1
|
Guha L, Kumar H. Drug Repurposing for Spinal Cord Injury: Progress Towards Therapeutic Intervention for Primary Factors and Secondary Complications. Pharmaceut Med 2023; 37:463-490. [PMID: 37698762 DOI: 10.1007/s40290-023-00499-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/10/2023] [Indexed: 09/13/2023]
Abstract
Spinal cord injury (SCI) encompasses a plethora of complex mechanisms like the involvement of major cell death pathways, neurodegeneration of spinal cord neurons, overexpression of glutaminergic transmission and inflammation cascade, along with different co-morbidities like neuropathic pain, urinary and sexual dysfunction, respiratory and cardiac failures, making it one of the leading causes of morbidity and mortality globally. Corticosteroids such as methylprednisolone and dexamethasone, and non-steroidal anti-inflammatory drugs such as naproxen, aspirin and ibuprofen are the first-line treatment options for SCI, inhibiting primary and secondary progression by preventing inflammation and action of reactive oxygen species. However, they are constrained by a short effective drug administration window and their pharmacological action being limited to symptomatic relief of the secondary effects related to spinal cord injury only. Although post-injury rehabilitation treatments may enable functional recovery, they take a long time to show results. Drug repurposing might be an innovative method for expanding therapy alternatives, utilising drugs that are already approved by various esteemed federal agencies throughout the world. Reutilising a drug molecule to treat SCI can eliminate the need for expensive and lengthy drug discovery processes and pave the way for new therapeutic approaches in SCI. This review summarises marketed drugs that could be repurposed based on their safety and efficacy data. We also discuss their mechanisms of action and provide a list of repurposed drugs under clinical trials for SCI therapy.
Collapse
Affiliation(s)
- Lahanya Guha
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Opposite Air Force Station, Palaj, P.O-382355, Gandhinagar, Gujarat, India
| | - Hemant Kumar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Opposite Air Force Station, Palaj, P.O-382355, Gandhinagar, Gujarat, India.
| |
Collapse
|
2
|
Mishra MK, Kukal S, Paul PR, Bora S, Singh A, Kukreti S, Saso L, Muthusamy K, Hasija Y, Kukreti R. Insights into Structural Modifications of Valproic Acid and Their Pharmacological Profile. MOLECULES (BASEL, SWITZERLAND) 2021; 27:molecules27010104. [PMID: 35011339 PMCID: PMC8746633 DOI: 10.3390/molecules27010104] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 12/17/2021] [Accepted: 12/18/2021] [Indexed: 11/16/2022]
Abstract
Valproic acid (VPA) is a well-established anticonvulsant drug discovered serendipitously and marketed for the treatment of epilepsy, migraine, bipolar disorder and neuropathic pain. Apart from this, VPA has potential therapeutic applications in other central nervous system (CNS) disorders and in various cancer types. Since the discovery of its anticonvulsant activity, substantial efforts have been made to develop structural analogues and derivatives in an attempt to increase potency and decrease adverse side effects, the most significant being teratogenicity and hepatotoxicity. Most of these compounds have shown reduced toxicity with improved potency. The simple structure of VPA offers a great advantage to its modification. This review briefly discusses the pharmacology and molecular targets of VPA. The article then elaborates on the structural modifications in VPA including amide-derivatives, acid and cyclic analogues, urea derivatives and pro-drugs, and compares their pharmacological profile with that of the parent molecule. The current challenges for the clinical use of these derivatives are also discussed. The review is expected to provide necessary knowledgebase for the further development of VPA-derived compounds.
Collapse
Affiliation(s)
- Manish Kumar Mishra
- Genomics and Molecular Medicine Unit, Institute of Genomics and Integrative Biology (IGIB), Council of Scientific and Industrial Research (CSIR), Mall Road, Delhi 110007, India; (M.K.M.); (S.K.); (P.R.P.); (S.B.)
- Department of Biotechnology, Delhi Technological University, Shahbad Daulatpur, Main Bawana Road, Delhi 110042, India;
| | - Samiksha Kukal
- Genomics and Molecular Medicine Unit, Institute of Genomics and Integrative Biology (IGIB), Council of Scientific and Industrial Research (CSIR), Mall Road, Delhi 110007, India; (M.K.M.); (S.K.); (P.R.P.); (S.B.)
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Priyanka Rani Paul
- Genomics and Molecular Medicine Unit, Institute of Genomics and Integrative Biology (IGIB), Council of Scientific and Industrial Research (CSIR), Mall Road, Delhi 110007, India; (M.K.M.); (S.K.); (P.R.P.); (S.B.)
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Shivangi Bora
- Genomics and Molecular Medicine Unit, Institute of Genomics and Integrative Biology (IGIB), Council of Scientific and Industrial Research (CSIR), Mall Road, Delhi 110007, India; (M.K.M.); (S.K.); (P.R.P.); (S.B.)
- Department of Biotechnology, Delhi Technological University, Shahbad Daulatpur, Main Bawana Road, Delhi 110042, India;
| | - Anju Singh
- Nucleic Acids Research Lab, Department of Chemistry, University of Delhi (North Campus), Delhi 110007, India; (A.S.); (S.K.)
- Department of Chemistry, Ramjas College, University of Delhi (North Campus), Delhi 110007, India
| | - Shrikant Kukreti
- Nucleic Acids Research Lab, Department of Chemistry, University of Delhi (North Campus), Delhi 110007, India; (A.S.); (S.K.)
| | - Luciano Saso
- Department of Physiology and Pharmacology “Vittorio Erspamer”, Sapienza University of Rome, P. le Aldo Moro 5, 00185 Rome, Italy;
| | - Karthikeyan Muthusamy
- Department of Bioinformatics, Alagappa University, Karaikudi 630004, Tamil Nadu, India;
| | - Yasha Hasija
- Department of Biotechnology, Delhi Technological University, Shahbad Daulatpur, Main Bawana Road, Delhi 110042, India;
| | - Ritushree Kukreti
- Genomics and Molecular Medicine Unit, Institute of Genomics and Integrative Biology (IGIB), Council of Scientific and Industrial Research (CSIR), Mall Road, Delhi 110007, India; (M.K.M.); (S.K.); (P.R.P.); (S.B.)
