1
|
Luque FJ, Muñoz-Torrero D. Acetylcholinesterase: A Versatile Template to Coin Potent Modulators of Multiple Therapeutic Targets. Acc Chem Res 2024. [PMID: 38333993 PMCID: PMC10882973 DOI: 10.1021/acs.accounts.3c00617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
ConspectusThe enzyme acetylcholinesterase (AChE) hydrolyzes the neurotransmitter acetylcholine (ACh) at cholinergic synapses of the peripheral and central nervous system. Thus, it is a prime therapeutic target for diseases that occur with a cholinergic deficit, prominently Alzheimer's disease (AD). Working at a rate near the diffusion limit, it is considered one of nature's most efficient enzymes. This is particularly meritorious considering that its catalytic site is buried at the bottom of a 20-Å-deep cavity, which is preceded by a bottleneck with a diameter shorter than that of the trimethylammonium group of ACh, which has to transit through it. Not only the particular architecture and amino acid composition of its active site gorge enable AChE to largely overcome this potential drawback, but it also offers plenty of possibilities for the design of novel inhibitor drug candidates.In this Account, we summarize our different approaches to colonize the vast territory of the AChE gorge in the pursuit of increased occupancy and hence of inhibitors with increased affinity. We pioneered the use of molecular hybridization to design inhibitors with extended binding at the CAS, reaching affinities among the highest reported so far. Further application of molecular hybridization to grow CAS extended binders by attaching a PAS-binding moiety through suitable linkers led to multisite inhibitors that span the whole length of the gorge, reaching the PAS and even interacting with midgorge residues. We show that multisite AChE inhibitors can also be successfully designed the other way around, by starting with an optimized PAS binder and then colonizing the gorge and CAS. Molecular hybridization from a multicomponent reaction-derived PAS binder afforded a single-digit picomolar multisite AChE inhibitor with more than 1.5 million-fold increased potency relative to the initial hit. This illustrates the powerful alliance between molecular hybridization and gorge occupancy for designing potent AChE inhibitors.Beyond AChE, we show that the stereoelectronic requirements imposed by the AChE gorge for multisite binding have a templating effect that leads to compounds that are active in other key biological targets in AD and other neurological and non-neurological diseases, such as BACE-1 and the aggregation of amyloidogenic proteins (β-amyloid, tau, α-synuclein, prion protein, transthyretin, and human islet amyloid polypeptide). The use of known pharmacophores for other targets as the PAS-binding motif enables the rational design of multitarget agents with multisite binding within AChE and activity against a variety of targets or pathological events, such as oxidative stress and the neuroinflammation-modulating enzyme soluble epoxide hydrolase, among others.We hope that our results can contribute to the development of drug candidates that can modify the course of neurodegeneration and may inspire future works that exploit the power of molecular hybridization in other proteins featuring large cavities.
Collapse
Affiliation(s)
- F Javier Luque
- Department of Nutrition, Food Science and Gastronomy, Faculty of Pharmacy and Food Sciences, E-08921 Santa Coloma de Gramenet, Spain
- Institute of Biomedicine (IBUB), University of Barcelona, E-08028 Barcelona, Spain
- Institute of Theoretical and Computational Chemistry (IQTC), University of Barcelona, E-08028 Barcelona, Spain
| | - Diego Muñoz-Torrero
- Institute of Biomedicine (IBUB), University of Barcelona, E-08028 Barcelona, Spain
- Laboratory of Medicinal Chemistry (CSIC Associated Unit), Faculty of Pharmacy and Food Sciences, University of Barcelona, E-08028 Barcelona, Spain
| |
Collapse
|
2
|
Khudina OG, Grishchenko MV, Makhaeva GF, Kovaleva NV, Boltneva NP, Rudakova EV, Lushchekina SV, Shchegolkov EV, Borisevich SS, Burgart YV, Saloutin VI, Charushin VN. Conjugates of amiridine and thiouracil derivatives as effective inhibitors of butyrylcholinesterase with the potential to block β-amyloid aggregation. Arch Pharm (Weinheim) 2024; 357:e2300447. [PMID: 38072670 DOI: 10.1002/ardp.202300447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/29/2023] [Accepted: 10/25/2023] [Indexed: 02/04/2024]
Abstract
New amiridine-thiouracil conjugates with different substituents in the pyrimidine fragment (R = CH3 , CF2 Н, CF3 , (CF2 )2 H) and different spacer lengths (n = 1-3) were synthesized. The conjugates rather weakly inhibit acetylcholinesterase (AChE) and exhibit high inhibitory activity (IC50 up to 0.752 ± 0.021 µM) and selectivity to butyrylcholinesterase (BChE), which increases with spacer elongation; the lead compounds are 11c, 12c, and 13c. The conjugates are mixed-type reversible inhibitors of both cholinesterases and practically do not inhibit the structurally related off-target enzyme carboxylesterase. The results of molecular docking to AChE and BChE are consistent with the experiment on enzyme inhibition and explain the structure-activity relationships, including the rather low anti-AChE activity and the high anti-BChE activity of long-chain conjugates. The lead compounds displace propidium from the AChE peripheral anion site (PAS) at the level of the reference compound donepezil, which agrees with the mixed-type mechanism of AChE inhibition and the main mode of binding of conjugates in the active site of AChE due to the interaction of the pyrimidine moiety with the PAS. This indicates the ability of the studied conjugates to block AChE-induced aggregation of β-amyloid, thereby exerting a disease-modifying effect. According to computer calculations, all synthesized conjugates have an ADME profile acceptable for drugs.
Collapse
Affiliation(s)
- Olga G Khudina
- Postovsky Institute of Organic Synthesis, Urals Branch of the Russian Academy of Sciences, Ekaterinburg, Russia
| | - Maria V Grishchenko
- Postovsky Institute of Organic Synthesis, Urals Branch of the Russian Academy of Sciences, Ekaterinburg, Russia
| | - Galina F Makhaeva
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry (IPAC RAS), Russian Academy of Sciences, Chernogolovka, Russia
| | - Nadezhda V Kovaleva
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry (IPAC RAS), Russian Academy of Sciences, Chernogolovka, Russia
| | - Natalia P Boltneva
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry (IPAC RAS), Russian Academy of Sciences, Chernogolovka, Russia
| | - Elena V Rudakova
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry (IPAC RAS), Russian Academy of Sciences, Chernogolovka, Russia
| | - Sofya V Lushchekina
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry (IPAC RAS), Russian Academy of Sciences, Chernogolovka, Russia
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Moscow, Russia
| | - Evgeny V Shchegolkov
- Postovsky Institute of Organic Synthesis, Urals Branch of the Russian Academy of Sciences, Ekaterinburg, Russia
| | - Sophia S Borisevich
- Institute of Cyber Intelligence Systems, National Research Nuclear University MEPhI, Moscow, Russia
| | - Yanina V Burgart
- Postovsky Institute of Organic Synthesis, Urals Branch of the Russian Academy of Sciences, Ekaterinburg, Russia
| | - Victor I Saloutin
- Postovsky Institute of Organic Synthesis, Urals Branch of the Russian Academy of Sciences, Ekaterinburg, Russia
| | - Valery N Charushin
- Postovsky Institute of Organic Synthesis, Urals Branch of the Russian Academy of Sciences, Ekaterinburg, Russia
| |
Collapse
|
3
|
Khunnawutmanotham N, Sooknual P, Batsomboon P, Ploypradith P, Chimnoi N, Patigo A, Saparpakorn P, Techasakul S. Synthesis, Antiacetylcholinesterase Activity, and Molecular Dynamics Simulation of Aporphine-benzylpyridinium Conjugates. ACS Med Chem Lett 2024; 15:132-142. [PMID: 38229749 PMCID: PMC10788943 DOI: 10.1021/acsmedchemlett.3c00467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/04/2023] [Accepted: 12/06/2023] [Indexed: 01/18/2024] Open
Abstract
A series of aporphines conjugated with an N-benzylpyridinium moiety through an amide-bond linkage were synthesized and evaluated for their acetylcholinesterase (AChE) inhibitory activity. The conjugation of the N-benzylpyridinium group significantly enhanced the AChE inhibitory activity of the core aporphine. The halogen substituents on the benzyl group affected the activity of the conjugates. Both (S)- and (R)-enantiomers of three conjugates with low IC50 values were synthesized and evaluated for their activities. All (S)-enantiomers exhibited higher activity than the corresponding (R)-enantiomers. The (S)-enantiomer of 2-chlorobenzylpyridinium-containing aporphine was the most potent inhibitor in this study with an IC50 value of 0.06 ± 0.003 μM. Molecular dynamics simulation analysis revealed that both enantiomers can interact with the AChE binding site, whereas the (S)-enantiomer possessed slightly stronger interaction than the (R)-enantiomer, presumably because of their different orientations, as evidenced by molecular docking. The N-benzylpyridinium dehydroaporphine conjugates were also synthesized but were less active than the corresponding aporphine conjugates.
Collapse
Affiliation(s)
- Nisachon Khunnawutmanotham
- Laboratory
of Organic Synthesis, Chulabhorn Research
Institute, 54 Kamphaeng Phet 6 Road, Talat Bang Khen, Lak Si, Bangkok 10210, Thailand
| | - Pichjira Sooknual
- Laboratory
of Organic Synthesis, Chulabhorn Research
Institute, 54 Kamphaeng Phet 6 Road, Talat Bang Khen, Lak Si, Bangkok 10210, Thailand
| | - Paratchata Batsomboon
- Laboratory
of Medicinal Chemistry, Chulabhorn Research
Institute, 54 Kamphaeng
Phet 6 Road, Talat Bang Khen, Lak Si, Bangkok 10210, Thailand
| | - Poonsakdi Ploypradith
- Laboratory
of Medicinal Chemistry, Chulabhorn Research
Institute, 54 Kamphaeng
Phet 6 Road, Talat Bang Khen, Lak Si, Bangkok 10210, Thailand
- Program
in Chemical Sciences, Chulabhorn Graduate
Institute, 54 Kamphaeng
Phet 6 Road, Talat Bang Khen, Lak Si, Bangkok 10210, Thailand
| | - Nitirat Chimnoi
- Laboratory
of Natural Products, Chulabhorn Research
Institute, 54 Kamphaeng
Phet 6 Road, Talat Bang Khen, Lak Si, Bangkok 10210, Thailand
| | - Apinya Patigo
- Department
of Chemistry, Faculty of Science, Kasetsart
University, Bangkok 10900, Thailand
| | | | - Supanna Techasakul
- Laboratory
of Organic Synthesis, Chulabhorn Research
Institute, 54 Kamphaeng Phet 6 Road, Talat Bang Khen, Lak Si, Bangkok 10210, Thailand
| |
Collapse
|
4
|
Makhaeva GF, Kovaleva NV, Rudakova EV, Boltneva NP, Lushchekina SV, Astakhova TY, Timokhina EN, Serkov IV, Proshin AN, Soldatova YV, Poletaeva DA, Faingold II, Mumyatova VA, Terentiev AA, Radchenko EV, Palyulin VA, Bachurin SO, Richardson RJ. Combining Experimental and Computational Methods to Produce Conjugates of Anticholinesterase and Antioxidant Pharmacophores with Linker Chemistries Affecting Biological Activities Related to Treatment of Alzheimer's Disease. Molecules 2024; 29:321. [PMID: 38257233 PMCID: PMC10820264 DOI: 10.3390/molecules29020321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/19/2023] [Accepted: 12/27/2023] [Indexed: 01/24/2024] Open
Abstract
Effective therapeutics for Alzheimer's disease (AD) are in great demand worldwide. In our previous work, we responded to this need by synthesizing novel drug candidates consisting of 4-amino-2,3-polymethylenequinolines conjugated with butylated hydroxytoluene via fixed-length alkylimine or alkylamine linkers (spacers) and studying their bioactivities pertaining to AD treatment. Here, we report significant extensions of these studies, including the use of variable-length spacers and more detailed biological characterizations. Conjugates were potent inhibitors of acetylcholinesterase (AChE, the most active was 17d IC50 15.1 ± 0.2 nM) and butyrylcholinesterase (BChE, the most active was 18d: IC50 5.96 ± 0.58 nM), with weak inhibition of off-target carboxylesterase. Conjugates with alkylamine spacers were more effective cholinesterase inhibitors than alkylimine analogs. Optimal inhibition for AChE was exhibited by cyclohexaquinoline and for BChE by cycloheptaquinoline. Increasing spacer length elevated the potency against both cholinesterases. Structure-activity relationships agreed with docking results. Mixed-type reversible AChE inhibition, dual docking to catalytic and peripheral anionic sites, and propidium iodide displacement suggested the potential of hybrids to block AChE-induced β-amyloid (Aβ) aggregation. Hybrids also exhibited the inhibition of Aβ self-aggregation in the thioflavin test; those with a hexaquinoline ring and C8 spacer were the most active. Conjugates demonstrated high antioxidant activity in ABTS and FRAP assays as well as the inhibition of luminol chemiluminescence and lipid peroxidation in mouse brain homogenates. Quantum-chemical calculations explained antioxidant results. Computed ADMET profiles indicated favorable blood-brain barrier permeability, suggesting the CNS activity potential. Thus, the conjugates could be considered promising multifunctional agents for the potential treatment of AD.
Collapse
Affiliation(s)
- Galina F. Makhaeva
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Chernogolovka 142432, Russia; (G.F.M.); (N.V.K.); (E.V.R.); (N.P.B.); (S.V.L.); (I.V.S.); (A.N.P.); (E.V.R.); (V.A.P.); (S.O.B.)
| | - Nadezhda V. Kovaleva
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Chernogolovka 142432, Russia; (G.F.M.); (N.V.K.); (E.V.R.); (N.P.B.); (S.V.L.); (I.V.S.); (A.N.P.); (E.V.R.); (V.A.P.); (S.O.B.)
| | - Elena V. Rudakova
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Chernogolovka 142432, Russia; (G.F.M.); (N.V.K.); (E.V.R.); (N.P.B.); (S.V.L.); (I.V.S.); (A.N.P.); (E.V.R.); (V.A.P.); (S.O.B.)
| | - Natalia P. Boltneva
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Chernogolovka 142432, Russia; (G.F.M.); (N.V.K.); (E.V.R.); (N.P.B.); (S.V.L.); (I.V.S.); (A.N.P.); (E.V.R.); (V.A.P.); (S.O.B.)
| | - Sofya V. Lushchekina
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Chernogolovka 142432, Russia; (G.F.M.); (N.V.K.); (E.V.R.); (N.P.B.); (S.V.L.); (I.V.S.); (A.N.P.); (E.V.R.); (V.A.P.); (S.O.B.)
