1
|
Lin J, Qin F, Lin Z, Lin W, You M, Xu L, Hu L, Chen YH. Quantitative Monitoring of Cyclic Glycine-Proline in Marine Mangrove-Derived Fungal Metabolites. J Fungi (Basel) 2024; 10:779. [PMID: 39590698 PMCID: PMC11595644 DOI: 10.3390/jof10110779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 11/05/2024] [Accepted: 11/07/2024] [Indexed: 11/28/2024] Open
Abstract
This study developed and validated a robust UPLC-MS/MS method for quantifying cyclic glycine-proline (cGP) in mangrove-derived Penicillium and Aspergillus strains. The method demonstrated excellent linearity, precision, and recovery, with detection limits as low as 4.8 ng/mL. Penicillium pedernalense extract achieved a cGP content of 67.45 ± 1.11 ng/mL, with a corresponding fermentation yield of 29.31 ± 0.61 mg/L. This surpassed Penicillium steckii, which reached a content of 31.71 ± 0.31 ng/mL, with a yield of 8.51 ± 0.15 mg/L. This quantitative approach for metabolite analysis provides a viable method for screening these fungal strains, highlighting their potential for sustainable production of cyclic glycine-proline (cGP).
Collapse
Affiliation(s)
- Jing Lin
- Xiamen Key Laboratory of Marine Medicinal Natural Product Resources, Xiamen Medical College, Xiamen 361023, China; (J.L.); (F.Q.); (Z.L.); (W.L.); (M.Y.); (L.X.)
- Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Engineering Research Centre of Marine Biopharmaceutical Resource, Fujian Province University, Xiamen Medical College, Xiamen 361023, China
| | - Fei Qin
- Xiamen Key Laboratory of Marine Medicinal Natural Product Resources, Xiamen Medical College, Xiamen 361023, China; (J.L.); (F.Q.); (Z.L.); (W.L.); (M.Y.); (L.X.)
- Engineering Research Centre of Marine Biopharmaceutical Resource, Fujian Province University, Xiamen Medical College, Xiamen 361023, China
| | - Zeye Lin
- Xiamen Key Laboratory of Marine Medicinal Natural Product Resources, Xiamen Medical College, Xiamen 361023, China; (J.L.); (F.Q.); (Z.L.); (W.L.); (M.Y.); (L.X.)
- Engineering Research Centre of Marine Biopharmaceutical Resource, Fujian Province University, Xiamen Medical College, Xiamen 361023, China
| | - Weijian Lin
- Xiamen Key Laboratory of Marine Medicinal Natural Product Resources, Xiamen Medical College, Xiamen 361023, China; (J.L.); (F.Q.); (Z.L.); (W.L.); (M.Y.); (L.X.)
- Engineering Research Centre of Marine Biopharmaceutical Resource, Fujian Province University, Xiamen Medical College, Xiamen 361023, China
| | - Minxin You
- Xiamen Key Laboratory of Marine Medicinal Natural Product Resources, Xiamen Medical College, Xiamen 361023, China; (J.L.); (F.Q.); (Z.L.); (W.L.); (M.Y.); (L.X.)
- Engineering Research Centre of Marine Biopharmaceutical Resource, Fujian Province University, Xiamen Medical College, Xiamen 361023, China
| | - Li Xu
- Xiamen Key Laboratory of Marine Medicinal Natural Product Resources, Xiamen Medical College, Xiamen 361023, China; (J.L.); (F.Q.); (Z.L.); (W.L.); (M.Y.); (L.X.)
- Engineering Research Centre of Marine Biopharmaceutical Resource, Fujian Province University, Xiamen Medical College, Xiamen 361023, China
| | - Lei Hu
- Xiamen Key Laboratory of Marine Medicinal Natural Product Resources, Xiamen Medical College, Xiamen 361023, China; (J.L.); (F.Q.); (Z.L.); (W.L.); (M.Y.); (L.X.)
- Engineering Research Centre of Marine Biopharmaceutical Resource, Fujian Province University, Xiamen Medical College, Xiamen 361023, China
| | - Yung-Husan Chen
- Xiamen Key Laboratory of Marine Medicinal Natural Product Resources, Xiamen Medical College, Xiamen 361023, China; (J.L.); (F.Q.); (Z.L.); (W.L.); (M.Y.); (L.X.)
- Engineering Research Centre of Marine Biopharmaceutical Resource, Fujian Province University, Xiamen Medical College, Xiamen 361023, China
| |
Collapse
|
2
|
Hu L, Lin J, Qin F, Xu L, Luo L. Exploring Sources, Biological Functions, and Potential Applications of the Ubiquitous Marine Cyclic Dipeptide: A Concise Review of Cyclic Glycine-Proline. Mar Drugs 2024; 22:271. [PMID: 38921582 PMCID: PMC11205142 DOI: 10.3390/md22060271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/05/2024] [Accepted: 06/07/2024] [Indexed: 06/27/2024] Open
Abstract
Cyclic glycine-proline (cGP), a prevalent marine cyclic dipeptide, possesses a distinct pyrrolidine-2,5-dione scaffold, which contributes to the chemical diversity and broad bioactivities of cGP. The diverse sources from marine-related, endogenous biological, and synthetic pathways and the in vitro and in vivo activities of cGP are reviewed. The potential applications for cGP are also explored. In particular, the pivotal roles of cGP in regulating insulin-like growth factor-1 homeostasis, enhancing neuroprotective effects, and improving neurotrophic function in central nervous system diseases are described. The potential roles of this endogenous cyclic peptide in drug development and healthcare initiatives are also highlighted. This review underscores the significance of cGP as a fundamental building block in drug discovery with exceptional drug-like properties and safety. By elucidating the considerable value of cGP, this review aims to reignite interest in cGP-related research within marine medicinal chemistry and synthetic biology.
Collapse
Affiliation(s)
- Lei Hu
- Xiamen Key Laboratory of Marine Medicinal Natural Product Resources, Xiamen Medical College, Xiamen 361023, China; (J.L.); (F.Q.); (L.X.)
- Fujian Province University Marine Biopharmaceutical Resource Engineering Research Center, Xiamen Medical College, Xiamen 361023, China
- School of Pharmacy and Pharmaceutical Sciences, Xiamen Medical College, Xiamen 361023, China
| | - Jing Lin
- Xiamen Key Laboratory of Marine Medicinal Natural Product Resources, Xiamen Medical College, Xiamen 361023, China; (J.L.); (F.Q.); (L.X.)
- Fujian Province University Marine Biopharmaceutical Resource Engineering Research Center, Xiamen Medical College, Xiamen 361023, China
- School of Pharmacy and Pharmaceutical Sciences, Xiamen Medical College, Xiamen 361023, China
| | - Fei Qin
- Xiamen Key Laboratory of Marine Medicinal Natural Product Resources, Xiamen Medical College, Xiamen 361023, China; (J.L.); (F.Q.); (L.X.)
- Fujian Province University Marine Biopharmaceutical Resource Engineering Research Center, Xiamen Medical College, Xiamen 361023, China
- School of Pharmacy and Pharmaceutical Sciences, Xiamen Medical College, Xiamen 361023, China
| | - Li Xu
- Xiamen Key Laboratory of Marine Medicinal Natural Product Resources, Xiamen Medical College, Xiamen 361023, China; (J.L.); (F.Q.); (L.X.)
- Fujian Province University Marine Biopharmaceutical Resource Engineering Research Center, Xiamen Medical College, Xiamen 361023, China
- School of Pharmacy and Pharmaceutical Sciences, Xiamen Medical College, Xiamen 361023, China
| | - Lianzhong Luo
- Xiamen Key Laboratory of Marine Medicinal Natural Product Resources, Xiamen Medical College, Xiamen 361023, China; (J.L.); (F.Q.); (L.X.)