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- Correspondence: or ; Tel.: +91-11-27662202; Fax: +91-11-27667471
| |
Collapse
|
3
|
Pal R, Singh K, Khan SA, Chawla P, Kumar B, Akhtar MJ. Reactive metabolites of the anticonvulsant drugs and approaches to minimize the adverse drug reaction. Eur J Med Chem 2021; 226:113890. [PMID: 34628237 DOI: 10.1016/j.ejmech.2021.113890] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 09/01/2021] [Accepted: 09/29/2021] [Indexed: 12/22/2022]
Abstract
Several generations of antiepileptic drugs (AEDs) are available in the market for the treatment of seizures, but these are amalgamated with acute to chronic side effects. The most common side effects of AEDs are dose-related, but some are idiosyncratic adverse drug reactions (ADRs) that transpire due to the formation of reactive metabolite (RM) after the bioactivation process. Because of the adverse reactions patients usually discontinue the medication in between the treatment. The AEDs such as valproic acid, lamotrigine, phenytoin etc., can be categorized under such types because they form the RM which may prevail with life-threatening adverse effects or immune-mediated reactions. Hepatotoxicity, teratogenicity, cutaneous hypersensitivity, dizziness, addiction, serum sickness reaction, renal calculi, metabolic acidosis are associated with the metabolites of drugs such as arene oxide, N-desmethyldiazepam, 2-(1-hydroxyethyl)-2-methylsuccinimide, 2-(sulphamoy1acetyl)-phenol, E-2-en-VPA and 4-en-VPA and carbamazepine-10,11-epoxide, etc. The major toxicities are associated with the moieties that are either capable of forming RM or the functional groups may itself be too reactive prior to the metabolism. These functional groups or fragment structures are typically known as structural alerts or toxicophores. Therefore, minimizing the bioactivation potential of lead structures in the early phases of drug discovery by a modification to low-risk drug molecules is a priority for the pharmaceutical companies. Additionally, excellent potency and pharmacokinetic (PK) behaviour help in ensuring that appropriate (low dose) candidate drugs progress into the development phase. The current review discusses about RMs in the anticonvulsant drugs along with their mechanism vis-a-vis research efforts that have been taken to minimize the toxic effects of AEDs therapy.
Collapse
Affiliation(s)
- Rohit Pal
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Ghal Kalan, Ferozpur, G.T. Road, Moga, 142001, Punjab, India
| | - Karanvir Singh
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Ghal Kalan, Ferozpur, G.T. Road, Moga, 142001, Punjab, India
| | - Shah Alam Khan
- Department of Pharmaceutical Chemistry, College of Pharmacy, National University of Science and Technology, PO 620, PC 130, Azaiba, Bousher, Muscat, Oman
| | - Pooja Chawla
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Ghal Kalan, Ferozpur, G.T. Road, Moga, 142001, Punjab, India
| | - Bhupinder Kumar
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Ghal Kalan, Ferozpur, G.T. Road, Moga, 142001, Punjab, India.
| | - Md Jawaid Akhtar
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Ghal Kalan, Ferozpur, G.T. Road, Moga, 142001, Punjab, India; Department of Pharmaceutical Chemistry, College of Pharmacy, National University of Science and Technology, PO 620, PC 130, Azaiba, Bousher, Muscat, Oman.
| |
Collapse
|
4
|
Wang Z, Li J, Zeng XD, Hu XM, Zhou X, Hong X. Synthesis and Pharmacological Evaluation of Novel Benzenesulfonamide Derivatives as Potential Anticonvulsant Agents. Molecules 2015; 20:17585-600. [PMID: 26404228 PMCID: PMC6331867 DOI: 10.3390/molecules200917585] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 09/17/2015] [Accepted: 09/17/2015] [Indexed: 11/17/2022] Open
Abstract
A novel series of benzenesulfonamide derivatives containing 4-aminobenzenesul-fonamide and α-amides branched valproic acid or 2,2-dimethylcyclopropanecarboxylic acid moieties were synthesized and screened for their anticonvulsant activities in mice maximal electroshock seizure (MES) and subcutaneous pentylenetetrazole (scPTZ) test. The activity experimental study showed that 2,2-dipropyl-N¹-(4-sulfamoylphenyl)malonamide (18b) had the lowest median effective dose (ED50) of 16.36 mg/kg in MES test, and 2,2-dimethyl-N-(4-sulfamoylphenyl)cyclopropane-1,1-dicarboxamide (12c) had the lowest ED50 of 22.50 mg/kg in scPTZ test, which resulted in the protective indexe (PI) of 24.8 and 20.4, respectively. These promising data suggest the new compounds have good potential as new class of anticonvulsant agents with high effectiveness and low toxicity for the treatment of epilepsy.
Collapse
Affiliation(s)
- Zhiming Wang
- State Key Laboratory of Virology, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Wuhan University School of Pharmaceutical Sciences, 185 Donghu Road, Wuhan 430071, China.
| | - Jinping Li
- State Key Laboratory of Virology, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Wuhan University School of Pharmaceutical Sciences, 185 Donghu Road, Wuhan 430071, China.
| | - Xiao-Dong Zeng
- State Key Laboratory of Virology, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Wuhan University School of Pharmaceutical Sciences, 185 Donghu Road, Wuhan 430071, China.
| | - Xian-Ming Hu
- State Key Laboratory of Virology, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Wuhan University School of Pharmaceutical Sciences, 185 Donghu Road, Wuhan 430071, China.
| | - Xiaoju Zhou
- State Key Laboratory of Virology, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Wuhan University School of Pharmaceutical Sciences, 185 Donghu Road, Wuhan 430071, China.
| | - Xuechuan Hong
- State Key Laboratory of Virology, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Wuhan University School of Pharmaceutical Sciences, 185 Donghu Road, Wuhan 430071, China.
| |
Collapse
|
5
|
Pessah N, Yagen B, Hen N, Shimshoni JA, Wlodarczyk B, Finnell RH, Bialer M. Design and pharmacological activity of glycinamide and N-methoxy amide derivatives of analogs and constitutional isomers of valproic acid. Epilepsy Behav 2011; 22:461-8. [PMID: 21959082 DOI: 10.1016/j.yebeh.2011.08.026] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2011] [Revised: 08/22/2011] [Accepted: 08/23/2011] [Indexed: 01/19/2023]
Abstract
A series of glycinamide conjugates and N-methoxy amide derivatives of valproic acid (VPA) analogs and constitutional isomers were synthesized and evaluated for anticonvulsant activity. Of all compounds synthesized and tested, only N-methoxy-valnoctamide (N-methoxy-VCD) possessed better activity than VPA in the following anticonvulsant tests: maximal electroshock, subcutaneous metrazol, and 6-Hz (32-mA) seizure tests. In mice, the ED(50) values of N-methoxy-VCD were 142 mg/kg (maximal electroshock test), 70 mg/kg (subcutaneous metrazol test), and 35 mg/kg (6-Hz test), and its neurotoxicity TD(50) was 118 mg/kg. In rats, the ED(50) of N-methoxy-VCD in the subcutaneous metrazol test was 36 mg/kg and its protective index (PI=TD(50)/ED(50)) was >5.5. In the rat pilocarpine-induced status epilepticus model, N-methoxy-VCD demonstrated full protection at 200mg/kg, without any neurotoxicity. N-Methoxy-VCD was tested for its ability to induce teratogenicity in a mouse strain susceptible to VPA-induced teratogenicity and was found to be nonteratogenic, although it caused some resorptions. Nevertheless, a safety margin was still maintained between the ED(50) values of N-methoxy-VCD in the mouse subcutaneous metrazol test and the doses that caused the resorptions. On the basis of these results, N-methoxy-VCD is a good candidate for further evaluation as a new anticonvulsant and central nervous system drug.