- Emanuel Institute of Biochemical Physics Russian Academy of Sciences, Moscow 119334, Russia
| | - Tatiana Y. Astakhova
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Chernogolovka 142432, Russia; (G.F.M.); (N.V.K.); (E.V.R.); (N.P.B.); (S.V.L.); (I.V.S.); (A.N.P.); (E.V.R.); (V.A.P.); (S.O.B.)
- Emanuel Institute of Biochemical Physics Russian Academy of Sciences, Moscow 119334, Russia
| | - Elena N. Timokhina
- Emanuel Institute of Biochemical Physics Russian Academy of Sciences, Moscow 119334, Russia
| | - Igor V. Serkov
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Chernogolovka 142432, Russia; (G.F.M.); (N.V.K.); (E.V.R.); (N.P.B.); (S.V.L.); (I.V.S.); (A.N.P.); (E.V.R.); (V.A.P.); (S.O.B.)
| | - Alexey N. Proshin
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Chernogolovka 142432, Russia; (G.F.M.); (N.V.K.); (E.V.R.); (N.P.B.); (S.V.L.); (I.V.S.); (A.N.P.); (E.V.R.); (V.A.P.); (S.O.B.)
| | - Yuliya V. Soldatova
- Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Chernogolovka 142432, Russia; (Y.V.S.); (D.A.P.); (I.I.F.); (V.A.M.); (A.A.T.)
| | - Darya A. Poletaeva
- Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Chernogolovka 142432, Russia; (Y.V.S.); (D.A.P.); (I.I.F.); (V.A.M.); (A.A.T.)
| | - Irina I. Faingold
- Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Chernogolovka 142432, Russia; (Y.V.S.); (D.A.P.); (I.I.F.); (V.A.M.); (A.A.T.)
| | - Viktoriya A. Mumyatova
- Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Chernogolovka 142432, Russia; (Y.V.S.); (D.A.P.); (I.I.F.); (V.A.M.); (A.A.T.)
| | - Alexey A. Terentiev
- Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Chernogolovka 142432, Russia; (Y.V.S.); (D.A.P.); (I.I.F.); (V.A.M.); (A.A.T.)
| | - Eugene V. Radchenko
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Chernogolovka 142432, Russia; (G.F.M.); (N.V.K.); (E.V.R.); (N.P.B.); (S.V.L.); (I.V.S.); (A.N.P.); (E.V.R.); (V.A.P.); (S.O.B.)
- Department of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Vladimir A. Palyulin
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Chernogolovka 142432, Russia; (G.F.M.); (N.V.K.); (E.V.R.); (N.P.B.); (S.V.L.); (I.V.S.); (A.N.P.); (E.V.R.); (V.A.P.); (S.O.B.)
- Department of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Sergey O. Bachurin
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Chernogolovka 142432, Russia; (G.F.M.); (N.V.K.); (E.V.R.); (N.P.B.); (S.V.L.); (I.V.S.); (A.N.P.); (E.V.R.); (V.A.P.); (S.O.B.)
| | - Rudy J. Richardson
- Department of Environmental Health Sciences, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
- Center of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA
- Michigan Institute for Computational Discovery and Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
5
|
Krishnamoorthi S, Iyaswamy A, Sreenivasmurthy SG, Thakur A, Vasudevan K, Kumar G, Guan XJ, Lu K, Gaurav I, Su CF, Zhu Z, Liu J, Kan Y, Jayaraman S, Deng Z, Chua KK, Cheung KH, Yang Z, Song JX, Li M. PPARɑ Ligand Caudatin Improves Cognitive Functions and Mitigates Alzheimer's Disease Defects By Inducing Autophagy in Mice Models. J Neuroimmune Pharmacol 2023; 18:509-528. [PMID: 37682502 DOI: 10.1007/s11481-023-10083-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 08/15/2023] [Indexed: 09/09/2023]
Abstract
The autophagy-lysosomal pathway (ALP) is a major cellular machinery involved in the clearance of aggregated proteins in Alzheimer disease (AD). However, ALP is dramatically impaired during AD pathogenesis via accumulation of toxic amyloid beta (Aβ) and phosphorylated-Tau (phospho-Tau) proteins in the brain. Therefore, activation of ALP may prevent the increased production of Aβ and phospho-Tau in AD. Peroxisome proliferator-activated receptor alpha (PPARα), a transcription factor that can activate autophagy, and transcriptionally regulate transcription factor EB (TFEB) which is a key regulator of ALP. This suggests that targeting PPARα, to reduce ALP impairment, could be a viable strategy for AD therapy. In this study, we investigated the anti-AD activity of Caudatin, an active constituent of Cynanchum otophyllum (a traditional Chinese medicinal herb, Qing Yang Shen; QYS). We found that Caudatin can bind to PPARα as a ligand and augment the expression of ALP in microglial cells and in the brain of 3XTg-AD mice model. Moreover, Caudatin could activate PPARα and transcriptionally regulates TFEB-augmented lysosomal degradation of Aβ and phosphor-Tau aggregates in AD cell models. Oral administration of Caudatin decreased AD pathogenesis and ameliorated the cognitive dysfunction in 3XTg-AD mouse model. Conclusively, Caudatin can be a potential AD therapeutic agent via activation of PPARα-dependent ALP.
Collapse
Affiliation(s)
- Senthilkumar Krishnamoorthi
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong , SAR, China
- Centre for Trans-disciplinary Research, Department of Pharmacology, Saveetha Dental College and Hospitals, Chennai, Tamil Nadu, India
| | - Ashok Iyaswamy
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong , SAR, China
- Department of Biochemistry, Karpagam Academy of Higher Education, Coimbatore, India
- Institute for Research and Continuing Education, Hong Kong Baptist University, Shenzhen, China
| | | | - Abhimanyu Thakur
- Pritzker School of Molecular Engineering, Ben May Department for Cancer Research, The University of Chicago, Illinois, USA
| | | | - Gaurav Kumar
- Department of Clinical Research, School of Biological and Biomedical Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India
| | - Xin-Jie Guan
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong , SAR, China
- Institute for Research and Continuing Education, Hong Kong Baptist University, Shenzhen, China
| | - Kejia Lu
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong , SAR, China
- Institute for Research and Continuing Education, Hong Kong Baptist University, Shenzhen, China
| | - Isha Gaurav
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong , SAR, China
| | - Cheng-Fu Su
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong , SAR, China
- Institute for Research and Continuing Education, Hong Kong Baptist University, Shenzhen, China
| | - Zhou Zhu
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong , SAR, China
- Institute for Research and Continuing Education, Hong Kong Baptist University, Shenzhen, China
| | - Jia Liu
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong , SAR, China
- Institute for Research and Continuing Education, Hong Kong Baptist University, Shenzhen, China
| | - Yuxuan Kan
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong , SAR, China
| | - Selvaraj Jayaraman
- Centre of Molecular Medicine, Department of Biochemistry, Saveetha Dental College and Hospitals, Chennai, Tamil Nadu, India
| | - Zhiqiang Deng
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong , SAR, China
- Institute for Research and Continuing Education, Hong Kong Baptist University, Shenzhen, China
| | - Ka Kit Chua
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong , SAR, China
- Institute for Research and Continuing Education, Hong Kong Baptist University, Shenzhen, China
| | - King-Ho Cheung
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong , SAR, China
- Institute for Research and Continuing Education, Hong Kong Baptist University, Shenzhen, China
| | - Zhijun Yang
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong , SAR, China
| | - Ju-Xian Song
- Medical College of Acupuncture-Moxibustion and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Min Li
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong , SAR, China.
- Institute for Research and Continuing Education, Hong Kong Baptist University, Shenzhen, China.
| |
Collapse
|
6
|
Makhaeva GF, Kovaleva NV, Rudakova EV, Boltneva NP, Lushchekina SV, Astakhova TY, Timokhina EN, Serebryakova OG, Shchepochkin AV, Averkov MA, Utepova IA, Demina NS, Radchenko EV, Palyulin VA, Fisenko VP, Bachurin SO, Chupakhin ON, Charushin VN, Richardson RJ. Derivatives of 9-phosphorylated acridine as butyrylcholinesterase inhibitors with antioxidant activity and the ability to inhibit β-amyloid self-aggregation: potential therapeutic agents for Alzheimer's disease. Front Pharmacol 2023; 14:1219980. [PMID: 37654616 PMCID: PMC10466253 DOI: 10.3389/fphar.2023.1219980] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 07/18/2023] [Indexed: 09/02/2023] Open
Abstract
We investigated the inhibitory activities of novel 9-phosphoryl-9,10-dihydroacridines and 9-phosphorylacridines against acetylcholinesterase (AChE), butyrylcholinesterase (BChE), and carboxylesterase (CES). We also studied the abilities of the new compounds to interfere with the self-aggregation of β-amyloid (Aβ42) in the thioflavin test as well as their antioxidant activities in the ABTS and FRAP assays. We used molecular docking, molecular dynamics simulations, and quantum-chemical calculations to explain experimental results. All new compounds weakly inhibited AChE and off-target CES. Dihydroacridines with aryl substituents in the phosphoryl moiety inhibited BChE; the most active were the dibenzyloxy derivative 1d and its diphenethyl bioisostere 1e (IC50 = 2.90 ± 0.23 µM and 3.22 ± 0.25 µM, respectively). Only one acridine, 2d, an analog of dihydroacridine, 1d, was an effective BChE inhibitor (IC50 = 6.90 ± 0.55 μM), consistent with docking results. Dihydroacridines inhibited Aβ42 self-aggregation; 1d and 1e were the most active (58.9% ± 4.7% and 46.9% ± 4.2%, respectively). All dihydroacridines 1 demonstrated high ABTS•+-scavenging and iron-reducing activities comparable to Trolox, but acridines 2 were almost inactive. Observed features were well explained by quantum-chemical calculations. ADMET parameters calculated for all compounds predicted favorable intestinal absorption, good blood-brain barrier permeability, and low cardiac toxicity. Overall, the best results were obtained for two dihydroacridine derivatives 1d and 1e with dibenzyloxy and diphenethyl substituents in the phosphoryl moiety. These compounds displayed high inhibition of BChE activity and Aβ42 self-aggregation, high antioxidant activity, and favorable predicted ADMET profiles. Therefore, we consider 1d and 1e as lead compounds for further in-depth studies as potential anti-AD preparations.
Collapse
Affiliation(s)
- Galina F. Makhaeva
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Chernogolovka, Russia
| | - Nadezhda V. Kovaleva
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Chernogolovka, Russia
| | - Elena V. Rudakova
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Chernogolovka, Russia
| | - Natalia P. Boltneva
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Chernogolovka, Russia
| | - Sofya V. Lushchekina
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Chernogolovka, Russia
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Moscow, Russia
| | - Tatiana Yu Astakhova
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Moscow, Russia
| | - Elena N. Timokhina
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Moscow, Russia
| | - Olga G. Serebryakova
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Chernogolovka, Russia
| | - Alexander V. Shchepochkin
- Institute of Organic Synthesis, Russian Academy of Sciences, Yekaterinburg, Russia
- Department of Organic and Biomolecular Chemistry, Ural Federal University, Yekaterinburg, Russia
| | - Maxim A. Averkov
- Institute of Organic Synthesis, Russian Academy of Sciences, Yekaterinburg, Russia
- Department of Organic and Biomolecular Chemistry, Ural Federal University, Yekaterinburg, Russia
| | - Irina A. Utepova
- Institute of Organic Synthesis, Russian Academy of Sciences, Yekaterinburg, Russia
- Department of Organic and Biomolecular Chemistry, Ural Federal University, Yekaterinburg, Russia
| | - Nadezhda S. Demina
- Institute of Organic Synthesis, Russian Academy of Sciences, Yekaterinburg, Russia
| | - Eugene V. Radchenko
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Chernogolovka, Russia
- Department of Chemistry, Lomonosov Moscow State University, Moscow, Russia
| | - Vladimir A. Palyulin
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Chernogolovka, Russia
- Department of Chemistry, Lomonosov Moscow State University, Moscow, Russia
| | - Vladimir P. Fisenko
- Department of Pharmacology of the Institute of Biodesign and Complex System Modeling of Biomedical Science & Technology Park of Sechenov I.M., First Moscow State Medical University, Moscow, Russia
| | - Sergey O. Bachurin
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Chernogolovka, Russia
| | - Oleg N. Chupakhin
- Institute of Organic Synthesis, Russian Academy of Sciences, Yekaterinburg, Russia
- Department of Organic and Biomolecular Chemistry, Ural Federal University, Yekaterinburg, Russia
| | - Valery N. Charushin
- Institute of Organic Synthesis, Russian Academy of Sciences, Yekaterinburg, Russia
- Department of Organic and Biomolecular Chemistry, Ural Federal University, Yekaterinburg, Russia
| | - Rudy J. Richardson
- Department of Pharmacology of the Institute of Biodesign and Complex System Modeling of Biomedical Science & Technology Park of Sechenov I.M., First Moscow State Medical University, Moscow, Russia
- Department of Environmental Health Sciences, University of Michigan, Ann Arbor, MI, United States
- Department of Neurology, University of Michigan, Ann Arbor, MI, United States
- Center of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
7
|
Richmond V, Falcone BN, Maier MS, Arroyo Máñez P. Putting the Puzzle Together To Get the Whole Picture: Molecular Basis of the Affinity of Two Steroid Derivatives to Acetylcholinesterase. ACS OMEGA 2023; 8:25610-25622. [PMID: 37483177 PMCID: PMC10357547 DOI: 10.1021/acsomega.3c03749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 06/14/2023] [Indexed: 07/25/2023]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder that has no cure because its etiology is still unknown, and its main treatment is the administration of acetylcholinesterase (AChE) inhibitors. The study of the mechanism of action of this family of compounds is critical for the design of new more potent and specific inhibitors. In this work, we study the molecular basis of an uncompetitive inhibitor (compound 1, 2β, 3α-dihydroxy-5α-cholestan-6-one disulfate), which we have proved to be a peripheral anionic site (PAS)-binding AChE inhibitor. The pipeline designed in this work is key to the development of other PAS inhibitors that not only inhibit the esterase action of the enzyme but could also modulate the non-cholinergic functions of AChE linked to the process of amylogenesis. Our studies showed that 1 inhibits the enzyme not simply by blocking the main gate but by an allosteric mechanism. A detailed and careful analysis of the ligand binding position and the protein dynamics, particularly regarding their secondary gates and active site, was necessary to conclude this. The same analysis was executed with an inactive analogue (compound 2, 2β, 3α-dihydroxy-5α-cholestan-6-one). Our first computational results showed no differences in affinity to AChE between both steroids, making further analysis necessary. This work highlights the variables to be considered and develops a refined methodology, for the successful design of new potent dual-action drugs for AD, particularly PAS inhibitors, an attractive strategy to combat AD.
