1
|
Tellal S, Jismy B, Hikem-Oukacha D, Abarbri M. Synthesis of Trifluoromethylated Pyrimido[1,2- b]indazole Derivatives through the Cyclocondensation of 3-Aminoindazoles with Ketoester and Their Functionalization via Suzuki-Miyaura Cross-Coupling and SN Ar Reactions. Molecules 2023; 29:44. [PMID: 38202627 PMCID: PMC10779788 DOI: 10.3390/molecules29010044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/13/2023] [Accepted: 12/18/2023] [Indexed: 01/12/2024] Open
Abstract
A new series of trifluoromethylated pyrimido[1,2-b]indazol-4(1H)-one derivatives was synthesized with good to excellent yields through a simple condensation of 3-aminoindazole derivatives with ethyl 4,4,4-trifluoro 3-oxobutanoate. The functionalization of the corresponding chlorinated fused tricyclic scaffolds via Suzuki-Miyaura and aromatic nucleophilic substitution reactions led to the synthesis of highly diverse trifluoromethylated pyrimido[1,2-b]indazole derivatives with good yields.
Collapse
Affiliation(s)
- Sakina Tellal
- Laboratoire de Physico-Chimie des Matériaux et des Electrolytes pour l’Energie (PCM2E), EA 6299, Avenue Monge Faculté des Sciences, Parc de Grandmont, 37200 Tours, France;
- Laboratory of Physics and Chemistry Materials LPCM, Department of Chemistry, Faculty of Sciences, University Mouloud Mammeri, Tizi-Ouzou 15000, Algeria;
| | - Badr Jismy
- Laboratoire de Physico-Chimie des Matériaux et des Electrolytes pour l’Energie (PCM2E), EA 6299, Avenue Monge Faculté des Sciences, Parc de Grandmont, 37200 Tours, France;
| | - Djamila Hikem-Oukacha
- Laboratory of Physics and Chemistry Materials LPCM, Department of Chemistry, Faculty of Sciences, University Mouloud Mammeri, Tizi-Ouzou 15000, Algeria;
| | - Mohamed Abarbri
- Laboratoire de Physico-Chimie des Matériaux et des Electrolytes pour l’Energie (PCM2E), EA 6299, Avenue Monge Faculté des Sciences, Parc de Grandmont, 37200 Tours, France;
| |
Collapse
|
2
|
Chatterjee I, Ali K, Panda G. A Synthetic Overview of Benzoxazines and Benzoxazepines as Anticancer Agents. ChemMedChem 2023; 18:e202200617. [PMID: 36598081 DOI: 10.1002/cmdc.202200617] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/27/2022] [Accepted: 12/30/2022] [Indexed: 01/05/2023]
Abstract
Benzoxazines and benzoxazepines are nitrogen and oxygen-containing six and seven-membered benzo-fused heterocyclic scaffolds, respectively. Benzoxazepines and benzoxazines are well-known pharmacophores in pharmaceutical chemistry, which are of significant interest and have been extensively studied because of their promising activity against various diseases including their wide range of anticancer activity. Several reports are known for synthesizing benzoxazine and benzoxazepine-based compounds in the literature. Herein this review provides a critical analysis of synthetic strategies towards benzoxazines and benzoxazepines along with various ranges of anticancer activities based on these molecules that have been reported from 2010 onwards. This review also focuses on the structure-activity relationship of the benzoxazine and benzoxazepine scaffolds containing bioactive compounds and describes how the structural modification affects their anticancer activity.
Collapse
Affiliation(s)
- Indranil Chatterjee
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute Sector-10, Jankipuram Extension, Lucknow, 226031, India
| | - Kasim Ali
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute Sector-10, Jankipuram Extension, Lucknow, 226031, India.,AcSIR-Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
| | - Gautam Panda
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute Sector-10, Jankipuram Extension, Lucknow, 226031, India.,AcSIR-Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
| |
Collapse
|
3
|
Campiani G, Khan T, Ulivieri C, Staiano L, Papulino C, Magnano S, Nathwani S, Ramunno A, Lucena-Agell D, Relitti N, Federico S, Pozzetti L, Carullo G, Casagni A, Brogi S, Vanni F, Galatello P, Ghanim M, McCabe N, Lamponi S, Valoti M, Ibrahim O, O'Sullivan J, Turkington R, Kelly VP, VanWemmel R, Díaz JF, Gemma S, Zisterer D, Altucci L, De Matteis A, Butini S, Benedetti R. Design and synthesis of multifunctional microtubule targeting agents endowed with dual pro-apoptotic and anti-autophagic efficacy. Eur J Med Chem 2022; 235:114274. [PMID: 35344902 DOI: 10.1016/j.ejmech.2022.114274] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 02/28/2022] [Accepted: 03/08/2022] [Indexed: 02/06/2023]
Abstract
Autophagy is a lysosome dependent cell survival mechanism and is central to the maintenance of organismal homeostasis in both physiological and pathological situations. Targeting autophagy in cancer therapy attracted considerable attention in the past as stress-induced autophagy has been demonstrated to contribute to both drug resistance and malignant progression and recently interest in this area has re-emerged. Unlocking the therapeutic potential of autophagy modulation could be a valuable strategy for designing innovative tools for cancer treatment. Microtubule-targeting agents (MTAs) are some of the most successful anti-cancer drugs used in the clinic to date. Scaling up our efforts to develop new anti-cancer agents, we rationally designed multifunctional agents 5a-l with improved potency and safety that combine tubulin depolymerising efficacy with autophagic flux inhibitory activity. Through a combination of computational, biological, biochemical, pharmacokinetic-safety, metabolic studies and SAR analyses we identified the hits 5i,k. These MTAs were characterised as potent pro-apoptotic agents and also demonstrated autophagy inhibition efficacy. To measure their efficacy at inhibiting autophagy, we investigated their effects on basal and starvation-mediated autophagic flux by quantifying the expression of LC3II/LC3I and p62 proteins in oral squamous cell carcinoma and human leukaemia through western blotting and by immunofluorescence study of LC3 and LAMP1 in a cervical carcinoma cell line. Analogues 5i and 5k, endowed with pro-apoptotic activity on a range of hematological cancer cells (including ex-vivo chronic lymphocytic leukaemia (CLL) cells) and several solid tumor cell lines, also behaved as late-stage autophagy inhibitors by impairing autophagosome-lysosome fusion.
Collapse
Affiliation(s)
- Giuseppe Campiani
- Department of Biotechnology, Chemistry and Pharmacy, DoE Department of Excellence 2018-2022, University of Siena, via Aldo Moro 2, 53100, Siena, Italy.