Collapse
Affiliation(s)
- Neta Pessah
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | | | | | | | | | | | | |
Collapse
|
6
|
|
7
|
Häcker HG, Meusel M, Aschfalk M, Gütschow M. Solid-phase synthesis of disubstituted N-acylureas from resin-bound ureas and acyl chlorides. ACS COMBINATORIAL SCIENCE 2011; 13:59-64. [PMID: 21247126 DOI: 10.1021/co100020b] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Acylureas (ureides) are valued for their important biological activities. Whereas cyclic acylureas have frequently been the object of solid-phase chemistry, only few reports have focused on the solid-supported preparation of acyclic representatives. We have prepared different types of acylureas on Rink amide resin in three or four steps. The products are either N-acylated (9, 18), N-acylated-N'-alkylated (10, 19), or N-acylated-N-alkylated (22). Characteristic NMR parameters of isomeric acylureas 10, 19, and 22 are discussed.
Collapse
Affiliation(s)
- Hans-Georg Häcker
- Pharmaceutical Institute, Pharmaceutical Chemistry I, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany
| | - Manuela Meusel
- Pharmaceutical Institute, Pharmaceutical Chemistry I, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany
| | - Melanie Aschfalk
- Pharmaceutical Institute, Pharmaceutical Chemistry I, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany
| | - Michael Gütschow
- Pharmaceutical Institute, Pharmaceutical Chemistry I, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany
| |
Collapse
|
8
|
Pessah N, Kaufmann D, Yagen B, Hen N, Wlodarczyk B, Finnell RH, Bialer M. Comparative pharmacodynamic and pharmacokinetic analysis of two anticonvulsant halo derivatives of 2,2,3,3-tetramethylcyclopropanecarboxamide, an amide of a cyclic analog of valproic acid. Epilepsia 2010; 51:1944-53. [PMID: 20738383 DOI: 10.1111/j.1528-1167.2010.02684.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
PURPOSE α-Fluoro-2,2,3,3-tetramethylcyclopropanecarboxamide (α-F-TMCD) and α-Cl-TMCD, are α-halo derivatives of TMCD, the corresponding amide of a cyclopropane analog of valproic acid (VPA). This study aimed to comparatively evaluate the pharmacodynamics and pharmacokinetics of α-F-TMCD and α-Cl-TMCD in rodent models of epilepsy and for antiepileptic drug (AED)-induced teratogenicity. The potential of α-F-TMCD as an antiallodynic and antinociceptive compound was also evaluated. METHODS α-F-TMCD and α-Cl-TMCD were synthesized. α-Cl-TMCD anticonvulsant activity was evaluated in comparison to VPA in the mouse maximal-electroshock-seizure (MES), Metrazol (scMet), and 6-Hz psychomotor-seizure tests. Neurotoxicity was assessed by the Rotorod-ataxia test. Induction of neural tube defects (NTDs) by α-Cl-TMCD and α-F-TMCD was evaluated after intraperitoneal administration to a mouse strain highly susceptible to VPA-induced teratogenicity. The ability of α-F-TMCD to reduce pain was evaluated in the rat spinal nerve ligation (SNL) model for neuropathic pain and in the formalin test. α-F-TMCD and α-Cl-TMCD pharmacokinetics was evaluated following intraperitoneal (40 mg/kg) and oral (60 mg/kg) administration to rats. RESULTS α-F-TMCD and α-Cl-TMCD had similar potencies in the 6-Hz test and were more potent than VPA in this model and in the scMet test. Neither induced NTDs, and both exhibited wide safety margins. α-F-TMCD was active in the two pain models, and was found to be equipotent to gabapentin in the SNL model (ED(50) = 37 and 32 mg/kg, respectively). Comparative pharmacokinetic analysis showed that α-Cl-TMCD is less susceptible to liver first-pass effect than α-F-TMCD because of lower total (metabolic) clearance and liver extraction ratio. CONCLUSIONS Based on their potent anticonvulsant activity and lack of teratogenicity, α-F-TMCD and α-Cl-TMCD have the potential for development as new antiepileptics and central nervous system (CNS) drugs.
Collapse
Affiliation(s)
- Neta Pessah
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | | | | | | | | | | | | |
Collapse
|
9
|
Gerlach AC, Krajewski JL. Antiepileptic Drug Discovery and Development: What Have We Learned and Where Are We Going? Pharmaceuticals (Basel) 2010; 3:2884-2899. [PMID: 27713381 PMCID: PMC4034102 DOI: 10.3390/ph3092884] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2010] [Revised: 08/25/2010] [Accepted: 09/01/2010] [Indexed: 11/16/2022] Open
Abstract
Current marketed antiepileptic drugs (AEDs) consist of a variety of structural classes with different mechanisms of action. These agents typically have non-overlapping efficacy and side-effect profiles presenting multiple treatment options for the patient population. However, approximately 30% of seizure sufferers fail to respond to current therapies often because poorly tolerated side-effects limit adequate dosing. The scope of this review is to summarize selected advances in 2nd and 3rd generation AEDs as well as compounds in development with novel mechanisms of action.
Collapse
|
10
|
Shimshoni JA, Yagen B, Wlodarczyk B, Finnell RH, Schurig V, Bialer M. Evaluation of stereoselective anticonvulsant, teratogenic, and pharmacokinetic profile of valnoctylurea (capuride): A chiral stereoisomer of valproic acid urea derivative. Epilepsia 2010; 51:323-32. [DOI: 10.1111/j.1528-1167.2009.02241.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
11
|
Bialer M, White HS. Key factors in the discovery and development of new antiepileptic drugs. Nat Rev Drug Discov 2010; 9:68-82. [PMID: 20043029 DOI: 10.1038/nrd2997] [Citation(s) in RCA: 374] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Since the early 1990s, many new antiepileptic drugs (AEDs) that offer appreciable advantages in terms of their favourable pharmacokinetics, improved tolerability and lower potential for drug-drug interactions have entered the market. However, despite the therapeutic arsenal of old and new AEDs, approximately 30% of patients with epilepsy still suffer from seizures. Thus, there remains a substantial need for the development of more efficacious AEDs for patients with refractory seizures. Here, we briefly review the emerging knowledge on the pathological basis of epilepsy and how it might best be used in the design of new therapeutics. We also discuss the current approach to AED discovery and highlight some of the unique features of newer models of pharmacoresistance and epileptogenesis that have emerged in recent years.
Collapse
Affiliation(s)
- Meir Bialer
- Institute of Drug Research, School of Pharmacy, Faculty of Medicine, and the David R. Bloom Centre for Pharmacy, The Hebrew University of Jerusalem, Jerusalem, Israel.
| | | |
Collapse
|
12
|
Abstract
The anticonvulsant properties of VPA (valproic acid), a branched short-chain fatty acid, were serendipitously discovered in 1963. Since then, therapeutic roles of VPA have increased to include bipolar disorder and migraine prophylaxis, and have more recently been proposed in cancer, Alzheimer's disease and HIV treatment. These numerous therapeutic roles elevate VPA to near 'panacea' level. Surprisingly, the mechanisms of action of VPA in the treatment of many of these disorders remain unclear, although it has been shown to alter a wide variety of signalling pathways and a small number of direct targets. To analyse the mechanism of action of VPA, a number of studies have defined the structural characteristics of VPA-related compounds giving rise to distinct therapeutic and cellular effects, including adverse effects such as teratogenicity and hepatotoxicity. These studies raise the possibility of identifying target-specific novel compounds, providing better therapeutic action or reduced side effects. This short review will describe potential therapeutic pathways targeted by VPA, and highlight studies showing structural constraints necessary for these effects.