Collapse
Affiliation(s)
- Victoria Richmond
- Facultad
de Ciencias Exactas y Naturales, Departamento de Química Orgánica, Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina
- Unidad
de Microanálisis y Métodos Físicos aplicados
a la Química Orgánica (UMYMFOR), CONICET-Universidad de Buenos Aires, Pabellón 2 de Ciudad Universitaria, Buenos Aires C1428EGA, Argentina
| | - Bruno N. Falcone
- Facultad
de Ciencias Exactas y Naturales, Departamento de Química Orgánica, Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina
- Unidad
de Microanálisis y Métodos Físicos aplicados
a la Química Orgánica (UMYMFOR), CONICET-Universidad de Buenos Aires, Pabellón 2 de Ciudad Universitaria, Buenos Aires C1428EGA, Argentina
| | - Marta S. Maier
- Facultad
de Ciencias Exactas y Naturales, Departamento de Química Orgánica, Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina
- Unidad
de Microanálisis y Métodos Físicos aplicados
a la Química Orgánica (UMYMFOR), CONICET-Universidad de Buenos Aires, Pabellón 2 de Ciudad Universitaria, Buenos Aires C1428EGA, Argentina
| | - Pau Arroyo Máñez
- Instituto
Interuniversitario de Investigación de Reconocimiento Molecular
y Desarrollo Tecnológico (IDM), Universitat
Politècnica de València, Universitat de València, Doctor Moliner 50, Burjassot, Valencia 46100, Spain
- Departamento
de Química Orgánica, Universitat
de València, Doctor Moliner 50, Burjassot, Valencia 46100, Spain
| |
Collapse
|
8
|
Azmy EM, Nassar IF, Hagras M, Fawzy IM, Hegazy M, Mokhtar MM, Yehia AM, Ismail NS, Lashin WH. New indole derivatives as multitarget anti-Alzheimer's agents: synthesis, biological evaluation and molecular dynamics. Future Med Chem 2023; 15:473-495. [PMID: 37125532 DOI: 10.4155/fmc-2022-0228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023] Open
Abstract
Background: Alzheimer's disease is a neurological disorder that causes brain cells to shrink and die. Aim: Thirteen novel 'oxathiolanyl', 'pyrazolyl' and 'pyrimidinyl' indole derivatives were designed and synthesized as anti-Alzheimer's disease treatment. Method: In vitro enzyme assay was performed against both AChE and BChE enzymes. In addition, antioxidant assay and cytotoxicity on a normal cell line were determined. Molecular docking and dynamic simulations were conducted to confirm the binding mode in both esterases' active sites. In silico absorption, distribution, metabolism, excretion and toxicity studies were also carried out. Results & conclusion: Compounds 5, 7 and 11 exhibited superior inhibitory activity against acetylcholinesterase and butyrylcholinesterase, with IC50 values of 0.042 and 3.003 μM, 2.54 and 0.207 μM and 0.052 and 2.529 μM, respectively, compared with donepezil.
Collapse
Affiliation(s)
- Eman M Azmy
- Department of Chemistry, Faculty of Women, Ain Shams University, Heliopolis, Cairo, 11457, Egypt
| | - Ibrahim F Nassar
- Faculty of Specific Education, Ain Shams University, 365 Ramsis Street, Abassia, Cairo, Egypt
| | - Mohamed Hagras
- Department of Pharmaceutical Organic Chemistry, College of Pharmacy (Boys), Al-Azhar University, Cairo, 11884, Egypt
| | - Iten M Fawzy
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Future University in Egypt, Cairo, 11835, Egypt
| | - Maghawry Hegazy
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| | - Mahmoud Mohamed Mokhtar
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| | - Amr Mohamed Yehia
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| | - Nasser Sm Ismail
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Future University in Egypt, Cairo, 11835, Egypt
| | - Walaa H Lashin
- Department of Chemistry, Faculty of Women, Ain Shams University, Heliopolis, Cairo, 11457, Egypt
| |
Collapse
|
9
|
Bingul M, Ercan S, Boga M, Bingul AA. Antioxidant and Anticholinesterase Potentials of Novel 4,6-Dimethoxyindole based Unsymmetrical Azines: Synthesis, Molecular Modeling, In Silico ADME Prediction and Biological Evaluations. Polycycl Aromat Compd 2023. [DOI: 10.1080/10406638.2023.2193417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
Affiliation(s)
- Murat Bingul
- Department of Basic Pharmaceutical Sciences, Faculty of Pharmacy, Dicle University, Diyarbakır, Turkey
| | - Selami Ercan
- Deparment of Chemistry, Faculty of Science and Art, Batman University, Batman, Turkey
| | - Mehmet Boga
- Department of Analytical Chemistry, Faculty of Pharmacy, Dicle University, Diyarbakır, Turkey
| | | |
Collapse
|
10
|
Waiker D, Verma A, Saraf P, T.A. G, Krishnamurthy S, Chaurasia RN, Shrivastava SK. Development and Evaluation of Some Molecular Hybrids of N-(1-Benzylpiperidin-4-yl)-2-((5-phenyl-1,3,4-oxadiazol-2-yl)thio) as Multifunctional Agents to Combat Alzheimer's Disease. ACS OMEGA 2023; 8:9394-9414. [PMID: 36936338 PMCID: PMC10018501 DOI: 10.1021/acsomega.2c08061] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 02/22/2023] [Indexed: 06/18/2023]
Abstract
A series of some novel compounds (SD-1-17) were designed following a molecular hybridization approach, synthesized, and biologically tested for hAChE, hBChE, hBACE-1, and Aβ aggregation inhibition potential to improve cognition and memory functions associated with Alzheimer's disease. Compounds SD-4 and SD-6 have shown multifunctional inhibitory profiles against hAChE, hBChE, and hBACE-1 enzymes in vitro. Compounds SD-4 and SD-6 have also shown anti-Aβ aggregation potential in self- and acetylcholinesterase (AChE)-induced thioflavin T assay. Both compounds have shown a significant propidium iodide (PI) displacement from the cholinesterase-peripheral active site (ChE-PAS) region with excellent blood-brain barrier (BBB) permeability and devoid of neurotoxic liabilities. Compound SD-6 ameliorates cognition and memory functions in scopolamine- and Aβ-induced behavioral rat models of Alzheimer's disease (AD). Ex vivo biochemical estimation revealed a significant decrease in malonaldehyde (MDA) and AChE levels, while a substantial increase of superoxide dismutase (SOD), catalase, glutathione (GSH), and ACh levels is seen in the hippocampal brain homogenates. The histopathological examination of brain slices also revealed no sign of neuronal or any tissue damage in the SD-6-treated experimental animals. The in silico molecular docking results of compounds SD-4 and SD-6 showed their binding with hChE-catalytic anionic site (CAS), PAS, and the catalytic dyad residues of the hBACE-1 enzymes. A 100 ns molecular dynamic simulation study of both compounds with ChE and hBACE-1 enzymes also confirmed the ligand-protein complex's stability, while quikprop analysis suggested drug-like properties of the compounds.
Collapse
Affiliation(s)
- Digambar
Kumar Waiker
- Pharmaceutical
Chemistry Research Laboratory, Department of Pharmaceutical Engineering
and Technology, Indian Institute of Technology-Banaras
Hindu University, Varanasi 221005, India
| | - Akash Verma
- Pharmaceutical
Chemistry Research Laboratory, Department of Pharmaceutical Engineering
and Technology, Indian Institute of Technology-Banaras
Hindu University, Varanasi 221005, India
| | - Poorvi Saraf
- Pharmaceutical
Chemistry Research Laboratory, Department of Pharmaceutical Engineering
and Technology, Indian Institute of Technology-Banaras
Hindu University, Varanasi 221005, India
| | - Gajendra T.A.
- Neurotherapeutics
Research Laboratory, Department of Pharmaceutical Engineering and
Technology, Indian Institute of Technology-Banaras
Hindu University, Varanasi 221005, India
| | - Sairam Krishnamurthy
- Neurotherapeutics
Research Laboratory, Department of Pharmaceutical Engineering and
Technology, Indian Institute of Technology-Banaras
Hindu University, Varanasi 221005, India
| | - Rameshwar Nath Chaurasia
- Institute
of Medical Sciences, Faculty of Medicine, Department of Neurology, Banaras Hindu University, Varanasi 221005, India
| | - Sushant Kumar Shrivastava
- Pharmaceutical
Chemistry Research Laboratory, Department of Pharmaceutical Engineering
and Technology, Indian Institute of Technology-Banaras
Hindu University, Varanasi 221005, India
| |
Collapse
|
11
|
Conjugates of Tacrine and Salicylic Acid Derivatives as New Promising Multitarget Agents for Alzheimer's Disease. Int J Mol Sci 2023; 24:ijms24032285. [PMID: 36768608 PMCID: PMC9916969 DOI: 10.3390/ijms24032285] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/09/2023] [Accepted: 01/18/2023] [Indexed: 01/26/2023] Open
Abstract
A series of previously synthesized conjugates of tacrine and salicylamide was extended by varying the structure of the salicylamide fragment and using salicylic aldehyde to synthesize salicylimine derivatives. The hybrids exhibited broad-spectrum biological activity. All new conjugates were potent inhibitors of acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) with selectivity toward BChE. The structure of the salicylamide moiety exerted little effect on anticholinesterase activity, but AChE inhibition increased with spacer elongation. The most active conjugates were salicylimine derivatives: IC50 values of the lead compound 10c were 0.0826 µM (AChE) and 0.0156 µM (BChE), with weak inhibition of the off-target carboxylesterase. The hybrids were mixed-type reversible inhibitors of both cholinesterases and displayed dual binding to the catalytic and peripheral anionic sites of AChE in molecular docking, which, along with experimental results on propidium iodide displacement, suggested their potential to block AChE-induced β-amyloid aggregation. All conjugates inhibited Aβ42 self-aggregation in the thioflavin test, and inhibition increased with spacer elongation. Salicylimine 10c and salicylamide 5c with (CH2)8 spacers were the lead compounds for inhibiting Aβ42 self-aggregation, which was corroborated by molecular docking to Aβ42. ABTS•+-scavenging activity was highest for salicylamides 5a-c, intermediate for salicylimines 10a-c, low for F-containing salicylamides 7, and non-existent for methoxybenzoylamides 6 and difluoromethoxybenzoylamides 8. In the FRAP antioxidant (AO) assay, the test compounds displayed little or no activity. Quantum chemical analysis and molecular dynamics (MD) simulations with QM/MM potentials explained the AO structure-activity relationships. All conjugates were effective chelators of Cu2+, Fe2+, and Zn2+, with molar compound/metal (Cu2+) ratios of 2:1 (5b) and ~1:1 (10b). Conjugates exerted comparable or lower cytotoxicity than tacrine on mouse hepatocytes and had favorable predicted intestinal absorption and blood-brain barrier permeability. The overall results indicate that the synthesized conjugates are promising new multifunctional agents for the potential treatment of AD.
Collapse
|
12
|
Ali I, Rafique R, Khan KM, Chigurupati S, Ji X, Wadood A, Rehman AU, Salar U, Alyamani NM, Hameed S, Taha M, Hussain S, Perveen S. Benzofuran Hybrids as Cholinesterase (AChE and BChE) Inhibitors: In Vitro, In Silico, and Kinetic Studies. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2022; 48:1322-1337. [DOI: 10.1134/s1068162022060061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 07/19/2022] [Accepted: 07/25/2022] [Indexed: 10/23/2023]
|
13
|
Synthesis and study of the biological activity of thiourea-containing amiridine derivatives as potential multi-target drugs for the treatment of Alzheimer’s disease. Russ Chem Bull 2022. [DOI: 10.1007/s11172-022-3668-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
14
|
Rasool A, Batool Z, Khan M, Halim SA, Shafiq Z, Temirak A, Salem MA, Ali TE, Khan A, Al-Harrasi A. Bis-pharmacophore of cinnamaldehyde-clubbed thiosemicarbazones as potent carbonic anhydrase-II inhibitors. Sci Rep 2022; 12:16095. [PMID: 36167735 PMCID: PMC9515202 DOI: 10.1038/s41598-022-19975-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 09/07/2022] [Indexed: 11/24/2022] Open
Abstract
Here, we report the synthesis, carbonic anhydrase-II (CA-II) inhibition and structure–activity relationship studies of cinnamaldehyde-clubbed thiosemicarbazones derivatives. The derivatives showed potent activities in the range of 10.3 ± 0.62–46.6 ± 0.62 µM. Among all the synthesized derivatives, compound 3n (IC50 = 10.3 ± 0.62 µM), 3g (IC50 = 12.1 ± 1.01 µM), and 3h (IC50 = 13.4 ± 0.52 µM) showed higher inhibitory activity as compared to the standard inhibitor, acetazolamide. Furthermore, molecular docking of all the active compounds was carried out to predict their behavior of molecular binding. The docking results indicate that the most active hit (3n) specifically mediate ionic interaction with the Zn ion in the active site of CA-II. Furthermore, the The199 and Thr200 support the binding of thiosemicarbazide moiety of 3n, while Gln 92 supports the interactions of all the compounds by hydrogen bonding. In addition to Gln92, few other residues including Asn62, Asn67, The199, and Thr200 play important role in the stabilization of these molecules in the active site by specifically providing H-bonds to the thiosemicarbazide moiety of compounds. The docking score of active hits are found in range of − 6.75 to − 4.42 kcal/mol, which indicates that the computational prediction correlates well with the in vitro results.