| | - Tuhina Khan
- Department of Biotechnology, Chemistry and Pharmacy, DoE Department of Excellence 2018-2022, University of Siena, via Aldo Moro 2, 53100, Siena, Italy
| | - Cristina Ulivieri
- Department of Life Sciences, University of Siena, via Aldo Moro 2, 53100, Siena, Italy; Istituto Toscano Tumori, University of Siena, via Aldo Moro 2, I, 53100, Siena, Italy
| | - Leopoldo Staiano
- Cell Biology and Disease Mechanisms, Telethon Institute of Genetics and Medicine, Via Campi Flegrei, 34, 80078, Pozzuoli, Naples, Italy; Institute for Genetic and Biomedical Research, National Research Council (CNR), via Fratelli Cervi 93, 20054, Segrate, Milan, Italy
| | - Chiara Papulino
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, Vico L, De Crecchio 7, 80138, Naples, IT, Italy
| | - Stefania Magnano
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160, Pearse Street, Dublin 2, Ireland
| | - Seema Nathwani
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160, Pearse Street, Dublin 2, Ireland
| | - Anna Ramunno
- Department of Pharmacy, University of Salerno, via G. Paolo II 132, 84084, Fisciano (SA), Italy
| | - Daniel Lucena-Agell
- Centro de Investigaciones Biologicas Margarita Salas, Consejo Superior de Investigaciones Cientificas, Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - Nicola Relitti
- IRBM Science Park, Via Pontina km 30, 600, 00071, Pomezia, Rome, Italy
| | - Stefano Federico
- Department of Biotechnology, Chemistry and Pharmacy, DoE Department of Excellence 2018-2022, University of Siena, via Aldo Moro 2, 53100, Siena, Italy
| | - Luca Pozzetti
- Department of Biotechnology, Chemistry and Pharmacy, DoE Department of Excellence 2018-2022, University of Siena, via Aldo Moro 2, 53100, Siena, Italy
| | - Gabriele Carullo
- Department of Biotechnology, Chemistry and Pharmacy, DoE Department of Excellence 2018-2022, University of Siena, via Aldo Moro 2, 53100, Siena, Italy
| | - Alice Casagni
- Department of Biotechnology, Chemistry and Pharmacy, DoE Department of Excellence 2018-2022, University of Siena, via Aldo Moro 2, 53100, Siena, Italy
| | - Simone Brogi
- Department of Pharmacy, University of Pisa, 56126, Pisa, Italy
| | - Francesca Vanni
- Department of Life Sciences, University of Siena, via Aldo Moro 2, 53100, Siena, Italy
| | - Paola Galatello
- Department of Pharmacy, University of Salerno, via G. Paolo II 132, 84084, Fisciano (SA), Italy
| | - Magda Ghanim
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160, Pearse Street, Dublin 2, Ireland
| | - Niamh McCabe
- School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, 97 Lisburn Road, Health Sciences Building, BT9 7BL, Belfast, United Kingdom
| | - Stefania Lamponi
- Department of Biotechnology, Chemistry and Pharmacy, DoE Department of Excellence 2018-2022, University of Siena, via Aldo Moro 2, 53100, Siena, Italy
| | - Massimo Valoti
- Department of Life Sciences, University of Siena, via Aldo Moro 2, 53100, Siena, Italy
| | - Ola Ibrahim
- School of Dental Science, Trinity College Dublin, Lincoln Place, Dublin 2, Ireland
| | - Jeffrey O'Sullivan
- School of Dental Science, Trinity College Dublin, Lincoln Place, Dublin 2, Ireland
| | - Richard Turkington
- School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, 97 Lisburn Road, Health Sciences Building, BT9 7BL, Belfast, United Kingdom
| | - Vincent P Kelly
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160, Pearse Street, Dublin 2, Ireland
| | - Ruben VanWemmel
- Centro de Investigaciones Biologicas Margarita Salas, Consejo Superior de Investigaciones Cientificas, Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - J Fernando Díaz
- Centro de Investigaciones Biologicas Margarita Salas, Consejo Superior de Investigaciones Cientificas, Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - Sandra Gemma
- Department of Biotechnology, Chemistry and Pharmacy, DoE Department of Excellence 2018-2022, University of Siena, via Aldo Moro 2, 53100, Siena, Italy
| | - Daniela Zisterer
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160, Pearse Street, Dublin 2, Ireland
| | - Lucia Altucci
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, Vico L, De Crecchio 7, 80138, Naples, IT, Italy; Biogem Institute of Molecular Biology and Genetics, Via Camporeale, 83031, Ariano Irpino, Italy
| | - Antonella De Matteis
- Cell Biology and Disease Mechanisms, Telethon Institute of Genetics and Medicine, Via Campi Flegrei, 34, 80078, Pozzuoli, Naples, Italy
| | - Stefania Butini
- Department of Biotechnology, Chemistry and Pharmacy, DoE Department of Excellence 2018-2022, University of Siena, via Aldo Moro 2, 53100, Siena, Italy; Istituto Toscano Tumori, University of Siena, via Aldo Moro 2, I, 53100, Siena, Italy.
| | - Rosaria Benedetti
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, Vico L, De Crecchio 7, 80138, Naples, IT, Italy
| |
Collapse
|
4
|
Borkotoky L, Borra S, Maurya RA. Access to Pyrrolocoumarins through DBU‐Mediated Coupling of 2‐Oxo‐2
H
‐chromene‐3‐carbaldehydes and Phenacyl Azides. European J Org Chem 2022. [DOI: 10.1002/ejoc.202101237] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Lodsna Borkotoky
- Applied Organic Chemistry Group Chemical Sciences & Technology Division CSIR-North East Institute of Science & Technology (NEIST) Jorhat 785006 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad UP-201002 India
| | - Satheesh Borra
- SERBN-PDF Department of Organic Synthesis & Process Chemistry CSIR-Indian Institute of Chemical Technology (CSIR-IICT) Hyderabad 500007 India
| | - Ram Awatar Maurya
- Applied Organic Chemistry Group Chemical Sciences & Technology Division CSIR-North East Institute of Science & Technology (NEIST) Jorhat 785006 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad UP-201002 India
| |
Collapse
|
5
|
Van de Walle T, Cools L, Mangelinckx S, D'hooghe M. Recent contributions of quinolines to antimalarial and anticancer drug discovery research. Eur J Med Chem 2021; 226:113865. [PMID: 34655985 DOI: 10.1016/j.ejmech.2021.113865] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 09/01/2021] [Accepted: 09/20/2021] [Indexed: 12/28/2022]
Abstract
Quinoline, a privileged scaffold in medicinal chemistry, has always been associated with a multitude of biological activities. Especially in antimalarial and anticancer research, quinoline played (and still plays) a central role, giving rise to the development of an array of quinoline-containing pharmaceuticals in these therapeutic areas. However, both diseases still affect millions of people every year, pointing to the necessity of new therapies. Quinolines have a long-standing history as antimalarial agents, but established quinoline-containing antimalarial drugs are now facing widespread resistance of the Plasmodium parasite. Nevertheless, as evidenced by a massive number of recent literature contributions, they are still of great value for future developments in this field. On the other hand, the number of currently approved anticancer drugs containing a quinoline scaffold are limited, but a strong increase and interest in quinoline compounds as potential anticancer agents can be seen in the last few years. In this review, a literature overview of recent contributions made by quinoline-containing compounds as potent antimalarial or anticancer agents is provided, covering publications between 2018 and 2020.
Collapse
Affiliation(s)
- Tim Van de Walle
- SynBioC Research Group, Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000, Ghent, Belgium
| | - Lore Cools
- SynBioC Research Group, Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000, Ghent, Belgium
| | - Sven Mangelinckx
- SynBioC Research Group, Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000, Ghent, Belgium
| | - Matthias D'hooghe
- SynBioC Research Group, Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000, Ghent, Belgium.
| |
Collapse
|
6
|
Liu X, Zhou J, Lin J, Zhang Z, Wu S, He Q, Cao H. Controllable Site-Selective Construction of 2- and 4-Substituted Pyrimido[1,2- b]indazole from 3-Aminoindazoles and Ynals. J Org Chem 2021; 86:9107-9116. [PMID: 34132097 DOI: 10.1021/acs.joc.1c01094] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A straightforward and novel controllable site-selective construction of 2- and 4-substituted pyrimido[1,2-b]indazole from 3-aminoindazoles and ynals has been developed. The high regioselectivity of this reaction could be easily switched by converting different catalytic systems. In this way, a series of 2- and 4-substituted pyrimido[1,2-b]indazole derivatives were obtained in moderate to good yields. In addition, the photophysical properties of compound 3a prepared by the present method were discussed.
