antimicrobials is the key to enhancing our capability to eliminate pathogenic microbes. We believe that our conclusion will be beneficial for researches on the antimicrobial delivery in both lab and mass production phases.
Collapse
Affiliation(s)
- Yunping Qiao
- Department of Applied Chemistry, School of Chemistry and Chemical Engineering, Yantai University, Clearspring RD 30th, Laishan, Yantai, 264005 China
| | - Yanyang Han
- Department of Applied Chemistry, School of Chemistry and Chemical Engineering, Yantai University, Clearspring RD 30th, Laishan, Yantai, 264005 China
| | - Rengui Guan
- Department of Applied Chemistry, School of Chemistry and Chemical Engineering, Yantai University, Clearspring RD 30th, Laishan, Yantai, 264005 China
| | - Shiliang Liu
- Weifang Branch Company, Shandong HI-speed Transportation Construction Group Co., Ltd., Qingzhou, 262500 China
| | - Xinling Bi
- Shandong Jinhai Titanium Resources Technology Co., Ltd., Binzhou, 256600 China
| | - Shanshan Liu
- Department of Applied Chemistry, School of Chemistry and Chemical Engineering, Yantai University, Clearspring RD 30th, Laishan, Yantai, 264005 China
| | - Wei Cui
- Department of Applied Chemistry, School of Chemistry and Chemical Engineering, Yantai University, Clearspring RD 30th, Laishan, Yantai, 264005 China
| | - Tao Zhang
- Department of Applied Chemistry, School of Chemistry and Chemical Engineering, Yantai University, Clearspring RD 30th, Laishan, Yantai, 264005 China
| | - Tao He
- Department of Applied Chemistry, School of Chemistry and Chemical Engineering, Yantai University, Clearspring RD 30th, Laishan, Yantai, 264005 China
| |
Collapse
|
13
|
Odžak R, Crnčević D, Sabljić A, Primožič I, Šprung M. Synthesis and Biological Evaluation of 3-Amidoquinuclidine Quaternary Ammonium Compounds as New Soft Antibacterial Agents. Pharmaceuticals (Basel) 2023; 16:187. [PMID: 37259335 PMCID: PMC9966435 DOI: 10.3390/ph16020187] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/17/2023] [Accepted: 01/24/2023] [Indexed: 08/27/2023] Open
Abstract
Quaternary ammonium compounds (QACs) are among the most effective antimicrobial agents that have been used for more than a century. However, due to the growing trend of bacterial resistance and high toxicity of QACs, research in this field remains a pressing matter. Recent studies of the structure-activity relationship suggest that the introduction of the amide functional group into QAC structures results in soft variants that retain their antimicrobial properties while opening the possibility of fine-tuned activity regulation. Here, we report the synthesis and structure-function study of three structurally distinct series of naturally derived soft QACs. The obtained 3-amidoquinuclidine QACs showed a broad range of antibacterial activities related to the hydrophobic-hydrophilic balance of the QAC structures. All three series yielded candidates with minimal inhibitory concentrations (MIC) in the single-digit μM range. Time-resolved growth analysis revealed subtle differences in the antibacterial activity of the selected candidates. The versatile MIC values were recorded in different nutrient media, suggesting that the media composition may have a dramatic impact on the antibacterial potential. The new QACs were found to have excellent potential to suppress bacterial biofilm formation while exhibiting low ability to induce bacterial resistance. In addition, the selected candidates were found to be less toxic than commercially available QACs and proved to be potential substrates for protease degradation. These data suggest that 3-amidoquinuclidine QACs could be considered as novel antimicrobial agents that pose a low threat to ecosystems and human health.
Collapse
Affiliation(s)
- Renata Odžak
- Department of Chemistry, Faculty of Science, University of Split, R. Bošković 33, 21000 Split, Croatia
| | - Doris Crnčević
- Department of Chemistry, Faculty of Science, University of Split, R. Bošković 33, 21000 Split, Croatia
- Doctoral Study of Biophysics, Faculty of Science, University of Split, R. Bošković 33, 21000 Split, Croatia
| | - Antonio Sabljić
- Department of Chemistry, Faculty of Science, University of Split, R. Bošković 33, 21000 Split, Croatia
- Doctoral Study of Biophysics, Faculty of Science, University of Split, R. Bošković 33, 21000 Split, Croatia
| | - Ines Primožič
- Department of Chemistry, Faculty of Science, University of Zagreb, Horvatovac 102a, 10000 Zagreb, Croatia
| | - Matilda Šprung
- Department of Chemistry, Faculty of Science, University of Split, R. Bošković 33, 21000 Split, Croatia
| |
Collapse
|
14
|
Ryu V, Chuesiang P, Ngo H, Ashby RD, Fan X. Sustainable bio-based antimicrobials derived from fatty acids: Synthesis, safety, and efficacy. Crit Rev Food Sci Nutr 2022; 64:5911-5923. [PMID: 36571149 DOI: 10.1080/10408398.2022.2160430] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Some conventional sanitizers and antibiotics used in food industry may be of concerns due to generation of toxic byproducts, impact on the environment, and the emergence of antibiotic resistance bacteria. Bio-based antimicrobials can be an alternative to conventional sanitizers since they are produced from renewable resources, and the bacterial resistance to these compounds is of less concern than those of currently used antibiotics. Among the bio-based antimicrobial compounds, those produced via either fermentation or chemical synthesis by covalently or electrovalently attaching specific moieties to the fatty acid have drawn attention in recent years. Disaccharide, arginine, vitamin B1, and phenolics are linked to fatty acids resulting in the production of sophorolipid, lauric arginate ethyl ester, thiamin dilauryl sulfate, and phenolic branched-chain fatty acid, respectively, all of which are reported to exhibit antimicrobial activity by targeting the cell membrane of the bacteria. Also, studies that applied these compounds as food preservatives by combining them with other compounds or treatments have been reviewed regarding extending the shelf life and inactivating foodborne pathogens of foods and food products. In addition, the phenolic branched-chain fatty acids, which are relatively new compounds compared to the others, are highlighted in this review.
Collapse
Affiliation(s)
- Victor Ryu
- USDA, ARS, Eastern Regional Research Center, Wyndmoor, PA, USA
| | - Piyanan Chuesiang
- Department of Food Technology, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Helen Ngo
- USDA, ARS, Eastern Regional Research Center, Wyndmoor, PA, USA
| | - Richard D Ashby
- USDA, ARS, Eastern Regional Research Center, Wyndmoor, PA, USA
| | - Xuetong Fan
- USDA, ARS, Eastern Regional Research Center, Wyndmoor, PA, USA
| |
Collapse
|
15
|
Wang G, Yang L, Jiang L, Chen J, Jing Q, Mai Y, Deng L, Lin Y, Chen L, Chen Z, Xu P, Jiang L, Yuan C, Huang M. A new class of quaternary ammonium compounds as potent and environmental friendly disinfectants. JOURNAL OF CLEANER PRODUCTION 2022; 379:134632. [PMID: 36246409 PMCID: PMC9552062 DOI: 10.1016/j.jclepro.2022.134632] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 09/29/2022] [Accepted: 10/07/2022] [Indexed: 05/21/2023]
Abstract
Quaternary ammonium compounds (QACs) are inexpensive and readily available disinfectants, and have been widely used, especially since the COVID-19 outbreak. The toxicity of QACs to humans has raised increasing concerns in recent years. Here, a new type of QACs was synthesized by replacing the alkyl chain with zinc phthalocyanine (ZnPc), which consists of a large aromatic ring and is hydrophobic in nature, similar to the alkyl chain of QACs. Three ZnPc-containing disinfectants were synthesized and fully characterized. These compounds showed 15-16 fold higher antimicrobial effect against Gram-negative bacteria than the well-known QACs with half-maximal inhibitory (IC50) values of 1.43 μM, 2.70 μM, and 1.31 μM, respectively. With the assistance of 680 nm light, compounds 4 and 6 had much higher bactericidal toxicities at nanomolar concentrations. Compound 6 had a bactericidal efficacy of close to 6 logs (99.9999% kill rate) at 1 μM to Gram-positive bacteria, including MRSA, under light illumination. Besides, these compounds were safe for mammalian cells. In a mouse model, compound 6 was effective in healing wound infection. Importantly, compound 6 was easily degraded at working concentrations under sunlight illumination, and is environmentally friendly. Thus, compound 6 is a novel and promising disinfectant.