Collapse
Affiliation(s)
- Asif Rasool
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan, 60800, Pakistan
| | - Zahra Batool
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan, 60800, Pakistan
| | - Majid Khan
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, Sultanate of Oman
| | - Sobia Ahsan Halim
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, Sultanate of Oman
| | - Zahid Shafiq
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan, 60800, Pakistan. .,Department of Pharmaceutical and Medicinal Chemistry, University of Bonn, An der Immenburg 4, 53121, Bonn, Germany.
| | - Ahmed Temirak
- National Research Centre, Chemistry of Natural and Microbial Products Department, Pharmaceutical and Drug Industries Research Institute, Dokki, P.O. Box 12622, Cairo, Egypt
| | - Mohamed A Salem
- Department of Chemistry, Faculty of Science and Arts, King Khalid University, Muhayil, Assir, Saudi Arabia.,Department of Chemistry, Faculty of Science, Al-Azhar University, 11284 Nasr City, Cairo, Egypt
| | - Tarik E Ali
- Department of Chemistry, Faculty of Science, King Khalid University, Abha, Saudi Arabia.,Department of Chemistry, Faculty of Education, Ain Shams University, Cairo, Egypt
| | - Ajmal Khan
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, Sultanate of Oman.
| | - Ahmed Al-Harrasi
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, Sultanate of Oman.
| |
Collapse
|
15
|
Hasanvand Z, Motahari R, Nadri H, Moghimi S, Foroumadi R, Ayati A, Akbarzadeh T, Bukhari SNA, Foroumadi A. Novel 3-aminobenzofuran derivatives as multifunctional agents for the treatment of Alzheimer’s disease. Front Chem 2022; 10:882191. [PMID: 36017161 PMCID: PMC9395670 DOI: 10.3389/fchem.2022.882191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 07/05/2022] [Indexed: 11/13/2022] Open
Abstract
A novel multifunctional series of 3-aminobenzofuran derivatives 5a-p were designed and synthesized as potent inhibitors of acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE). The target compounds 5a-p were prepared via a three-step reaction, starting from 2-hydroxy benzonitrile. In vitro anti-cholinesterase activity exhibited that most of the compounds had potent acetyl- and butyrylcholinesterase inhibitory activity. In particular, compound 5f containing 2-fluorobenzyl moiety showed the best inhibitory activity. Furthermore, this compound showed activity on self- and AChE-induced Aβ-aggregation and MTT assay against PC12 cells. The kinetic study revealed that compound 5f showed mixed-type inhibition on AChE. Based on these results, compound 5f can be considered as a novel multifunctional structural unit against Alzheimer’s disease.
Collapse
Affiliation(s)
- Zaman Hasanvand
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Rasoul Motahari
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamid Nadri
- Department of Medicinal Chemistry, Faculty of Pharmacy and Pharmaceutical Sciences Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Setareh Moghimi
- Drug Design and Development Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| | - Roham Foroumadi
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Adileh Ayati
- Drug Design and Development Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| | - Tahmineh Akbarzadeh
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Syed Nasir Abbas Bukhari
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka, Saudi Arabia
| | - Alireza Foroumadi
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Drug Design and Development Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
- *Correspondence: Alireza Foroumadi,
| |
Collapse
|
16
|
Wang X, Zhang T, Chen X, Xu Y, Li Z, Yang Y, Du X, Jiang Z, Ni H. Simultaneous Inhibitory Effects of All-Trans Astaxanthin on Acetylcholinesterase and Oxidative Stress. Mar Drugs 2022; 20:md20040247. [PMID: 35447920 PMCID: PMC9032561 DOI: 10.3390/md20040247] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/26/2022] [Accepted: 03/30/2022] [Indexed: 02/04/2023] Open
Abstract
Alzheimer´s disease is a global neurodegenerative health concern. To prevent the disease, the simultaneous inhibition of acetylcholinesterase and oxidative stress is an efficient approach. In this study, the inhibition effect of all-trans astaxanthin mainly from marine organisms on acetylcholinesterase and oxidative stress was evaluated by a chemical-based method in vitro and cell assay model. The results show that all-trans astaxanthin was a reversible competitive inhibitor and exhibited a strong inhibition effect with half inhibitory concentration (IC50 value) of 8.64 μmol/L. Furthermore, all-trans astaxanthin inhibited oxidative stress through reducing malondialdehyde content and increasing the activity of superoxide dismutase as well as catalase. All-trans astaxanthin could induce the changes of the secondary structure to reduce acetylcholinesterase activity. Molecular-docking analysis reveals that all-trans astaxanthin prevented substrate from binding to acetylcholinesterase by occupying the space of the active pocket to cause the inhibition. Our finding suggests that all-trans astaxanthin might be a nutraceutical supplement for Alzheimer´s disease prevention.
Collapse
Affiliation(s)
- Xin Wang
- College of Food and Biological Engineering, Jimei University, Xiamen 361021, China; (X.W.); (T.Z.); (X.C.); (Y.X.); (Y.Y.); (Z.J.); (H.N.)
| | - Tao Zhang
- College of Food and Biological Engineering, Jimei University, Xiamen 361021, China; (X.W.); (T.Z.); (X.C.); (Y.X.); (Y.Y.); (Z.J.); (H.N.)
| | - Xiaochen Chen
- College of Food and Biological Engineering, Jimei University, Xiamen 361021, China; (X.W.); (T.Z.); (X.C.); (Y.X.); (Y.Y.); (Z.J.); (H.N.)
| | - Yating Xu
- College of Food and Biological Engineering, Jimei University, Xiamen 361021, China; (X.W.); (T.Z.); (X.C.); (Y.X.); (Y.Y.); (Z.J.); (H.N.)
| | - Zhipeng Li
- College of Food and Biological Engineering, Jimei University, Xiamen 361021, China; (X.W.); (T.Z.); (X.C.); (Y.X.); (Y.Y.); (Z.J.); (H.N.)
- Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Xiamen 361021, China
- Research Center of Food Biotechnology, Xiamen 361021, China
- Key Laboratory of Systemic Utilization and In-Depth Processing of Economic Seaweed, Xiamen Southern Ocean Technology Center of China, Xiamen 361021, China
- Correspondence: (Z.L.); (X.D.); Tel.: +86-13696920945 (X.D.)
| | - Yuanfan Yang
- College of Food and Biological Engineering, Jimei University, Xiamen 361021, China; (X.W.); (T.Z.); (X.C.); (Y.X.); (Y.Y.); (Z.J.); (H.N.)
- Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Xiamen 361021, China
- Research Center of Food Biotechnology, Xiamen 361021, China
- Key Laboratory of Systemic Utilization and In-Depth Processing of Economic Seaweed, Xiamen Southern Ocean Technology Center of China, Xiamen 361021, China
| | - Xiping Du
- College of Food and Biological Engineering, Jimei University, Xiamen 361021, China; (X.W.); (T.Z.); (X.C.); (Y.X.); (Y.Y.); (Z.J.); (H.N.)
- Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Xiamen 361021, China
- Research Center of Food Biotechnology, Xiamen 361021, China
- Key Laboratory of Systemic Utilization and In-Depth Processing of Economic Seaweed, Xiamen Southern Ocean Technology Center of China, Xiamen 361021, China
- Correspondence: (Z.L.); (X.D.); Tel.: +86-13696920945 (X.D.)
| | - Zedong Jiang
- College of Food and Biological Engineering, Jimei University, Xiamen 361021, China; (X.W.); (T.Z.); (X.C.); (Y.X.); (Y.Y.); (Z.J.); (H.N.)
- Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Xiamen 361021, China
- Research Center of Food Biotechnology, Xiamen 361021, China
- Key Laboratory of Systemic Utilization and In-Depth Processing of Economic Seaweed, Xiamen Southern Ocean Technology Center of China, Xiamen 361021, China
| | - Hui Ni
- College of Food and Biological Engineering, Jimei University, Xiamen 361021, China; (X.W.); (T.Z.); (X.C.); (Y.X.); (Y.Y.); (Z.J.); (H.N.)
- Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Xiamen 361021, China
- Research Center of Food Biotechnology, Xiamen 361021, China
- Key Laboratory of Systemic Utilization and In-Depth Processing of Economic Seaweed, Xiamen Southern Ocean Technology Center of China, Xiamen 361021, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| |
Collapse
|
17
|
Makhaeva GF, Kovaleva NV, Boltneva NP, Rudakova EV, Lushchekina SV, Astakhova TY, Serkov IV, Proshin AN, Radchenko EV, Palyulin VA, Korabecny J, Soukup O, Bachurin SO, Richardson RJ. Bis-Amiridines as Acetylcholinesterase and Butyrylcholinesterase Inhibitors: N-Functionalization Determines the Multitarget Anti-Alzheimer’s Activity Profile. Molecules 2022; 27:molecules27031060. [PMID: 35164325 PMCID: PMC8839189 DOI: 10.3390/molecules27031060] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/26/2022] [Accepted: 01/28/2022] [Indexed: 11/16/2022] Open
Abstract
Using two ways of functionalizing amiridine—acylation with chloroacetic acid chloride and reaction with thiophosgene—we have synthesized new homobivalent bis-amiridines joined by two different spacers—bis-N-acyl-alkylene (3) and bis-N-thiourea-alkylene (5) —as potential multifunctional agents for the treatment of Alzheimer’s disease (AD). All compounds exhibited high inhibitory activity against acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) with selectivity for BChE. These new agents displayed negligible carboxylesterase inhibition, suggesting a probable lack of untoward drug–drug interactions arising from hydrolytic biotransformation. Compounds 3 with bis-N-acyl-alkylene spacers were more potent inhibitors of both cholinesterases compared to compounds 5 and the parent amiridine. The lead compounds 3a–c exhibited an IC50(AChE) = 2.9–1.4 µM, IC50(BChE) = 0.13–0.067 µM, and 14–18% propidium displacement at 20 μM. Kinetic studies of compounds 3a and 5d indicated mixed-type reversible inhibition. Molecular docking revealed favorable poses in both catalytic and peripheral AChE sites. Propidium displacement from the peripheral site by the hybrids suggests their potential to hinder AChE-assisted Aβ42 aggregation. Conjugates 3 had no effect on Aβ42 self-aggregation, whereas compounds 5c–e (m = 4, 5, 6) showed mild (13–17%) inhibition. The greatest difference between conjugates 3 and 5 was their antioxidant activity. Bis-amiridines 3 with N-acylalkylene spacers were nearly inactive in ABTS and FRAP tests, whereas compounds 5 with thiourea in the spacers demonstrated high antioxidant activity, especially in the ABTS test (TEAC = 1.2–2.1), in agreement with their significantly lower HOMO-LUMO gap values. Calculated ADMET parameters for all conjugates predicted favorable blood–brain barrier permeability and intestinal absorption, as well as a low propensity for cardiac toxicity. Thus, it was possible to obtain amiridine derivatives whose potencies against AChE and BChE equaled (5) or exceeded (3) that of the parent compound, amiridine. Overall, based on their expanded and balanced pharmacological profiles, conjugates 5c–e appear promising for future optimization and development as multitarget anti-AD agents.
Collapse
Affiliation(s)
- Galina F. Makhaeva
- Institute of Physiologically Active Compounds, Russian Academy of Sciences, 142432 Chernogolovka, Russia; (G.F.M.); (N.V.K.); (N.P.B.); (E.V.R.); (S.V.L.); (I.V.S.); (A.N.P.); (S.O.B.)
| | - Nadezhda V. Kovaleva
- Institute of Physiologically Active Compounds, Russian Academy of Sciences, 142432 Chernogolovka, Russia; (G.F.M.); (N.V.K.); (N.P.B.); (E.V.R.); (S.V.L.); (I.V.S.); (A.N.P.); (S.O.B.)
| | - Natalia P. Boltneva
- Institute of Physiologically Active Compounds, Russian Academy of Sciences, 142432 Chernogolovka, Russia; (G.F.M.); (N.V.K.); (N.P.B.); (E.V.R.); (S.V.L.); (I.V.S.); (A.N.P.); (S.O.B.)
| | - Elena V. Rudakova
- Institute of Physiologically Active Compounds, Russian Academy of Sciences, 142432 Chernogolovka, Russia; (G.F.M.); (N.V.K.); (N.P.B.); (E.V.R.); (S.V.L.); (I.V.S.); (A.N.P.); (S.O.B.)
| | - Sofya V. Lushchekina
- Institute of Physiologically Active Compounds, Russian Academy of Sciences, 142432 Chernogolovka, Russia; (G.F.M.); (N.V.K.); (N.P.B.); (E.V.R.); (S.V.L.); (I.V.S.); (A.N.P.); (S.O.B.)
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, 119334 Moscow, Russia;
| | - Tatiana Yu. Astakhova
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, 119334 Moscow, Russia;
| | - Igor V. Serkov
- Institute of Physiologically Active Compounds, Russian Academy of Sciences, 142432 Chernogolovka, Russia; (G.F.M.); (N.V.K.); (N.P.B.); (E.V.R.); (S.V.L.); (I.V.S.); (A.N.P.); (S.O.B.)
| | - Alexey N. Proshin
- Institute of Physiologically Active Compounds, Russian Academy of Sciences, 142432 Chernogolovka, Russia; (G.F.M.); (N.V.K.); (N.P.B.); (E.V.R.); (S.V.L.); (I.V.S.); (A.N.P.); (S.O.B.)
| | - Eugene V. Radchenko
- Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia; (E.V.R.); (V.A.P.)
| | - Vladimir A. Palyulin
- Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia; (E.V.R.); (V.A.P.)
| | - Jan Korabecny
- Biomedical Research Centre, University Hospital Hradec Kralove, 500 05 Hradec Kralove, Czech Republic; (J.K.); (O.S.)
| | - Ondrej Soukup
- Biomedical Research Centre, University Hospital Hradec Kralove, 500 05 Hradec Kralove, Czech Republic; (J.K.); (O.S.)
| | - Sergey O. Bachurin
- Institute of Physiologically Active Compounds, Russian Academy of Sciences, 142432 Chernogolovka, Russia; (G.F.M.); (N.V.K.); (N.P.B.); (E.V.R.); (S.V.L.); (I.V.S.); (A.N.P.); (S.O.B.)
| | - Rudy J. Richardson
- Department of Environmental Health Sciences, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
- Center of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA
- Michigan Institute for Computational Discovery and Engineering, University of Michigan, Ann Arbor, MI 48109, USA
- Correspondence: ; Tel.: +1-734-936-0769
| |
Collapse
|
18
|
Tan J, Zhang X, Fang J, Shen H, Ding X, Zheng G. UHPLC With On-Line Coupled Biochemical Detection for High Throughput Screening of Acetylcholinesterase Inhibitors in Coptidis Rhizoma and Cortex Phellodendri. J Chromatogr Sci 2021; 60:433-439. [PMID: 34664067 DOI: 10.1093/chromsci/bmab115] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Indexed: 11/15/2022]
Abstract
We developed a new on-line method of ultra-performance liquid chromatography coupled with biochemical detection (UHPLC-BCD) to screen acetylcholinesterase (AChE) inhibitors in complex matrixes. Chromatography separation was performed using an Xtimate UHPLC C18 column (100 mm × 2.1 mm, 1.8 μm) and a gradient elution with methanol-0.1% formic acid at a flow rate of 0.08 mL/min. The BCD was based on a colorimetric method using Ellman's reagent, and the detection wavelength was at 405 nm. Galanthamine was used as a positive reference to validate the methodology. The detection and quantitation limits of the UHPLC-BCD method were 0.018 and 0.060 μg, respectively. A functional equation was generated in terms of the negative peak area (X) and galanthamine concentration (Y, μg/mL). The regression equation was Y = 0.0028X2 + 0.4574X + 50.7776, R2 = 0.9993. UHPLC-fourier-transform mass spectrometry detection results revealed that five alkaloids showed obvious AChE inhibitory activities including coptisin, epiberberine, jatrorrhizine, berberine and palmatine. The relative AChE inhibitory activities of jatrorrhizine, berberine and palmatine in the Coptidis Rhizoma sample were equal to that of 257.0, 2355 and 283.9 μg/mL of galanthamine, respectively. This work demonstrated that the UHPLC-BCD method was convenient and feasible, and could be widely used for the screening and activity evaluation of the bioactive components in the complex extracts.