- Fujian Province University Marine Biopharmaceutical Resource Engineering Research Center, Xiamen Medical College, Xiamen 361023, China
- School of Pharmacy and Pharmaceutical Sciences, Xiamen Medical College, Xiamen 361023, China
| |
Collapse
|
3
|
Jha P, Chaturvedi S, Bhat R, Jain N, Mishra AK. Insights of ligand binding in modeled h5-HT 1A receptor: homology modeling, docking, MM-GBSA, screening and molecular dynamics. J Biomol Struct Dyn 2022; 40:11625-11637. [PMID: 34387135 DOI: 10.1080/07391102.2021.1961865] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The pharmacologically characterized receptor subtype of the serotonin family, the 5HT1A receptor is implicated in the pathophysiology and treatment of depression and anxiety-related disorders. Being the most extensively targeted receptor for developing novel antidepressants and anxiolytics, a near-ideal theoretical model can aid in high-throughput screening of promising drug candidates. However, the design of potential drug candidates suffers owing to a lack of complete structural information. In this work, homology models of 5-HT1A receptor are generated using two distinct alignments (CW and PSTA) and model building methods (KB and EB). The developed models are validated for virtual screening using a ligand dataset of agonists and antagonists. The best-suited model was efficient in discriminating agonist/antagonist binding. Correlation plots between pKi and docking (R2agonist≥ 0.6, R2antagonist≥ 0.7) and MM-GBSA dG bind values (R2agonist≥ 0.5, R2antagonist≥ 0.7) revealed optimum corroboration between in vitro and in silico outcomes, which further suggested the usefulness of the developed model for the design of high-affinity probes for the neurological disorders.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Preeti Jha
- Department of Immunology, Genetics and Pathology, Medical Radiation Science, Rudbeck Laboratory, Uppsala, Sweden.,Division of Cyclotron and Radiopharmaceutical Sciences, Institute of Nuclear Medicine and Allied Sciences, Defence Research and Development Organization, Delhi, India.,Department of Chemistry, Indian Institute of Technology Delhi, New Delhi, India
| | - Shubhra Chaturvedi
- Division of Cyclotron and Radiopharmaceutical Sciences, Institute of Nuclear Medicine and Allied Sciences, Defence Research and Development Organization, Delhi, India
| | - Ruchika Bhat
- Department of Chemistry, Indian Institute of Technology Delhi, New Delhi, India.,SCFBio, Indian Institute of Technology Delhi, New Delhi, India
| | - Nidhi Jain
- Department of Chemistry, Indian Institute of Technology Delhi, New Delhi, India
| | - Anil K Mishra
- Division of Cyclotron and Radiopharmaceutical Sciences, Institute of Nuclear Medicine and Allied Sciences, Defence Research and Development Organization, Delhi, India
| |
Collapse
|
4
|
Borgarelli C, Klingl YE, Escamilla-Ayala A, Munck S, Van Den Bosch L, De Borggraeve WM, Ismalaj E. Lighting Up the Plasma Membrane: Development and Applications of Fluorescent Ligands for Transmembrane Proteins. Chemistry 2021; 27:8605-8641. [PMID: 33733502 DOI: 10.1002/chem.202100296] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Indexed: 12/16/2022]
Abstract
Despite the fact that transmembrane proteins represent the main therapeutic targets for decades, complete and in-depth knowledge about their biochemical and pharmacological profiling is not fully available. In this regard, target-tailored small-molecule fluorescent ligands are a viable approach to fill in the missing pieces of the puzzle. Such tools, coupled with the ability of high-precision optical techniques to image with an unprecedented resolution at a single-molecule level, helped unraveling many of the conundrums related to plasma proteins' life-cycle and druggability. Herein, we review the recent progress made during the last two decades in fluorescent ligand design and potential applications in fluorescence microscopy of voltage-gated ion channels, ligand-gated ion channels and G-coupled protein receptors.
Collapse
Affiliation(s)
- Carlotta Borgarelli
- Department of Chemistry, Molecular Design and Synthesis, KU Leuven Campus Arenberg Celestijnenlaan 200F -, box 2404, 3001, Leuven, Belgium
| | - Yvonne E Klingl
- Department of Neurosciences, Experimental Neurology and Leuven Brain Institute (LBI), KU Leuven Campus Gasthuisberg O&N5 -, box 602 Herestraat 49, 3000, Leuven, Belgium.,Laboratory of Neurobiology, VIB, Center for Brain &, Disease Research, VIB-KU Leuven Campus Gasthuisberg O&N5 -, box 602 Herestraat 49, 3000, Leuven, Belgium
| | - Abril Escamilla-Ayala
- Center for Brain & Disease Research, & VIB BioImaging Core, VIB-KU Leuven Campus Gasthuisberg O&N5 -, box 602 Herestraat 49, 3000, Leuven, Belgium.,Department of Neurosciences, Leuven Brain Institute, KU Leuven, Campus Gasthuisberg O&N5 - box 602 Herestraat 49, 3000, Leuven, Belgium
| | - Sebastian Munck
- Center for Brain & Disease Research, & VIB BioImaging Core, VIB-KU Leuven Campus Gasthuisberg O&N5 -, box 602 Herestraat 49, 3000, Leuven, Belgium.,Department of Neurosciences, Leuven Brain Institute, KU Leuven, Campus Gasthuisberg O&N5 - box 602 Herestraat 49, 3000, Leuven, Belgium
| | - Ludo Van Den Bosch
- Department of Neurosciences, Experimental Neurology and Leuven Brain Institute (LBI), KU Leuven Campus Gasthuisberg O&N5 -, box 602 Herestraat 49, 3000, Leuven, Belgium.,Laboratory of Neurobiology, VIB, Center for Brain &, Disease Research, VIB-KU Leuven Campus Gasthuisberg O&N5 -, box 602 Herestraat 49, 3000, Leuven, Belgium
| | - Wim M De Borggraeve
- Department of Chemistry, Molecular Design and Synthesis, KU Leuven Campus Arenberg Celestijnenlaan 200F -, box 2404, 3001, Leuven, Belgium
| | - Ermal Ismalaj
- Department of Chemistry, Molecular Design and Synthesis, KU Leuven Campus Arenberg Celestijnenlaan 200F -, box 2404, 3001, Leuven, Belgium
| |
Collapse
|
5
|
Lacivita E, Niso M, Mastromarino M, Garcia Silva A, Resch C, Zeug A, Loza MI, Castro M, Ponimaskin E, Leopoldo M. Knowledge-Based Design of Long-Chain Arylpiperazine Derivatives Targeting Multiple Serotonin Receptors as Potential Candidates for Treatment of Autism Spectrum Disorder. ACS Chem Neurosci 2021; 12:1313-1327. [PMID: 33792287 DOI: 10.1021/acschemneuro.0c00647] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Autism spectrum disorder (ASD) includes a group of neurodevelopmental disorders characterized by core symptoms such as impaired social interaction and communication, repetitive and stereotyped behaviors, and restricted interests. To date, there are no effective treatments for these core symptoms. Several studies have shown that the brain serotonin (5-HT) neurotransmission system is altered in both ASD patients and animal models of the disease. Multiple pieces of evidence suggest that targeting 5-HT receptors may treat the core symptoms of ASD and associated intellectual disabilities. In fact, stimulation of the 5-HT1A receptor reduces repetitive and restricted behaviors; blockade of the 5-HT2A receptor reduces both learning deficits and repetitive behavior, and activation of the 5-HT7 receptor improves cognitive performances and reduces repetitive behavior. On such a basis, we have designed novel arylpiperazine derivatives pursuing unprecedently reported activity profiles: dual 5-HT7/5-HT1A receptor agonist properties and mixed 5-HT7 agonist/5-HT1A agonist/5-HT2A antagonist properties. Seventeen new compounds were synthesized and tested in radioligand binding assay at the target receptors. We have identified the dual 5-HT1AR/5-HT7R agonists 8c and 29 and the mixed 5-HT1AR agonist/5-HT7R agonist/5-HT2AR antagonist 20b. These compounds are metabolically stable in vitro and have suitable central nervous system druglike properties.
Collapse
Affiliation(s)
- Enza Lacivita
- Dipartimento di Farmacia−Scienze del Farmaco, Università degli Studi di Bari Aldo Moro, via Orabona, 4, 70125 Bari, Italy
| | - Mauro Niso
- Dipartimento di Farmacia−Scienze del Farmaco, Università degli Studi di Bari Aldo Moro, via Orabona, 4, 70125 Bari, Italy
| | - Margherita Mastromarino
- Dipartimento di Farmacia−Scienze del Farmaco, Università degli Studi di Bari Aldo Moro, via Orabona, 4, 70125 Bari, Italy
| | - Andrea Garcia Silva
- Center for Research in Molecular Medicine and Chronic Diseases (CIMUS). Universidade de Santiago de Compostela. Avda. de Barcelona, s/n, 15782 Santiago de Compostela, Spain
| | - Cibell Resch
- Cellular Neurophysiology, Hannover Medical School, 30625 Hannover, Germany
| | - Andre Zeug
- Cellular Neurophysiology, Hannover Medical School, 30625 Hannover, Germany
| | - María I. Loza
- Center for Research in Molecular Medicine and Chronic Diseases (CIMUS). Universidade de Santiago de Compostela. Avda. de Barcelona, s/n, 15782 Santiago de Compostela, Spain
| | - Marián Castro
- Center for Research in Molecular Medicine and Chronic Diseases (CIMUS). Universidade de Santiago de Compostela. Avda. de Barcelona, s/n, 15782 Santiago de Compostela, Spain
| | - Evgeni Ponimaskin
- Cellular Neurophysiology, Hannover Medical School, 30625 Hannover, Germany
| | - Marcello Leopoldo
- Dipartimento di Farmacia−Scienze del Farmaco, Università degli Studi di Bari Aldo Moro, via Orabona, 4, 70125 Bari, Italy
| |
Collapse
|
6
|
Palma A, Guerrero SA, Ramírez JE, Sanabria CM, Acosta LM, Cobo J, Nogueras M. Easy Access to Novel Tetrahydro-1-benzazepine-2-carboxylic Acids and Tetrahydro-1-benzazepines Carrying [a]-Fused Heterocyclic Units from 2-(Allylaryl)glycinates. SYNTHESIS-STUTTGART 2021. [DOI: 10.1055/s-0040-1706484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
AbstractA concise, efficient, and versatile approach to access novel tetrahydro-1H-benzo[b]azepine-2-carboxylic acids and tricyclic tetrahydro-1-benzazepines carrying [a]-fused heterocyclic units is reported. The easily accessible 2-(allylaryl)glycinates were used as starting material to synthesize, via the corresponding 1,4-epoxycycloadducts, the required key intermediate benzo[b]azepine-2-carboxylates. Hydrolysis of the latter afforded the targeted benzo[b]azepine-2-carboxylic acids. The key intermediate was also converted into N-2-chloroacetyl derivatives which, in turn, were transformed into the corresponding tricyclic target hexahydrobenzo[f]pyrazino[1,2-a]azepine-1,4-diones by reaction with benzylamine or aminoethanol. The reaction of the common intermediate with hydrazine gave the corresponding intermediate carbohydrazides, which, by reaction with trimethoxymethane, were transformed into another tricyclic target tetrahydrobenzo[f][1,2,4]triazino[4,5-a]azepin-4(3H)-ones. Full spectroscopic characterization (IR, HRMS, and 1H and 13C NMR) is also reported for each compound.