Collapse
Affiliation(s)
- Guodong Wang
- College of Chemistry, Fuzhou University, Fujian, 350108, China
| | - Ling Yang
- College of Chemistry, Fuzhou University, Fujian, 350108, China
| | - Libin Jiang
- College of Chemistry, Fuzhou University, Fujian, 350108, China
| | - Jingyi Chen
- College of Chemistry, Fuzhou University, Fujian, 350108, China
| | - Qian Jing
- College of Chemistry, Fuzhou University, Fujian, 350108, China
| | - Yuhan Mai
- College of Chemistry, Fuzhou University, Fujian, 350108, China
| | - Lina Deng
- College of Chemistry, Fuzhou University, Fujian, 350108, China
| | - Yuxin Lin
- College of Chemistry, Fuzhou University, Fujian, 350108, China
| | - Liyun Chen
- College of Chemistry, Fuzhou University, Fujian, 350108, China
| | - Zheng Chen
- College of Chemistry, Fuzhou University, Fujian, 350108, China
| | - Peng Xu
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Longguang Jiang
- College of Chemistry, Fuzhou University, Fujian, 350108, China
| | - Cai Yuan
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Mingdong Huang
- College of Chemistry, Fuzhou University, Fujian, 350108, China
| |
Collapse
|
16
|
Deciphering the mechanism of interaction of an ester-functionalized cationic gemini surfactant with bovine serum albumin: A biophysical and molecular modeling study. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128944] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
17
|
Crnčević D, Krce L, Cvitković M, Brkljača Z, Sabljić A, Vuko E, Primožič I, Odžak R, Šprung M. New Membrane Active Antibacterial and Antiviral Amphiphiles Derived from Heterocyclic Backbone of Pyridinium-4-Aldoxime. Pharmaceuticals (Basel) 2022; 15:ph15070775. [PMID: 35890073 PMCID: PMC9315884 DOI: 10.3390/ph15070775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/15/2022] [Accepted: 06/20/2022] [Indexed: 02/06/2023] Open
Abstract
Quaternary ammonium salts (QAS) are irreplaceable membrane-active antimicrobial agents that have been widely used for nearly a century. Cetylpyridinium chloride (CPC) is one of the most potent QAS. However, recent data from the literature indicate that CPC activity against resistant bacterial strains is decreasing. The major QAS resistance pathway involves the QacR dimer, which regulates efflux pump expression. A plausible approach to address this issue is to structurally modify the CPC structure by adding other biologically active functional groups. Here, a series of QAS based on pyridine-4-aldoxime were synthesized, characterized, and tested for antimicrobial activity in vitro. Although we obtained several potent antiviral candidates, these candidates had lower antibacterial activity than CPC and were not toxic to human cell lines. We found that the addition of an oxime group to the pyridine backbone resulted in derivatives with large topological polar surfaces and with unfavorable cLog P values. Investigation of the antibacterial mode of action, involving the cell membrane, revealed altered cell morphologies in terms of corrugated and/or disrupted surface, while 87% of the cells studied exhibited a permeabilized membrane after 3 h of treatment at 4 × minimum inhibitory concentration (MIC). Molecular dynamic (MD) simulations of the interaction of QacR with a representative candidate showed rapid dimer disruption, whereas this was not observed for QacR and QacR bound to the structural analog CPC. This might explain the lower bioactivity of our compounds, as they are likely to cause premature expression of efflux pumps and thus activation of resistance.
Collapse
Affiliation(s)
- Doris Crnčević
- Department of Chemistry, Faculty of Science, University of Split, R. Bošković 33, 21 000 Split, Croatia; (D.C.); (A.S.)
- Doctoral Study of Biophysics, Faculty of Science, University of Split, R. Bošković 33, 21 000 Split, Croatia
| | - Lucija Krce
- Department of Physics, Faculty of Science, University of Split, R. Bošković 33, 21 000 Split, Croatia; (L.K.); (M.C.)
| | - Mislav Cvitković
- Department of Physics, Faculty of Science, University of Split, R. Bošković 33, 21 000 Split, Croatia; (L.K.); (M.C.)
| | - Zlatko Brkljača
- Division of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička c. 54, 10 000 Zagreb, Croatia;
- Selvita Ltd., Prilaz Baruna Filipovića 29, 10 000 Zagreb, Croatia
| | - Antonio Sabljić
- Department of Chemistry, Faculty of Science, University of Split, R. Bošković 33, 21 000 Split, Croatia; (D.C.); (A.S.)
- Doctoral Study of Biophysics, Faculty of Science, University of Split, R. Bošković 33, 21 000 Split, Croatia
| | - Elma Vuko
- Department of Biology, Faculty of Science, University of Split, R. Bošković 33, 21 000 Split, Croatia;
| | - Ines Primožič
- Department of Chemistry, Faculty of Science, University of Zagreb, Horvatovac 102a, 10 000 Zagreb, Croatia;
| | - Renata Odžak
- Department of Chemistry, Faculty of Science, University of Split, R. Bošković 33, 21 000 Split, Croatia; (D.C.); (A.S.)
- Correspondence: (R.O.); (M.Š.)
| | - Matilda Šprung
- Department of Chemistry, Faculty of Science, University of Split, R. Bošković 33, 21 000 Split, Croatia; (D.C.); (A.S.)
- Correspondence: (R.O.); (M.Š.)
| |
Collapse
|
18
|
Ji QT, Hu DK, Mu XF, Tian XX, Zhou L, Yao S, Wang XH, Xiang SZ, Ye HJ, Fan LJ, Wang PY. Cucurbit[7]uril-Mediated Supramolecular Bactericidal Nanoparticles: Their Assembly Process, Controlled Release, and Safe Treatment of Intractable Plant Bacterial Diseases. NANO LETTERS 2022; 22:4839-4847. [PMID: 35667033 DOI: 10.1021/acs.nanolett.2c01203] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
A safe, biocompatible, and stimuli-responsive cucurbit[7]uril-mediated supramolecular bactericidal nanoparticle was fabricated by encapsulating a highly bioactive carbazole-decorated imidazolium salt (A1, EC50 = 0.647 μg/mL against phytopathogen Xanthomonas oryzae pv oryzae) into the host cucurbit[7]uril (CB[7]), thereby leading to self-assembled topographies from microsheets (A1) to nanospheroidal architectures (A1@CB[7]). The assembly behaviors were elucidated by acquired single-crystal structures, 1H NMR, ITC, and X-ray powder diffraction experiments. Complex A1@CB[7] displayed lower phytotoxicity and could efficiently switch on its potent antibacterial ability via introducing a simple competitor 1-adamantanamine hydrochloride (AD). In vivo antibacterial trials against rice bacterial blight revealed that A1@CB[7] could relieve the disease symptoms after being triggered by AD and provide a workable control efficiency of 42.6% at 100 μg/mL, which was superior to bismerthiazol (33.4%). These materials can provide a viable platform for fabricating diverse stimuli-responsive supramolecular bactericides for managing bacterial infections with improved safety.