Collapse
|
13
|
Kaufmann D, Bialer M, Shimshoni JA, Devor M, Yagen B. Synthesis and Evaluation of Antiallodynic and Anticonvulsant Activity of Novel Amide and Urea Derivatives of Valproic Acid Analogues. J Med Chem 2009; 52:7236-48. [DOI: 10.1021/jm901229s] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Dan Kaufmann
- Department of Pharmaceutics, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Israel
| | - Meir Bialer
- Department of Pharmaceutics, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Israel
- David R. Bloom Center for Pharmacy, The Hebrew University of Jerusalem, Israel
| | - Jakob Avi Shimshoni
- Department of Pharmaceutics, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Israel
| | - Marshall Devor
- Department of Cell and Developmental Biology, Institute of Life Sciences, Faculty of Natural Sciences and Center for Research on Pain, The Hebrew University of Jerusalem, Israel
| | - Boris Yagen
- David R. Bloom Center for Pharmacy, The Hebrew University of Jerusalem, Israel
- Department of Medicinal Chemistry and Natural Products, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Israel
| |
Collapse
|
14
|
Wang HL, Jiang WF, Li ZQ. Facile synthesis of amide and amine derivatives of 2,2,3,3-tetramethylcyclopropanecarboxylic acid. JOURNAL OF CHEMICAL RESEARCH 2009. [DOI: 10.3184/030823409x12474221035208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
An efficient one-pot procedure for the synthesis of amide derivatives of 2,2,3,3-tetramethylpropanecarboxylic acid (TMCA) that involves the treating of TMCA in N,N-dimethylacetamide (DMAC) with thionyl chloride and stoichiometric amounts of reactant amines has been developed. The combined reagent TiCl4/NaBH4 was found to be effective for the reduction of the amide derivatives of TMCA to the corresponding amines.
Collapse
Affiliation(s)
- Hui-Long Wang
- Department of Chemistry, Dalian University of Technology, Dalian 116023, P.R. China
| | - Wen-Feng Jiang
- Department of Chemistry, Dalian University of Technology, Dalian 116023, P.R. China
| | - Zhe-Qi Li
- Environmental Science and Engineering Institute, Dalian Jiaotong University, Dalian 116023, P.R. China
| |
Collapse
|
15
|
Pessah N, Bialer M, Wlodarczyk B, Finnell RH, Yagen B. α-Fluoro-2,2,3,3-Tetramethylcyclopropanecarboxamide, a Novel Potent Anticonvulsant Derivative of a Cyclic Analogue of Valproic Acid. J Med Chem 2009; 52:2233-42. [PMID: 19296679 DOI: 10.1021/jm900017f] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Neta Pessah
- Department of Pharmaceutics and Department of Natural Products and Medicinal Chemistry, School of Pharmacy, Faculty of Medicine, and The David R. Bloom Centre for Pharmacy, The Hebrew University of Jerusalem, Jerusalem, Israel, and Center for Environmental and Genetic Medicine, Institute of Biosciences and Technology, Texas A & M Health Science Center, Texas A & M University, Houston, Texas
| | - Meir Bialer
- Department of Pharmaceutics and Department of Natural Products and Medicinal Chemistry, School of Pharmacy, Faculty of Medicine, and The David R. Bloom Centre for Pharmacy, The Hebrew University of Jerusalem, Jerusalem, Israel, and Center for Environmental and Genetic Medicine, Institute of Biosciences and Technology, Texas A & M Health Science Center, Texas A & M University, Houston, Texas
| | - Bogdan Wlodarczyk
- Department of Pharmaceutics and Department of Natural Products and Medicinal Chemistry, School of Pharmacy, Faculty of Medicine, and The David R. Bloom Centre for Pharmacy, The Hebrew University of Jerusalem, Jerusalem, Israel, and Center for Environmental and Genetic Medicine, Institute of Biosciences and Technology, Texas A & M Health Science Center, Texas A & M University, Houston, Texas
| | - Richard H. Finnell
- Department of Pharmaceutics and Department of Natural Products and Medicinal Chemistry, School of Pharmacy, Faculty of Medicine, and The David R. Bloom Centre for Pharmacy, The Hebrew University of Jerusalem, Jerusalem, Israel, and Center for Environmental and Genetic Medicine, Institute of Biosciences and Technology, Texas A & M Health Science Center, Texas A & M University, Houston, Texas
| | - Boris Yagen
- Department of Pharmaceutics and Department of Natural Products and Medicinal Chemistry, School of Pharmacy, Faculty of Medicine, and The David R. Bloom Centre for Pharmacy, The Hebrew University of Jerusalem, Jerusalem, Israel, and Center for Environmental and Genetic Medicine, Institute of Biosciences and Technology, Texas A & M Health Science Center, Texas A & M University, Houston, Texas
| |
Collapse
|
16
|
Okada A, Onishi Y, Yagen B, Shimshoni JA, Kaufmann D, Bialer M, Fujiwara M. Tetramethylcyclopropyl analogue of the leading antiepileptic drug, valproic acid: evaluation of the teratogenic effects of its amide derivatives in NMRI mice. BIRTH DEFECTS RESEARCH. PART A, CLINICAL AND MOLECULAR TERATOLOGY 2008; 82:610-21. [PMID: 18671279 DOI: 10.1002/bdra.20490] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
BACKGROUND Although valproic acid (VPA) is used extensively for treating various kinds of epilepsy, it causes hepatotoxicity and teratogenicity. In an attempt to develop a more potent and safer second generation to VPA drug, the amide derivatives of the tetramethylcyclopropyl VPA analogue, 2,2,3,3-tetramethylcyclopropanecarboxamide (TMCD), N-methyl-TMCD (MTMCD), 4-(2,2,3,3-tetramethylcyclopropanecarboxamide)-benzenesulfonamide (TMCD-benzenesulfonamide), and 5-(TMCD)-1,3,4-thiadiazole-2-sulfonamide (TMCD-thiadiazolesulfonamide) were synthesized and shown to have more potent anticonvulsant activity than VPA. Teratogenic effects of these CNS-active compounds were evaluated in Naval Medical Research Institute (NMRI) mice susceptible to VPA-induced teratogenicity by comparing them to those of VPA. METHODS Pregnant NMRI mice were given a single sc injection of either VPA or TMC-amide derivatives on gestation day 8.5, and then the live fetuses were examined to detect any external malformations on gestation day 18. After double-staining for bone and cartilage, their skeletons were examined. RESULTS In contrast to VPA, which induced NTDs in a high number of fetuses at 2.4-4.8 mmol/kg, TMCD, TMCD-benzenesulfonamide, and TMCD-thiadiazolesulfonamide at 4.8 mmol/kg and MTMCD at 3.6 mmol/kg did not induce a significant number of NTDs. TMCD-thiadiazolesulfonamide exhibited a potential to induce limb defects in fetuses. Skeletal examination also revealed that fetuses exposed to all four of the tetramethylcyclopropanecarboxamide derivatives developed vertebral and rib abnormalities less frequently than those exposed to VPA. Our results established that TMCD, MTMCD, and TMCD-benzenesulfonamide are distinctly less teratogenic than VPA in NMRI mice. CONCLUSIONS The CNS-active amides containing a tetramethylcyclopropanecarbonyl moiety demonstrated better anticonvulsant potency compared to VPA and a lack of teratogenicity, which makes these compounds good second-generation VPA antiepileptic drug candidates.