Collapse
Affiliation(s)
- Alirio Palma
- Laboratorio de Síntesis Orgánica, Escuela de Química, Universidad Industrial de Santander
| | - Sergio Andrés Guerrero
- Laboratorio de Síntesis Orgánica, Escuela de Química, Universidad Industrial de Santander
| | - Juan E. Ramírez
- Laboratorio de Síntesis Orgánica, Escuela de Química, Universidad Industrial de Santander
| | - Carlos M. Sanabria
- Laboratorio de Síntesis Orgánica, Escuela de Química, Universidad Industrial de Santander
| | - Lina M. Acosta
- Laboratorio de Síntesis Orgánica, Escuela de Química, Universidad Industrial de Santander
| | | | | |
Collapse
|
7
|
Kułaga D, Jaśkowska J, Satała G. Design, synthesis and biological evaluation of novel serotonin and dopamine receptor ligands being 6-bromohexyl saccharine derivatives. Bioorg Med Chem Lett 2019; 29:126667. [PMID: 31547945 DOI: 10.1016/j.bmcl.2019.126667] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 08/26/2019] [Accepted: 09/03/2019] [Indexed: 12/11/2022]
Abstract
Due to numerous side effects of current antidepressants, the search for new, safer bioactive compounds is still a valid research topic in medical chemistry. In our research we decided to synthesize and determine SAR for new hexyl arylpiperazines (LACPs) derivated with saccharin moiety. High biological activity has been explained using molecular modelling methods. The compounds obtained show high affinity for the 5-HT1A (compound 18, Ki = 4 nM - antagonist mode) and D2 (compound 15, Ki = 7 nM - antagonist mode) receptor, and in some cases also 5-HT7 receptor (compound 17, Ki = 20 nM). A preliminary ADME analysis showed that the compounds exhibit CNS drugability properties. We have proved that carbon-chain lengthening may have a beneficial effect on increasing the activity towards serotonin and dopamine receptors.
Collapse
Affiliation(s)
- Damian Kułaga
- Faculty of Chemical Engineering and Technology, Institute of Organic Chemistry and Technology, Cracow University of Technology, ul. Warszawska 24, 31-155 Kraków, Poland.
| | - Jolanta Jaśkowska
- Faculty of Chemical Engineering and Technology, Institute of Organic Chemistry and Technology, Cracow University of Technology, ul. Warszawska 24, 31-155 Kraków, Poland
| | - Grzegorz Satała
- Department of Medicinal Chemistry, Institute of Pharmacology, Polish Academy of Sciences, ul. Smętna 12, 31-343 Kraków, Poland
| |
Collapse
|
8
|
Marcinkowska M, Kotańska M, Zagórska A, Śniecikowska J, Kubacka M, Siwek A, Bucki A, Pawłowski M, Bednarski M, Sapa J, Starek M, Dąbrowska M, Kołaczkowski M. Synthesis and biological evaluation of N-arylpiperazine derivatives of 4,4-dimethylisoquinoline-1,3(2H,4H)-dione as potential antiplatelet agents. J Enzyme Inhib Med Chem 2018; 33:536-545. [PMID: 29482394 PMCID: PMC6010133 DOI: 10.1080/14756366.2018.1437155] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Despite the substantial clinical success of aspirin and clopidogrel in secondary prevention of ischemic stroke, up to 40% of patients remain resistant to the available antiplatelet treatment. Therefore, there is an urgent clinical need to develop novel antiplatelet agents with a novel mechanism of action. Recent studies revealed that potent alpha 2B-adrenergic receptor (alpha 2B-ARs) antagonists could constitute alternative antiplatelet therapy. We have synthesized a series of N-arylpiperazine derivatives of 4,4-dimethylisoquinoline-1,3(2H,4H)-dione as potential alpha 2B receptor antagonists. The most potent compound 3, effectively inhibited the platelet-aggregation induced both by collagen and ADP/adrenaline with IC50 of 26.9 μM and 20.5 μM respectively. Our study confirmed that the alpha 2B-AR antagonists remain an interesting target for the development of novel antiplatelet agents with an alternative mechanism of action.
Collapse
Affiliation(s)
- Monika Marcinkowska
- a Department of Medicinal Chemistry , Jagiellonian University Medical College , Kraków , Poland
| | - Magdalena Kotańska
- b Department of Pharmacological Screening , Chair of Pharmacodynamics, Jagiellonian University Medical College , Krakó , Poland
| | - Agnieszka Zagórska
- a Department of Medicinal Chemistry , Jagiellonian University Medical College , Kraków , Poland
| | - Joanna Śniecikowska
- a Department of Medicinal Chemistry , Jagiellonian University Medical College , Kraków , Poland
| | - Monika Kubacka
- b Department of Pharmacological Screening , Chair of Pharmacodynamics, Jagiellonian University Medical College , Krakó , Poland
| | - Agata Siwek
- c Department of Pharmacobiology , Jagiellonian University Medical College , Kraków , Poland
| | - Adam Bucki
- a Department of Medicinal Chemistry , Jagiellonian University Medical College , Kraków , Poland
| | - Maciej Pawłowski
- a Department of Medicinal Chemistry , Jagiellonian University Medical College , Kraków , Poland
| | - Marek Bednarski
- d Department of Pharmacological Screening , Chair of Pharmacodynamics, Jagiellonian University Medical College , Kraków , Poland
| | - Jacek Sapa
- d Department of Pharmacological Screening , Chair of Pharmacodynamics, Jagiellonian University Medical College , Kraków , Poland
| | - Małgorzata Starek
- e Department of Inorganic and Analytical Chemistry, Faculty of Pharmacy , Jagiellonian University Medical College , Krakow , Poland
| | - Monika Dąbrowska
- e Department of Inorganic and Analytical Chemistry, Faculty of Pharmacy , Jagiellonian University Medical College , Krakow , Poland
| | - Marcin Kołaczkowski
- a Department of Medicinal Chemistry , Jagiellonian University Medical College , Kraków , Poland
| |
Collapse
|
9
|
Camicia F, Celentano AM, Johns ME, Chan JD, Maldonado L, Vaca H, Di Siervi N, Kamentezky L, Gamo AM, Ortega-Gutierrez S, Martin-Fontecha M, Davio C, Marchant JS, Rosenzvit MC. Unique pharmacological properties of serotoninergic G-protein coupled receptors from cestodes. PLoS Negl Trop Dis 2018; 12:e0006267. [PMID: 29425245 PMCID: PMC5823469 DOI: 10.1371/journal.pntd.0006267] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 02/22/2018] [Accepted: 01/24/2018] [Indexed: 11/18/2022] Open
Abstract
Background Cestodes are a diverse group of parasites, some of them being agents of neglected diseases. In cestodes, little is known about the functional properties of G protein coupled receptors (GPCRs) which have proved to be highly druggable targets in other organisms. Notably, serotoninergic G-protein coupled receptors (5-HT GPCRs) play major roles in key functions like movement, development and reproduction in parasites. Methodology/Principal findings Three 5-HT GPCRs from Echinococcus granulosus and Mesocestoides corti were cloned, sequenced, bioinformatically analyzed and functionally characterized. Multiple sequence alignment with other GPCRs showed the presence of seven transmembrane segments and conserved motifs but interesting differences were also observed. Phylogenetic analysis grouped these new sequences within the 5-HT7 clade of GPCRs. Molecular modeling showed a striking resemblance in the spatial localization of key residues with their mammalian counterparts. Expression analysis using available RNAseq data showed that both E. granulosus sequences are expressed in larval and adult stages. Localization studies performed in E. granulosus larvae with a fluorescent probe produced a punctiform pattern concentrated in suckers. E. granulosus and M. corti larvae showed an increase in motility in response to serotonin. Heterologous expression revealed elevated levels of cAMP production in response to 5-HT and two of the GPCRs showed extremely high sensitivity to 5-HT (picomolar range). While each of these GPCRs was activated by 5-HT, they exhibit distinct pharmacological properties (5-HT sensitivity, differential responsiveness to ligands). Conclusions/Significance These data provide the first functional report of GPCRs in parasitic cestodes. The serotoninergic GPCRs characterized here may represent novel druggable targets for antiparasitic intervention. Cestode parasites are flatworms with the ability to parasitize almost every vertebrate species. Several of these parasites are etiological agents of neglected diseases prioritized by WHO, such as hydatid disease, or hydatidosis, a zoonosis caused by species of the genus Echinococcus that affects millions of people worldwide. Due to the scarcity of anthelmintic drugs available and the emergence of resistant parasites, the discovery of new anthelmintic drugs is mandatory. Neuromuscular function has been the target of commonly used drugs against parasitic diseases to impact movement, parasite development and reproduction. Here we describe three new proteins, some of them highly expressed in cestodes which could be relevant for motility. Using different approaches, the three proteins were identified as G protein coupled receptors for serotonin, an important neurotransmitter and a known modulator of cestode motility. These new receptors exhibit unique characteristics including a particular sensitivity to serotonin as well as a distinctive pharmacology, which will assist their targeting for chemotherapeutic intervention.