Collapse
Affiliation(s)
- Qing-Tian Ji
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - De-Kun Hu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Xian-Fu Mu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Xiao-Xue Tian
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Li Zhou
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Si Yao
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Xiao-Hui Wang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Shu-Zhen Xiang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Hao-Jie Ye
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Li-Jun Fan
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Pei-Yi Wang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| |
Collapse
|
19
|
Müller E, Drechsler M, Klein R, Heilmann J, Estrine B, Kunz W. Physical-Chemical and Toxicological Properties of Osmolyte-Based Cationic Surfactants and Spontaneously Formed Low-Toxic Catanionic Vesicles out of them. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
20
|
Modified Compositions of Micelle–Clay and Liposome–Clay Composites for Optimal Removal from Water of Bacteria and Hydrophobic Neutral Chemicals. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12063044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The efficiency in water treatment by granulated complexes formed from the clay bentonite with (i) micelles of the cations of octadecyltrimethyl-ammonium (ODTMA) or (ii) liposomes of didodecyldimethyl-ammonium (DDAB) was investigated. The bentonite–ODTMA complexes were synthesized in three variations: I. mass ratio of 68/32, which resulted in an excess of positive charge of half of the clay cation exchange capacity and is denoted “ordinary”; II. complexes having higher loads of ODTMA, denoted “enriched”; and III. “neutral”. These variations were designed to optimize the efficiency and reduce the costs of water treatment. “Ordinary” and “neutral” complexes of DDAB were also synthesized. The “ordinary” complex of ODTMA was shown to be efficient in the removal of anionic/hydrophobic molecules and bacteria. The “enriched” complexes were more active in removal of bacteria from water by filtration due to the higher release of free ODTMA cations, which causes biostatic/biocidal effects. The corresponding “ordinary” and “neutral” complexes of ODTMA and DDAB yielded the same efficiency in removal from water of the neutral and hydrophobic herbicides, S-metolachlor (i) and alachlor (ii), respectively. Model calculations, which considered sorption/desorption and convection yielded simulations and predictions of filtration results of the herbicides. The neutral complexes are advantageous since their production saves about 1/3 of the amount of ODTMA or DDAB, which constitutes the expensive component in the respective composite.
Collapse
|
21
|
Brycki BE, Szulc A, Kowalczyk I, Koziróg A, Sobolewska E. Antimicrobial Activity of Gemini Surfactants with Ether Group in the Spacer Part. Molecules 2021; 26:molecules26195759. [PMID: 34641303 PMCID: PMC8510121 DOI: 10.3390/molecules26195759] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 09/15/2021] [Accepted: 09/21/2021] [Indexed: 12/23/2022] Open
Abstract
Due to their large possibility of the structure modification, alkylammonium gemini surfactants are a rapidly growing class of compounds. They exhibit significant surface, aggregation and antimicrobial properties. Due to the fact that, in order to achieve the desired utility effect, the minimal concentration of compounds are used, they are in line with the principle of greenolution (green evolution) in chemistry. In this study, we present innovative synthesis of the homologous series of gemini surfactants modified at the spacer by the ether group, i.e., 3-oxa-1,5-pentane-bis(N-alkyl-N,N-dimethylammonium bromides). The critical micelle concentrations were determined. The minimal inhibitory concentrations of the synthesized compounds were determined against bacteria Escherichia coli ATCC 10536 and Staphylococcus aureus ATCC 6538; yeast Candida albicans ATCC 10231; and molds Aspergillus niger ATCC 16401 and Penicillium chrysogenum ATCC 60739. We also investigated the relationship between antimicrobial activity and alkyl chain length or the nature of the spacer. The obtained results indicate that the synthesized compounds are effective microbicides with a broad spectrum of biocidal activity.
Collapse
Affiliation(s)
- Bogumil Eugene Brycki
- Department of Bioactive Products, Faculty of Chemistry, Adam Mickiewicz University Poznan, 61-614 Poznan, Poland; (A.S.); (I.K.)
- Correspondence: ; Tel.: +48-61-829-1694
| | - Adrianna Szulc
- Department of Bioactive Products, Faculty of Chemistry, Adam Mickiewicz University Poznan, 61-614 Poznan, Poland; (A.S.); (I.K.)
| | - Iwona Kowalczyk
- Department of Bioactive Products, Faculty of Chemistry, Adam Mickiewicz University Poznan, 61-614 Poznan, Poland; (A.S.); (I.K.)
| | - Anna Koziróg
- Institute of Fermentation Technology and Microbiology, Faculty of Biotechnology and Food Science, Lodz University of Technology, 90-924 Lodz, Poland;
| | - Ewelina Sobolewska
- Interdisciplinary Doctoral School of the Lodz University of Technology, Lodz University of Technology, 90-924 Lodz, Poland;
| |
Collapse
|
22
|
Vereshchagin AN, Frolov NA, Egorova KS, Seitkalieva MM, Ananikov VP. Quaternary Ammonium Compounds (QACs) and Ionic Liquids (ILs) as Biocides: From Simple Antiseptics to Tunable Antimicrobials. Int J Mol Sci 2021; 22:6793. [PMID: 34202677 PMCID: PMC8268321 DOI: 10.3390/ijms22136793] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/15/2021] [Accepted: 06/16/2021] [Indexed: 12/13/2022] Open
Abstract
Quaternary ammonium compounds (QACs) belong to a well-known class of cationic biocides with a broad spectrum of antimicrobial activity. They are used as essential components in surfactants, personal hygiene products, cosmetics, softeners, dyes, biological dyes, antiseptics, and disinfectants. Simple but varied in their structure, QACs are divided into several subclasses: Mono-, bis-, multi-, and poly-derivatives. Since the beginning of the 20th century, a significant amount of work has been dedicated to the advancement of this class of biocides. Thus, more than 700 articles on QACs were published only in 2020, according to the modern literature. The structural variability and diverse biological activity of ionic liquids (ILs) make them highly prospective for developing new types of biocides. QACs and ILs bear a common key element in the molecular structure-quaternary positively charged nitrogen atoms within a cyclic or acyclic structural framework. The state-of-the-art research level and paramount demand in modern society recall the rapid development of a new generation of tunable antimicrobials. This review focuses on the main QACs exhibiting antimicrobial and antifungal properties, commercial products based on QACs, and the latest discoveries in QACs and ILs connected with biocide development.
Collapse
Affiliation(s)
- Anatoly N. Vereshchagin
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, 119991 Moscow, Russia; (N.A.F.); (K.S.E.); (M.M.S.)
| | | | | | | | - Valentine P. Ananikov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, 119991 Moscow, Russia; (N.A.F.); (K.S.E.); (M.M.S.)
| |
Collapse
|
23
|
Johnson P, Trybala A, Starov V, Pinfield VJ. Effect of synthetic surfactants on the environment and the potential for substitution by biosurfactants. Adv Colloid Interface Sci 2021; 288:102340. [PMID: 33383470 DOI: 10.1016/j.cis.2020.102340] [Citation(s) in RCA: 85] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 12/09/2020] [Accepted: 12/10/2020] [Indexed: 11/29/2022]
Abstract
The environmental impacts of the use of synthetic surfactants are discussed in this work such as their high levels of toxicity and low biodegradability. These materials destroy aquatic microbial populations, damage fish and other aquatic life, and reduce photochemical energy conversion efficiency of plants as well as adversely affecting waste-water treatment processes. With global usage of surfactants being over 15 million tonnes annually, and an estimated 60% of surfactant ending up in the aquatic environment, there is an urgent need for alternatives with lower adverse environmental effects; this review explores biosurfactants as potential alternatives. The sources and natural function of biosurfactants are presented, together with their advantages compared with their synthetic counterparts, including their low toxicity and biodegradability. Their comparable effectiveness as surfactants has been demonstrated by surface tension reduction, achieved at much lower critical micelle concentrations that those of synthetic surfactants. The limitations and challenges for the use of biosurfactants are discussed, particularly low production yields; such limitations must be addressed before wide range industrial use of biosurfactants can be achieved. Although there has been focus on achieving greater production yields, a remaining issue is the lack of research into the use of biosurfactants in a greater range of industrial and consumer applications to demonstrate their efficacy and identify candidate biosurfactants for production. This review highlights such research as deserving of further investigation, alongside the ongoing work to optimize the production process.