Collapse
Affiliation(s)
- Akinobu Okada
- Drug Safety Research Laboratories, Astellas Pharma Inc., Osaka, Japan
| | | | | | | | | | | | | |
Collapse
|
17
|
Shimshoni JA, Yagen B, Pessah N, Wlodarczyk B, Finnell RH, Bialer M. Anticonvulsant profile and teratogenicity of 3,3-dimethylbutanoylurea: a potential for a second generation drug to valproic acid. Epilepsia 2008; 49:1202-12. [PMID: 18435754 DOI: 10.1111/j.1528-1167.2008.01624.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
PURPOSE The purpose of this study was to evaluate the anticonvulsant activity and teratogenic potential of branched aliphatic acylureas represented by isovaleroylurea (IVU), pivaloylurea (PVU) and 3,3-dimethylbutanoylurea (DBU), as potential second-generation drugs to valproic acid (VPA). METHODS The anticonvulsant activity of IVU, PVU, and DBU was determined in mice and rats utilizing the maximal electroshock seizure (MES) and the pentylenetetrazole (scMet) tests. The ability of DBU to block electrical-, or chemical-induced seizures was further examined in three acute seizure models: the psychomotor 6 Hz model, the bicuculline and picrotoxin models and one model of chronic epilepsy (i.e., the hippocampal kindled rat model). The induction of neural tube defects (NTDs) by IVU, PVU, and DBU was evaluated after i.p. administration at day 8.5 of gestation to a mouse strain highly susceptible to VPA-induced teratogenicity. The pharmacokinetics of DBU was studied following i.v. administration to rats. RESULTS DBU emerged as the most potent compound having an MES-ED(50)of 186 mg/kg (mice) and 64 mg/kg (rats) and an scMet-ED(50)of 66 mg/kg (mice) and 26 mg/kg (rats). DBU underwent further evaluation in the hippocampal kindled rat (ED(50)= 35 mg/kg), the psychomotor 6 Hz mouse model (ED(50)= 80 mg/kg at 32 mA and ED(50)= 133 mg/kg at 44 mA), the bicuculline- and picrotoxin-induced seizure mouse model (ED(50)= 205 mg/kg and 167 mg/kg, respectively). In contrast to VPA, DBU, IVU, and PVU did not induce a significant increase in NTDs as compared to control. DBU was eliminated by metabolism with a half-life of 4.5 h. CONCLUSIONS DBU's broad spectrum and potent anticonvulsant activity, along with its high safety margin and favorable pharmacokinetic profile, make it an attractive candidate to become a new, potent, and safe AED.
Collapse
Affiliation(s)
- Jakob Avi Shimshoni
- Department of Pharmaceutics, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | | | | | | | | | | |
Collapse
|
18
|
Shimshoni JA, Bialer M, Yagen B. Synthesis and anticonvulsant activity of aromatic tetramethylcyclopropanecarboxamide derivatives. Bioorg Med Chem 2008; 16:6297-305. [DOI: 10.1016/j.bmc.2008.03.051] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2007] [Revised: 03/12/2008] [Accepted: 03/20/2008] [Indexed: 10/22/2022]
|
19
|
Shimshoni JA, Bialer M, Wlodarczyk B, Finnell RH, Yagen B. Potent Anticonvulsant Urea Derivatives of Constitutional Isomers of Valproic Acid. J Med Chem 2007; 50:6419-27. [DOI: 10.1021/jm7009233] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jakob Avi Shimshoni
- Department of Pharmaceutics and Department of Medicinal Chemistry and Natural Products, School of Pharmacy, Faculty of Medicine, and the David R. Bloom Centre for Pharmacy, The Hebrew University of Jerusalem, Jerusalem, Israel, and Center for Environmental and Genetic Medicine, Institute of Biosciences and Technology, Texas A & M Health Science Center, Texas A & M University, Houston, Texas
| | - Meir Bialer
- Department of Pharmaceutics and Department of Medicinal Chemistry and Natural Products, School of Pharmacy, Faculty of Medicine, and the David R. Bloom Centre for Pharmacy, The Hebrew University of Jerusalem, Jerusalem, Israel, and Center for Environmental and Genetic Medicine, Institute of Biosciences and Technology, Texas A & M Health Science Center, Texas A & M University, Houston, Texas
| | - Bogdan Wlodarczyk
- Department of Pharmaceutics and Department of Medicinal Chemistry and Natural Products, School of Pharmacy, Faculty of Medicine, and the David R. Bloom Centre for Pharmacy, The Hebrew University of Jerusalem, Jerusalem, Israel, and Center for Environmental and Genetic Medicine, Institute of Biosciences and Technology, Texas A & M Health Science Center, Texas A & M University, Houston, Texas
| | - Richard H. Finnell
- Department of Pharmaceutics and Department of Medicinal Chemistry and Natural Products, School of Pharmacy, Faculty of Medicine, and the David R. Bloom Centre for Pharmacy, The Hebrew University of Jerusalem, Jerusalem, Israel, and Center for Environmental and Genetic Medicine, Institute of Biosciences and Technology, Texas A & M Health Science Center, Texas A & M University, Houston, Texas
| | - Boris Yagen
- Department of Pharmaceutics and Department of Medicinal Chemistry and Natural Products, School of Pharmacy, Faculty of Medicine, and the David R. Bloom Centre for Pharmacy, The Hebrew University of Jerusalem, Jerusalem, Israel, and Center for Environmental and Genetic Medicine, Institute of Biosciences and Technology, Texas A & M Health Science Center, Texas A & M University, Houston, Texas
| |
Collapse
|
20
|
Abstract
The manuscript focuses on structure-activity relationship studies of CNS-active compounds derived from valproic acid (VPA) that have the potential to become second-generation VPA drugs. Valproic acid is one of the four most widely prescribed antiepileptic drugs (AEDs) and is effective (and regularly approved) in migraine prophylaxis and in the treatment of bipolar disorders. Valproic acid is also currently undergoing clinical trials in cancer patients. Valproic acid is the least potent of the established AEDs and its use is limited by two rare but potentially life-threatening side effects, teratogenicity and hepatotoxicity. Because AEDs treat the symptoms (seizure) and not the cause of epilepsy, epileptic patients need to take AEDs for a long period of time. Consequently, there is a substantial need to develop better and safer AEDs. To become a successful second-generation VPA, the new drug should possess the following characteristics: broad-spectrum antiepileptic activity, better potency than VPA, lack of teratogenicity and hepatotoxicity, and a favorable pharmacokinetic profile compared with VPA including a low potential for drug interactions.