Collapse
Affiliation(s)
- Federico Camicia
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Investigaciones en Microbiología y Parasitología Médica (IMPAM-UBA-CONICET), Facultad de Medicina, Buenos Aires, Argentina
| | - Ana M. Celentano
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Investigaciones en Microbiología y Parasitología Médica (IMPAM-UBA-CONICET), Facultad de Medicina, Buenos Aires, Argentina
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Microbiología, Parasitología e Inmunología, Paraguay, CABA, Argentina
| | - Malcolm E. Johns
- Department of Pharmacology, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - John D. Chan
- Department of Biomedical Sciences, Iowa State University, Ames, Iowa, United States of America
| | - Lucas Maldonado
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Investigaciones en Microbiología y Parasitología Médica (IMPAM-UBA-CONICET), Facultad de Medicina, Buenos Aires, Argentina
| | - Hugo Vaca
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Investigaciones en Microbiología y Parasitología Médica (IMPAM-UBA-CONICET), Facultad de Medicina, Buenos Aires, Argentina
| | - Nicolás Di Siervi
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Investigaciones Farmacológicas (ININFA-UBA-CONICET), Facultad de Farmacia y Bioquímica, Buenos Aires, Argentina
| | - Laura Kamentezky
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Investigaciones en Microbiología y Parasitología Médica (IMPAM-UBA-CONICET), Facultad de Medicina, Buenos Aires, Argentina
| | - Ana M. Gamo
- Departamento de Química Orgánica I, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Madrid, Spain
| | - Silvia Ortega-Gutierrez
- Departamento de Química Orgánica I, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Madrid, Spain
| | - Mar Martin-Fontecha
- Departamento de Química Orgánica I, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Madrid, Spain
| | - Carlos Davio
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Investigaciones Farmacológicas (ININFA-UBA-CONICET), Facultad de Farmacia y Bioquímica, Buenos Aires, Argentina
| | - Jonathan S. Marchant
- Department of Cell Biology, Neurobiology & Anatomy; Medical College of Wisconsin; Watertown Plank Road; Milwaukee; WI; United States of America
- * E-mail: (MCR); (JSM)
| | - Mara C. Rosenzvit
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Investigaciones en Microbiología y Parasitología Médica (IMPAM-UBA-CONICET), Facultad de Medicina, Buenos Aires, Argentina
- * E-mail: (MCR); (JSM)
| |
Collapse
|
10
|
Hirata Y, Sasaki T, Kanki H, Choong CJ, Nishiyama K, Kubo G, Hotei A, Taniguchi M, Mochizuki H, Uesato S. New 5-Aryl-Substituted 2-Aminobenzamide-Type HDAC Inhibitors with a Diketopiperazine Group and Their Ameliorating Effects on Ischemia-Induced Neuronal Cell Death. Sci Rep 2018; 8:1400. [PMID: 29362442 PMCID: PMC5780423 DOI: 10.1038/s41598-018-19664-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 01/05/2018] [Indexed: 01/05/2023] Open
Abstract
We previously synthesized new 5-thienyl-substituted 2-aminobenzamide-type HDAC1, 2 inhibitors with the (4-ethyl-2,3-dioxopiperazine-1-carboxamido) methyl group. K-560 (1a) protected against neuronal cell death in a Parkinson’s disease model by up-regulating the expression of XIAP. This finding prompted us to design new K-560-related compounds. We examined the structure activity relationship (SAR) for the neuronal protective effects of newly synthesized and known K-560 derivatives after cerebral ischemia. Among them, K-856 (8), containing the (4-methyl-2,5-dioxopiperazin-1-yl) methyl group, exhibited a promising neuronal survival activity. The SAR study strongly suggested that the attachment of a monocyclic 2,3- or 2,5-diketopiperazine group to the 2-amino-5-aryl (but not 2-nitro-5-aryl) scaffold is necessary for K-560-related compounds to exert a potent neuroprotective effect.
Collapse
Affiliation(s)
- Yoshiyuki Hirata
- Department of Life Science and Biotechnology, Faculty of Chemistry, Materials and Bioengineering, Kansai University, 3-3-35, Yamate-cho, Suita, Osaka, 564-8680, Japan.,Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka, 569-1094, Japan
| | - Tsutomu Sasaki
- Department of Neurology, Graduate School of Medicine, Osaka University, Yamadaoka 2-2, Suita, Osaka, 565-0871, Japan.
| | - Hideaki Kanki
- Department of Neurology, Graduate School of Medicine, Osaka University, Yamadaoka 2-2, Suita, Osaka, 565-0871, Japan
| | - Chi-Jing Choong
- Department of Neurology, Graduate School of Medicine, Osaka University, Yamadaoka 2-2, Suita, Osaka, 565-0871, Japan
| | - Kumiko Nishiyama
- Department of Neurology, Graduate School of Medicine, Osaka University, Yamadaoka 2-2, Suita, Osaka, 565-0871, Japan
| | - Genki Kubo
- Department of Life Science and Biotechnology, Faculty of Chemistry, Materials and Bioengineering, Kansai University, 3-3-35, Yamate-cho, Suita, Osaka, 564-8680, Japan
| | - Ayana Hotei
- Department of Life Science and Biotechnology, Faculty of Chemistry, Materials and Bioengineering, Kansai University, 3-3-35, Yamate-cho, Suita, Osaka, 564-8680, Japan
| | - Masahiko Taniguchi
- Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka, 569-1094, Japan
| | - Hideki Mochizuki
- Department of Neurology, Graduate School of Medicine, Osaka University, Yamadaoka 2-2, Suita, Osaka, 565-0871, Japan
| | - Shinichi Uesato
- Department of Life Science and Biotechnology, Faculty of Chemistry, Materials and Bioengineering, Kansai University, 3-3-35, Yamate-cho, Suita, Osaka, 564-8680, Japan. .,Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka, 569-1094, Japan.
| |
Collapse
|
11
|
Acosta Quintero LM, Palma A, Cobo J, Glidewell C. A versatile synthesis of cyclic dipeptides using the stepwise construction of the piperazine-2,5-dione ring from simple precursors: synthetic sequence and the structure of a representative product, (3RS)-4-(2-allyl-3,5-dimethylphenyl)-1-benzyl-3-phenylpiperazine-2,5-dione. ACTA CRYSTALLOGRAPHICA SECTION C-STRUCTURAL CHEMISTRY 2018; 74:159-165. [DOI: 10.1107/s2053229618000037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2017] [Accepted: 01/02/2018] [Indexed: 11/10/2022]
Abstract
A versatile synthesis of multiply substituted cyclic dipeptides has been designed, based on the stepwise construction of the piperazine-2,5-dione ring using molecular fragments from four different precursor molecules. Starting from substituted 2-allylanilines, reaction with methyl 2-bromo-2-phenylacetate yields the corresponding methyl 2-(2-allylanilino)-2-phenylacetates, which react with haloacetyl chlorides to give methyl 2-[N-(2-allylphenyl)-2-haloacetamido]-2-phenylacetates, which then undergo ring closure with benzylamine to yield the corresponding cyclic dipeptides of type 4-(2-allylphenyl)-1-benzyl-3-phenylpiperazine-2,5-dione. (3RS)-4-(2-Allyl-3,5-dimethylphenyl)-1-benzyl-3-phenylpiperazine-2,5-dione, C28H28N2O2, (IIId), crystallizes with Z′ = 2 in the space group P21/c; the allyl groups in the two independent molecules adopt different conformations and, in one of them, the allyl group is disordered over two sets of atomic sites having occupancies of 0.534 (4) and 0.466 (4). In both molecules, the piperazine-2,5-dione ring adopts a boat conformation, with the 3-phenyl ring in a quasi-axial site. The molecules of (IIId) are linked into a three-dimensional framework structure by a combination of three C—H...O hydrogen bonds and three C—H...π(arene) hydrogen bonds. Comparisons are made with some related structures.
Collapse
|
12
|
Warszycki D, Rueda M, Mordalski S, Kristiansen K, Satała G, Rataj K, Chilmonczyk Z, Sylte I, Abagyan R, Bojarski AJ. From Homology Models to a Set of Predictive Binding Pockets-a 5-HT 1A Receptor Case Study. J Chem Inf Model 2017; 57:311-321. [PMID: 28055203 PMCID: PMC5361891 DOI: 10.1021/acs.jcim.6b00263] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Despite its remarkable importance in the arena of drug design, serotonin 1A receptor (5-HT1A) has been elusive to the X-ray crystallography community. This lack of direct structural information not only hampers our knowledge regarding the binding modes of many popular ligands (including the endogenous neurotransmitter-serotonin), but also limits the search for more potent compounds. In this paper we shed new light on the 3D pharmacological properties of the 5-HT1A receptor by using a ligand-guided approach (ALiBERO) grounded in the Internal Coordinate Mechanics (ICM) docking platform. Starting from a homology template and set of known actives, the method introduces receptor flexibility via Normal Mode Analysis and Monte Carlo sampling, to generate a subset of pockets that display enriched discrimination of actives from inactives in retrospective docking. Here, we thoroughly investigated the repercussions of using different protein templates and the effect of compound selection on screening performance. Finally, the best resulting protein models were applied prospectively in a large virtual screening campaign, in which two new active compounds were identified that were chemically distinct from those described in the literature.