Collapse
Affiliation(s)
- Phillip Johnson
- Department of Chemical Engineering, Loughborough University, Loughborough, UK
| | - Anna Trybala
- Department of Chemical Engineering, Loughborough University, Loughborough, UK.
| | - Victor Starov
- Department of Chemical Engineering, Loughborough University, Loughborough, UK
| | - Valerie J Pinfield
- Department of Chemical Engineering, Loughborough University, Loughborough, UK
| |
Collapse
|
24
|
Design, synthesis, antibacterial activity and toxicity of novel quaternary ammonium compounds based on pyridoxine and fatty acids. Eur J Med Chem 2020; 211:113100. [PMID: 33385851 DOI: 10.1016/j.ejmech.2020.113100] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 12/07/2020] [Accepted: 12/07/2020] [Indexed: 12/26/2022]
Abstract
A diverse series of 43 novel "soft antimicrobials" based on quaternary ammonium pyridoxine derivatives which include six-membered acetals and ketals of pyridoxine bound via cleavable linker moieties (amide, ester) with a fragment of fatty carboxylic acid was designed. Nine compounds exhibited in vitro promising antibacterial activity against Gram-positive and Gram-negative bacterial strains with MIC values comparable with reference antiseptics miramistin, benzalkonium chloride and chlorohexidine. On various clinical isolates, the lead compounds 6i and 12a exhibited antibacterial activity comparable with that of benzalkonium chloride while higher than that of miramistin. Moreover, 6i and 12a were able to kill bacteria embedded into the matrix of mono- and dual species biofilms. The treatment of bacterial cells by either 6i and 12a lead to fast depolarization of the membrane suggesting that the membrane is an apparent molecular target of compounds. 6i and 12a were non mutagenic neither in SOS-chromotest nor in Ames test and non-toxic in vivo at acute oral (LD50 > 2000 mg/kg) and cutaneous administration (LD50 > 2500 mg/kg) on mice. Taken together, our data allow suggesting described active compounds as promising starting point for the new antibacterial agents development.
Collapse
|
25
|
Han J, Chen Q, Shen Y, Liu Z, Hao X, Zhong M, Zhao Z, Bockstaller MR. Click-Chemistry Approach toward Antibacterial and Degradable Hybrid Hydrogels Based on Octa-Betaine Ester Polyhedral Oligomeric Silsesquioxane. Biomacromolecules 2020; 21:3512-3522. [PMID: 32687330 DOI: 10.1021/acs.biomac.0c00530] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
An efficient process for the synthesis of degradable hydrogels containing octa-betaine ester polyhedral oligomeric silsesquioxane (POSS) through efficient thiol-ene and Menschutkin click reactions was developed. The hydrogels exhibited a yield strength of 0.36 MPa and a compressive modulus of 4.38 MPa and displayed excellent flexibility as well as torsion resistance. Antibacterial efficacy of hydrogels (and degradation products) was evaluated using Escherichia coli (Gram-negative) and Staphylococcus aureus (Gram-positive). Efficacy was found to increase with the concentration of cetyl chloroacetate (CCA) in the hydrogel network, reaching 93% and 99% for Escherichia coli and Staphylococcus aureus, respectively. Degradation of hydrogels was observed in weak alkali conditions (pH = 8) and at physiological conditions (pH = 7.4). The degradation time of the hydrogels could be finely tuned by variation of the CCA content in the hydrogel and environmental stimulus. The tunable degradation behavior under physiological conditions combined with high antibacterial efficacy could render the presented materials interesting for tissue engineering applications.
Collapse
Affiliation(s)
- Jin Han
- Department of Materials Science & Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Qinyue Chen
- Department of Materials Science & Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Yupeng Shen
- Department of Materials Science & Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Zhixiong Liu
- School of Chemistry and Environmental Engineering, Shanxi Datong University, Datong 037009, P. R. China
| | - Xiaoyu Hao
- School of Chemistry and Environmental Engineering, Shanxi Datong University, Datong 037009, P. R. China
| | - Mingqiang Zhong
- Department of Materials Science & Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Zhengping Zhao
- Zhijiang College, Zhejiang University of Technology, Hangzhou, China 310014
| | - Michael R Bockstaller
- Department of Materials Science & Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
26
|
Seo MK, Na KW, Han SH, Park SH, Ha SD. Inhibitory effect of ethanol and thiamine dilaurylsulfate against loosely, intermediately, and tightly attached mesophilic aerobic bacteria, coliforms, and Salmonella Typhimurium in chicken skin. Poult Sci 2020; 99:1571-1580. [PMID: 32115034 PMCID: PMC7587754 DOI: 10.1016/j.psj.2019.10.058] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 10/22/2019] [Accepted: 10/22/2019] [Indexed: 11/17/2022] Open
Abstract
The effects of 3 ethanol levels (30, 50, and 70%) with and without thiamine dilaurylsulfate (TDS; 1,000 ppm) were evaluated for the reduction of natural mesophilic aerobic bacteria (MAB), coliforms, and inoculated Salmonella Typhimurium (S. Typhimurium) in chicken skin. The chicken skin was inoculated with a 7 log cfu/mL suspension of S. Typhimurium. Loosely, intermediately, and tightly attached cells were recovered from chicken skin through shaking at 200 rpm for 5 min, stomaching for 1 min, and blending for 1 min, respectively. Increasing the ethanol concentration reduced the number of MAB, coliforms, and S. Typhimurium on the chicken skin, whereas TDS treatment without ethanol was not effective. Intermediately and tightly attached microorganisms (total MAB, coliforms, and S. Typhimurium) were more resistant to chemical disinfectants than loosely attached microorganisms. The combination of 70% ethanol with TDS was most effective than the combination of TDS with lower concentrations of ethanol in reducing populations of loosely, intermediately, and tightly attached MAB (by 1.88 log cfu/g, 1.21 log cfu/g, and 0.84 log cfu/g, respectively), coliforms (by 1.14 log cfu/g, 1.04 log cfu/g, and 0.67 log cfu/g, respectively), and S. Typhimurium (by 1.62 log cfu/g, 1.72 log cfu/g, and 1.27 log cfu/g, respectively). However, the chicken skin treated with higher concentrations of ethanol was tougher (P < 0.05) and more yellow and less red (P < 0.05) than that treated with lower concentrations of ethanol or with water (control). On the other hand, a combination of 30% ethanol and TDS yielded the best results, showing the reduction greater than 0.5 log cfu/g in S. Typhimurium, with no negative effect on chicken skin color or texture. Thus, a combination of 30% ethanol and TDS appears to be the optimal treatment for reducing microbial contamination of skin-on chicken products to enhance poultry safety without decreasing food quality, and this treatment could be applied in the poultry industry.
Collapse
Affiliation(s)
- Min-Kyoung Seo
- Department of Food Science and Technology, Advanced Food Safety Research group, Brain Korea 21 Plus, Chung-Ang University, Anseong 17546, Kyeonggi-do, Republic of Korea
| | - Kyung Won Na
- Department of Food Science and Technology, Advanced Food Safety Research group, Brain Korea 21 Plus, Chung-Ang University, Anseong 17546, Kyeonggi-do, Republic of Korea
| | - Sang Ha Han
- Department of Food Science and Technology, Advanced Food Safety Research group, Brain Korea 21 Plus, Chung-Ang University, Anseong 17546, Kyeonggi-do, Republic of Korea
| | - Si-Hong Park
- Department of Food Science and Technology, Oregon State University, Corvallis 97331, OR, USA
| | - Sang-Do Ha
- Department of Food Science and Technology, Advanced Food Safety Research group, Brain Korea 21 Plus, Chung-Ang University, Anseong 17546, Kyeonggi-do, Republic of Korea.