Collapse
Affiliation(s)
- Xiang Liu
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Zhongshan, 528458, P.R. China
| | - Jinlei Zhou
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Zhongshan, 528458, P.R. China
| | - Jiatong Lin
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Zhongshan, 528458, P.R. China
| | - Zemin Zhang
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Zhongshan, 528458, P.R. China
| | - Suying Wu
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Zhongshan, 528458, P.R. China
| | - Qiuxing He
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Zhongshan, 528458, P.R. China
| | - Hua Cao
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Zhongshan, 528458, P.R. China
| |
Collapse
|
7
|
Yilmaz ES, Zora M. A facile one-pot synthesis of 2-(prop-2-yn-1-ylidene)-2,3-dihydro-1,4-thiazepines. SYNTHETIC COMMUN 2020. [DOI: 10.1080/00397911.2020.1850795] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Elif Serel Yilmaz
- Department of Chemistry, Middle East Technical University, Ankara, Turkey
| | - Metin Zora
- Department of Chemistry, Middle East Technical University, Ankara, Turkey
| |
Collapse
|
8
|
Ahn HI, Park JU, Xuan Z, Kim JH. Pd-Catalyzed asymmetric [5 + 2] cycloaddition of vinylethylene carbonates and cyclic imines: access to N-fused 1,3-oxazepines. Org Biomol Chem 2020; 18:9826-9830. [DOI: 10.1039/d0ob02159h] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A facile route to access enantioenriched N-fused 1,3-oxazepines via Pd-catalyzed asymmetric [5 + 2] cycloaddition of vinylethylene carbonates and cyclic imines has been developed.
Collapse
Affiliation(s)
- Hye-In Ahn
- Department of Chemistry (BK21)
- Research Institute of Natural Science
- Gyeongsang National University
- 52828, Jinju
- Korea
| | - Jong-Un Park
- Department of Chemistry (BK21)
- Research Institute of Natural Science
- Gyeongsang National University
- 52828, Jinju
- Korea
| | - Zi Xuan
- Department of Chemistry (BK21)
- Research Institute of Natural Science
- Gyeongsang National University
- 52828, Jinju
- Korea
| | - Ju Hyun Kim
- Department of Chemistry (BK21)
- Research Institute of Natural Science
- Gyeongsang National University
- 52828, Jinju
- Korea
| |
Collapse
|
9
|
A Jocic-type approach for a practical and scalable synthesis of pyrrolonaphthoxazepine (PNOX)-based potent proapoptotic agents. Tetrahedron Lett 2018. [DOI: 10.1016/j.tetlet.2018.11.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
10
|
Brindisi M, Ulivieri C, Alfano G, Gemma S, de Asís Balaguer F, Khan T, Grillo A, Chemi G, Menchon G, Prota AE, Olieric N, Lucena-Agell D, Barasoain I, Diaz JF, Nebbioso A, Conte M, Lopresti L, Magnano S, Amet R, Kinsella P, Zisterer DM, Ibrahim O, O'Sullivan J, Morbidelli L, Spaccapelo R, Baldari C, Butini S, Novellino E, Campiani G, Altucci L, Steinmetz MO, Brogi S. Structure-activity relationships, biological evaluation and structural studies of novel pyrrolonaphthoxazepines as antitumor agents. Eur J Med Chem 2018; 162:290-320. [PMID: 30448418 DOI: 10.1016/j.ejmech.2018.11.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 10/11/2018] [Accepted: 11/02/2018] [Indexed: 02/07/2023]
Abstract
Microtubule-targeting agents (MTAs) are a class of clinically successful anti-cancer drugs. The emergence of multidrug resistance to MTAs imposes the need for developing new MTAs endowed with diverse mechanistic properties. Benzoxazepines were recently identified as a novel class of MTAs. These anticancer agents were thoroughly characterized for their antitumor activity, although, their exact mechanism of action remained elusive. Combining chemical, biochemical, cellular, bioinformatics and structural efforts we developed improved pyrrolonaphthoxazepines antitumor agents and their mode of action at the molecular level was elucidated. Compound 6j, one of the most potent analogues, was confirmed by X-ray as a colchicine-site MTA. A comprehensive structural investigation was performed for a complete elucidation of the structure-activity relationships. Selected pyrrolonaphthoxazepines were evaluated for their effects on cell cycle, apoptosis and differentiation in a variety of cancer cells, including multidrug resistant cell lines. Our results define compound 6j as a potentially useful optimized hit for the development of effective compounds for treating drug-resistant tumors.
Collapse
Affiliation(s)
- Margherita Brindisi
- European Research Centre for Drug Discovery and Development (NatSynDrugs), University of Siena, Department of Biotechnology, Chemistry and Pharmacy, DoE Department of Excellence 2018-2022, via Aldo Moro 2, I-53100, Siena, Italy; Istituto Toscano Tumori, University of Siena, via Aldo Moro 2, I-53100, Siena, Italy
| | - Cristina Ulivieri
- Istituto Toscano Tumori, University of Siena, via Aldo Moro 2, I-53100, Siena, Italy; Department of Life Sciences, via Aldo Moro 2, I-53100, Siena, Italy
| | - Gloria Alfano
- European Research Centre for Drug Discovery and Development (NatSynDrugs), University of Siena, Department of Biotechnology, Chemistry and Pharmacy, DoE Department of Excellence 2018-2022, via Aldo Moro 2, I-53100, Siena, Italy; Istituto Toscano Tumori, University of Siena, via Aldo Moro 2, I-53100, Siena, Italy
| | - Sandra Gemma
- European Research Centre for Drug Discovery and Development (NatSynDrugs), University of Siena, Department of Biotechnology, Chemistry and Pharmacy, DoE Department of Excellence 2018-2022, via Aldo Moro 2, I-53100, Siena, Italy; Istituto Toscano Tumori, University of Siena, via Aldo Moro 2, I-53100, Siena, Italy
| | - Francisco de Asís Balaguer
- Department of Physical and Chemical Biology, Centro de Investigaciones Biologicas, Consejo Superior de Investigaciones Cientificas, Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - Tuhina Khan
- European Research Centre for Drug Discovery and Development (NatSynDrugs), University of Siena, Department of Biotechnology, Chemistry and Pharmacy, DoE Department of Excellence 2018-2022, via Aldo Moro 2, I-53100, Siena, Italy
| | - Alessandro Grillo
- European Research Centre for Drug Discovery and Development (NatSynDrugs), University of Siena, Department of Biotechnology, Chemistry and Pharmacy, DoE Department of Excellence 2018-2022, via Aldo Moro 2, I-53100, Siena, Italy; Istituto Toscano Tumori, University of Siena, via Aldo Moro 2, I-53100, Siena, Italy
| | - Giulia Chemi
- European Research Centre for Drug Discovery and Development (NatSynDrugs), University of Siena, Department of Biotechnology, Chemistry and Pharmacy, DoE Department of Excellence 2018-2022, via Aldo Moro 2, I-53100, Siena, Italy; Istituto Toscano Tumori, University of Siena, via Aldo Moro 2, I-53100, Siena, Italy
| | - Grégory Menchon
- Laboratory of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institut, 5232, Villigen, Switzerland; University of Basel, Biozentrum, 4056 Basel, Switzerland
| | - Andrea E Prota
- Laboratory of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institut, 5232, Villigen, Switzerland; University of Basel, Biozentrum, 4056 Basel, Switzerland
| | - Natacha Olieric
- Laboratory of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institut, 5232, Villigen, Switzerland; University of Basel, Biozentrum, 4056 Basel, Switzerland
| | - Daniel Lucena-Agell
- Department of Physical and Chemical Biology, Centro de Investigaciones Biologicas, Consejo Superior de Investigaciones Cientificas, Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - Isabel Barasoain
- Department of Physical and Chemical Biology, Centro de Investigaciones Biologicas, Consejo Superior de Investigaciones Cientificas, Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - J Fernando Diaz
- Department of Physical and Chemical Biology, Centro de Investigaciones Biologicas, Consejo Superior de Investigaciones Cientificas, Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - Angela Nebbioso
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, Vico L. de Crecchio 7, 80138, Naples, Italy
| | | | - Ludovica Lopresti
- Istituto Toscano Tumori, University of Siena, via Aldo Moro 2, I-53100, Siena, Italy; Department of Life Sciences, via Aldo Moro 2, I-53100, Siena, Italy
| | - Stefania Magnano
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160, Pearse Street, Dublin 2, Ireland
| | - Rebecca Amet
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160, Pearse Street, Dublin 2, Ireland
| | - Paula Kinsella
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160, Pearse Street, Dublin 2, Ireland
| | - Daniela M Zisterer
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160, Pearse Street, Dublin 2, Ireland
| | - Ola Ibrahim
- School of Dental Science, Trinity College Dublin, Lincoln Place, Dublin 2, Ireland
| | - Jeff O'Sullivan
- School of Dental Science, Trinity College Dublin, Lincoln Place, Dublin 2, Ireland
| | - Lucia Morbidelli
- Istituto Toscano Tumori, University of Siena, via Aldo Moro 2, I-53100, Siena, Italy; Department of Life Sciences, via Aldo Moro 2, I-53100, Siena, Italy
| | - Roberta Spaccapelo
- Department of Experimental Medicine, University of Perugia, P.le Gambuli, I-06132, Perugia, Italy
| | - Cosima Baldari
- Istituto Toscano Tumori, University of Siena, via Aldo Moro 2, I-53100, Siena, Italy; Department of Life Sciences, via Aldo Moro 2, I-53100, Siena, Italy
| | - Stefania Butini
- European Research Centre for Drug Discovery and Development (NatSynDrugs), University of Siena, Department of Biotechnology, Chemistry and Pharmacy, DoE Department of Excellence 2018-2022, via Aldo Moro 2, I-53100, Siena, Italy; Istituto Toscano Tumori, University of Siena, via Aldo Moro 2, I-53100, Siena, Italy.