Collapse
Affiliation(s)
- Jingling Tan
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, PR China.,Engineering Research Center for Drug Qualltiy Control, Hubei Institute for Drug Control, Wuhan 430075, PR China
| | - Xueqiong Zhang
- Department of Pharmaceutical Engineering Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, PR China
| | - Jiangji Fang
- Department of Pharmaceutical Engineering Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, PR China
| | - Huadan Shen
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, PR China
| | - Xiaoping Ding
- Engineering Research Center for Drug Qualltiy Control, Hubei Institute for Drug Control, Wuhan 430075, PR China
| | - Guohua Zheng
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, PR China
| |
Collapse
|
19
|
Ozten O, Zengin Kurt B, Sonmez F, Dogan B, Durdagi S. Synthesis, molecular docking and molecular dynamics studies of novel tacrine-carbamate derivatives as potent cholinesterase inhibitors. Bioorg Chem 2021; 115:105225. [PMID: 34364052 DOI: 10.1016/j.bioorg.2021.105225] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Accepted: 07/26/2021] [Indexed: 02/03/2023]
Abstract
In the present study, new tacrine derivatives containing carbamate group were synthesized and their acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) inhibition activities were evaluated. All synthesized compounds inhibited both cholinesterases at nanomolar level. Among them, ((1,2,3,4-tetrahydroacridin-9-yl)amino)ethyl(3-nitrophenyl) carbamate (6k) showed the best inhibitor activity against AChE and BuChE with IC50 value of 22.15 nM and 16.96 nM, respectively. The calculated selectivity index revealed that the synthesized compounds (exclude 6l) have stronger inhibitory activity against BuChE than AChE. The most selective compound was 2-((1,2,3,4-tetrahydroacridin-9-yl)amino)ethyl(4-methoxyphenyl)-carbamate (6b) with the selectivity index of 0.12. Molecular modeling approaches were employed to understand the interaction between the synthesized compounds and proteins. As carbamate derivatives can act as pseudo-irreversible inhibitors of AChE and BuChE, covalent docking approaches was applied to determine the binding modes of novel compounds at binding sites of cholinesterase enzymes.
Collapse
Affiliation(s)
- Ozge Ozten
- Sakarya University, Institute of Natural Sciences, 54055 Sakarya, Turkey
| | - Belma Zengin Kurt
- Bezmialem Vakif University, Faculty of Pharmacy, Department of Pharmaceutical Chemistry, 34093 Istanbul, Turkey
| | - Fatih Sonmez
- Sakarya University of Applied Sciences, Pamukova Vocational School, 54055 Sakarya, Turkey.
| | - Berna Dogan
- Department of Medicinal Biochemistry, Bahcesehir University, School of Medicine, Istanbul, Turkey; Computational Biology and Molecular Simulations Laboratory, Department of Biophysics, School of Medicine, Bahcesehir University, Istanbul, Turkey.
| | - Serdar Durdagi
- Computational Biology and Molecular Simulations Laboratory, Department of Biophysics, School of Medicine, Bahcesehir University, Istanbul, Turkey.
| |
Collapse
|
20
|
Design, synthesis and evaluation of cholinesterase hybrid inhibitors using a natural steroidal alkaloid as precursor. Bioorg Chem 2021; 111:104893. [PMID: 33882364 DOI: 10.1016/j.bioorg.2021.104893] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 04/01/2021] [Accepted: 04/03/2021] [Indexed: 01/05/2023]
Abstract
To date, Alzheimer's disease is the most alarming neurodegenerative disorder worldwide. This illness is multifactorial in nature and cholinesterase inhibitors have been the ones used in clinical treatments. In this context, many of these drugs selectively inhibit the acetylcholinesterase enzyme interacting in both the active site and the peripheric anionic site. Besides, some agents have exhibited extensive benefits being able to co-inhibit butyrylcholinesterase. In this contribution, a strategy previously explored by numerous authors is reported; the synthesis of hybrid cholinesterase inhibitors. This strategy uses a molecule of recognized high inhibitory activity (tacrine) together with a steroidal alkaloid of natural origin using different connectors. The biological assays demonstrated the improvement in the inhibitory activity compared to the alkaloidal precursor, together with the reinforcement of the interactions in multiple sites of the enzymatic cavity. This strategy should be explored and exploited in this area. Docking and molecular dynamic studies were performed to explain enzyme-ligand interactions, assisting a structure-activity relationship analysis.
Collapse
|
21
|
Design and synthesis of novel tacrine-indole hybrids as potential multitarget-directed ligands for the treatment of Alzheimer's disease. Future Med Chem 2021; 13:785-804. [PMID: 33829876 DOI: 10.4155/fmc-2020-0184] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The authors report on the synthesis and biological evaluation of new compounds whose structure combines tacrine and indole moieties. Tacrine-indole heterodimers were designed to inhibit cholinesterases and β-amyloid formation, and to cross the blood-brain barrier. The most potent new acetylcholinesterase inhibitors were compounds 3c and 4d (IC50 = 25 and 39 nM, respectively). Compound 3c displayed considerably higher selectivity for acetylcholinesterase relative to human plasma butyrylcholinesterase in comparison to compound 4d (selectivity index: IC50 [butyrylcholinesterase]/IC50 [acetylcholinesterase] = 3 and 0.6, respectively). Furthermore, compound 3c inhibited β-amyloid-dependent amyloid nucleation in the yeast-based prion nucleation assay and displayed no dsDNA destabilizing interactions with DNA. Compounds 3c and 4d displayed a high probability of crossing the blood-brain barrier. The results support the potential of 3c for future development as a dual-acting therapeutic agent in the prevention and/or treatment of Alzheimer's disease.
Collapse
|
22
|
Thakur A, Patil P, Sharma A, Flora S. Advances in the Development of Reactivators for the Treatment of Organophosphorus Inhibited Cholinesterase. CURR ORG CHEM 2020. [DOI: 10.2174/1385272824999201020203544] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Organophosphorus Compounds (OPCs) are used as pesticides to control pest, as
chemical weapons in military conflict and unfortunately in the terrorist attack. These compounds
are irreversible inhibitors of acetylcholinesterase, resulting in the accumulation of
acetylcholine that leads to severe health complications which may be ended with the death of
the victim. Current antidotes used for reactivation of organophosphorus inhibited acetylcholinesterase
(OP-AChE) are not able to cross the blood-brain barrier efficiently, therefore being
incapable to reactivate OP-AChE of the central nervous system. Due to limitations with
current antidotes, there is an urgent need for new effective antidotes that could be included in
the treatment regimen of OP poisoning. In this direction, comprehensive work has been done
to improve the permeability of existing antidotes using a variety of strategies that include
synthesis of oxime bonded to peripheral site binding moiety via an alkyl, aryl, or heteroatom-containing linker, synthesis
of sugar oximes, and prodrug of 2-PAM, incorporating fluorine and chlorine in the structure of charged oximes.
Other classes of compounds such as the mannich base, N-substituted hydroxyimino acetamide, alkylating
agents, have been investigated for reactivation of OP-AChE. This review comprises the development of various
classes of reactivators with the aim of either enhancing blood-brain permeability of existing antidotes or discovering
a new class of reactivators.
Collapse
Affiliation(s)
- Ashima Thakur
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Raebareli, India
| | - Pooja Patil
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Raebareli, India
| | - Abha Sharma
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Raebareli, India
| | - S.J.S. Flora
- Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research, Raebareli, India
| |
Collapse
|
23
|
Makhaeva GF, Kovaleva NV, Rudakova EV, Boltneva NP, Lushchekina SV, Faingold II, Poletaeva DA, Soldatova YV, Kotelnikova RA, Serkov IV, Ustinov AK, Proshin AN, Radchenko EV, Palyulin VA, Richardson RJ. New Multifunctional Agents Based on Conjugates of 4-Amino-2,3-polymethylenequinoline and Butylated Hydroxytoluene for Alzheimer's Disease Treatment. Molecules 2020; 25:molecules25245891. [PMID: 33322783 PMCID: PMC7763995 DOI: 10.3390/molecules25245891] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 12/08/2020] [Accepted: 12/09/2020] [Indexed: 01/18/2023] Open
Abstract
New hybrids of 4-amino-2,3-polymethylenequinoline with different sizes of the aliphatic ring linked to butylated hydroxytoluene (BHT) by enaminoalkyl (7) or aminoalkyl (8) spacers were synthesized as potential multifunctional agents for Alzheimer's disease (AD) treatment. All compounds were potent inhibitors of acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) with selectivity toward BChE. Lead compound 8c, 2,6-di-tert-butyl-4-{[2-(7,8,9,10- tetrahydro-6H-cyclohepta[b]quinolin-11-ylamino)-ethylimino]-methyl}-phenol exhibited an IC50(AChE) = 1.90 ± 0.16 µM, IC50(BChE) = 0.084 ± 0.008 µM, and 13.6 ± 1.2% propidium displacement at 20 μM. Compounds possessed low activity against carboxylesterase, indicating likely absence of clinically unwanted drug-drug interactions. Kinetics were consistent with mixed-type reversible inhibition of both cholinesterases. Docking indicated binding to catalytic and peripheral AChE sites; peripheral site binding along with propidium displacement suggest the potential of the hybrids to block AChE-induced β-amyloid aggregation, a disease-modifying effect. Compounds demonstrated high antioxidant activity in ABTS and FRAP assays as well as inhibition of luminol chemiluminescence and lipid peroxidation in mouse brain homogenates. Conjugates 8 with amine-containing spacers were better antioxidants than those with enamine spacers 7. Computational ADMET profiles for all compounds predicted good blood-brain barrier distribution (permeability), good intestinal absorption, and medium cardiac toxicity risk. Overall, based on their favorable pharmacological and ADMET profiles, conjugates 8 appear promising as candidates for AD therapeutics.
Collapse
Affiliation(s)
- Galina F. Makhaeva
- Institute of Physiologically Active Compounds Russian Academy of Sciences, 142432 Chernogolovka, Russia; (G.F.M.); (N.V.K.); (E.V.R.); (N.P.B.); (S.V.L.); (I.V.S.); (A.K.U.); (A.N.P.); (E.V.R.); (V.A.P.)
| | - Nadezhda V. Kovaleva
- Institute of Physiologically Active Compounds Russian Academy of Sciences, 142432 Chernogolovka, Russia; (G.F.M.); (N.V.K.); (E.V.R.); (N.P.B.); (S.V.L.); (I.V.S.); (A.K.U.); (A.N.P.); (E.V.R.); (V.A.P.)
| | - Elena V. Rudakova
- Institute of Physiologically Active Compounds Russian Academy of Sciences, 142432 Chernogolovka, Russia; (G.F.M.); (N.V.K.); (E.V.R.); (N.P.B.); (S.V.L.); (I.V.S.); (A.K.U.); (A.N.P.); (E.V.R.); (V.A.P.)
| | - Natalia P. Boltneva
- Institute of Physiologically Active Compounds Russian Academy of Sciences, 142432 Chernogolovka, Russia; (G.F.M.); (N.V.K.); (E.V.R.); (N.P.B.); (S.V.L.); (I.V.S.); (A.K.U.); (A.N.P.); (E.V.R.); (V.A.P.)
| | - Sofya V. Lushchekina
- Institute of Physiologically Active Compounds Russian Academy of Sciences, 142432 Chernogolovka, Russia; (G.F.M.); (N.V.K.); (E.V.R.); (N.P.B.); (S.V.L.); (I.V.S.); (A.K.U.); (A.N.P.); (E.V.R.); (V.A.P.)
- Emanuel Institute of Biochemical Physics Russian Academy of Sciences, 119334 Moscow, Russia
| | - Irina I. Faingold
- Institute of Problems of Chemical Physics of Russian Academy of Sciences, 142432 Chernogolovka, Russia; (I.I.F.); (D.A.P.); (Y.V.S.); (R.A.K.)
| | - Darya A. Poletaeva
- Institute of Problems of Chemical Physics of Russian Academy of Sciences, 142432 Chernogolovka, Russia; (I.I.F.); (D.A.P.); (Y.V.S.); (R.A.K.)
| | - Yuliya V. Soldatova
- Institute of Problems of Chemical Physics of Russian Academy of Sciences, 142432 Chernogolovka, Russia; (I.I.F.); (D.A.P.); (Y.V.S.); (R.A.K.)
| | - Raisa A. Kotelnikova
- Institute of Problems of Chemical Physics of Russian Academy of Sciences, 142432 Chernogolovka, Russia; (I.I.F.); (D.A.P.); (Y.V.S.); (R.A.K.)
| | - Igor V. Serkov
- Institute of Physiologically Active Compounds Russian Academy of Sciences, 142432 Chernogolovka, Russia; (G.F.M.); (N.V.K.); (E.V.R.); (N.P.B.); (S.V.L.); (I.V.S.); (A.K.U.); (A.N.P.); (E.V.R.); (V.A.P.)
| | - Anatoly K. Ustinov
- Institute of Physiologically Active Compounds Russian Academy of Sciences, 142432 Chernogolovka, Russia; (G.F.M.); (N.V.K.); (E.V.R.); (N.P.B.); (S.V.L.); (I.V.S.); (A.K.U.); (A.N.P.); (E.V.R.); (V.A.P.)
| | - Alexey N. Proshin
- Institute of Physiologically Active Compounds Russian Academy of Sciences, 142432 Chernogolovka, Russia; (G.F.M.); (N.V.K.); (E.V.R.); (N.P.B.); (S.V.L.); (I.V.S.); (A.K.U.); (A.N.P.); (E.V.R.); (V.A.P.)
| | - Eugene V. Radchenko
- Institute of Physiologically Active Compounds Russian Academy of Sciences, 142432 Chernogolovka, Russia; (G.F.M.); (N.V.K.); (E.V.R.); (N.P.B.); (S.V.L.); (I.V.S.); (A.K.U.); (A.N.P.); (E.V.R.); (V.A.P.)
- Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Vladimir A. Palyulin
- Institute of Physiologically Active Compounds Russian Academy of Sciences, 142432 Chernogolovka, Russia; (G.F.M.); (N.V.K.); (E.V.R.); (N.P.B.); (S.V.L.); (I.V.S.); (A.K.U.); (A.N.P.); (E.V.R.); (V.A.P.)
- Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Rudy J. Richardson
- Department of Environmental Health Sciences, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
- Center of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA
- Michigan Institute for Computational Discovery and Engineering, University of Michigan, Ann Arbor, MI 48109, USA
- Correspondence: ; Tel.: +1-734-936-0769
| |
Collapse
|
24
|
Highly potent cholinesterase inhibition of geranylated xanthones from Garcinia fusca and molecular docking studies. Fitoterapia 2020; 146:104637. [DOI: 10.1016/j.fitote.2020.104637] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 05/23/2020] [Accepted: 05/23/2020] [Indexed: 12/20/2022]
|
25
|
New Hybrids of 4-Amino-2,3-polymethylene-quinoline and p-Tolylsulfonamide as Dual Inhibitors of Acetyl- and Butyrylcholinesterase and Potential Multifunctional Agents for Alzheimer's Disease Treatment. Molecules 2020; 25:molecules25173915. [PMID: 32867324 PMCID: PMC7504258 DOI: 10.3390/molecules25173915] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/24/2020] [Accepted: 08/24/2020] [Indexed: 01/31/2023] Open
Abstract
New hybrid compounds of 4-amino-2,3-polymethylene-quinoline containing different sizes of the aliphatic ring and linked to p-tolylsulfonamide with alkylene spacers of increasing length were synthesized as potential drugs for treatment of Alzheimer’s disease (AD). All compounds were potent inhibitors of acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) with selectivity toward BChE. The lead compound 4-methyl-N-(5-(1,2,3,4-tetrahydro-acridin-9-ylamino)-pentyl)-benzenesulfonamide (7h) exhibited an IC50 (AChE) = 0.131 ± 0.01 µM (five times more potent than tacrine), IC50(BChE) = 0.0680 ± 0.0014 µM, and 17.5 ± 1.5% propidium displacement at 20 µM. The compounds possessed low activity against carboxylesterase, indicating a likely absence of unwanted drug-drug interactions in clinical use. Kinetics studies were consistent with mixed-type reversible inhibition of both cholinesterases. Molecular docking demonstrated dual binding sites of the conjugates in AChE and clarified the differences in the structure-activity relationships for AChE and BChE inhibition. The conjugates could bind to the AChE peripheral anionic site and displace propidium, indicating their potential to block AChE-induced β-amyloid aggregation, thereby exerting a disease-modifying effect. All compounds demonstrated low antioxidant activity. Computational ADMET profiles predicted that all compounds would have good intestinal absorption, medium blood-brain barrier permeability, and medium cardiac toxicity risk. Overall, the results indicate that the novel conjugates show promise for further development and optimization as multitarget anti-AD agents.
Collapse
|
26
|
Pérez-Areales FJ, Garrido M, Aso E, Bartolini M, De Simone A, Espargaró A, Ginex T, Sabate R, Pérez B, Andrisano V, Puigoriol-Illamola D, Pallàs M, Luque FJ, Loza MI, Brea J, Ferrer I, Ciruela F, Messeguer A, Muñoz-Torrero D. Centrally Active Multitarget Anti-Alzheimer Agents Derived from the Antioxidant Lead CR-6. J Med Chem 2020; 63:9360-9390. [PMID: 32706255 DOI: 10.1021/acs.jmedchem.0c00528] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Oxidative stress is a major pathogenic factor in Alzheimer's disease, but it should not be tackled alone rather together with other key targets to derive effective treatments. The combination of the scaffold of the polar antioxidant lead 7-methoxy-2,2-dimethylchroman-6-ol (CR-6) with that of the lipophilic cholinesterase inhibitor 6-chlorotacrine results in compounds with favorable brain permeability and multiple activities in vitro (acetylcholinesterase, butyrylcholinesterase, β-site amyloid precursor protein (APP) cleaving enzyme-1 (BACE-1), and Aβ42 and tau aggregation inhibition). In in vivo studies on wild-type and APP/presenilin 1 (PS1) mice, two selected compounds were well tolerated and led to positive trends, albeit statistically nonsignificant in some cases, on memory performance, amyloid pathology (reduced amyloid burden and potentiated non-amyloidogenic APP processing), and oxidative stress (reduced cortical oxidized proteins and increased antioxidant enzymes superoxide dismutase 2 (SOD2), catalase, glutathione peroxidase 1 (GPX1), and heme oxygenase 1 (Hmox1) and transcription factor nuclear factor-erythroid 2-related factor 2 (Nrf2)). These compounds emerge as interesting brain-permeable multitarget compounds, with a potential as anti-Alzheimer agents beyond that of the original lead CR-6.
Collapse
Affiliation(s)
- F Javier Pérez-Areales
- Laboratory of Medicinal Chemistry (CSIC Associated Unit), Faculty of Pharmacy and Food Sciences, and Institute of Biomedicine (IBUB), University of Barcelona (UB), E-08028 Barcelona, Spain
| | - María Garrido
- Department of Biological Chemistry, Institute of Advanced Chemistry of Catalonia (IQAC-CSIC), E-08034 Barcelona, Spain
| | - Ester Aso
- Department of Pathology and Experimental Therapeutics, Neurosciences Institute, University of Barcelona (UB) and Bellvitge University Hospital-IDIBELL, E-08908 L'Hospitalet de Llobregat, Spain
| | - Manuela Bartolini
- Department of Pharmacy and Biotechnology, University of Bologna, I-40126 Bologna, Italy
| | - Angela De Simone
- Department of Drug Science and Technology, University of Turin, I-10125 Torino, Italy
| | - Alba Espargaró
- Department of Pharmacy, Pharmaceutical Technology and Physical-Chemistry, Faculty of Pharmacy and Food Sciences, and Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona (UB), E-08028 Barcelona, Spain
| | - Tiziana Ginex
- Department of Nutrition, Food Science and Gastronomy, Faculty of Pharmacy and Food Sciences, IBUB, and Institute of Theoretical and Computational Chemistry (IQTC), University of Barcelona (UB), E-08921 Santa Coloma de Gramenet, Spain
| | - Raimon Sabate
- Department of Pharmacy, Pharmaceutical Technology and Physical-Chemistry, Faculty of Pharmacy and Food Sciences, and Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona (UB), E-08028 Barcelona, Spain
| | - Belén Pérez
- Department of Pharmacology, Therapeutics, and Toxicology, Autonomous University of Barcelona, E-08193 Bellaterra, Spain
| | - Vincenza Andrisano
- Department for Life Quality Studies, University of Bologna, I-47921 Rimini, Italy
| | - Dolors Puigoriol-Illamola
- Pharmacology Section, Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, and Institute of Neuroscience (NeuroUB), University of Barcelona (UB), E-08028 Barcelona, Spain
| | - Mercè Pallàs
- Pharmacology Section, Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, and Institute of Neuroscience (NeuroUB), University of Barcelona (UB), E-08028 Barcelona, Spain
| | - F Javier Luque
- Department of Nutrition, Food Science and Gastronomy, Faculty of Pharmacy and Food Sciences, IBUB, and Institute of Theoretical and Computational Chemistry (IQTC), University of Barcelona (UB), E-08921 Santa Coloma de Gramenet, Spain
| | - María Isabel Loza
- BioFarma Research Group, Centro Singular de Investigación en Medicina Molecular y Enfermedades Crónicas (CIMUS), Universidade de Santiago de Compostela, Av. de Barcelona s/n, E-15782 Santiago de Compostela, Spain
| | - José Brea
- BioFarma Research Group, Centro Singular de Investigación en Medicina Molecular y Enfermedades Crónicas (CIMUS), Universidade de Santiago de Compostela, Av. de Barcelona s/n, E-15782 Santiago de Compostela, Spain
| | - Isidro Ferrer
- Department of Pathology and Experimental Therapeutics, Neurosciences Institute, University of Barcelona (UB) and Bellvitge University Hospital-IDIBELL, E-08908 L'Hospitalet de Llobregat, Spain.,CIBERNED, E-28031 Madrid, Spain
| | - Francisco Ciruela
- Department of Pathology and Experimental Therapeutics, Neurosciences Institute, University of Barcelona (UB) and Bellvitge University Hospital-IDIBELL, E-08908 L'Hospitalet de Llobregat, Spain
| | - Angel Messeguer
- Department of Biological Chemistry, Institute of Advanced Chemistry of Catalonia (IQAC-CSIC), E-08034 Barcelona, Spain
| | - Diego Muñoz-Torrero
- Laboratory of Medicinal Chemistry (CSIC Associated Unit), Faculty of Pharmacy and Food Sciences, and Institute of Biomedicine (IBUB), University of Barcelona (UB), E-08028 Barcelona, Spain
| |
Collapse
|
27
|
Bingul M, Ercan S, Boga M. The design of novel 4,6-dimethoxyindole based hydrazide-hydrazones: Molecular modeling, synthesis and anticholinesterase activity. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.128202] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
28
|
Abstract
Abstract
A new series of homobivalent Dimebon analogs, bis-γ-carbolines with alkylene, phenylenedialkylene, and triazole-containing spacers, was synthesized. Doubling the γ-carboline pharmacophore increased inhibitory potency against acetylcholinesterase (AChE) compared with Dimebon, while keeping Dimebon’s anti-butyrylcholinesterase activity; therefore, leading to inversion of selectivity. Molecular docking revealed the reasons for the increased anti-AChE activity and ability to block AChE-induced aggregation of β-amyloid for bis-γ-carbolines, which became double-site inhibitors of AChE. Conjugates with ditriazole-containing spacers were the most active antioxidants in both the ABTS-test and prevention of lipid peroxidation in brain homogenates without inhibiting the mitochondrial permeability transition (MPT). Conjugates with alkylene (4a–d), phenylenedialkylene (4e), and monotriazole (8) spacers were less active as antioxidants but prevented induction of the MPT and increased the calcium retention capacity of mitochondria. Lead compound 4e showed neuroprotective potential in a cellular calcium overload model of neurodegeneration. Computational studies showed that all the bis-γ-carbolines were expected to have high values for intestinal absorption and very good blood-brain barrier permeability along with good drug-likeness. Overall, the results showed that new homobivalent Dimebon analogs exhibit an expanded spectrum of biological activity and improved pharmacological properties, making them promising candidates for further research and optimization as multitarget agents for Alzheimer’s disease treatment.
Collapse
|
29
|
Jin Z, Zhang C, Liu M, Jiao S, Zhao J, Liu X, Lin H, Chi-Cheong Wan D, Hu C. Synthesis, biological activity, molecular docking studies of a novel series of 3-Aryl-7 H-thiazolo[3,2- b]-1,2,4-triazin-7-one derivatives as the acetylcholinesterase inhibitors. J Biomol Struct Dyn 2020; 39:2478-2489. [PMID: 32266865 DOI: 10.1080/07391102.2020.1753576] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
The acetylcholinesterase inhibitors play a critical role in the drug therapy for Alzheimer's disease. In this study, twenty-nine novel 3-aryl-7H-thiazolo[3,2-b]-1,2,4-triazin-7-one derivatives were synthesized and assayed for their human acetylcholinesterase (hAChE) inhibitory activities. Inhibitory ratio values of seventeen compounds were above 55% with 4c having the highest value as 77.19%. The compounds with the halogen atoms in the aromatic ring, and N,N-diethylamino or N,N-dimethylamino groups in the side chains at C-3 positions exhibited good inhibitory activity. SAR study was carried out by means of molecular docking technique. According to molecular docking results, the common interacting site for all compounds were found to be peripheral anionic site whereas highly active compounds were interacting with the catalytic active site too. HIGHLIGHTSA novel series of 3-aryl-7H-thiazolo[3,2-b]-1,2,4-triazin-7-one derivatives were synthesized and assayed for their human acetylcholinesterase (hAChE) inhibitory activities.The SAR study of the target 3-aryl-7H-thiazolo[3,2-b]-1,2,4-triazin-7-one derivatives was summarized.The active sites in the acetylcholinesterase were analyzed by molecular docking technique.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Zhe Jin
- Key Laboratory of Structure-based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, China
| | - Chao Zhang
- Key Laboratory of Structure-based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, China
| | - Miao Liu
- Key Laboratory of Structure-based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, China
| | - Simeng Jiao
- Key Laboratory of Structure-based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, China
| | - Jing Zhao
- Key Laboratory of Structure-based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, China
| | - Xiaoping Liu
- Key Laboratory of Structure-based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, China
| | - Huangquan Lin
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - David Chi-Cheong Wan
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Chun Hu
- Key Laboratory of Structure-based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, China
| |
Collapse
|
30
|
Aoyama H, Doura T. Selective acetylcholinesterase inhibitors derived from muscle relaxant dantrolene. Bioorg Med Chem Lett 2020; 30:126888. [DOI: 10.1016/j.bmcl.2019.126888] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 12/03/2019] [Accepted: 12/03/2019] [Indexed: 10/25/2022]
|
31
|
Tripathi A, Choubey PK, Sharma P, Seth A, Saraf P, Shrivastava SK. Design, synthesis, and biological evaluation of ferulic acid based 1,3,4-oxadiazole hybrids as multifunctional therapeutics for the treatment of Alzheimer’s disease. Bioorg Chem 2020; 95:103506. [DOI: 10.1016/j.bioorg.2019.103506] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 11/12/2019] [Accepted: 12/13/2019] [Indexed: 12/22/2022]
|
32
|
Alzheimer's Disease Pharmacotherapy in Relation to Cholinergic System Involvement. Biomolecules 2019; 10:biom10010040. [PMID: 31888102 PMCID: PMC7022522 DOI: 10.3390/biom10010040] [Citation(s) in RCA: 132] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 12/20/2019] [Accepted: 12/24/2019] [Indexed: 12/15/2022] Open
Abstract
Alzheimer’s disease, a major and increasing global health challenge, is an irreversible, progressive form of dementia, associated with an ongoing decline of brain functioning. The etiology of this disease is not completely understood, and no safe and effective anti-Alzheimer’s disease drug to prevent, stop, or reverse its evolution is currently available. Current pharmacotherapy concentrated on drugs that aimed to improve the cerebral acetylcholine levels by facilitating cholinergic neurotransmission through inhibiting cholinesterase. These compounds, recognized as cholinesterase inhibitors, offer a viable target across key sign domains of Alzheimer’s disease, but have a modest influence on improving the progression of this condition. In this paper, we sought to highlight the current understanding of the cholinergic system involvement in Alzheimer’s disease progression in relation to the recent status of the available cholinesterase inhibitors as effective therapeutics.