| |
Collapse
|
27
|
Zare-Gachi M, Daemi H, Mohammadi J, Baei P, Bazgir F, Hosseini-Salekdeh S, Baharvand H. Improving anti-hemolytic, antibacterial and wound healing properties of alginate fibrous wound dressings by exchanging counter-cation for infected full-thickness skin wounds. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 107:110321. [DOI: 10.1016/j.msec.2019.110321] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 09/10/2019] [Accepted: 10/14/2019] [Indexed: 12/29/2022]
|
28
|
Akopyan A, Eseva E, Polikarpova P, Kedalo A, Vutolkina A, Glotov A. Deep Oxidative Desulfurization of Fuels in the Presence of Brönsted Acidic Polyoxometalate-Based Ionic Liquids. Molecules 2020; 25:E536. [PMID: 31991874 PMCID: PMC7037028 DOI: 10.3390/molecules25030536] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 01/19/2020] [Accepted: 01/24/2020] [Indexed: 11/16/2022] Open
Abstract
Polyoxometalate-based ionic liquid hybrid materials with a pyridinium cation, containing Brönsted acid sites, were synthesized and used as catalysts for the oxidation of model and real diesel fuels. Keggin-type polyoxometalates with the formulae [PMo12O40]3-, [PVMo11O40]4-, [PV2Mo10O40]4-, [PW12O40]3- were used as anions. It was shown that increasing the acid site strength leads to an increase of dibenzothiophene conversion to the corresponding sulfone. The best results were obtained in the presence of a catalyst, containing a nicotinic acid derivative as cation and phosphomolybdate as anion. The main factors affecting the process consisting of catalyst dosage, temperature, reaction time, oxidant dosage were investigated in detail. Under optimal conditions full oxidation of dibenzothiophene and more than a 90% desulfurization degree of real diesel fuel (initial sulfur content of 2050 ppm) were obtained (the oxidation conditions: NK-1 catalyst, molar ratio H2O2:S 10:1, molar ratio S:Mo 8:1, 1 mL MeCN, 70 °C, 1 h). The synthesized catalysts could be used five times with a slight decrease in activity.
Collapse
Affiliation(s)
- Argam Akopyan
- Department of Petroleum Chemistry and Organic Catalysis, Moscow State University, 119991 Moscow, Russia; (A.A.); (E.E.); (P.P.); (A.K.); (A.V.)
| | - Ekaterina Eseva
- Department of Petroleum Chemistry and Organic Catalysis, Moscow State University, 119991 Moscow, Russia; (A.A.); (E.E.); (P.P.); (A.K.); (A.V.)
| | - Polina Polikarpova
- Department of Petroleum Chemistry and Organic Catalysis, Moscow State University, 119991 Moscow, Russia; (A.A.); (E.E.); (P.P.); (A.K.); (A.V.)
| | - Anastasia Kedalo
- Department of Petroleum Chemistry and Organic Catalysis, Moscow State University, 119991 Moscow, Russia; (A.A.); (E.E.); (P.P.); (A.K.); (A.V.)
| | - Anna Vutolkina
- Department of Petroleum Chemistry and Organic Catalysis, Moscow State University, 119991 Moscow, Russia; (A.A.); (E.E.); (P.P.); (A.K.); (A.V.)
- Department of Physical and Colloid Chemistry, Gubkin Russian State University of Oil and Gas, 119991 Moscow, Russia
| | - Aleksandr Glotov
- Department of Petroleum Chemistry and Organic Catalysis, Moscow State University, 119991 Moscow, Russia; (A.A.); (E.E.); (P.P.); (A.K.); (A.V.)
- Department of Physical and Colloid Chemistry, Gubkin Russian State University of Oil and Gas, 119991 Moscow, Russia
| |
Collapse
|
29
|
He W, Zhang Z, Zheng Y, Qiao S, Xie Y, Sun Y, Qiao K, Feng Z, Wang X, Wang J. Preparation of aminoalkyl-grafted bacterial cellulose membranes with improved antimicrobial properties for biomedical applications. J Biomed Mater Res A 2020; 108:1086-1098. [PMID: 31943702 DOI: 10.1002/jbm.a.36884] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 01/05/2020] [Accepted: 01/10/2020] [Indexed: 12/19/2022]
Abstract
Bacterial cellulose (BC) membranes display special properties and structures, thus attracting much attention in application in the biomedical areas, for example, as implants for bone or cartilage tissue engineering, as substitutes for skin repairing, and as supports for controlled drug delivery. However, native BC lacks the activity to inhibit bacteria growth on its surface, which limits its applications in biomedical fields. There have been reports on chemical modification of BC membranes to endow them with antimicrobial properties needed for some special biomedical applications. In the present study, aminoalkyl-grafted BC membranes were prepared by alkoxysilane polycondensation using 3-aminopropyltriethoxysilane (APTES). The characterization for morphology and chemical composition showed that BC membranes were successfully grafted with aminoalkylsilane groups through covalent bonding. The surface morphology and roughness of the membranes changed after chemical grafting. Furthermore, after grafting with APTES, the membranes got less hydrophilic than native BC. The aminoalkyl-grafted BC membranes showed strong antibacterial properties against Staphylococcus aureus and Escherichia coli and moreover, they were nontoxic to normal human dermal fibroblasts. These results indicate that aminoalkyl-grafted BC membranes are potential to be used for biomedical applications.
Collapse
Affiliation(s)
- Wei He
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, China
| | - Zhaoyu Zhang
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, China
| | - Yudong Zheng
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, China
| | - Shen Qiao
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, China
| | - Yajie Xie
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, China
| | - Yi Sun
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, China
| | - Kun Qiao
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, China
| | - Zhaoxuan Feng
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, China
| | - Xiaoyang Wang
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, China
| | - Jialong Wang
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, China
| |
Collapse
|
30
|
Janek T, Rodrigues LR, Gudiña EJ, Burger J. Synergistic effect of hen egg white lysozyme and lysosomotropic surfactants on cell viability and membrane permeability. Colloids Surf B Biointerfaces 2019; 185:110598. [PMID: 31683205 DOI: 10.1016/j.colsurfb.2019.110598] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 10/14/2019] [Accepted: 10/16/2019] [Indexed: 12/13/2022]
Abstract
The interactions between two types of quaternary ammonium surfactants (N,N,N-trimethyl-2-(dodecanoyloxy)ethaneammonium bromide (DMM-11) and N,N,N-trimethyl-2-(dodecanoyloxy)propaneammonium bromide (DMPM-11)) and hen egg white lysozyme were studied through several techniques, including isothermal titration calorimetry (ITC), circular dichroism (CD) and fluorescence spectroscopy, and surface tension measurement. The average number of surfactants interacting with each molecule of lysozyme was calculated from the biophysical results. Moreover, the CD results showed that the conformation of lysozyme changed in the presence of DMM-11 and DMPM-11. The studies drew a detailed picture on the physicochemical nature of interactions between both surfactants and lysozyme. Both DMM-11 and DMPM-11, with and without lysozyme were studied against three target microorganisms, including Gram-negative (Escherichia coli) and Gram-positive (Enterococcus hirae and Enterococcus faecalis) bacteria. The results revealed a broad spectrum of antibacterial nature of surfactant/lysozyme complexes, as well as their effect on the membrane damage, hence providing the basis to further explore DMM-11 and DMPM-11 combined with lysozyme as possible antibacterial tools.
Collapse
Affiliation(s)
- Tomasz Janek
- Department of Biotechnology and Food Microbiology, Wrocław University of Environmental and Life Sciences, 51-630, Wrocław, Poland.