| | - Ettore Novellino
- Department of Pharmacy, University of Napoli Federico II, DoE Department of Excellence 2018-2022, Via D. Montesano 49, 80131, Napoli, Italy
| | - Giuseppe Campiani
- European Research Centre for Drug Discovery and Development (NatSynDrugs), University of Siena, Department of Biotechnology, Chemistry and Pharmacy, DoE Department of Excellence 2018-2022, via Aldo Moro 2, I-53100, Siena, Italy; Istituto Toscano Tumori, University of Siena, via Aldo Moro 2, I-53100, Siena, Italy.
| | - Lucia Altucci
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, Vico L. de Crecchio 7, 80138, Naples, Italy
| | - Michel O Steinmetz
- Laboratory of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institut, 5232, Villigen, Switzerland; University of Basel, Biozentrum, 4056 Basel, Switzerland
| | - Simone Brogi
- European Research Centre for Drug Discovery and Development (NatSynDrugs), University of Siena, Department of Biotechnology, Chemistry and Pharmacy, DoE Department of Excellence 2018-2022, via Aldo Moro 2, I-53100, Siena, Italy; Istituto Toscano Tumori, University of Siena, via Aldo Moro 2, I-53100, Siena, Italy; Department of Pharmacy, University of Napoli Federico II, DoE Department of Excellence 2018-2022, Via D. Montesano 49, 80131, Napoli, Italy
| |
Collapse
|
11
|
Affiliation(s)
- Yilmaz Kelgokmen
- Department of Chemistry, Middle East Technical University, 06800 Ankara, Turkey
| | - Metin Zora
- Department of Chemistry, Middle East Technical University, 06800 Ankara, Turkey
| |
Collapse
|
12
|
Wadhwa P, Kharbanda A, Bagchi S, Sharma A. Water-Mediated One-Pot Three-Component Reaction to Bifunctionalized Thiadiazoloquinazolinone-coumarin Hybrids: A Green Approach. ChemistrySelect 2018. [DOI: 10.1002/slct.201702908] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Preeti Wadhwa
- Department of Chemistry; Indian Institute of Technology Roorkee; Roorkee- 247667 India
| | - Anupreet Kharbanda
- Department of Chemistry; Indian Institute of Technology Roorkee; Roorkee- 247667 India
| | - Sourav Bagchi
- Department of Chemistry; Indian Institute of Technology Roorkee; Roorkee- 247667 India
| | - Anuj Sharma
- Department of Chemistry; Indian Institute of Technology Roorkee; Roorkee- 247667 India
| |
Collapse
|
13
|
Van der Poorten O, Van Den Hauwe R, Hollanders K, Maes BUW, Tourwé D, Jida M, Ballet S. Rapid construction of substituted 3-amino-1,5-benzothiazepin-4(5H)-one dipeptide scaffolds through an Ugi-4CR - Ullmann cross-coupling sequence. Org Biomol Chem 2018; 16:1242-1246. [PMID: 29379930 DOI: 10.1039/c7ob03094k] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A 3-step methodology for the synthesis of 1,5-benzothiazepin-4(5H)-one dipeptidomimetics has been elaborated via an Ugi-4CR followed by a S-trityl deprotection and an intramolecular Cu(i)-catalyzed Ullmann condensation with moderate to good yields. In silico and NMR conformational studies showed that the lowest energy conformers stabilize γ- and β-turn structures.
Collapse
Affiliation(s)
- O Van der Poorten
- Research Group of Organic Chemistry, Departments of Chemistry and Bioengineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2, B-1000 Brussels, Belgium.
| | | | | | | | | | | | | |
Collapse
|
14
|
Balwe SG, Jeong YT. One-step construction of complex polyheterocycles via a sequential post-GBB cyclization/spiro ring expansion triggered by a [1,5]-hydride shift. Org Chem Front 2018. [DOI: 10.1039/c8qo00071a] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
An efficient tandem route to novel amino-indazolo[3′,2′:2,3]imidazo[1,5-c]quinazolin-6(5H)-ones has been explored.
Collapse
Affiliation(s)
- Sandip Gangadhar Balwe
- Department of Image Science and Engineering
- Pukyong National University
- Busan 608-737
- Republic of Korea
| | - Yeon Tae Jeong
- Department of Image Science and Engineering
- Pukyong National University
- Busan 608-737
- Republic of Korea
| |
Collapse
|
15
|
Balwe SG, Jeong YT. An approach towards the synthesis of novel fused nitrogen tricyclic heterocyclic scaffolds via GBB reaction. Org Biomol Chem 2018; 16:1287-1296. [DOI: 10.1039/c7ob02933k] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A concise and efficient one-pot synthesis of novel N-fused tricyclic derivatives has been developed by using the Groebke–Blackburn–Bienaymé (GBB) reaction, which involved the reaction of 3-amino-1H-indazoles, aldehydes and isonitriles to afford 2-aryl-5H-imidazo[1,2-b]indazol-3-amine derivatives via a formal [4 + 1] cycloaddition reaction.