Collapse
Affiliation(s)
- Dawid Warszycki
- Institute of Pharmacology, Polish Academy of Sciences, 12 Smetna Street, 31-343 Kraków, Poland
| | - Manuel Rueda
- University of California, San Diego, Skaggs School of Pharmacy & Pharmaceutical Sciences, 9500 Gilman Drive, MC 0747 La Jolla, CA 92093-0747, U.S
| | - Stefan Mordalski
- Institute of Pharmacology, Polish Academy of Sciences, 12 Smetna Street, 31-343 Kraków, Poland
| | - Kurt Kristiansen
- Department of Medical Biology, Faculty of Health Sciences, University of Tromsø, N-9037 Tromsø, Norway
| | - Grzegorz Satała
- Institute of Pharmacology, Polish Academy of Sciences, 12 Smetna Street, 31-343 Kraków, Poland
| | - Krzysztof Rataj
- Institute of Pharmacology, Polish Academy of Sciences, 12 Smetna Street, 31-343 Kraków, Poland
| | - Zdzisław Chilmonczyk
- Department of Cell Biology, National Medicines Institute, 30/34 Chełmska Street, 00-725 Warszawa, Poland
| | - Ingebrigt Sylte
- Department of Medical Biology, Faculty of Health Sciences, University of Tromsø, N-9037 Tromsø, Norway
| | - Ruben Abagyan
- University of California, San Diego, Skaggs School of Pharmacy & Pharmaceutical Sciences, 9500 Gilman Drive, MC 0747 La Jolla, CA 92093-0747, U.S
| | - Andrzej J. Bojarski
- Institute of Pharmacology, Polish Academy of Sciences, 12 Smetna Street, 31-343 Kraków, Poland
| |
Collapse
|
13
|
Gamo AM, González-Vera JA, Rueda-Zubiaurre A, Alonso D, Vázquez-Villa H, Martín-Couce L, Palomares Ó, López JA, Martín-Fontecha M, Benhamú B, López-Rodríguez ML, Ortega-Gutiérrez S. Chemoproteomic Approach to Explore the Target Profile of GPCR ligands: Application to 5-HT1A
and 5-HT6
Receptors. Chemistry 2015; 22:1313-21. [DOI: 10.1002/chem.201503101] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Indexed: 12/20/2022]
Affiliation(s)
- Ana M. Gamo
- Departamento de Química Orgánica I; Facultad de Ciencias Químicas; Universidad Complutense de Madrid; 28040 Madrid Spain
| | - Juan A. González-Vera
- Departamento de Química Orgánica I; Facultad de Ciencias Químicas; Universidad Complutense de Madrid; 28040 Madrid Spain
| | - Ainoa Rueda-Zubiaurre
- Departamento de Química Orgánica I; Facultad de Ciencias Químicas; Universidad Complutense de Madrid; 28040 Madrid Spain
| | - Dulce Alonso
- Departamento de Química Orgánica I; Facultad de Ciencias Químicas; Universidad Complutense de Madrid; 28040 Madrid Spain
| | - Henar Vázquez-Villa
- Departamento de Química Orgánica I; Facultad de Ciencias Químicas; Universidad Complutense de Madrid; 28040 Madrid Spain
| | - Lidia Martín-Couce
- Departamento de Química Orgánica I; Facultad de Ciencias Químicas; Universidad Complutense de Madrid; 28040 Madrid Spain
| | - Óscar Palomares
- Departamento de Bioquímica y Biología Molecular I; Facultad de Ciencias Químicas; Universidad Complutense de Madrid; 28040 Madrid Spain
| | - Juan A. López
- Proteomics Unit; Centro Nacional de Investigaciones Cardiovasculares, CNIC; 28029 Madrid Spain
| | - Mar Martín-Fontecha
- Departamento de Química Orgánica I; Facultad de Ciencias Químicas; Universidad Complutense de Madrid; 28040 Madrid Spain
| | - Bellinda Benhamú
- Departamento de Química Orgánica I; Facultad de Ciencias Químicas; Universidad Complutense de Madrid; 28040 Madrid Spain
| | - María L. López-Rodríguez
- Departamento de Química Orgánica I; Facultad de Ciencias Químicas; Universidad Complutense de Madrid; 28040 Madrid Spain
| | - Silvia Ortega-Gutiérrez
- Departamento de Química Orgánica I; Facultad de Ciencias Químicas; Universidad Complutense de Madrid; 28040 Madrid Spain
| |
Collapse
|
14
|
Novel 4-aryl-pyrido[1,2-c]pyrimidines with dual SSRI and 5-HT(1A) activity. Part 5. Eur J Med Chem 2015; 98:221-36. [PMID: 26043160 DOI: 10.1016/j.ejmech.2015.05.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Revised: 08/15/2014] [Accepted: 05/04/2015] [Indexed: 01/09/2023]
Abstract
A series of novel 4-aryl-pyrido[1,2-c]pyrimidine derivatives containing a 1-(2-quinoline)piperazine moiety was synthesized. The chemical structure of new compounds was confirmed by FT-IR, (1)H NMR, (13)C NMR and HRMS spectra as well as elemental analysis. Affinity of the novel pyrido[1,2-c]pyrimidine derivatives for 5-HT1A, 5-HT2A receptors and serotonin transporter (SERT) was evaluated in an in vitro radioligand binding assay. Tested compounds showed moderate to high affinity for 5-HT1AR and SERT and low affinity for 5-HT2AR. Selected ligands were subjected to in vivo tests, such as induced hypothermia and the forced swimming test in mice, which determined presynaptic agonistic activity of the ligands 8d, 8e, 9d and 9e and presynaptic antagonistic activity of the ligands 8a, 8b, 9a, 9b. Additionally, metabolic stability evaluation was performed for selected ligands, proving that a para-substitution in the 4-aryl-pyrido[1,2-c]pyrimidine moiety leads to an increase in stability, whereas a substitution in the ortho-position lowers the stability.
Collapse
|
15
|
Wang S, Chen Y, Liu X, Xu X, Liu X, Liu BF, Zhang G. Synthesis and evaluation of novel 2,3-dihydrobenzo[b][1,4]dioxin- and indolealkylamine derivatives as potential antidepressants. Arch Pharm (Weinheim) 2013; 347:32-41. [PMID: 24214603 DOI: 10.1002/ardp.201300238] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2013] [Revised: 09/01/2013] [Accepted: 09/05/2013] [Indexed: 11/06/2022]
Abstract
A series of 2,3-dihydrobenzo[b][1,4]dioxin- and indolealkylamine derivatives were synthesized and the target compounds were evaluated for their binding affinities at the 5-HT1A receptor and serotonin transporter. Antidepressant-like activities of the compounds were screened using the tail suspension and forced swim tests in mice. Preliminary results indicated that the target compounds exhibited high binding affinities at the 5-HT1A receptor and serotonin transporter, and produced marked antidepressant-like effects. The best example from this study, compound 5, exhibited high binding affinities for the 5-HT1A receptor (Ki = 96 nM) and serotonin transporter (Ki = 9.8 nM). The intrinsic activity of compound 5 showed agonistic property to the 5-HT1A receptor and inhibition of the 5-HT transporter. Furthermore, compound 5 exhibited greater antidepressant efficacy than fluoxetine and showed acceptable pharmacokinetic properties.
Collapse
Affiliation(s)
- Songlin Wang
- Department of Biomedical Engineering, Systems Biology Theme, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | | | | | | | | | | | | |
Collapse
|
16
|
Valhondo M, Marco I, Martín-Fontecha M, Vázquez-Villa H, Ramos JA, Berkels R, Lauterbach T, Benhamú B, López-Rodríguez ML. New serotonin 5-HT1A receptor agonists endowed with antinociceptive activity in vivo. J Med Chem 2013; 56:7851-61. [PMID: 24050112 DOI: 10.1021/jm400766k] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We report the synthesis of new compounds 4-35 based on two different openings (A and B) of the chromane ring present in the previously identified 5-HT1A receptor (5-HT1AR) ligand 3. The synthesized compounds were assessed for binding affinity, selectivity, and functional activity at the 5-HT1AR. Selected candidates resulting from B opening were also evaluated for their potential antinociceptive effect in vivo and pharmacokinetic properties in vitro. Analogue 19 [2-(4-{[2-(2-ethoxyphenoxy)ethyl]amino}butyl)tetrahydro-1H-pyrrolo[1,2-c]imidazole-1,3(2H)-dione] has been characterized as a high-affinity and potent 5-HT1AR agonist (Ki = 2.3 nM; EC50 = 19 nM). Pharmacokinetic studies indicated that compound 19 displays a good metabolic stability in human liver microsomes (t1/2 ∼ 3 h and CLint = 3.5 mL/min/kg, at 5 μM), and a low level of protein binding (25%, at 5 μM). Interestingly, 19 (3 mg/kg, ip, and 30 mg/kg, po) caused significant attenuation of formalin-induced behavior in early and late phases of the mouse intradermal formalin test of pain, and this in vivo effect was reversed by the selective 5-HT1AR antagonist WAY-100635. Thus, the new 5-HT1AR agonist identified in this work, 19, exhibits oral analgesic activity, and the results herein represent a step toward identifying new therapeutics for the control of pain.