| | - Lígia R Rodrigues
- Centre of Biological Engineering, University of Minho, 4710-057, Braga, Portugal
| | - Eduardo J Gudiña
- Centre of Biological Engineering, University of Minho, 4710-057, Braga, Portugal
| | - Joanna Burger
- Department of Inorganic Chemistry, Wroclaw Medical University, 50-556, Wrocław, Poland
| |
Collapse
|
31
|
Jacukowicz-Sobala I, Kociołek-Balawejder E, Stanisławska E, Dworniczek E, Seniuk A. Antimicrobial activity of anion exchangers containing cupric compounds against Enterococcus faecalis. Colloids Surf A Physicochem Eng Asp 2019. [DOI: 10.1016/j.colsurfa.2019.05.040] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
32
|
Park SY, Ha SD. Synergistic Effects of Combined Chlorine and Vitamin B 1 on the Reduction of Murine Norovirus-1 on the Oyster (Crassostrea gigas) Surface. FOOD AND ENVIRONMENTAL VIROLOGY 2019; 11:205-213. [PMID: 30903597 DOI: 10.1007/s12560-019-09380-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 03/15/2019] [Indexed: 06/09/2023]
Abstract
This study investigated the synergistic effects of combined chlorine (200, 500, 700, and 1000 ppm) and vitamin B1 (1000, 2000, and 3000 ppm) on the murine norovirus-1 (MNV-1), a human norovirus (NoV) surrogate, on oyster surface. Vitamin B1 slightly reduced MNV-1 (0.04-0.3 log-reduction), whereas chlorine significantly reduced MNV-1 (0.4-1.0 log-reduction). The combined chlorine and vitamin B1 resulted in a 0.52-1.97 log-reduction of MNV-1. The synergistic reduction in the MNV titer was not dependent on the concentrations of chlorine and vitamin B1, and it ranged between 0.08 and 1.03 log10 PFU/mL. The largest synergistic reduction observed was for the combined 700 ppm chlorine and 1000 ppm vitamin B1. The pH and mechanical texture of the oysters were not significantly changed by the combined 0-1000 ppm chlorine and 3000 ppm vitamin B1. The overall sensory acceptability were significantly (P < 0.05) reduced in oysters treated with 1000 ppm chlorine and 3000 ppm vitamin B1 than in those treated with 0-700 ppm chlorine and 3000 ppm vitamin B1. This study suggests that the combined 700 ppm chlorine and 3000 ppm vitamin B1 could potentially be used to reduce NoV on oyster surface without causing concomitant changes in the mechanical texture, pH, or sensory qualities of the oysters.
Collapse
Affiliation(s)
- Shin Young Park
- Department of Seafood and Aquaculture Science, Institute of Marine Industry, Gyeongsang National University, Tongyeong, 53064, Republic of Korea
| | - Sang-Do Ha
- Advanced Food Safety Research Group, BrainKorea21 Plus, Department of Food Science and Technology, Chung-Ang University, 4726 Seodong-daero, Ansung, Gyeonggi, 456-756, Republic of Korea.
- Department of Food Science and Technology, Chung-Ang University, 72-1 Nae-ri, Daeduk-myun, Ansung, Gyeonggi, 456-756, Republic of Korea.
| |
Collapse
|
33
|
Rodrigues de Almeida N, Catazaro J, Krishnaiah M, Singh Chhonker Y, Murry DJ, Powers R, Conda-Sheridan M. Understanding interactions of Citropin 1.1 analogues with model membranes and their influence on biological activity. Peptides 2019; 119:170119. [PMID: 31336137 PMCID: PMC7161086 DOI: 10.1016/j.peptides.2019.170119] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 07/09/2019] [Accepted: 07/13/2019] [Indexed: 01/03/2023]
Abstract
The rapid emergence of resistant bacterial strains has made the search for new antibacterial agents an endeavor of paramount importance. Cationic antimicrobial peptides (AMPs) have the ability to kill resistant pathogens while diminishing the development of resistance. Citropin 1.1 (Cit 1.1) is an AMP effective against a broad range of pathogens. 20 analogues of Cit 1.1 were prepared to understand how sequence variations lead to changes in structure and biological activity. Various analogues exhibited an increased antimicrobial activity relative to Cit 1.1. The two most promising, AMP-016 (W3F) and AMP-017 (W3F, D4R, K7R) presented a 2- to 8-fold increase in activity against MRSA (both = 4 μg/mL). AMP-017 was active against E. coli (4 μg/mL), K. pneumoniae (8 μg/mL), and A. baumannii (2 μg/mL). NMR studies indicated that Cit 1.1 and its analogues form a head-to-tail helical dimer in a membrane environment, which differs from a prior study by Sikorska et al. Active peptides displayed a greater tendency to form α-helices and to dimerize when in contact with a negatively-charged membrane. Antimicrobial activity was observed to correlate to the overall stability of the α-helix and to a positively charged N-terminus. Biologically active AMPs were shown by SEM and flow cytometry to disrupt membranes in both Gram-positive and Gram-negative bacteria through a proposed carpet mechanism. Notably, active peptides exhibited typical serum stabilities and a good selectivity for bacterial cells over mammalian cells, which supports the potential use of Cit 1.1 analogues as a novel broad-spectrum antibiotic for drug-resistant bacterial infections.
Collapse
Affiliation(s)
| | - Jonathan Catazaro
- Department of Chemistry, University of Nebraska - Lincoln, NE, 68588-0304, USA
| | - Maddeboina Krishnaiah
- Department of Pediatrics Computational Chemistry, University of Nebraska Medical Center - Omaha, NE, 68198-2168, USA
| | - Yashpal Singh Chhonker
- Clinical Pharmacology Laboratory, Department of Pharmacy Practice, University of Nebraska Medical Center - Omaha, NE, 68198-6145, USA
| | - Daryl J Murry
- Clinical Pharmacology Laboratory, Department of Pharmacy Practice, University of Nebraska Medical Center - Omaha, NE, 68198-6145, USA
| | - Robert Powers
- Department of Chemistry, University of Nebraska - Lincoln, NE, 68588-0304, USA; Nebraska Center for Integrated Biomolecular Communication, Lincoln, NE, 68588-0304, USA.
| | - Martin Conda-Sheridan
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center - Omaha, NE, 68198-6125, USA.
| |
Collapse
|
34
|
Synthesis of Surfactants Derived from 2-Mercaptobenzimidazole and Study of Their Acute Toxicity and Analgesic and Psychotropic Activities. Biochem Res Int 2019; 2019:9615728. [PMID: 31467714 PMCID: PMC6701276 DOI: 10.1155/2019/9615728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 07/11/2019] [Indexed: 11/30/2022] Open
Abstract
The aim of the present study is to synthesize cationic salts from a relatively toxic compound named 2-mercaptobenzimidazole and to evaluate some of their pharmacological properties. The acute toxicity of these salts is evaluated according to OECD 423 Guidelines at the doses of 300 and 2000 mg/kg; their peripheral analgesic effect is studied using the Koster test at the therapeutic dose of 200 mg/kg and their sedative action is evaluated using Traction, Chimney, Hole-board, and Rotarod tests at the doses of 200 and 400 mg/kg. All synthesized molecules show no acute toxicity according to OECD Code 423 guidelines at doses ranging from 300 to 2000 mg/kg and do not cause any obesity or anorexia. Also, the results of the Koster test show that the studied compounds have an average analgesic effect at the dose of 200 mg/kg compared to acetylsalicylic acid. In addition, the elaborated compounds have shown a moderate sedative effect at the dose of 400 mg/kg, in comparison to 2-mercaptobenzimidazole (400 mg/kg) and Bromazepam (20 mg/kg). These compounds have no cataleptic and hypnotic effects on the central nervous system at the doses of 200 and 400 mg/kg. These results argue in favor of a possible integration of the most active salts tested in the pharmaceutical industry owing to their analgesic and sedative effects.
Collapse
|
35
|
Kociołek-Balawejder E, Stanisławska E, Dworniczek E, Seniuk A, Jacukowicz-Sobala I, Winiarska K. Cu2O doped gel-type anion exchanger obtained by reduction of brochantite deposit and its antimicrobial activity. REACT FUNCT POLYM 2019. [DOI: 10.1016/j.reactfunctpolym.2019.05.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
36
|
Novel Synthesis of Substituted 2-Trifluoromethyl and 2-Perfluoroalkyl N-Arylpyridinium Compounds-Mechanistic Insights. Molecules 2019; 24:molecules24122328. [PMID: 31242559 PMCID: PMC6630758 DOI: 10.3390/molecules24122328] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 06/14/2019] [Accepted: 06/20/2019] [Indexed: 11/16/2022] Open
Abstract
We report a new one-pot synthesis of 2-trifluoromethylated/2-perfluoroalkylated N-aryl-substituted pyridiniums, 5,6,7,8-tetrahydroquinoliniums and 6,7,8,9-tetrahydro-5H-cyclohepta[b]-pyridinium compounds starting from an activated β-dicarbonyl analogue (here a perfluoro-alkylated gem-iodoacetoxy derivative), an aromatic amine and a (cyclic or acyclic) ketone. The key step of this multicomponent reaction, involves the formation of a 3-perfluoroalkyl-N,N’-diaryl-1,5-diazapentadiene intermediate, various examples of which were isolated and characterized for the first time, together with investigation of their reactivity. We propose a mechanism involving a concurrent inverse electron demand Diels-Alder or Aza-Robinson cascade cyclisation, followed by a bis-de-anilino-elimination. Noteworthy, a meta-methoxy substituent on the aniline directs the reaction towards a 2-perfluoroalkyl-7-methoxyquinoline, resulting from the direct cyclization of the diazapentadiene intermediate, instead of pyridinium formation. This is the first evidence of synthesis of pyridinium derivatives from activated β-dicarbonyls, ketones, and an aromatic amine, the structures of which (both reactants and products) being analogous to species involved in biological systems, especially upon neurodegenerative diseases such as Parkinson’s. Beyond suggesting chemical/biochemical analogies, we thus hope to outline new research directions for understanding the mechanism of in vivo formation of pyridiniums, hence possible pharmaceutical strategies to better monitor, control or prevent it.