Collapse
Affiliation(s)
- Sandip Gangadhar Balwe
- Department of Image Science and Engineering
- Pukyong National University
- Busan 608-737
- Republic of Korea
| | - Yeon Tae Jeong
- Department of Image Science and Engineering
- Pukyong National University
- Busan 608-737
- Republic of Korea
| |
Collapse
|
16
|
First dual AK/GSK-3β inhibitors endowed with antioxidant properties as multifunctional, potential neuroprotective agents. Eur J Med Chem 2017; 138:438-457. [PMID: 28689095 DOI: 10.1016/j.ejmech.2017.06.017] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 06/07/2017] [Accepted: 06/08/2017] [Indexed: 02/02/2023]
Abstract
The manuscript deals with the design, synthesis and biological evaluation of novel benzoxazinone-based and indole-based compounds as multifunctional neuroprotective agents. These compounds inhibit human adenosine kinase (hAK) and human glycogen synthase kinase 3 beta (hGSK-3β) enzymes. Computational analysis based on a molecular docking approach underlined the potential structural requirements for simultaneously targeting both proteins' allosteric sites. In silico hints drove the synthesis of appropriately decorated benzoxazinones and indoles (5a-s, and 6a-c) and biochemical analysis revealed their behavior as allosteric inhibitors of hGSK-3β. For both our hit 4 and the best compounds of the series (5c,l and 6b) the potential antioxidant profile was assessed in human neuroblastoma cell lines (IMR 32, undifferentiated and neuronal differentiated), by evaluating the protective effect of selected compounds against H2O2 cytotoxicity and reactive oxygen species (ROS) production. Results showed a strong efficacy of the tested compounds, even at the lower doses, in counteracting the induced oxidative stress (50 μM of H2O2) and in preventing ROS formation. In addition, the tested compounds did not show any cytotoxic effect determined by the LDH release, at the concentration range analyzed (from 0.1 to 50 μM). This study allowed the identification of compound 5l, as the first dual hAK/hGSK-3β inhibitor reported to date. Compound 5l, which behaves as an effective antioxidant, holds promise for the development of new series of potential therapeutic agents for the treatment of neurodegenerative diseases characterized by an innovative pharmacological profile.
Collapse
|
17
|
Pradhan S, De PB, Punniyamurthy T. Copper(II)-Mediated Chelation-Assisted Regioselective N-Naphthylation of Indoles, Pyrazoles and Pyrrole through Dehydrogenative Cross-Coupling. J Org Chem 2017; 82:4883-4890. [DOI: 10.1021/acs.joc.7b00615] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Sourav Pradhan
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati-781039, India
| | - Pinaki Bhusan De
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati-781039, India
| | | |
Collapse
|
18
|
Nakhate AV, Yadav GD. Hydrothermal Synthesis of CuFe
2
O
4
Magnetic Nanoparticles as Active and Robust Catalyst for
N‐
arylation of Indole and Imidazole with Aryl Halide. ChemistrySelect 2017. [DOI: 10.1002/slct.201601846] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Akhil V. Nakhate
- Department of Chemical EngineeringInstitute of Chemical TechnologyNathalal Parekh Marg Matunga Mumbai- 400 019 India
| | - Ganapati D. Yadav
- Department of Chemical EngineeringInstitute of Chemical TechnologyNathalal Parekh Marg Matunga Mumbai- 400 019 India
| |
Collapse
|
19
|
Greene LM, Butini S, Campiani G, Williams DC, Zisterer DM. Pre-clinical evaluation of a novel class of anti-cancer agents, the Pyrrolo-1, 5-benzoxazepines. J Cancer 2016; 7:2367-2377. [PMID: 27994676 PMCID: PMC5166549 DOI: 10.7150/jca.16616] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 09/28/2016] [Indexed: 02/05/2023] Open
Abstract
Microtubules are currently ranked one of the most validated targets for chemotherapy; with clinical use of microtubule targeting agents (MTAs) extending beyond half a century. Recent research has focused on the development of novel MTAs to combat drug resistance and drug associated toxicities. Of particular interest are compounds structurally different to those currently used within the clinic. The pyrrolo-1, 5-benzoxazepines (PBOXs) are a structurally distinct novel group of anti-cancer agents, some of which target tubulin. Herein, we review the chemistry, mechanism of action, preclinical development of the PBOXs and comparisons with clinically relevant chemotherapeutics. The PBOXs induce a range of cellular responses including; cell cycle arrest, apoptosis, autophagy, anti-vascular and anti-angiogenic effects. The apoptotic potential of the PBOXs extends across a wide spectrum of cancer-derived cell lines, by targeting tubulin and multiple molecular pathways frequently deregulated in human cancers. Extensive experimental data suggest that combining the PBOXs with established chemotherapeutics or radiation is therapeutically advantageous. Pre-clinical highlights of the PBOXs include; cancer specificity and improved therapeutic efficacy as compared to some current first line therapeutics.
Collapse
Affiliation(s)
- L M Greene
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| | - S Butini
- European Research Centre for Drug Discovery and Development, Department of Biotechnology, Chemistry and Pharmacy, and Istituto Toscano Tumori, University of Siena, via Aldo Moro 2, I-53100 Siena, Italy
| | - G Campiani
- European Research Centre for Drug Discovery and Development, Department of Biotechnology, Chemistry and Pharmacy, and Istituto Toscano Tumori, University of Siena, via Aldo Moro 2, I-53100 Siena, Italy
| | - D C Williams
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| | - D M Zisterer
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| |
Collapse
|
20
|
Development of novel cyclic peptides as pro-apoptotic agents. Eur J Med Chem 2016; 117:301-20. [DOI: 10.1016/j.ejmech.2016.04.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Revised: 03/31/2016] [Accepted: 04/01/2016] [Indexed: 12/12/2022]
|
21
|
Nathwani SM, Greene LM, Butini S, Campiani G, Williams DC, Samali A, Szegezdi E, Zisterer DM. The pyrrolo-1,5-benzoxazepine, PBOX-15, enhances TRAIL‑induced apoptosis by upregulation of DR5 and downregulation of core cell survival proteins in acute lymphoblastic leukaemia cells. Int J Oncol 2016; 49:74-88. [PMID: 27176505 PMCID: PMC4902072 DOI: 10.3892/ijo.2016.3518] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 03/08/2016] [Indexed: 01/01/2023] Open
Abstract
Apoptotic defects are frequently associated with poor outcome in pediatric acute lymphoblastic leukaemia (ALL) hence there is an ongoing demand for novel strategies that counteract apoptotic resistance. The death ligand TRAIL (tumour necrosis factor-related apoptosis-inducing ligand) and its selective tumour receptor system has attracted exceptional clinical interest. However, many malignancies including ALL are resistant to TRAIL monotherapy. Tumour resistance can be overcome by drug combination therapy. TRAIL and its agonist antibodies are currently undergoing phase II clinical trials with established chemotherapeutics. Herein, we present promising therapeutic benefits in combining TRAIL with the selective anti-leukaemic agents, the pyrrolo-1,5-benzoxazepines (PBOXs) for the treatment of ALL. PBOX-15 synergistically enhanced apoptosis induced by TRAIL and a DR5-selective TRAIL variant in ALL-derived cells. PBOX-15 enhanced TRAIL-induced apoptosis by dual activation of extrinsic and intrinsic apoptotic pathways. The specific caspase-8 inhibitor, Z-IETD-FMK, identified the extrinsic pathway as the principal mode of apoptosis. We demonstrate that PBOX-15 can enhance TRAIL-induced apoptosis by upregulation of DR5, reduction of cellular mitochondrial potential, activation of the caspase cascade and downregulation of PI3K/Akt, c-FLIP, Mcl-1 and IAP survival pathways. Of note, the PI3K pathway inhibitor LY-294002 significantly enhanced the apoptotic potential of TRAIL and PBOX-15 validating the importance of Akt downregulation in the TRAIL/PBOX-15 synergistic combination. Considering the lack of cytotoxicity to normal cells and ability to downregulate several survival pathways, PBOX-15 may represent an effective agent for use in combination with TRAIL for the treatment of ALL.