Collapse
Affiliation(s)
- Meir Bialer
- Department of Pharmaceutics, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel.
| | | |
Collapse
|
21
|
Shimshoni JA, Dalton EC, Jenkins A, Eyal S, Ewan K, Williams RSB, Pessah N, Yagen B, Harwood AJ, Bialer M. The effects of central nervous system-active valproic acid constitutional isomers, cyclopropyl analogs, and amide derivatives on neuronal growth cone behavior. Mol Pharmacol 2006; 71:884-92. [PMID: 17167030 DOI: 10.1124/mol.106.030601] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Valproic acid (VPA) is an effective antiepileptic drug with an additional activity for the treatment of bipolar disorder. It has been assumed that both activities arise from a common target. At the molecular level, VPA targets a number of distinct proteins that are involved in signal transduction. VPA inhibition of inositol synthase reduces the cellular concentration of myo-inositol, an effect common to the mood stabilizers lithium and carbamazepine. VPA inhibition of histone deacetylases activates Wnt signaling via elevated beta-catenin expression and causes teratogenicity. Given the VPA chemical structure, it may be possible to design VPA derivatives and analogs that modulate specific protein targets but leave the others unaffected. Indeed, it has been shown that some nonteratogenic VPA derivatives retain antiepileptic and inositol signaling effects. In this study, we describe a further set of VPA analogs and derivatives that separate anticonvulsant activity from effects on neuronal growth cone morphology. Lithium, carbamazepine, and VPA induce inositol-dependent spread of neuronal growth cones, providing a cell-based assay that correlates with mood-stabilizing activity. We find that two constitutional isomers of VPA, propylisopropylacetic acid and diisopropylacetic acid, but not their corresponding amides, and N-methyl-2,2,3,3-tetramethyl-cyclopropanecarboaxamide are more effective than VPA in increasing growth cone spreading. We show that these effects are associated with inositol depletion, and not changes in beta-catenin-mediated Wnt signaling. These results suggest a route to a new generation of central nervous system-active VPA analogs that specifically target bipolar disorder.
Collapse
Affiliation(s)
- J A Shimshoni
- Department of Pharmaceutics, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Ein Karem, P.O. Box 12065, Jerusalem 91120, Israel
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Librowski T, Kubacka M, Meusel M, Scolari S, Müller CE, Gütschow M. Evaluation of anticonvulsant and analgesic effects of benzyl- and benzhydryl ureides. Eur J Pharmacol 2006; 559:138-49. [PMID: 17250826 DOI: 10.1016/j.ejphar.2006.12.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2006] [Revised: 11/30/2006] [Accepted: 12/06/2006] [Indexed: 10/23/2022]
Abstract
The anticonvulsant effects of benzyl- and benzhydryl ureides in mice models of seizures (maximal electroshock seizure test, pentylenetetrazol test, picrotoxin-induced seizure test) and the influence on spontaneous locomotor activity has been assessed. Furthermore, the analgesic effect of ureide derivatives was studied in the hot-plate test in mice. Selected compounds were investigated for their in vitro interaction with adenosine receptors as well as the benzodiazepine binding site of GABA(A) receptors. This study demonstrated the strong anticonvulsant activity of several ureides in electrically or chemically induced seizure models, and structure-activity relationships were discussed. 1-Benzyl-3-butyrylurea (9) was found to be equipotent to ethosuximide in the pentylenetetrazol test with regard to the number of attacks as well as the time of the onset of seizures. The ureide 9 also revealed the highest protective activity against seizures in the other models, maximal electroshock seizure and picrotoxin test. Moreover, 1-benzyl-3-butyrylurea was not neurotoxic at doses up to 200 mg/kg. Benzylureides 8-10 showed affinity to the adenosine A1 receptors at low micromolar concentrations. However, the apparent anticonvulsant activity in different seizure models does not appear to result from direct activation of adenosine A1 receptors or GABA(A) receptors, respectively. In the hot-plate test, the majority of investigated compounds exhibited analgesic activity. Again, compound 9 was superior to the other substances investigated, suggesting a potential therapeutic value of that ureide derivative.
Collapse
Affiliation(s)
- Tadeusz Librowski
- Department of Pharmacodynamics, Medical College, Jagiellonian University, Medyczna 9, 30-688 Kraków, Poland.
| | | | | | | | | | | |
Collapse
|
23
|
Sobol E, Yagen B, Lamb JG, White HS, Wlodarczyk BJ, Finnell RH, Bialer M. Anticonvulsant activity, neural tube defect induction, mutagenicity and pharmacokinetics of a new potent antiepileptic drug, N-methoxy-2,2,3,3-tetramethylcyclopropane carboxamide. Epilepsy Res 2006; 73:75-84. [PMID: 16997532 DOI: 10.1016/j.eplepsyres.2006.08.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2006] [Revised: 08/22/2006] [Accepted: 08/22/2006] [Indexed: 01/16/2023]
Abstract
N-methoxy-2,2,3,3-tetramethylcyclopropane carboxamide (OM-TMCD) is a methoxyamide derivative of a cyclopropyl analogue of valproic acid (VPA). The structural considerations used in the design of OM-TMCD were aimed to enhance OM-TMCD anticonvulsant potency (compared to VPA) and to prevent VPA's two life-threatening side effects, i.e., induction of neural tube defects (NTDs) and hepatotoxicity. Following i.p. administration to rats OM-TMCD demonstrated a broad spectrum of anticonvulsant activity and showed better potency than VPA in the maximal electroshock seizure and subcutaneous pentylenetetrazole tests as well as in the hippocampal kindling model. OM-TMCD was inactive in the mouse 6-Hz test at 100 mg/kg dose. Teratogenicity studies performed in a SWV/Fnn-mouse model for VPA-induced-exencephaly showed that on the equimolar basis OM-TMCD possesses the same fetal toxicity and ability to induce NTDs as VPA, but since OM-TMCD is a much more potent anticonvulsant its activity/exencephaly formation ratio appears to be much more beneficial than that of VPA. OM-TMCD was found to be non-mutagenic and non-pro-mutagenic in the Ames test. It showed a beneficial pharmacokinetic profile in rats, having a high oral bioavailability of 75% and satisfactory values of clearance and volume of distribution. These results support further studies to fully characterize the therapeutic potential of OM-TMCD.