Collapse
|
33
|
Korabecny J, Spilovska K, Mezeiova E, Benek O, Juza R, Kaping D, Soukup O. A Systematic Review on Donepezil-based Derivatives as Potential Cholinesterase Inhibitors for Alzheimer’s Disease. Curr Med Chem 2019; 26:5625-5648. [DOI: 10.2174/0929867325666180517094023] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 02/02/2018] [Accepted: 05/11/2018] [Indexed: 01/06/2023]
Abstract
:
Alzheimer’s Disease (AD) is a multifactorial progressive neurodegenerative disorder
characterized by memory loss, disorientation, and gradual deterioration of intellectual capacity.
Its etiology has not been elucidated yet. To date, only one therapeutic approach has
been approved for the treatment of AD. The pharmacotherapy of AD has relied on noncompetitive
N-methyl-D-aspartate (NMDA) receptor antagonist - memantine, and acetylcholinesterase
(AChE) inhibitors (AChEIs) - tacrine, donepezil, rivastigmine and galantamine.
Donepezil was able to ameliorate the symptoms related to AD mainly via AChE, but also
through reduction of β-amyloid burden. This review presents the overview of donepezilrelated
compounds as potential anti-AD drugs developed on the basis of cholinergic hypothesis
to act as solely AChE and butyrylcholinesterase (BChE) inhibitors.
Collapse
Affiliation(s)
- Jan Korabecny
- National Institute of Mental Health, Topolova 748, 250 67 Klecany, Czech Republic
| | - Katarina Spilovska
- National Institute of Mental Health, Topolova 748, 250 67 Klecany, Czech Republic
| | - Eva Mezeiova
- National Institute of Mental Health, Topolova 748, 250 67 Klecany, Czech Republic
| | - Ondrej Benek
- National Institute of Mental Health, Topolova 748, 250 67 Klecany, Czech Republic
| | - Radomir Juza
- National Institute of Mental Health, Topolova 748, 250 67 Klecany, Czech Republic
| | - Daniel Kaping
- National Institute of Mental Health, Topolova 748, 250 67 Klecany, Czech Republic
| | - Ondrej Soukup
- National Institute of Mental Health, Topolova 748, 250 67 Klecany, Czech Republic
| |
Collapse
|
34
|
Pan T, Xie S, Zhou Y, Hu J, Luo H, Li X, Huang L. Dual functional cholinesterase and PDE4D inhibitors for the treatment of Alzheimer’s disease: Design, synthesis and evaluation of tacrine-pyrazolo[3,4-b]pyridine hybrids. Bioorg Med Chem Lett 2019; 29:2150-2152. [DOI: 10.1016/j.bmcl.2019.06.056] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Revised: 06/21/2019] [Accepted: 06/28/2019] [Indexed: 10/26/2022]
|
35
|
Mishra P, Sharma P, Tripathi PN, Gupta SK, Srivastava P, Seth A, Tripathi A, Krishnamurthy S, Shrivastava SK. Design and development of 1,3,4-oxadiazole derivatives as potential inhibitors of acetylcholinesterase to ameliorate scopolamine-induced cognitive dysfunctions. Bioorg Chem 2019; 89:103025. [DOI: 10.1016/j.bioorg.2019.103025] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 04/13/2019] [Accepted: 05/30/2019] [Indexed: 12/20/2022]
|
36
|
Srivastava P, Tripathi PN, Sharma P, Shrivastava SK. Design, synthesis, and evaluation of novel N-(4-phenoxybenzyl)aniline derivatives targeting acetylcholinesterase, β-amyloid aggregation and oxidative stress to treat Alzheimer's disease. Bioorg Med Chem 2019; 27:3650-3662. [PMID: 31288978 DOI: 10.1016/j.bmc.2019.07.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 06/29/2019] [Accepted: 07/02/2019] [Indexed: 01/16/2023]
Abstract
Novel hybrids N-(4-phenoxybenzyl)aniline were designed, synthesized, and evaluated for their potential AChE inhibitory activity along with antioxidant potential. The inhibitory potential (IC50) of synthesized analogs was evaluated against human cholinesterases (hAChE and hBChE) using Ellman's method. Among all the tested compounds, 42 with trimethoxybenzene substituent showed maximum hAChE inhibition with the competitive type of enzyme inhibition (IC50 = 1.32 µM; Ki = 0.879 µM). Further, parallel artificial membrane permeation assay (PAMPA-BBB) showed favorable BBB permeability by most of the synthesized compounds. Meanwhile, compound 42 also inhibited AChE-induced Aβ aggregation (39.5-66.9%) in thioflavin T assay. The in vivo behavioral studies showed dose-dependent improvement in learning and memory by compound 42. The ex vivo studies also affirmed the significant AChE inhibition and antioxidant potential of compound 42 in brain homogenates.
Collapse
Affiliation(s)
- Pavan Srivastava
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221 005 India
| | - Prabhash Nath Tripathi
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221 005 India
| | - Piyoosh Sharma
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221 005 India
| | - Sushant Kumar Shrivastava
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221 005 India.
| |
Collapse
|
37
|
Sánchez-Vidaña DI, Chow JKW, Hu SQ, Lau BWM, Han YF. Molecular Targets of Bis (7)-Cognitin and Its Relevance in Neurological Disorders: A Systematic Review. Front Neurosci 2019; 13:445. [PMID: 31143096 PMCID: PMC6521802 DOI: 10.3389/fnins.2019.00445] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 04/18/2019] [Indexed: 01/22/2023] Open
Abstract
Background: The exact mechanisms involved in the pathogenesis of neurodegenerative conditions are not fully known. The design of drugs that act on multiple targets represents a promising approach that should be explored for more effective clinical options for neurodegenerative disorders. B7C is s synthetic drug that has been studied for over 20 years and represents a promising multi-target drug for the treatment of neurodegenerative disorders, such as AD. Aims: The present systematic review, thus, aims at examining existing studies on the effect of B7C on different molecular targets and at discussing the relevance of B7C in neurological disorders. Methods: A list of predefined search terms was used to retrieve relevant articles from the databases of Embase, Pubmed, Scopus, and Web of Science. The selection of articles was done by two independent authors, who were considering articles concerned primarily with the evaluation of the effect of B7C on neurological disorders. Only full-text articles written in English were included; whereas, systematic reviews, meta-analyses, book chapters, conference subtracts, and computational studies were excluded. Results: A total of 2,266 articles were retrieved out of which 41 articles were included in the present systematic review. The effect of B7C on molecular targets, including AChE, BChE, BACE-1, NMDA receptor, GABA receptor, NOS, and Kv4.2 potassium channels was evaluated. Moreover, the studies that were included assessed the effect of B7C on biological processes, such as apoptosis, neuritogenesis, and amyloid beta aggregation. The animal studies examined in the review focused on the effect of B7C on cognition and memory. Conclusions: The beneficial effects observed on different molecular targets and biological processes relevant to neurological conditions confirm that B7C is a promising multi-target drug with the potential to treat neurological disorders.
Collapse
Affiliation(s)
| | - Jason Ka Wing Chow
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong, China
| | - Sheng Quan Hu
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, China
| | - Benson Wui Man Lau
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong, China
| | - Yi-Fan Han
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, China
| |
Collapse
|
38
|
Shamsimeymandi R, Pourshojaei Y, Eskandari K, Mohammadi-Khanaposhtani M, Abiri A, Khodadadi A, Langarizadeh A, Sharififar F, Amirheidari B, Akbarzadeh T, Lotfian H, Foroumadi A, Asadipour A. Design, synthesis, biological evaluation, and molecular dynamics of novel cholinesterase inhibitors as anti-Alzheimer's agents. Arch Pharm (Weinheim) 2019; 352:e1800352. [PMID: 31136018 DOI: 10.1002/ardp.201800352] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 04/09/2019] [Accepted: 04/12/2019] [Indexed: 11/08/2022]
Abstract
A series of novel chroman-4-one derivatives were designed and synthesized successfully with good to excellent yield (3a-l). In addition, the obtained products were evaluated for their cholinesterase (ChE) inhibitory activities. The results show that among the various synthesized compounds, analogs bearing the piperidinyl ethoxy side chain with 4-hydroxybenzylidene on the 3-positions of chroman-4-one (3l) showed the most potent activity with respect to acetylcholinesterase (anti-AChE activity; IC50 = 1.18 μM). In addition, the structure-activity relationship was studied and the results revealed that the electron-donating groups on the aryl ring of the 3-benzylidene fragment (3k, 3l) resulted in the designed compounds to be more potent ChE inhibitors in comparison with those having electron-withdrawing groups (3h). In this category, the strongest ChE inhibition was found for the compound containing piperidine as cyclic amine, and a hydroxyl group (for AChE, compound 3l) and fluoro group (for butyrylcholinesterase (BuChE, compound 3i) on the para-position of the aryl ring of the benzylidene group. The molecular docking and dynamics studies of the most potent compounds (3i and 3l against BuChE and AChE, respectively) demonstrated remarkable interactions with the binding pockets of the ChE enzymes and confirmed the results obtained through in vitro experiments.
Collapse
Affiliation(s)
- Reza Shamsimeymandi
- Department of Medicinal Chemistry, Faculty of Pharmacy and Pharmaceutics Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Yaghoub Pourshojaei
- Department of Medicinal Chemistry, Faculty of Pharmacy and Pharmaceutics Research Center, Kerman University of Medical Sciences, Kerman, Iran.,Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Khalil Eskandari
- Department of Medicinal Chemistry, Faculty of Pharmacy and Pharmaceutics Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Maryam Mohammadi-Khanaposhtani
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Ardavan Abiri
- Department of Medicinal Chemistry, Faculty of Pharmacy and Pharmaceutics Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Arash Khodadadi
- Department of Medicinal Chemistry, Faculty of Pharmacy and Pharmaceutics Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Amin Langarizadeh
- Department of Medicinal Chemistry, Faculty of Pharmacy and Pharmaceutics Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Fariba Sharififar
- Department of Pharmacognosy, School of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| | - Bagher Amirheidari
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| | - Tahmineh Akbarzadeh
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.,Persian Medicine and Pharmacy Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Hania Lotfian
- Persian Medicine and Pharmacy Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Alireza Foroumadi
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran.,Drug Design and Development Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Asadipour
- Department of Medicinal Chemistry, Faculty of Pharmacy and Pharmaceutics Research Center, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
39
|
EL-Hashash MA, Shaban SS. Synthesis and biological assessment of novel cyanopyridine derivatives. SYNTHETIC COMMUN 2019. [DOI: 10.1080/00397911.2019.1616096] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Maher A. EL-Hashash
- Faculty of Science, Department of Chemistry, Ain Shams University, Cairo, Egypt
| | - Safaa S. Shaban
- Faculty of Science, Department of Chemistry, Ain Shams University, Cairo, Egypt
| |
Collapse
|
40
|
Novel tacrine-tryptophan hybrids: Multi-target directed ligands as potential treatment for Alzheimer's disease. Eur J Med Chem 2019; 168:491-514. [DOI: 10.1016/j.ejmech.2019.02.021] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Revised: 02/07/2019] [Accepted: 02/07/2019] [Indexed: 12/28/2022]
|
41
|
Ujan R, Saeed A, Channar PA, Larik FA, Abbas Q, Alajmi MF, El-Seedi HR, Rind MA, Hassan M, Raza H, Seo SY. Drug-1,3,4-Thiadiazole Conjugates as Novel Mixed-Type Inhibitors of Acetylcholinesterase: Synthesis, Molecular Docking, Pharmacokinetics, and ADMET Evaluation. Molecules 2019; 24:molecules24050860. [PMID: 30823444 PMCID: PMC6429202 DOI: 10.3390/molecules24050860] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Revised: 02/15/2019] [Accepted: 02/18/2019] [Indexed: 01/25/2023] Open
Abstract
A small library of new drug-1,3,4-thiazidazole hybrid compounds (3a⁻3i) was synthesized, characterized, and assessed for their acetyl cholinesterase enzyme (AChE) inhibitory and free radical scavenging activities. The newly synthesized derivatives showed promising activities against AChE, especially compound 3b (IC50 18.1 ± 0.9 nM), which was the most promising molecule in the series, and was substantially more active than the reference drug (neostigmine methyl sulfate; IC50 2186.5 ± 98.0 nM). Kinetic studies were performed to elucidate the mode of inhibition of the enzyme, and the compounds showed mixed-type mechanisms for inhibiting AChE. The Ki of 3b (0.0031 µM) indicates that it can be very effective, even at low concentrations. Compounds 3a⁻3i all complied with Lipinski's Rule of Five, and showed high drug-likeness scores. The pharmacokinetic parameters revealed notable lead-like properties with insignificant liver and skin-penetrating effects. The structure⁻activity relationship (SAR) analysis indicated π⁻π interactions with key amino acid residues related to Tyr124, Trp286, and Tyr341.