Collapse
Affiliation(s)
- Margarita Valhondo
- Departamento de Química Orgánica I, Facultad de Ciencias Químicas, Universidad Complutense de Madrid , E-28040 Madrid, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Żydek G, Brzezińska E, Stańczak A, Lewgowd W. Application of chromatographic data in QSAR Studies of 3-[ω-(4-Arylpiperazin-1-yl)alkyl]pyrimido[5,4-c]quinolin-4(3H)-one derivatives as 5-HT1A receptor ligands. J Chromatogr Sci 2013; 52:596-603. [PMID: 23804019 DOI: 10.1093/chromsci/bmt082] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
The activity of several 3-[ω-(4-arylpiperazin-1-yl)alkyl]pyrimido[5,4-c]quinolin-4(3H)-ones (LCAPs) with well-defined serotonin 1A (5-HT1A) receptor affinity was described by using chromatographic and calculated physicochemical parameters in quantitative structure-activity relationship analysis. Normal-phase thin-layer chromatography plates impregnated with solutions of L-aspartic acid, L-serine, L-phenylalanine, L-tryptophan, L-tyrosine, L-asparagine, L-threonine and their mixtures (denoted as S1-S11 biochromatographic models) were used with two mobile phases as a model of the interaction between LCAP and 5-HT1A receptors. Molecular descriptors for the investigated compounds were calculated by using HyperChem and ACD/Labs programs. The significant relationship explains that 82% of the variance was successfully validated by leave-one-out and leave-many-out tests. The results demonstrated that this model has significant predictive ability and can be used for the preliminary screening of newly synthesized potential 5-HT1A receptor ligands.
Collapse
Affiliation(s)
- Grażyna Żydek
- Department of Analytical Chemistry, Faculty of Pharmacy, Medical University of Lodz, 1 Muszyńskiego Street, 90-151 Łódź, Poland
| | - Elżbieta Brzezińska
- Department of Analytical Chemistry, Faculty of Pharmacy, Medical University of Lodz, 1 Muszyńskiego Street, 90-151 Łódź, Poland
| | - Andrzej Stańczak
- Department of Hospital Pharmacy, Faculty of Pharmacy, Medical University of Lodz, 1 Muszyńskiego Street, 90-151 Łódź, Poland
| | - Wiesława Lewgowd
- Department of Hospital Pharmacy, Faculty of Pharmacy, Medical University of Lodz, 1 Muszyńskiego Street, 90-151 Łódź, Poland
| |
Collapse
|
18
|
Borthwick AD. 2,5-Diketopiperazines: synthesis, reactions, medicinal chemistry, and bioactive natural products. Chem Rev 2012; 112:3641-716. [PMID: 22575049 DOI: 10.1021/cr200398y] [Citation(s) in RCA: 630] [Impact Index Per Article: 48.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
19
|
Fanelli F, De Benedetti PG. Update 1 of: computational modeling approaches to structure-function analysis of G protein-coupled receptors. Chem Rev 2011; 111:PR438-535. [PMID: 22165845 DOI: 10.1021/cr100437t] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Francesca Fanelli
- Dulbecco Telethon Institute, University of Modena and Reggio Emilia, via Campi 183, 41125 Modena, Italy.
| | | |
Collapse
|
20
|
Marco I, Valhondo M, Martín-Fontecha M, Vázquez-Villa H, Del Río J, Planas A, Sagredo O, Ramos JA, Torrecillas IR, Pardo L, Frechilla D, Benhamú B, López-Rodríguez ML. New serotonin 5-HT(1A) receptor agonists with neuroprotective effect against ischemic cell damage. J Med Chem 2011; 54:7986-99. [PMID: 22029386 DOI: 10.1021/jm2007886] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
We report the synthesis of new compounds 4-35 based on structural modifications of different moieties of previously described lead UCM-2550. The new nonpiperazine derivatives, representing second-generation agonists, were assessed for binding affinity, selectivity, and functional activity at the 5-HT(1A) receptor (5-HT(1A)R). Computational β(2)-based homology models of the ligand-receptor complexes were used to explain the observed structure-affinity relationships. Selected candidates were also evaluated for their potential in vitro and in vivo neuroprotective properties. Interestingly, compound 26 (2-{6-[(3,4-dihydro-2H-chromen-2-ylmethyl)amino]hexyl}tetrahydro-1H-pyrrolo[1,2-c]imidazole-1,3(2H)-dione) has been characterized as a high-affinity and potent 5-HT(1A)R agonist (K(i) = 5.9 nM, EC(50) = 21.8 nM) and exhibits neuroprotective effect in neurotoxicity assays in primary cell cultures from rat hippocampus and in the MCAO model of focal cerebral ischemia in rats.
Collapse
Affiliation(s)
- Isabel Marco
- Departamento de Química Orgánica I, Universidad Complutense de Madrid, E-28040 Madrid, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Sansuk K, Deupi X, Torrecillas IR, Jongejan A, Nijmeijer S, Bakker RA, Pardo L, Leurs R. A Structural Insight into the Reorientation of Transmembrane Domains 3 and 5 during Family A G Protein-Coupled Receptor Activation. Mol Pharmacol 2010; 79:262-9. [DOI: 10.1124/mol.110.066068] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
22
|
Alonso D, Vázquez-Villa H, Gamo AM, Martínez-Esperón MF, Tortosa M, Viso A, Fernández de la Pradilla R, Junquera E, Aicart E, Martín-Fontecha M, Benhamú B, López-Rodríguez ML, Ortega-Gutiérrez S. Development of Fluorescent Ligands for the Human 5-HT1A Receptor. ACS Med Chem Lett 2010; 1:249-53. [PMID: 24900203 DOI: 10.1021/ml100053y] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2010] [Accepted: 05/11/2010] [Indexed: 11/29/2022] Open
Abstract
In this work, we report the design and synthesis of a set of fluorescent probes targeting the human 5-HT1A receptor (h5-HT1AR). Among the synthesized compounds, derivative 4 deserves special attention as being a high-affinity ligand (K i = 2 nM) with good fluorescent properties (I em > 1000 au and a fluorescence quantum yield, Φf, of 0.26), which enables direct observation of the h5-HT1AR in cells. Thus, it represents the first efficacious fluorescent probe for the specific labeling of h5-HT1AR in cells. Our results provide the basis for the introduction of a variety of tags in scaffolds of G protein-coupled receptor (GPCR) ligands that enable visualization, covalent binding, or affinity pull-down of receptors. These strategies should contribute to the optimization of the therapeutic exploitation of known or new members of the GPCR superfamily by providing valuable information about their location or level of expression.
Collapse
Affiliation(s)
| | | | | | - María F. Martínez-Esperón
- Instituto de Química Orgánica General, Consejo Superior de Investigaciones Científicas, Juan de la Cierva 3, E-28006 Madrid, Spain
| | - Mariola Tortosa
- Instituto de Química Orgánica General, Consejo Superior de Investigaciones Científicas, Juan de la Cierva 3, E-28006 Madrid, Spain
| | - Alma Viso
- Instituto de Química Orgánica General, Consejo Superior de Investigaciones Científicas, Juan de la Cierva 3, E-28006 Madrid, Spain
| | - Roberto Fernández de la Pradilla
- Instituto de Química Orgánica General, Consejo Superior de Investigaciones Científicas, Juan de la Cierva 3, E-28006 Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
23
|
Fiorino F, Severino B, De Angelis F, Perissutti E, Magli E, Frecentese F, Esposito A, Massarelli P, Nencini C, Santagada V, Caliendo G. New 5-HT1A receptor ligands containing a N′-cyanoisonicotinamidine nucleus: Synthesis and in vitro pharmacological evaluation. Bioorg Med Chem Lett 2010; 20:2978-82. [DOI: 10.1016/j.bmcl.2010.02.106] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2010] [Revised: 02/25/2010] [Accepted: 02/26/2010] [Indexed: 11/30/2022]
|
24
|
de la Fuente T, Martín-Fontecha M, Sallander J, Benhamú B, Campillo M, Medina RA, Pellissier LP, Claeysen S, Dumuis A, Pardo L, López-Rodríguez ML. Benzimidazole derivatives as new serotonin 5-HT6 receptor antagonists. Molecular mechanisms of receptor inactivation. J Med Chem 2010; 53:1357-69. [PMID: 20078106 DOI: 10.1021/jm901672k] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
On the basis of our previously described pharmacophore model for serotonin 5-HT(6) receptor (5-HT(6)R) antagonists, we have designed, synthesized, and pharmacologically characterized a series of benzimidazole derivatives 1-20 that represent a new family of potent antagonists at the human 5-HT(6)R. Site-directed mutagenesis and a beta(2)-adrenoceptor-based homology model of the 5-HT(6)R were used to predict the mode of binding of antagonist SB-258585 and the new synthesized ligands. Substitution of W6.48, F6.52, or N6.55 by Ala fully impedes compound 4 to block 5-HT-induced activation. Thus, we propose that D3.32 in TM 3 anchors the protonated piperazine ring, the benzimidazole ring expands parallel to EL 2 to hydrogen bond N6.55 in TM 6, and the aromatic ring is placed between TMs 3 and 5 in CH(2)-containing compounds and between TMs 3 and 6 in CO-containing compounds. This combined experimental and computational study has permitted to propose the molecular mechanisms by which the new benzimidazole derivatives act as 5-HT(6)R antagonists.