Collapse
Affiliation(s)
- Seema-Maria Nathwani
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| | - Lisa M Greene
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| | - Stefania Butini
- European Research Centre for Drug Discovery and Development, University of Siena, Siena, Italy
| | - Giuseppe Campiani
- European Research Centre for Drug Discovery and Development, University of Siena, Siena, Italy
| | - D Clive Williams
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| | - Afshin Samali
- Apoptosis Research Centre, Bioscience Research Building, National University of Ireland, Galway, Ireland
| | - Eva Szegezdi
- Apoptosis Research Centre, Bioscience Research Building, National University of Ireland, Galway, Ireland
| | - Daniela M Zisterer
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| |
Collapse
|
22
|
Development of a practical and scalable route for the preparation of the deacetoxytubuvaline (dTuv) fragment of pretubulysin and analogs. Tetrahedron Lett 2016. [DOI: 10.1016/j.tetlet.2016.01.051] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
23
|
Sadhu P, Punniyamurthy T. Copper(ii)-mediated regioselective N-arylation of pyrroles, indoles, pyrazoles and carbazole via dehydrogenative coupling. Chem Commun (Camb) 2016; 52:2803-6. [DOI: 10.1039/c5cc08206d] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Copper-mediated regioselective N-arylation of pyrroles, indoles, pyrazoles and carbazole is described using 8-aminoquinoline amide as a directing group via dehydrogenative coupling. The protocol has a broad substrate scope with good yields at moderate temperature.
Collapse
Affiliation(s)
- Pradeep Sadhu
- Department of Chemistry
- Indian Institute of Technology Guwahati
- Guwahati 781039
- India
| | | |
Collapse
|
24
|
Wadhwa P, Kaur T, Singh N, Singh UP, Sharma A. p-Toluenesulfonic Acid-Mediated Three-Component Reaction “On-Water” Protocol for the Synthesis of Novel Thiadiazolo[2,3-b]quinazolin-6(7H)-ones. ASIAN J ORG CHEM 2015. [DOI: 10.1002/ajoc.201500397] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Preeti Wadhwa
- D-305 Medicinal Chemistry Laboratory; Department of Chemistry; Indian Institute of Technology Roorkee; Roorkee 247667 India
| | - Tanpreet Kaur
- D-305 Medicinal Chemistry Laboratory; Department of Chemistry; Indian Institute of Technology Roorkee; Roorkee 247667 India
| | - Neetu Singh
- A-301 Department of Chemistry; Indian Institute of Technology Roorkee; Roorkee 247667 India
| | - Udai P. Singh
- A-301 Department of Chemistry; Indian Institute of Technology Roorkee; Roorkee 247667 India
| | - Anuj Sharma
- D-305 Medicinal Chemistry Laboratory; Department of Chemistry; Indian Institute of Technology Roorkee; Roorkee 247667 India
| |
Collapse
|
25
|
Nieto J, Andrés C, Pérez-Encabo A. 7-endo selenocyclization reactions on chiral 3-prenyl and 3-cinnamyl-2-hydroxymethylperhydro-1,3-benzoxazine derivatives. A way to enantiopure 1,4-oxazepanes. Org Biomol Chem 2015. [PMID: 26223944 DOI: 10.1039/c5ob01297j] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Enantiopure 1,4-oxazepane derivatives have been prepared by selenocyclofunctionalization of chiral 3-prenyl- and 3-cinnamyl-2-hydroxymethyl-substituted perhydro-1,3-benzoxazine derivatives. The 7-endo-cyclization occurs in high yields and diastereoselection. The regio- and stereochemistry of the cyclization products was dependent on the substitution pattern of the double bond, the nature of the hydroxyl group and the experimental conditions.
Collapse
Affiliation(s)
- Javier Nieto
- Instituto CINQUIMA and Departamento de Química Orgánica, Facultad de Ciencias, Universidad de Valladolid, Paseo de Belén, 7, 47011 Valladolid, Spain.
| | | | | |
Collapse
|
26
|
Wadhwa P, Kaur T, Sharma A. The first catalyst and solvent-free synthesis of 2-arylimidazo[2,1-b][1,3,4]thiadiazoles: a comparative assessment of greenness. RSC Adv 2015. [DOI: 10.1039/c5ra06747b] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A one-pot, three-component, catalyst and solvent free synthesis of imidazo[2,1-b][1,3,4]thiadiazoles utilizing 5-aryl-1,3,4-thiadiazol-2-amines, aldehydes and isonitriles has been developed. The “greenness” was successfully evaluated within the ambits of green metrics.
Collapse
Affiliation(s)
- Preeti Wadhwa
- Department of Chemistry
- Indian Institute of Technology Roorkee
- Roorkee-247667
- India
| | - Tanpreet Kaur
- Department of Chemistry
- Indian Institute of Technology Roorkee
- Roorkee-247667
- India
| | - Anuj Sharma
- Department of Chemistry
- Indian Institute of Technology Roorkee
- Roorkee-247667
- India
| |
Collapse
|
27
|
Chiranjeevi B, Vinayak B, Parsharamulu T, PhaniBabu VS, Jagadeesh B, Sridhar B, Chandrasekharam M. Iron(III)-Catalyzed C-H Functionalization:ortho-Benzoyloxylation ofN,N-Dialkylanilines and Its Application to 1,4-Benzoxazepines. European J Org Chem 2014. [DOI: 10.1002/ejoc.201402751] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
28
|
Synthesis of 1-aryl indoles via coupling reaction of indoles and aryl halides catalyzed by CuI/metformin. Tetrahedron 2014. [DOI: 10.1016/j.tet.2014.06.080] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
29
|
An efficient l-proline catalyzed synthesis of pyrazolo[3,4-e][1,4]thiazepine derivatives and their in vitro cytotoxicity studies. Med Chem Res 2014. [DOI: 10.1007/s00044-014-1153-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
30
|
Qian Z, Yang A, An W, Yu T, Wang X, Zhang Y, Shen J, Meng T. An efficient synthesis of novel dibenzoxdiazepine-fused heterocycles through a multicomponent reaction. RSC Adv 2014. [DOI: 10.1039/c4ra09196e] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A one-pot synthesis of 6-oxa-2,2a1,11-triazadibenzo[cd,g]azulenes by a three-component reaction of a 2-aminoheterocycle, aldehydes, and 2-isocyanophenyl acetate is presented.
Collapse
Affiliation(s)
- Zhiwei Qian
- State Key Laboratory of Drug Research
- Shanghai Institute of Materia Medica
- Chinese Academy of Sciences
- Shanghai 201203, PR China
| | - Anjiang Yang
- State Key Laboratory of Drug Research
- Shanghai Institute of Materia Medica
- Chinese Academy of Sciences
- Shanghai 201203, PR China
| | - Weiteng An
- State Key Laboratory of Drug Research
- Shanghai Institute of Materia Medica
- Chinese Academy of Sciences
- Shanghai 201203, PR China
| | - Ting Yu
- State Key Laboratory of Drug Research
- Shanghai Institute of Materia Medica
- Chinese Academy of Sciences
- Shanghai 201203, PR China
| | - Xin Wang
- State Key Laboratory of Drug Research
- Shanghai Institute of Materia Medica
- Chinese Academy of Sciences
- Shanghai 201203, PR China
| | - Yongliang Zhang
- State Key Laboratory of Drug Research
- Shanghai Institute of Materia Medica
- Chinese Academy of Sciences
- Shanghai 201203, PR China
| | - Jingkang Shen
- State Key Laboratory of Drug Research
- Shanghai Institute of Materia Medica
- Chinese Academy of Sciences
- Shanghai 201203, PR China
| | - Tao Meng
- State Key Laboratory of Drug Research
- Shanghai Institute of Materia Medica
- Chinese Academy of Sciences
- Shanghai 201203, PR China
| |
Collapse
|
31
|
|
32
|
Pflästerer D, Dolbundalchok P, Rafique S, Rudolph M, Rominger F, Hashmi ASK. On the Gold-Catalyzed Intramolecular 7-exo-trigHydroamination of Allenes. Adv Synth Catal 2013. [DOI: 10.1002/adsc.201300154] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
33
|
Saito N, Nakamura KI, Shibano S, Ide S, Minami M, Sato Y. Addition of cyclic ureas and 1-methyl-2-oxazolidone to pyridynes: a new approach to pyridodiazepines, pyridodiazocines, and pyridooxazepines. Org Lett 2013; 15:386-9. [PMID: 23286344 DOI: 10.1021/ol303352q] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Reactions of pyridynes with cyclic urea and 1-methyl-2-oxazolidone were demonstrated. 3,4-Pyridyne and 2,3-pyridyne were reacted with N,N-dimethylimidazolidone, N,N-dimethylpropylene urea, and 1-methyl-2-oxazolidone to give the corresponding pyridodiazepines, pyridodiazocines, and pyridooxazepines, respectively.