Collapse
Affiliation(s)
- Eyal Sobol
- Department of Pharmaceutics, School of Pharmacy, The Hebrew University of Jerusalem, Jerusalem, Israel
| | | | | | | | | | | | | |
Collapse
|
24
|
Rogawski MA. Diverse mechanisms of antiepileptic drugs in the development pipeline. Epilepsy Res 2006; 69:273-94. [PMID: 16621450 PMCID: PMC1562526 DOI: 10.1016/j.eplepsyres.2006.02.004] [Citation(s) in RCA: 260] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2005] [Revised: 02/12/2006] [Accepted: 02/12/2006] [Indexed: 01/10/2023]
Abstract
There is a remarkable array of new chemical entities in the current antiepileptic drug (AED) development pipeline. In some cases, the compounds were synthesized in an attempt improve upon the activity of marketed AEDs. In other cases, the discovery of antiepileptic potential was largely serendipitous. Entry into the pipeline begins with the demonstration of activity in one or more animal screening models. Results from testing in a panel of such models provide a basis to differentiate agents and may offer clues as to the mechanism. Target activity may then be defined through cell-based studies, often years after the initial identification of activity. Some pipeline compounds are believed to act through conventional targets, whereas others are structurally novel and may act by novel mechanisms. Follow-on agents include the levetiracetam analogs brivaracetam and seletracetam that act as SV2A-ligands; the valproate-like agents valrocemide, valnoctamide, propylisopropyl acetamide, and isovaleramide; the felbamate analog flurofelbamate, a dicarbamate, and the unrelated carbamate RWJ-333369; the oxcarbazepine analog licarbazepine, which probably acts as a use-dependent sodium channel blockers, and its prodrug acetate BIA 2-093; various selective partial benzodiazepine receptor agonists, including ELB139, which is a positive allosteric modulator of alpha3-containing GABA(A) receptors. A variety of AEDs that may act through novel targets are also in clinical development: lacosamide, a functionalized amino acid; talampanel, a 2,3-benzodiazepine selective noncompetitive AMPA receptor antagonist; NS1209, a competitive AMPA receptor antagonist; ganaxolone, a neuroactive steroid that acts as a positive modulator of GABA(A) receptors; retigabine, a KCNQ potassium channel opener with activity as a GABA(A) receptor positive modulator; the benzanilide KCNQ potassium channel opener ICA-27243 that is more selective than retigabine; and rufinamide, a triazole of unknown mechanism.
Collapse
Affiliation(s)
- Michael A Rogawski
- Epilepsy Research Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, 35 Convent Drive MSC 3702, Bethesda, MD 20892-3702, United States.
| |
Collapse
|
25
|
Okada A, Fujiwara M. Molecular approaches to developmental malformations using analogous forms of valproic acid. Congenit Anom (Kyoto) 2006; 46:68-75. [PMID: 16732764 DOI: 10.1111/j.1741-4520.2006.00105.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The teratogenic potential of valproic acid has been well established both in experimental models and in human clinical studies. Evidence from many previous studies has shown that VPA is an appropriate drug model for studying chemical structure-teratogenicity relationships. Using molecular techniques of DNA microarray (GeneChip system) or quantitative real-time polymerase chain reaction with low teratogenic VPA analogs as comparative control drugs, we attempted to identify the genes involved with the molecular mechanisms of VPA teratogenicity in the neural tube and the axial skeleton of the mouse embryo. The recent development of DNA microarray enables a genome-wide approach to the identification of genes correlated with the teratogenicity of chemicals (teratogenomics). The VPA-induced changes in gene expression seen during mouse embryogenesis provides information for understanding how VPA disrupts normal embryonic development, and also provides leads for the development of safer medicines.
Collapse
Affiliation(s)
- Akinobu Okada
- Drug Safety Research Laboratories, Astellas Pharma, Yodogawa-ku, Osaka, Japan.
| | | |
Collapse
|
26
|
Bialer M. New antiepileptic drugs that are second generation to existing antiepileptic drugs. Expert Opin Investig Drugs 2006; 15:637-47. [PMID: 16732716 DOI: 10.1517/13543784.15.6.637] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
In the last decade, 10 new antiepileptic drugs (AEDs) have been introduced that offer appreciable advantages in terms of their favourable pharmacokinetics, improved tolerability and lower potential for drug interactions. However, despite the large therapeutic range of old and new AEDs, approximately 30% of the patients with epilepsy are still not seizure free and, consequently, there is a substantial need to develop new AEDs. The new AEDs currently in development can be divided into two categories: drugs with completely new chemical structures such as lacosamide (formally harkoseride), retigabine, rufinamide and talampanel; and drugs that are derivatives or analogues of existing AEDs that can be regarded as second-generation or follow-up compounds of established AEDs. This article focuses on the second category and thus critically reviews the following second-generation compounds: eslicarbazepine acetate or BIA-2-093 and 10-hydroxy carbazepine (carbamazepine derivatives); valrocemide and NPS 1776 (isovaleramide; valproic acid derivatives); pregabalin and XP13512 (gabapentin derivatives); brivaracetam (ucb 34714) and seletracetam (ucb 44212; levetiracetam derivatives); and fluorofelbamate (a felbamate derivative). In addition, a series of valproic acid derivatives that are currently in preclinical stage has also been evaluated because some lead compounds of this series have a promising potential to become new antiepileptics and CNS drugs. For any of these follow-up compounds to become a successful second generation to an existing AED, it has to be more potent, safer and possess favourable pharmacokinetics, including low potential for pharmacokinetic and pharmacodynamic drug interactions.
Collapse
Affiliation(s)
- Meir Bialer
- The Hebrew University of Jerusalem, Department of Pharmaceutics, School of Pharmacy, Faculty of Medicine, P.O. Box 12065, Ein Karem, Jerusalem 91120, Israel.
| |
Collapse
|
27
|
Okada A, Onishi Y, Aoki Y, Yagen B, Sobol E, Bialer M, Fujiwara M. Teratology study of derivatives of tetramethylcyclopropyl amide analogues of valproic acid in mice. ACTA ACUST UNITED AC 2006; 77:227-33. [PMID: 16767757 DOI: 10.1002/bdrb.20078] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
BACKGROUND Although valproic acid (VPA) is used extensively for treating various kinds of epilepsies, it is well known that it causes neural tube and skeletal defects in both humans and animals. The amide and urea derivatives of the tetramethylcylcopropyl VPA analogue, N-methoxy-2,2,3,3-tetramethylcyclopropanecarboxamide (N-methoxy-TMCD) and 2,2,3,3-tetramethylcyclopropanecarbonylurea (TMC-urea), were synthesized and shown to have a more potent anticonvulsant activity than VPA. The objective of this study was to investigate the teratogenic effects of these compounds in NMRI mice. METHODS Pregnant NMRI mice were given a single subcutaneous injection of either VPA, N-methoxy-TMCD, or TMC-urea at 1.8 and 3.6 mmol/kg on gestation day (GD) 8. Cesarean section was performed on GD 18. First, the live fetuses were examined to detect any external malformations, then their skeletons were double-stained for bone and cartilage and subsequently examined. RESULTS Significant increases in fetal losses and neural tube defects were observed with administration of VPA at 3.6 mmol/kg when compared to the vehicle control. In contrast, upon cesarean section, there were no significant differences between either N-methoxy-TMCD or TMC-urea and the control groups for any parameter. Skeletal examination revealed that a number of the abnormalities were induced by VPA dose-dependently at high rates of incidence. These abnormalities were mainly at the axial skeletal level. However, lower frequencies of skeletal abnormality were observed with N-methoxy-TMCD and TMC-urea than with VPA. CONCLUSIONS In addition to their more potent antiepileptic activity, these findings clearly indicate that N-methoxy-TMCD and TMC-urea are distinctly less teratogenic than VPA in NMRI mice.