Collapse
Affiliation(s)
- Tania de la Fuente
- Departamento de Química Orgánica I, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, E-28040 Madrid, Spain
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Pharmacophore-based 3D QSAR studies on a series of high affinity 5-HT1A receptor ligands. Eur J Med Chem 2010; 45:1508-14. [PMID: 20133028 DOI: 10.1016/j.ejmech.2009.12.059] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2009] [Accepted: 12/18/2009] [Indexed: 11/21/2022]
Abstract
5-HT(1A) receptor antagonists have been employed to treat depression, but the lack of structural information on this receptor hampers the design of specific and selective ligands. In this study, we have performed CoMFA studies on a training set of arylpiperazines (high affinity 5-HT(1A) receptor ligands) and to produce an effective alignment of the data set, a pharmacophore model was produced using Galahad. A statistically significant model was obtained, indicating a good internal consistency and predictive ability for untested compounds. The information gathered from our receptor-independent pharmacophore hypothesis is in good agreement with results from independent studies using different approaches. Therefore, this work provides important insights on the chemical and structural basis involved in the molecular recognition of these compounds.
Collapse
|
26
|
Medina RA, Sallander J, Benhamú B, Porras E, Campillo M, Pardo L, López-Rodríguez ML. Synthesis of new serotonin 5-HT7 receptor ligands. Determinants of 5-HT7/5-HT1A receptor selectivity. J Med Chem 2009; 52:2384-92. [PMID: 19326916 DOI: 10.1021/jm8014553] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We report the synthesis of a new set of compounds of general structure I (1-20) with structural modifications in the pharmacophoric elements of the previously reported lead UCM-5600. The new derivatives have been evaluated for binding affinity at 5-HT(7) and 5-HT(1A) receptors. The influence of the different structural features in terms of 5-HT(7)/5-HT(1A) receptor affinity and selectivity was analyzed by computational simulations of the complexes between compounds I and beta(2)-based 3-D models of these receptors. Compound 18 (HYD(1) = 1,3-dihydro-2H-indol-2-one; spacer = -(CH(2))(4)-; HYD(2) + HYD(3) = 3,4-dihydroisoquinolin-2(1H)-yl) exhibits high 5-HT(7)R affinity (K(i) = 7 nM) and selectivity over the 5-HT(1A)R (31-fold), and has been characterized as a partial agonist of the human 5-HT(7)R.
Collapse
Affiliation(s)
- Rocío A Medina
- Departamento de Quimica Organica I, Facultad de Ciencias Quimicas, Universidad Complutense de Madrid, E-28040 Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
27
|
Makan SY, Tsymbal DI, Soboleva SG, Tarabara IN, Kas’yan LI, Andronati SA. N-[4-(arylpiperazin-1-yl)butyl]bicyclo[2.2.1]hept-5-ene-endo-2,endo-3-dicarboximides and Their Epoxy Derivatives. Synthesis and affinity for 5-HT1a receptors. RUSS J GEN CHEM+ 2009. [DOI: 10.1134/s1070363209020212] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
28
|
Pellissier LP, Sallander J, Campillo M, Gaven F, Queffeulou E, Pillot M, Dumuis A, Claeysen S, Bockaert J, Pardo L. Conformational Toggle Switches Implicated in Basal Constitutive and Agonist-Induced Activated States of 5-Hydroxytryptamine-4 Receptors. Mol Pharmacol 2009; 75:982-90. [DOI: 10.1124/mol.108.053686] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
29
|
Nazarenko KG, Shtil NA, Buth SA, Chernega AN, Lozinskii MO, Tolmachev AA. Synthesis of 1,4-benzothiazin-2-yl derivatives of 1,3-dicarbonyl compounds and benzothiazinone spiro derivatives by the reaction of 2-chloro-1,4-benzothiazin-3-ones with ‘push–pull’ enamines. Tetrahedron 2008. [DOI: 10.1016/j.tet.2008.02.049] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
30
|
Bakker RA, Jongejan A, Sansuk K, Hacksell U, Timmerman H, Brann MR, Weiner DM, Pardo L, Leurs R. Constitutively active mutants of the histamine H1 receptor suggest a conserved hydrophobic asparagine-cage that constrains the activation of class A G protein-coupled receptors. Mol Pharmacol 2007; 73:94-103. [PMID: 17959710 DOI: 10.1124/mol.107.038547] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The aim of this study was to create and characterize constitutively active mutant (CAM) histamine H(1) receptors (H(1)R) using random mutagenesis methods to further investigate the activation process of the rhodopsin-like family of G protein-coupled receptors (GPCRs). This approach identified position 6.40 in TM 6 as a "hot spot" because mutation of Ile6.40(420) either to Glu, Gly, Ala, Arg, Lys, or Ser resulted in highly active CAM H(1)Rs, for which almost no histamine-induced receptor activation response could be detected. The highly conserved hydrophobic amino acid at position 6.40 defines, in a computational model of the H(1)R, the asparagine cage motif that restrains the side chain of Asn7.49 of the NPxxY motif toward transmembrane domain (TM 6) in the inactive state of the receptor. Mutation of the asparagine cage into Ala or Gly, removing the interfering bulky constraints, increases the constitutive activity of the receptor. The fact that the Ile6.40(420)Arg/Lys/Glu mutant receptors are highly active CAM H(1)Rs leads us to suggest that a positively charged residue, presumably the highly conserved Arg3.50 from the DRY motif, interacts in a direct or an indirect (through other side chains or/and internal water molecules) manner with the acidic Asp2.50..Asn7.49 pair for receptor activation.
Collapse
Affiliation(s)
- Remko A Bakker
- Leiden/Amsterdam Center for Drug Research, Department of Medicinal Chemistry, Vrije Universiteit Amsterdam, De Boelelaan 1083, 1081 HV Amsterdam, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Pessoa‐Mahana H, Acevedo R, Araya‐Maturana R, Saitz C, Pessoa‐Mahana CD. Synthesis of Benzo[b]thiophene Carboxamides Connected to 4‐Arylpiperazines through a Benzylic Spacer: Potential Ligands with 5‐HT1A Binding Affinity. SYNTHETIC COMMUN 2007. [DOI: 10.1080/00397910701557499] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Hernán Pessoa‐Mahana
- a Faculty of Chemical and Pharmaceutical Sciences, Department of Organic and Physical Chemistry , University of Chile , Santiago, Chile
| | - R. Acevedo
- a Faculty of Chemical and Pharmaceutical Sciences, Department of Organic and Physical Chemistry , University of Chile , Santiago, Chile
| | - Ramiro Araya‐Maturana
- a Faculty of Chemical and Pharmaceutical Sciences, Department of Organic and Physical Chemistry , University of Chile , Santiago, Chile
| | - Claudio Saitz
- a Faculty of Chemical and Pharmaceutical Sciences, Department of Organic and Physical Chemistry , University of Chile , Santiago, Chile
| | - C. David Pessoa‐Mahana
- b Faculty of Chemical, Department of Pharmacy , Pontificia Universidad Católica de Chile , Santiago, Chile
| |
Collapse
|
32
|
Dölker N, Deupi X, Pardo L, Campillo M. Charge-charge and cation-π interactions in ligand binding to G protein-coupled receptors. Theor Chem Acc 2007. [DOI: 10.1007/s00214-007-0341-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
33
|
Zhou D, Hatzenbuhler NT, Gross JL, Harrison BL, Evrard DA, Chlenov M, Golembieski J, Hornby G, Schechter LE, Smith DL, Andree TH, Stack GP. Novel pyridyl-fused 3-amino chroman derivatives with dual action at serotonin transporter and 5-HT1A receptor. Bioorg Med Chem Lett 2007; 17:3117-21. [PMID: 17407811 DOI: 10.1016/j.bmcl.2007.03.049] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2007] [Revised: 03/12/2007] [Accepted: 03/12/2007] [Indexed: 10/23/2022]
Abstract
Structural modifications of the initial lead, 3-aminochroman (4), led to the identification of a novel series of pyridyl-fused amino chroman derivatives (5-8) and the structural isomers (9-12). The compounds described were evaluated for dual 5-HT transporter inhibitory and 5-HT(1A) receptor activities. The design strategy, synthesis, and in vitro biological characterization for these novel compounds are described.