Collapse
Affiliation(s)
- Nozomi Saito
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan.
| | | | | | | | | | | |
Collapse
|
34
|
Synthesis of pyrrolobenzoxazepinones by CuI/l-proline-catalyzed intramolecular coupling reactions. Tetrahedron 2013. [DOI: 10.1016/j.tet.2012.11.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
35
|
The microtubule targeting agent PBOX-15 inhibits integrin-mediated cell adhesion and induces apoptosis in acute lymphoblastic leukaemia cells. Int J Oncol 2012; 42:239-46. [PMID: 23135704 DOI: 10.3892/ijo.2012.1688] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Accepted: 09/25/2012] [Indexed: 11/05/2022] Open
Abstract
Although recent decades have seen an improved cure rate for newly diagnosed paediatric acute lymphoplastic leukaemia (ALL), the treatment options for adult ALL, T-cell ALL (T-ALL) and relapsed disease remain poor. We have developed a novel series of pyrrolo-1,5-benzoxazepine (PBOX) compounds and established their anticancer efficacy in a variety of human tumour cell types. Here, we demonstrate that PBOX-15 inhibits cell growth, and induces G2/M cell cycle arrest and apoptosis in both T-ALL and B-cell ALL (B-ALL) cells. In addition, prior to PBOX-15-induced apoptosis, PBOX-15 decreases ALL cell adhesion, spreading and migration. Concurrently, PBOX-15 differentially down-regulates β1-, β2- and α4-integrin expression in ALL cells and significantly decreases integrin-mediated cell attachment. PBOX-15 interferes with the lateral mobility and clustering of integrins in both B-ALL and T-ALL cells. These data suggest that PBOX-15 is not only effective in inducing apoptosis in ALL cells, but also has the potential to disrupt integrin-mediated adhesion of malignant lymphocytes, which represents a novel avenue for regulating leukaemic cell homing and migration.
Collapse
|
36
|
Kumar M, Sharma K, Fogla AK, Sharma K, Rathore M. Synthesis and antimicrobial activity of 2,4-diaryl-2,3-dihydrobenzo[b][1,4]thiazepines. RESEARCH ON CHEMICAL INTERMEDIATES 2012. [DOI: 10.1007/s11164-012-0782-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
37
|
Zhang R, Miao C, Shen Z, Wang S, Xia C, Sun W. Magnetic Nanoparticles of Ferrite Complex Oxides: A Cheap, Efficient, Recyclable Catalyst for Building the CN Bond under Ligand-Free Conditions. ChemCatChem 2012. [DOI: 10.1002/cctc.201100461] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
38
|
Das Adhikary N, Chattopadhyay P. Synthesis of Chiral Benzoxa(thia)zepine and Pyridoxazepine Derivatives Using Palladium-Catalyzed Intramolecular Aryl Amination Reaction. European J Org Chem 2011. [DOI: 10.1002/ejoc.201101174] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
39
|
Butini S, Gemma S, Brindisi M, Borrelli G, Lossani A, Ponte AM, Torti A, Maga G, Marinelli L, La Pietra V, Fiorini I, Lamponi S, Campiani G, Zisterer DM, Nathwani SM, Sartini S, La Motta C, Da Settimo F, Novellino E, Focher F. Non-nucleoside inhibitors of human adenosine kinase: synthesis, molecular modeling, and biological studies. J Med Chem 2011; 54:1401-20. [PMID: 21319802 DOI: 10.1021/jm101438u] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Adenosine kinase (AK) catalyzes the phosphorylation of adenosine (Ado) to AMP by means of a kinetic mechanism in which the two substrates Ado and ATP bind the enzyme in a binary and/or ternary complex, with distinct protein conformations. Most of the described inhibitors have Ado-like structural motifs and are nonselective, and some of them (e.g., the tubercidine-like ligands) are characterized by a toxic profile. We have cloned and expressed human AK (hAK) and searched for novel non-substrate-like inhibitors. Our efforts to widen the structural diversity of AK inhibitors led to the identification of novel non-nucleoside, noncompetitive allosteric modulators characterized by a unique molecular scaffold. Among the pyrrolobenzoxa(thia)zepinones (4a-qq) developed, 4a was identified as a non-nucleoside prototype hAK inhibitor. 4a has proapoptotic efficacy, slight inhibition of short-term RNA synthesis, and cytostatic activity on tumor cell lines while showing low cytotoxicity and no significant adverse effects on short-term DNA synthesis in cells.
Collapse
Affiliation(s)
- Stefania Butini
- European Research Centre for Drug Discovery and Development, NatSynDrugs, Università di Siena, 53100 Siena, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Maginn EN, Browne PV, Hayden P, Vandenberghe E, MacDonagh B, Evans P, Goodyer M, Tewari P, Campiani G, Butini S, Williams DC, Zisterer DM, Lawler MP, McElligott AM. PBOX-15, a novel microtubule targeting agent, induces apoptosis, upregulates death receptors, and potentiates TRAIL-mediated apoptosis in multiple myeloma cells. Br J Cancer 2010; 104:281-9. [PMID: 21179037 PMCID: PMC3031893 DOI: 10.1038/sj.bjc.6606035] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Background: In recent years, much progress has been made in the treatment of multiple myeloma. However, a major limitation of existing chemotherapeutic drugs is the eventual emergence of resistance; hence, the development of novel agents with new mechanisms of action is pertinent. Here, we describe the activity and mechanism of action of pyrrolo-1,5-benzoxazepine-15 (PBOX-15), a novel microtubule-targeting agent, in multiple myeloma cells. Methods: The anti-myeloma activity of PBOX-15 was assessed using NCI-H929, KMS11, RPMI8226, and U266 cell lines, and primary myeloma cells. Cell cycle distribution, apoptosis, cytochrome c release, and mitochondrial inner membrane depolarisation were analysed by flow cytometry; gene expression analysis was carried out using TaqMan Low Density Arrays; and expression of caspase-8 and Bcl-2 family of proteins was assessed by western blot analysis. Results: Pyrrolo-1,5-benzoxazepine-15 induced apoptosis in ex vivo myeloma cells and in myeloma cell lines. Death receptor genes were upregulated in both NCI-H929 and U266 cell lines, which displayed the highest and lowest apoptotic responses, respectively, following treatment with PBOX-15. The largest increase was detected for the death receptor 5 (DR5) gene, and cotreatment of both cell lines with tumour necrosis factor-related apoptosis-inducing ligand (TRAIL), the DR5 ligand, potentiated the apoptotic response. In NCI-H929 cells, PBOX-15-induced apoptosis was shown to be caspase-8 dependent, with independent activation of extrinsic and intrinsic apoptotic pathways. A caspase-8-dependent decrease in expression of BimEL preceded downregulation of other Bcl-2 proteins (Bid, Bcl-2, Mcl-1) in PBOX-15-treated NCI-H929 cells. Conclusion: PBOX-15 induces apoptosis and potentiates TRAIL-induced cell death in multiple myeloma cells. Thus, PBOX-15 represents a promising agent, with a distinct mechanism of action, for the treatment of this malignancy.