Collapse
Affiliation(s)
- Akinobu Okada
- Drug Safety Research Laboratories, Astellas Pharma, Inc., Osaka, Japan
| | | | | | | | | | | | | |
Collapse
|
28
|
Winkler I, Sobol E, Yagen B, Steinman A, Devor M, Bialer M. Efficacy of antiepileptic tetramethylcyclopropyl analogues of valproic acid amides in a rat model of neuropathic pain. Neuropharmacology 2005; 49:1110-20. [PMID: 16055160 DOI: 10.1016/j.neuropharm.2005.06.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2005] [Revised: 06/08/2005] [Accepted: 06/13/2005] [Indexed: 11/24/2022]
Abstract
Antiepileptic drugs (AEDs) are widely utilized in the management of neuropathic pain. The AED valproic acid (VPA) holds out particular promise as it engages a variety of different anticonvulsant mechanisms simultaneously. However, the clinical use of VPA is limited by two rare but potentially life-threatening side effects: teratogenicity and hepatotoxicity. We have synthesized several tetramethylcyclopropyl analogues of VPA amides that are non-teratogenic, and are likely to be non-hepatotoxic, and that exhibit good antiepileptic efficacy. In the present study we have assessed the antiallodynic activity of these compounds in comparison to VPA and gabapentin (GBP) using the rat spinal nerve ligation (SNL) model of neuropathic pain. TMCA (2,2,3,3-tetramethylcyclopropanecarboxylic acid, 100-250 mg/kg), TMCD (2,2,3,3-tetramethylcyclopropanecarboxamide, 40-150 mg/kg), MTMCD (N-methyl-TMCD, 20-100 mg/kg), and TMCU (2,2,3,3-tetramethylcyclopropanecarbonylurea, 40-240 mg/kg) all showed dose-related reversal of tactile allodynia, with ED(50) values of 181, 85, 41, and 171 mg/kg i.p., respectively. All were more potent than VPA (ED(50)=269 mg/kg). An antiallodynic effect was obtained for TMCD, MTMCD and TMCU at plasma concentrations as low as 23, 6 and 22 mg/L, respectively. MTMCD was found to be non-toxic, non-sedative and equipotent to gabapentin, currently the leading AED in neuropathic pain treatment. Tetramethylcyclopropyl analogues of VPA amides have potential to become a new series of drugs for neuropathic pain treatment.
Collapse
Affiliation(s)
- Ilan Winkler
- Department of Pharmaceutics, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | | | | | | | | | | |
Collapse
|
29
|
Sobol E, Yagen B, Winkler I, Britzi M, Gibson D, Bialer M. Pharmacokinetics and metabolism of a new potent antiepileptic drug, 2,2,3,3-tetramethycyclopropanecarbonylurea, in rats. Drug Metab Dispos 2005; 33:1538-46. [PMID: 16037415 DOI: 10.1124/dmd.105.005637] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The pharmacokinetics and metabolism of 2,2,3,3-tetramethylcyclopropanecarbonylurea (TMCU), a potent anticonvulsant compound, were studied in male Sprague-Dawley rats following i.v. (5 mg/kg), oral (20 mg/kg), and i.p. (20 mg/kg) administrations. Urine samples were analyzed by gas chromatography-mass spectrometry (GC/MS) and liquid chromatography-mass spectrometry. Plasma samples were analyzed by GC/MS. TMCU absolute bioavailability was 83% and 90% following oral and i.p. dosing, respectively. Following i.p. administration, the peak plasma concentration (C(max)) obtained 45 min after dosing was 15.4 mg/l. Following oral dosing, C(max) was 6.5 mg/l, and it was reached after 4 h. The disposition kinetics of TMCU in rats was adequately described by a one-compartment open body model. TMCU is well distributed into the extravascular tissues with volume of distribution (V(ss)) of 0.87 l/kg and undergoes extensive metabolism. Only a small fraction of TMCU excreted unmetabolized in the urine (6.3 +/- 0.8%). trans-2-Hydroxymethyl-2,3,3-trimethylcyclopropanecarbonylurea (OH-TMCU) was a predominant metabolite of TMCU. Its structure was established by NMR and X-ray crystallography. Following i.p. administration of 5 and 20 mg/kg TMCU, the drug was excreted in the urine as OH-TMCU at an extent of 28.3 +/- 2.6% and 42.1 +/- 3.8%, respectively. A portion of OH-TMCU was excreted in the urine as TMCU sulfate and TMCU glucuronide.
Collapse
Affiliation(s)
- Eyal Sobol
- Department of Pharmaceutics, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, P.O.B. 12065 Ein Karem, Jerusalem 91120, Israel
| | | | | | | | | | | |
Collapse
|
30
|
Eyal S, Yagen B, Shimshoni J, Bialer M. Histone deacetylases inhibition and tumor cells cytotoxicity by CNS-active VPA constitutional isomers and derivatives. Biochem Pharmacol 2005; 69:1501-8. [PMID: 15857614 DOI: 10.1016/j.bcp.2005.02.012] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2005] [Revised: 02/22/2005] [Accepted: 02/22/2005] [Indexed: 10/25/2022]
Abstract
The tumor cells toxicity of the antiepileptic drug valproic acid (VPA) has been associated with the inhibition of histone deacetylases (HDACs). We have assessed, in comparison to VPA, the HDACs inhibition and tumor cells cytotoxicities of CNS-active VPA's constitutional isomers, valnoctic acid (VCA), propylisopropylacetic acid (PIA), diisopropylacetic acid (DIA), VPA's cyclopropyl analogue 2,2,3,3-tetramethylcyclopropanecarboxylic acid (TMCA) and VPA's metabolites, 2-ene-VPA and 4-ene-VPA, all possessing, as does VPA, eight carbon atoms in their structures. The aim was to define structural components of the VPA molecule that are involved in HDACs inhibition and tumor cells cytotoxicity. HDACs inhibition by the above-mentioned compounds was estimated using an acetylated lysine substrate and HeLa nuclear extract as a HDACs source. SW620 cells were used for assessing HDACs inhibition in vivo. The cytotoxicity of these compounds was assessed in SW620 and 1106mel cells. HDAC inhibition potency was the highest for VPA and 4-ene-VPA (IC(50)=1.5mM each). 2-Ene-VPA inhibited HDACs with IC(50)=2.8mM. IC(50) values of the other tested compounds for HDACs inhibition were higher than 5mM, 4-ene-VPA and VPA induced histone hyperacetylation in SW620 cells. 4-Ene-VPA and VPA at 2mM each were also most potent in reducing cell viability, to 59+/-2.0% and 67.3+/-5.4%, respectively, compared to control. VCA, PIA, DIA, TMCA, 2-ene-VPA and valpromide (VPD) did not reduce viability to less than 80%. All tested compounds did not significantly affect the cell cycle of SW620 cells. In conclusion, in comparison to the VPA derivatives and constitutional isomers tested in this study, VPA had the optimal chemical structure in terms of HDACs inhibition and tumor cells cytotoxicity.
Collapse
Affiliation(s)
- Sara Eyal
- Department of Pharmaceutics, School of Pharmacy, Faculty of Medicine, Ein Kerem, The Hebrew University of Jerusalem, Jerusalem, Israel
| | | | | | | |
Collapse
|