Collapse
|
37
|
Quaternary Ammonium Compounds: Simple in Structure, Complex in Application. Top Curr Chem (Cham) 2019; 377:14. [PMID: 31062103 DOI: 10.1007/s41061-019-0239-2] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 04/25/2019] [Indexed: 10/26/2022]
Abstract
Quaternary ammonium compounds, referred to as QACs, are cationic substances with a structure on the edge of organic and inorganic chemistry and unique physicochemical properties. The purpose of the present work is to introduce QACs and their wide application potential. Fundamental properties, methods of preparation, and utilization in organic synthesis are reviewed. Modern applications and the use of QACs as reactive substrates, reagents, phase-transfer catalysts, ionic liquids, electrolytes, frameworks, surfactants, herbicides, and antimicrobials are further covered. A brief discussion of the health and environmental impact of QACs is also provided. The emphasis is largely on tetraalkylammonium compounds bearing linear alkyl chains.
Collapse
|
38
|
Zhu B, Jia L, Guo X, Yin J, Zhao Z, Chen N, Chen S, Jia Y. Controllable assembly of a novel cationic gemini surfactant containing a naphthalene and amide spacer with β-cyclodextrin. SOFT MATTER 2019; 15:3198-3207. [PMID: 30896008 DOI: 10.1039/c9sm00172g] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
A novel cationic gemini surfactant (C12NDDA) with a spacer containing naphthalene and amides was successfully synthesized. The assembly of C12NDDA with β-cyclodextrin (β-CD) was investigated using various techniques including transmission electron microscopy, proton nuclear magnetic resonance (1H NMR), and scanning electron microscopy. Tuning the C12NDDA concentration and the C12NDDA/β-CD molar ratio allowed the production of different assembled aggregate morphologies such as micelles, vesicles, nanowires, nanorods, and hydrogels. Investigation of the inclusion mechanisms of C12NDDA and β-CD by 1H NMR revealed that hydrophobic interactions, hydrogen bonding, π-π stacking, and electrostatic forces play key roles in the assembly process. The antimicrobial activities of the C12NDDA/xβ-CD (x = 0-4) inclusion complexes were tested against Gram-negative bacteria (Escherichia coli and Salmonella) and Gram-positive bacteria (Staphylococcus aureus and Streptococcus), and very low minimum inhibitory concentrations of 0.078-0.31 μg mL-1 were observed. Thus, this newly synthesized gemini surfactant and its inclusion complexes exhibit potential as superior broad-spectrum disinfectants for various biomedical and biotechnological applications.
Collapse
Affiliation(s)
- Bo Zhu
- College of Chemistry and Chemical Engineering, Key Laboratory of Fine Chemicals of College of Heilongjiang Province, Qiqihar University, Qiqihar 161006, China.
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Modification of chitosan and chitosan nanoparticle by long chain pyridinium compounds: Synthesis, characterization, antibacterial, and antioxidant activities. Carbohydr Polym 2019; 208:477-485. [DOI: 10.1016/j.carbpol.2018.12.097] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Revised: 12/21/2018] [Accepted: 12/30/2018] [Indexed: 11/18/2022]
|
40
|
Akram M, Ansari F, Bhat IA, Kabir-ud-Din. Probing interaction of bovine serum albumin (BSA) with the biodegradable version of cationic gemini surfactants. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2018.10.123] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
41
|
Komasa A, Winkiel M, Kwaśniewska-Sip P, Cofta G. Synthesis, spectroscopic, theoretical and antifungal activity study of gemini 3-hydroxy- and 3-hydroxymethylpyridinium dibromides. J Mol Struct 2018. [DOI: 10.1016/j.molstruc.2018.06.062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
42
|
Elena P, Miri K. Formation of contact active antimicrobial surfaces by covalent grafting of quaternary ammonium compounds. Colloids Surf B Biointerfaces 2018; 169:195-205. [DOI: 10.1016/j.colsurfb.2018.04.065] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 04/24/2018] [Accepted: 04/29/2018] [Indexed: 12/13/2022]
|
43
|
Suzuki K, Nomura I, Ninomiya M, Tanaka K, Koketsu M. Synthesis and antimicrobial activity of β-carboline derivatives with N2-alkyl modifications. Bioorg Med Chem Lett 2018; 28:2976-2978. [DOI: 10.1016/j.bmcl.2018.06.050] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 06/28/2018] [Accepted: 06/30/2018] [Indexed: 02/09/2023]
|
44
|
Peña-Gómez N, Ruiz-Rico M, Fernández-Segovia I, Barat JM. Development of amino-functionalized membranes for removal of microorganism. INNOV FOOD SCI EMERG 2018. [DOI: 10.1016/j.ifset.2018.05.023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
45
|
Farokhi M, Mottaghitalab F, Fatahi Y, Khademhosseini A, Kaplan DL. Overview of Silk Fibroin Use in Wound Dressings. Trends Biotechnol 2018; 36:907-922. [PMID: 29764691 DOI: 10.1016/j.tibtech.2018.04.004] [Citation(s) in RCA: 247] [Impact Index Per Article: 41.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 03/11/2018] [Accepted: 04/10/2018] [Indexed: 01/01/2023]
Abstract
Recently, biomimetic wound dressings were introduced as potential replacements for treating skin injuries. Although there are some clinically available skin replacements, the range of wound types and locations necessitates a broader range of options for the clinic. Natural polymeric-based dressings are of central interest in this area due to their outstanding biocompatibility, biodegradability, low toxicity, and non-allergenic nature. Among them, silk fibroin (SF) has exceptional characteristics as a wound dressing. SF-based dressings can also be used as carriers for delivering drugs, growth factors, and bioactive agents to the wound area, while providing appropriate support for complete healing. In this review, we describe recent advances in the development of SF-based wound dressings for skin regeneration.
Collapse
Affiliation(s)
- Mehdi Farokhi
- National Cell Bank of Iran, Pasteur Institute of Iran, Tehran, Iran.