Collapse
Affiliation(s)
- E N Maginn
- John Durkan Leukaemia Laboratories, Institute of Molecular Medicine, Trinity College Dublin, St James's Hospital, Dublin 8, Ireland
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Thansandote P, Chong E, Feldmann KO, Lautens M. Palladium-Catalyzed Domino C−C/C−N Coupling Using a Norbornene Template: Synthesis of Substituted Benzomorpholines, Phenoxazines, and Dihydrodibenzoxazepines. J Org Chem 2010; 75:3495-8. [DOI: 10.1021/jo100408p] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Praew Thansandote
- Davenport Research Laboratories, Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario, Canada M5S 3H6
| | - Eugene Chong
- Davenport Research Laboratories, Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario, Canada M5S 3H6
| | - Kai-Oliver Feldmann
- Davenport Research Laboratories, Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario, Canada M5S 3H6
| | - Mark Lautens
- Davenport Research Laboratories, Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario, Canada M5S 3H6
| |
Collapse
|
42
|
Intermolecular Photocyclizations of N-(ω-Hydroxyalkyl)tetrachlorophthalimide with Alkenes Leading to Medium- and Large-Ring Heterocycles-Reaction Modes and Regio- and Stereoselectivity of the 1,n-Biradicals. Chemistry 2010; 16:2873-86. [DOI: 10.1002/chem.200902849] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
43
|
McElligott AM, Maginn EN, Greene LM, McGuckin S, Hayat A, Browne PV, Butini S, Campiani G, Catherwood MA, Vandenberghe E, Williams DC, Zisterer DM, Lawler M. The novel tubulin-targeting agent pyrrolo-1,5-benzoxazepine-15 induces apoptosis in poor prognostic subgroups of chronic lymphocytic leukemia. Cancer Res 2009; 69:8366-75. [PMID: 19826055 DOI: 10.1158/0008-5472.can-09-0131] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Pyrrolo-1,5-benzoxazepine-15 (PBOX-15) is a novel microtubule depolymerization agent that induces cell cycle arrest and subsequent apoptosis in a number of cancer cell lines. Chronic lymphocytic leukemia (CLL) is characterized by clonal expansion of predominately nonproliferating mature B cells. Here, we present data suggesting PBOX-15 is a potential therapeutic agent for CLL. We show activity of PBOX-15 in samples taken from a cohort of CLL patients (n = 55) representing both high-risk and low-risk disease. PBOX-15 exhibited cytotoxicity in CLL cells (n = 19) in a dose-dependent manner, with mean IC(50) of 0.55 micromol/L. PBOX-15 significantly induced apoptosis in CLL cells (n = 46) including cells with poor prognostic markers: unmutated IgV(H) genes, CD38 and zeta-associated protein 70 (ZAP-70) expression, and fludarabine-resistant cells with chromosomal deletions in 17p. In addition, PBOX-15 was more potent than fludarabine in inducing apoptosis in fludarabine-sensitive cells. Pharmacologic inhibition and small interfering RNA knockdown of caspase-8 significantly inhibited PBOX-15-induced apoptosis. Pharmacologic inhibition of c-jun NH(2)-terminal kinase inhibited PBOX-15-induced apoptosis in mutated IgV(H) and ZAP-70(-) CLL cells but not in unmutated IgV(H) and ZAP-70(+) cells. PBOX-15 exhibited selective cytotoxicity in CLL cells compared with normal hematopoietic cells. Our data suggest that PBOX-15 represents a novel class of agents that are toxic toward both high-risk and low-risk CLL cells. The need for novel treatments is acute in CLL, especially for the subgroup of patients with poor clinical outcome and drug-resistant disease. This study identifies a novel agent with significant clinical potential.
Collapse
Affiliation(s)
- Anthony M McElligott
- John Durkan Research Laboratories, Institute of Molecular Medicine, Trinity College Dublin, Dublin, Ireland.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Practical one-pot sequential procedure for the preparation of N-arylated 3,4-disubstituted pyrroles from alkenes. J Organomet Chem 2008. [DOI: 10.1016/j.jorganchem.2008.09.051] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
45
|
Bariwal JB, Upadhyay KD, Manvar AT, Trivedi JC, Singh JS, Jain KS, Shah AK. 1,5-Benzothiazepine, a versatile pharmacophore: A review. Eur J Med Chem 2008; 43:2279-90. [DOI: 10.1016/j.ejmech.2008.05.035] [Citation(s) in RCA: 124] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2008] [Accepted: 05/26/2008] [Indexed: 10/22/2022]
|
46
|
Zhu R, Xing L, Wang X, Cheng C, Su D, Hu Y. Highly Practical “Ligand-Free-Like” Copper-CatalyzedN-Arylation of Azoles in Lower Nitrile Solvents. Adv Synth Catal 2008. [DOI: 10.1002/adsc.200700535] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
47
|
Tymoshenko D. Chapter 1 Benzoheteropines with Fused Pyrrole, Furan and Thiophene Rings. ADVANCES IN HETEROCYCLIC CHEMISTRY 2008. [DOI: 10.1016/s0065-2725(07)00001-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
48
|
Chen RW, Lu XCM, Yao C, Liao Z, Jiang ZG, Wei H, Ghanbari HA, Tortella FC, Dave JR. PAN-811 provides neuroprotection against glutamate toxicity by suppressing activation of JNK and p38 MAPK. Neurosci Lett 2007; 422:64-7. [PMID: 17600621 DOI: 10.1016/j.neulet.2007.06.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2007] [Revised: 05/31/2007] [Accepted: 06/05/2007] [Indexed: 10/23/2022]
Abstract
In an earlier study, we demonstrated that PAN-811 (3-aminopyridine-2-carboxaldehyde thiosemicarbazone), a novel neuroprotectant, provides protection against glutamate, staurosporine, veratridine, or hypoxia/hypoglycemia toxicities in primary cortical neuronal cultures by upregulating Bcl-2 expression [R.-W. Chen, C. Yao, X.C. Lu, Z.-G. Jiang, R. Whipple, Z. Liao, H.A. Ghanbari, B. Almassian, F.C. Tortella, J.R. Dave. PAN-811 (3-aminopyridine-2-carboxaldehyde thiosemicarbazone), a novel neuroprotectant, elicits its function in primary neuronal cultures by upregulating Bcl-2 expression. Neuroscience 135 (2005) 191-201]. Both JNK (c-Jun N-terminal kinase) and p38 MAP (mitogen-activated protein) kinase activation have a direct inhibitory action on Bcl-2 by phosphorylation. In the present study, we continued to explore the mechanism of PAN-811 neuroprotection. Our results indicate that treatment of cultured cortical neurons with glutamate (100 microM) induces phosphorylation of both JNK and p38 MAPK. Specifically, pretreatment of neurons with 10 microM PAN-811 (an optimal neuroprotective concentration) for 1h, 4h, or 24h significantly suppresses glutamate-mediated activation of both JNK and p38 MAPK. Furthermore, the p38 MAPK-specific inhibitor SB203580 and the JNK-specific inhibitor SP600125 prevented glutamate-induced neuronal death in these primary cultures. Our results demonstrate that glutamate-induced phosphorylation of JNK and p38 MAPK is suppressed by PAN-811, which might contribute to Bcl-2 upregulation and PAN-811 neuroprotection.
Collapse
Affiliation(s)
- Ren-Wu Chen
- Department of Applied Neurobiology, Division of Neuroscience, Walter Reed Army Institute of Research, Silver Spring, MD 20910, United States
| | | | | | | | | | | | | | | | | |
Collapse
|