Collapse
Affiliation(s)
- Dahui Zhou
- Chemical and Screening Sciences, Wyeth Research, CN 8000, Princeton, NJ 08543-8000, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Pardo L, Deupi X, Dölker N, López-Rodríguez ML, Campillo M. The role of internal water molecules in the structure and function of the rhodopsin family of G protein-coupled receptors. Chembiochem 2007; 8:19-24. [PMID: 17173267 DOI: 10.1002/cbic.200600429] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Leonardo Pardo
- Laboratori de Medicina Computacional, Unitat de Bioestadística, Facultat de Medicina, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain.
| | | | | | | | | |
Collapse
|
35
|
Zajdel P, Subra G, Bojarski AJ, Duszyńska B, Tatarczyńska E, Nikiforuk A, Chojnacka-Wójcik E, Pawłowski M, Martinez J. Novel class of arylpiperazines containing N-acylated amino acids: Their synthesis, 5-HT1A, 5-HT2A receptor affinity, and in vivo pharmacological evaluation. Bioorg Med Chem 2007; 15:2907-19. [PMID: 17321139 DOI: 10.1016/j.bmc.2007.02.018] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2006] [Revised: 02/05/2007] [Accepted: 02/09/2007] [Indexed: 11/27/2022]
Abstract
Novel arylpiperazines with N-acylated amino acids, selected on the basis of a preliminary screening of two libraries previously synthesized on SynPhase Lanterns, were prepared in solution and their affinity for 5-HT(1A), 5-HT(2A), and D(2) receptors was evaluated. The compounds bearing (3-acylamino)pyrrolidine-2,5-dione (19-26) and N-acylprolinamide (29-34) moieties showed high affinity for 5-HT(1A) (K(i)=3-47 nM), high-to-low for 5-HT(2A) (K(i)=4.2-990 nM), and low for D(2) receptors (K(i)=0.77-21.19 microM). All the new o-methoxy derivatives of (3-acylamino)pyrrolidine-2,5-diones tested in vivo revealed agonistic activity at postsynaptic 5-HT(1A) receptors, while m-chloro derivatives were classified as antagonists of these sites; similar relations were observed for o-methoxy (29) and m-chlorophenylpiperazine derivatives of N-acylprolinamides. The reported results show that the amino acid-derived terminal fragment modified the in vivo functional profile. Finally, the selected compounds 19 and 20, a 5-HT(1A) partial agonist and a full agonist, respectively, and 26, a mixed 5-HT(1A)/5-HT(2A) antagonist, were evaluated in preclinical animal models of depression and anxiety. The project allowed selecting the lead compound 20 which exhibited an anxiolytic-like effect in the four-plate test in mice and revealed distinct antidepressant-like effects in the forced swimming and tail suspension tests in mice.
Collapse
MESH Headings
- 8-Hydroxy-2-(di-n-propylamino)tetralin/pharmacology
- Amino Acids/chemical synthesis
- Amino Acids/pharmacology
- Animals
- Anti-Anxiety Agents/chemical synthesis
- Anti-Anxiety Agents/pharmacology
- Antidepressive Agents/chemical synthesis
- Antidepressive Agents/pharmacology
- Anxiety/drug therapy
- Anxiety/psychology
- Body Temperature/drug effects
- Chromatography, Thin Layer
- Hindlimb Suspension
- In Vitro Techniques
- Indicators and Reagents
- Male
- Mice
- Mice, Inbred C57BL
- Motor Activity/drug effects
- Piperazines/chemical synthesis
- Piperazines/pharmacology
- Rats
- Rats, Wistar
- Receptor, Serotonin, 5-HT1A/drug effects
- Receptor, Serotonin, 5-HT1A/metabolism
- Receptor, Serotonin, 5-HT2A/drug effects
- Receptor, Serotonin, 5-HT2A/metabolism
- Receptors, Dopamine D2/drug effects
- Serotonin Agents/chemical synthesis
- Serotonin Agents/pharmacology
- Serotonin Receptor Agonists/pharmacology
- Spectrometry, Mass, Electrospray Ionization
- Swimming/psychology
Collapse
Affiliation(s)
- Paweł Zajdel
- Laboratoire des Aminoacides, Peptides et Protéines (LAPP), UMR 5810, Faculté de Pharmacie, Université Montpellier I et II, 15 Avenue Charles Flahault, 34060 Montpellier, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Smit MJ, Vischer HF, Bakker RA, Jongejan A, Timmerman H, Pardo L, Leurs R. Pharmacogenomic and Structural Analysis of Constitutive G Protein–Coupled Receptor Activity. Annu Rev Pharmacol Toxicol 2007; 47:53-87. [PMID: 17029567 DOI: 10.1146/annurev.pharmtox.47.120505.105126] [Citation(s) in RCA: 145] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
G protein-coupled receptors (GPCRs) respond to a chemically diverse plethora of signal transduction molecules. The notion that GPCRs also signal without an external chemical trigger, i.e., in a constitutive or spontaneous manner, resulted in a paradigm shift in the field of GPCR pharmacology. The discovery of constitutive GPCR activity and the fact that GPCR binding and signaling can be strongly affected by a single point mutation drew attention to the evolving area of GPCR pharmacogenomics. For a variety of GPCRs, point mutations have been convincingly linked to human disease. Mutations within conserved motifs, known to be involved in GPCR activation, might explain the properties of some naturally occurring, constitutively active GPCR variants linked to disease. In this review, we provide a brief historical introduction to the concept of constitutive receptor activity and the pharmacogenomic and structural aspects of constitutive receptor activity.
Collapse
Affiliation(s)
- Martine J Smit
- Leiden/Amsterdam Center for Drug Research, Division of Medicinal Chemistry, Vrije Universiteit, Faculty of Sciences, Department of Chemistry, 1081 HV Amsterdam, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
37
|
Viso A, de la Pradilla RF, Flores A. Highly diastereoselective Staudinger reaction on 5,6-dihydropyrazin-2-(1H)-ones. Synthesis of enantiopure fused oxopiperazino-β-lactams. Tetrahedron Lett 2006. [DOI: 10.1016/j.tetlet.2006.10.044] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
38
|
Martinelli A, Tuccinardi T. An overview of recent developments in GPCR modelling: methods and validation. Expert Opin Drug Discov 2006; 1:459-76. [DOI: 10.1517/17460441.1.5.459] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
39
|
Zlatović MV, Sukalović VV, Schneider C, Roglić GM. Interaction of arylpiperazine ligands with the hydrophobic part of the 5-HT1A receptor binding site. Bioorg Med Chem 2006; 14:2994-3001. [PMID: 16403641 DOI: 10.1016/j.bmc.2005.12.023] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2005] [Revised: 12/04/2005] [Accepted: 12/09/2005] [Indexed: 11/23/2022]
Abstract
A flexible docking of a series of arylpiperazine derivatives with structurally different aryl part to the binding site of a model of human 5-HT1A receptor was exercised. The influence of structure and hydrophobic properties of aryl moiety on binding affinities was discussed and a model for ligand binding in the hydrophobic part of the binding site was proposed.
Collapse
Affiliation(s)
- Mario V Zlatović
- Faculty of Chemistry, University of Belgrade, PO Box 158, 11000 Belgrade, Serbia and Montenegro.
| | | | | | | |
Collapse
|
40
|
Betti L, Zanelli M, Giannaccini G, Manetti F, Schenone S, Strappaghetti G. Synthesis of new piperazine–pyridazinone derivatives and their binding affinity toward α1-, α2-adrenergic and 5-HT1A serotoninergic receptors. Bioorg Med Chem 2006; 14:2828-36. [PMID: 16376083 DOI: 10.1016/j.bmc.2005.12.009] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2005] [Revised: 11/25/2005] [Accepted: 12/02/2005] [Indexed: 11/20/2022]
Abstract
We report the design and synthesis of a new class of piperazine-pyridazinone analogues. The arylpiperazine moiety, the length of the spacer, and the terminal molecular fragment were varied to evaluate their influence in determining the affinity of the new compounds toward the alpha1-adrenergic receptor (alpha1-AR), alpha2-adrenergic receptor (alpha2-AR), and the 5-HT1A serotoninergic receptor (5-HT1AR). Biological data showed that most of the compounds have an alpha1-AR affinity in the nanomolar or subnanomolar range, while affinity toward the other two receptors was lower in most cases. However, several of the tested compounds also showed very good (in the nanomolar range) or moderate affinity toward the 5-HT1AR subtype.
Collapse
Affiliation(s)
- Laura Betti
- Dipartimento di Psichiatria, Neurobiologia, Farmacologia e Biotecnologie, Università di Pisa, Via Bonanno 6, I-56126 Pisa, Italy
| | | | | | | | | | | |
Collapse
|
41
|
Fanelli F, De Benedetti PG. Computational Modeling Approaches to Structure−Function Analysis of G Protein-Coupled Receptors. Chem Rev 2005; 105:3297-351. [PMID: 16159154 DOI: 10.1021/cr000095n] [Citation(s) in RCA: 129] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Francesca Fanelli
- Dulbecco Telethon Institute and Department of Chemistry, University of Modena and Reggio Emilia, via Campi 183, 41100 Modena, Italy.
| | | |
Collapse
|
42
|
Recent Advances in Selective Serotonergic Agents. ANNUAL REPORTS IN MEDICINAL CHEMISTRY 2005. [DOI: 10.1016/s0065-7743(05)40002-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register]
|