| | - Fatemeh Mottaghitalab
- Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Yousef Fatahi
- Department of pharmaceutical nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Khademhosseini
- Department of Bioengineering, Department of Chemical and Biomolecular Engineering, Department of Radiology, California NanoSystems Institute, University of California-Los Angeles, Los Angeles, CA, USA
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, MA, USA
| |
Collapse
|
46
|
Lv X, Liu C, Song S, Qiao Y, Hu Y, Li P, Li Z, Sun S. Construction of a quaternary ammonium salt platform with different alkyl groups for antibacterial and biosensor applications. RSC Adv 2018; 8:2941-2949. [PMID: 35541197 PMCID: PMC9077561 DOI: 10.1039/c7ra11001d] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 01/08/2018] [Indexed: 11/25/2022] Open
Abstract
An electrochemical platform was designed using biocompatible quaternary ammonium salts containing alkyl groups with different chain lengths as electrode materials for visible protein immobilization on a glassy carbon (GC) electrode. The electrode was constructed using a simple self-assembly method relying on the electrostatic interaction between negatively charged hemoglobin (Hb) and positively charged quaternary ammonium materials. The Hb/quaternary ammonium salts/GC assembly exhibited excellent catalytic and electrochemical activities. Additionally, the structure–function properties of the quaternary ammonium salts on the electrochemical behavior of Hb was systematically investigated for various alkyl chain lengths between monomer and polymeric structures. Meanwhile, the corresponding bactericidal activities of the monomers and related polymers were evaluated by determining the minimum bactericidal concentration (MBC), minimum inhibitory concentration (MIC), and inhibitory zone diameters against bacteria. The results of these studies demonstrated that the quaternary ammonium monomers not only immobilized more proteins, but also displayed better antibacterial activity as alkyl chain length increased. Moreover, polymers possessed higher antimicrobial activities than their monomeric counterparts. However, the efficiency of the direct electron transfer process and the antibacterial properties of long-chain polymers were limited because they were prone to aggregation and blistering. In summary, the present results provide convenient access to direct electrochemistry using an immobilized redox protein. Furthermore, the potential to use the obtained materials in the construction of third-generation electrochemical biosensors was evaluated. The immobilized-protein in an appropriate alkyl chain length of DM displayed higher antibacterial activities, exhibited a more effective DET and a promising catalytic activity toward H2O2.![]()
Collapse
Affiliation(s)
- Xue Lv
- Changchun University of Technology
- Changchun 130012
- China
| | - Chuang Liu
- Changchun University of Technology
- Changchun 130012
- China
| | - Shixin Song
- Changchun University of Technology
- Changchun 130012
- China
| | - Yun Qiao
- Beijing Academy of Printing & Packaging Industrial Technology
- Beijing Institute of Graphic Communication
- Beijing 102600
- China
| | - Yuanjiao Hu
- Changchun University of Technology
- Changchun 130012
- China
| | - Pengfei Li
- Changchun University of Technology
- Changchun 130012
- China
| | - Zhaokun Li
- Changchun University of Technology
- Changchun 130012
- China
| | - Shulin Sun
- Changchun University of Technology
- Changchun 130012
- China
| |
Collapse
|
47
|
Singh AK, Prasad S, Kumar B, Kumar S, Anand A, Kamble SS, Sharma SK, Gautam HK. Antimicrobial Efficacy of Synthetic Pyranochromenones and (Coumarinyloxy)acetamides. Indian J Microbiol 2017; 57:499-502. [PMID: 29151652 PMCID: PMC5671431 DOI: 10.1007/s12088-017-0675-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 09/19/2017] [Indexed: 01/21/2023] Open
Abstract
Four (1, 2, 4 and 6) synthetic quaternary ammonium derivatives of pyranochromenones and (coumarinyloxy)acetamides were synthesized and investigated for their antimicrobial efficacy on MRSA (Methicillin-resistant Staphylococcus aureus), and multi-drug resistant Pseudomonas aeruginosa, Salmonella enteritidis and Mycobacterium tuberculosis H37Rv strain. One of the four compounds screened i.e. N,N,N-triethyl-10-((4,8,8-trimethyl-2-oxo-2,6,7,8-tetrahydropyrano[3,2-g]chromen-10-yl)oxy)decan-1-aminium bromide (1), demonstrated significant activity against S. aureus, P. aeruginosa and M. tuberculosis with MIC value of 16, 35, and 15.62 µg/ml respectively. The cytotoxicity evaluation of compound 1 on A549 cell lines showed it to be a safe antimicrobial molecule, TEM study suggested that the compound led to the rupture of the bacterial cell walls.
Collapse
Affiliation(s)
| | - Suchita Prasad
- Department of Chemistry, University of Delhi, Delhi, 110007 India
| | - Bipul Kumar
- CSIR-Institute of Genomics and Integrative Biology, Sukhdev Vihar, Mathura Road, Delhi, 110025 India
| | - Shiv Kumar
- Department of Chemistry, University of Delhi, Delhi, 110007 India
| | - Amitesh Anand
- CSIR-Institute of Genomics and Integrative Biology, Sukhdev Vihar, Mathura Road, Delhi, 110025 India
| | - Shashank S. Kamble
- CSIR-Institute of Genomics and Integrative Biology, Sukhdev Vihar, Mathura Road, Delhi, 110025 India
| | - Sunil K. Sharma
- Department of Chemistry, University of Delhi, Delhi, 110007 India
| | - Hemant K. Gautam
- CSIR-Institute of Genomics and Integrative Biology, Sukhdev Vihar, Mathura Road, Delhi, 110025 India
| |
Collapse
|
48
|
Koziróg A, Kręgiel D, Brycki B. Action of Monomeric/Gemini Surfactants on Free Cells and Biofilm of Asaia lannensis. Molecules 2017; 22:molecules22112036. [PMID: 29165338 PMCID: PMC6150408 DOI: 10.3390/molecules22112036] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 11/19/2017] [Accepted: 11/21/2017] [Indexed: 01/07/2023] Open
Abstract
We investigated the biological activity of surfactants based on quaternary ammonium compounds: gemini surfactant hexamethylene-1,6-bis-(N,N-dimethyl-N-dodecylammonium bromide) (C6), synthesized by the reaction of N,N-dimethyl-N-dodecylamine with 1,6-dibromohexane, and its monomeric analogue dodecyltrimethylammonium bromide (DTAB). The experiments were performed with bacteria Asaia lannensis, a common spoilage in the beverage industry. The minimal inhibitory concentration (MIC) values were determined using the tube standard two-fold dilution method. The growth and adhesive properties of bacterial cells were studied in different culture media, and the cell viability was evaluated using plate count method. Both of the surfactants were effective against the bacterial strain, but the MIC of gemini compound was significantly lower. Both C6 and DTAB exhibited anti-adhesive abilities. Treatment with surfactants at or below MIC value decreased the number of bacterial cells that were able to form biofilm, however, the gemini surfactant was more effective. The used surfactants were also found to be able to eradicate mature biofilms. After 4 h of treatment with C6 surfactant at concentration 10 MIC, the number of bacterial cells was reduced by 91.8%. The results of this study suggest that the antibacterial activity of the gemini compound could make it an effective microbiocide against the spoilage bacteria Asaia sp. in both planktonic and biofilm stages.
Collapse
Affiliation(s)
- Anna Koziróg
- Institute of Fermentation Technology and Microbiology, Faculty of Biotechnology and Food Science, Lodz University of Technology, Wolczanska 171/173, 90-924 Lodz, Poland.
| | - Dorota Kręgiel
- Institute of Fermentation Technology and Microbiology, Faculty of Biotechnology and Food Science, Lodz University of Technology, Wolczanska 171/173, 90-924 Lodz, Poland.
| | - Bogumił Brycki
- Laboratory of Microbiocides Chemistry, Faculty of Chemistry, Adam Mickiewicz University in Poznan, Umultowska 89b, 61-614 Poznań, Poland.
| |
Collapse
|
49
|
Physicochemical study of biomolecular interactions between lysosomotropic surfactants and bovine serum albumin. Colloids Surf B Biointerfaces 2017; 159:750-758. [DOI: 10.1016/j.colsurfb.2017.08.046] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 08/05/2017] [Accepted: 08/25/2017] [Indexed: 01/28/2023]
|
50
|
Huijuan Y, Yujie R, Wenqian X, Ren L. Design and synthesis of novel pyridinium nitrate-bearing substituted anilines via one-pot tandem reactions. JOURNAL OF CHEMICAL RESEARCH 2017. [DOI: 10.3184/174751917x14967701766950] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Thirty-two novel 2-amino-1-[3-oxo-3-(substituted-anilino)propyl]pyridinium nitrate derivatives were designed and prepared via one-pot tandem reactions. The structure of the 2-methylanilino derivative was characterised by X-ray crystallographic analysis. In addition, a potential formation mechanism is proposed.
Collapse
Affiliation(s)
- Yang Huijuan
- College of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, P.R. China
| | - Ren Yujie
- College of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, P.R. China
- Key Laboratory of Synthetic Chemistry of Natural Substances, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, P.R. China
| | - Xu Wenqian
- College of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, P.R. China
| | - Li Ren
- College of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, P.R. China
| |
Collapse
|