Collapse
Affiliation(s)
- Rabail Ujan
- Dr. M.A. Kazi Institute of Chemistry, University of Sindh, Jamshoro 76080, Pakistan.
| | - Aamer Saeed
- Department of Chemistry, Quaid-I-Azam University, Islamabad 45320, Pakistan.
| | - Pervaiz Ali Channar
- Department of Chemistry, Quaid-I-Azam University, Islamabad 45320, Pakistan.
| | - Fayaz Ali Larik
- Department of Chemistry, Quaid-I-Azam University, Islamabad 45320, Pakistan.
| | - Qamar Abbas
- Department of Physiology, University of Sindh, Jamshoro 76080, Pakistan.
| | - Mohamed F Alajmi
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia.
| | - Hesham R El-Seedi
- Pharmacognosy Group, Department of Medicinal Chemistry, Biomedical Center (BMC), Uppsala University, SE-751 23 Uppsala, Sweden.
| | - Mahboob Ali Rind
- Dr. M.A. Kazi Institute of Chemistry, University of Sindh, Jamshoro 76080, Pakistan.
| | - Mubashir Hassan
- Department of Biological Sciences, College of Natural Sciences, Kongju National University, 56 Gongjudehak-Ro, Gongju, Chungnam 314-701, Korea.
| | - Hussain Raza
- Department of Biological Sciences, College of Natural Sciences, Kongju National University, 56 Gongjudehak-Ro, Gongju, Chungnam 314-701, Korea.
| | - Sung-Yum Seo
- Department of Biological Sciences, College of Natural Sciences, Kongju National University, 56 Gongjudehak-Ro, Gongju, Chungnam 314-701, Korea.
| |
Collapse
|
42
|
Kilic B, Erdogan M, Gulcan HO, Aksakal F, Oruklu N, Bagriacik EU, Dogruer DS. Design, Synthesis and Investigation of New Diphenyl Substituted Pyridazinone Derivatives as Both Cholinesterase and Aβ-Aggregation Inhibitors. Med Chem 2019; 15:59-76. [DOI: 10.2174/1573406414666180524073241] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 03/30/2018] [Accepted: 04/17/2018] [Indexed: 11/22/2022]
Abstract
Background:
With respect to the increase in the average life expectancy, Alzheimer
Disease (AD), the most common form of age-related dementia, has become a major threat to the
population over the age of 65 during the past several decades. The majority of AD treatments are
focused on cholinergic and amyloid hypotheses.
Objective:
In this study, three series of diphenyl-2-(2-(4-substitutedpiperazin-1-yl)ethyl)pyridazin-
3(2H)-one derivatives were designed, synthesized and investigated for their ability to inhibit both
cholinesterase enzymes and amyloid-β aggregation.
Method:
The inhibitory activities of the synthesized compounds on AChE (from electric eel) and
BChE (from equine serum) were determined by the modified Ellman’s method. The reported
thioflavin T-based fluorometric assay was performed to investigate the effect of the selected compounds
on the aggregation of Aβ1-42. The cytotoxic effect of the compounds (4g, 11g and 18g) was
monitored in 3T3 cell lines to gain insight into therapeutic potential of the compounds by using
MTT assay. The crystal structures of the AChE (1EVE) and BChE (1P0I) enzymes were retrieved
from the RCSB Protein Data Bank and Molecular Operating Environment (MOE) software was
used for molecular docking of the ligands.
Results:
Among the tested compounds, 5,6-diphenyl derivative 18g was identified as the most potent
and selective AChE inhibitor (IC50 = 1.75 µM, Selectivity Index for AChE > 22.857). 4,6-
Diphenyl derivative 11g showed the highest and the most selectivity for BChE (IC50= 4.97 µM, SI
for AChE < 0.124). Interestingly, 4,5-diphenyl derivative 4g presented dual cholinesterase inhibition
(AChE IC50= 5.11 µM; BChE IC50= 14.16 µM, SI for AChE = 2.771).
Conclusion:
Based on biological activity results and low toxicity of the compounds, it can be said
that diphenyl substituted pyridazinone core is a valuable scaffold. Especially, dual inhibitory potencies
of 4,5-diphenylpyridazin-3(2H)-one core for the cholinesterase enzymes and Aβ-
aggregation makes this core a promising disease-modifying agent.
Collapse
Affiliation(s)
- Burcu Kilic
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Gazi University, Ankara, Turkey
| | - Merve Erdogan
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Gazi University, Ankara, Turkey
| | - Hayrettin O. Gulcan
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Eastern Mediterranean University, Gazimagosa, North Cyprus, Cyprus
| | - Fatma Aksakal
- Department of Chemistry, Hacettepe University, Ankara, Turkey
| | - Nihan Oruklu
- Department of Immunology, Faculty of Medicine, Gazi University, Ankara, Turkey
| | - Emin U. Bagriacik
- Department of Immunology, Faculty of Medicine, Gazi University, Ankara, Turkey
| | - Deniz S. Dogruer
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Gazi University, Ankara, Turkey
| |
Collapse
|
43
|
Das M, Prakash S, Nayak C, Thangavel N, Singh SK, Manisankar P, Devi KP. Dihydroactinidiolide, a natural product against Aβ25-35 induced toxicity in Neuro2a cells: Synthesis, in silico and in vitro studies. Bioorg Chem 2018; 81:340-349. [DOI: 10.1016/j.bioorg.2018.08.037] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 08/24/2018] [Accepted: 08/27/2018] [Indexed: 01/03/2023]
|
44
|
Khunnawutmanotham N, Laongthipparos C, Saparpakorn P, Chimnoi N, Techasakul S. Synthesis of 3-aminocoumarin- N-benzylpyridinium conjugates with nanomolar inhibitory activity against acetylcholinesterase. Beilstein J Org Chem 2018; 14:2545-2552. [PMID: 30410615 PMCID: PMC6204823 DOI: 10.3762/bjoc.14.231] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 09/18/2018] [Indexed: 01/04/2023] Open
Abstract
A series of 3-amino-6,7-dimethoxycoumarins conjugated with the N-benzylpyridinium moiety through an amide-bond linkage was synthesized and evaluated for their acetylcholinesterase inhibitory activity. A number of the benzylpyridinium derivatives exhibited potent activities with inhibitory concentration (IC50) values in the nanomolar concentration range. Among them, the 2,3-difluorobenzylpyridinium-containing compound was the most potent inhibitor with an IC50 value of 1.53 ± 0.01 nM. Docking studies revealed that the synthesized compounds inhibit the target enzyme by a dual binding site mechanism whereby the coumarin portion binds with the peripheral anionic site while the N-benzylpyridinium residue binds with the catalytic anionic site of the enzyme.
Collapse
Affiliation(s)
- Nisachon Khunnawutmanotham
- Laboratory of Organic Synthesis, Chulabhorn Research Institute, 54 Kamphaeng Phet 6, Talat Bang Khen, Lak Si, Bangkok 10210, Thailand
| | - Cherdchai Laongthipparos
- Department of Industrial Chemistry, Faculty of Applied Science, King Mongkut's University of Technology North Bangkok, Bangkok 10800, Thailand
| | | | - Nitirat Chimnoi
- Laboratory of Natural Products, Chulabhorn Research Institute, 54 Kamphaeng Phet 6, Talat Bang Khen, Lak Si, Bangkok 10210, Thailand
| | - Supanna Techasakul
- Laboratory of Organic Synthesis, Chulabhorn Research Institute, 54 Kamphaeng Phet 6, Talat Bang Khen, Lak Si, Bangkok 10210, Thailand
| |
Collapse
|
45
|
Umar T, Shalini S, Raza MK, Gusain S, Kumar J, Ahmed W, Tiwari M, Hoda N. New amyloid beta-disaggregating agents: synthesis, pharmacological evaluation, crystal structure and molecular docking of N-(4-((7-chloroquinolin-4-yl)oxy)-3-ethoxybenzyl)amines. MEDCHEMCOMM 2018; 9:1891-1904. [PMID: 30568757 PMCID: PMC6254049 DOI: 10.1039/c8md00312b] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Accepted: 08/06/2018] [Indexed: 11/21/2022]
Abstract
In the journey towards the development of potent multi-targeted ligands for the treatment of Alzheimer's disease, a series of Aβ aggregation inhibitors having quinoline scaffold were designed utilizing computational biology tools, synthesized and characterized by various spectral techniques including single-crystal X-ray crystallography. Organic syntheses relying upon convergent synthetic routes were employed. Investigations via ThT fluorescence assay, electron microscopy and transmission electron microscopy revealed the synthesized derivatives to exhibit Aβ self-aggregation inhibition. Molecules 5g and 5a showed the highest inhibitory potential, 53.73% and 53.63% at 50 μM respectively; higher than the standard Aβ disaggregating agent, curcumin. Molecules 5g and 5a disaggregated AChE-induced (58.26%, 47.36%) Aβ aggregation more than two fold more than the standard drug-donepezil (23.66%) and inhibited Cu2+-induced Aβ aggregation. A docking study significantly showed their interaction with key residues of Aβ and the results were in accordance with the study. Besides, these compounds also exhibited potential antioxidant activity (5a, 2.7240 Trolox equivalent by ORAC assay) and metal chelating property. Furthermore, the stoichiometric ratio of Cu (ii)-5a and Cu(ii)-5g complexes were found by Job's method (0.5 : 1 for 5a and 0.8 : 1 for 5g). In silico ADMET profiling showed these derivatives to have drug like properties with very low toxicity effects in the pharmacokinetic study. Overall, these results displayed a multi-activity profile with promising Aβ aggregation inhibition and antioxidation and metal chelation activity that could be helpful for developing new multifunctional agents against Alzheimer's disease.
Collapse
Affiliation(s)
- Tarana Umar
- Department of Chemistry , Jamia Millia Islamia (Central University) , New Delhi 110025 , India .
| | - Shruti Shalini
- Dr. B. R. Ambedkar Centre for Biomedical Research , University of Delhi , New Delhi 110007 , India .
| | - Md Kausar Raza
- Department of Inorganic and Physical Chemistry , Indian Institute of Science , Bangalore 560012 , India
| | - Siddharth Gusain
- Dr. B. R. Ambedkar Centre for Biomedical Research , University of Delhi , New Delhi 110007 , India .
| | - Jitendra Kumar
- Department of Chemistry , Sardar Vallabhbhai Patel College , Kaimur- 821101, V. K. S. U., Ara , Bhabua , Bihar-802301 , India
| | - Waqar Ahmed
- Department of Chemistry , Jamia Millia Islamia (Central University) , New Delhi 110025 , India .
| | - Manisha Tiwari
- Dr. B. R. Ambedkar Centre for Biomedical Research , University of Delhi , New Delhi 110007 , India .
| | - Nasimul Hoda
- Department of Chemistry , Jamia Millia Islamia (Central University) , New Delhi 110025 , India .
| |
Collapse
|
46
|
Tanoli ST, Ramzan M, Hassan A, Sadiq A, Jan MS, Khan FA, Ullah F, Ahmad H, Bibi M, Mahmood T, Rashid U. Design, synthesis and bioevaluation of tricyclic fused ring system as dual binding site acetylcholinesterase inhibitors. Bioorg Chem 2018; 83:336-347. [PMID: 30399465 DOI: 10.1016/j.bioorg.2018.10.035] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 10/12/2018] [Accepted: 10/17/2018] [Indexed: 11/16/2022]
Abstract
Due to recently discovered non-classical acetylcholinesterase (AChE) function, dual binding-site AChE inhibitors have acquired a paramount attention of drug designing researchers. The unique structural arrangements of AChE peripheral anionic site (PAS) and catalytic site (CAS) joined by a narrow gorge, prompted us to design the inhibitors that can interact with dual binding sites of AChE. Eighteen homo- and heterodimers of desloratadine and carbazole (already available tricyclic building blocks) were synthesized and tested for their inhibition potential against electric eel acetylcholinesterase (eeAChE) and equine serum butyrylcholinesterase (eqBChE). We identified a six-carbon tether heterodimer of desloratadine and indanedione based tricyclic dihydropyrimidine (4c) as potent and selective inhibitor of eeAChE with IC50 value of 0.09 ± 0.003 μM and 1.04 ± 0.08 μM (for eqBChE) with selectivity index of 11.1. Binding pose analysis of potent inhibitors suggest that tricyclic ring is well accommodated into the AChE active site through hydrophobic interactions with Trp84 and Trp279. The indanone ring of most active heterodimer 4b is stabilized into the bottom of the gorge and forms hydrogen bonding interactions with the important catalytic triad residue Ser200.
Collapse
Affiliation(s)
- Saba Tahir Tanoli
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, 22060, Pakistan
| | - Muhammad Ramzan
- Department of Chemistry, Hazara University, Mansehra 21120, Pakistan
| | - Abbas Hassan
- Department of Chemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Abdul Sadiq
- Department of Pharmacy, University of Malakand, Chakdara 18000 Dir (L), Pakistan
| | - Muhammad Saeed Jan
- Department of Pharmacy, University of Malakand, Chakdara 18000 Dir (L), Pakistan
| | - Farhan A Khan
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, 22060, Pakistan
| | - Farhat Ullah
- Department of Pharmacy, University of Malakand, Chakdara 18000 Dir (L), Pakistan
| | - Haseen Ahmad
- Department of Chemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Maria Bibi
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, 22060, Pakistan
| | - Tariq Mahmood
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, 22060, Pakistan
| | - Umer Rashid
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, 22060, Pakistan.
| |
Collapse
|
47
|
Design, Synthesis of N-phenethyl Cinnamide Derivatives and Their Biological Activities for the Treatment of Alzheimer's Disease: Antioxidant, Beta-amyloid Disaggregating and Rescue Effects on Memory Loss. Molecules 2018; 23:molecules23102663. [PMID: 30332835 PMCID: PMC6222358 DOI: 10.3390/molecules23102663] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Revised: 10/03/2018] [Accepted: 10/10/2018] [Indexed: 02/07/2023] Open
Abstract
Gx-50 is a bioactive compound for the treatment of Alzheimer’s disease (AD) found in Sichuan pepper (Zanthoxylum bungeanum). In order to find a stronger anti-AD lead compound, 20 gx-50 (1–20) analogs have been designed and synthesized, and their molecular structures were determined based on nuclear magnetic resonance (NMR) and mass spectrometry (MS) analysis, as well as comparison with literature data. Compounds 1–20 were evaluated for their anti-AD potential by using DPPH radical scavenging assay for considering their anti-oxidant activity, thioflavin T (ThT) fluorescence assay for considering the inhibitory or disaggregate potency of Aβ, and transgenic Drosophila model assay for evaluating their rescue effect on memory loss. Finally, compound 13 was determined as a promising anti-AD candidate.
Collapse
|
48
|
Girek M, Szymański P. Tacrine hybrids as multi-target-directed ligands in Alzheimer’s disease: influence of chemical structures on biological activities. CHEMICAL PAPERS 2018. [DOI: 10.1007/s11696-018-0590-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
49
|
Agatonovic-Kustrin S, Kettle C, Morton DW. A molecular approach in drug development for Alzheimer's disease. Biomed Pharmacother 2018; 106:553-565. [PMID: 29990843 DOI: 10.1016/j.biopha.2018.06.147] [Citation(s) in RCA: 136] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 06/20/2018] [Accepted: 06/27/2018] [Indexed: 01/08/2023] Open
Abstract
An increase in dementia numbers and global trends in population aging across the world prompts the need for new medications to treat the complex biological dysfunctions, such as neurodegeneration associated with dementia. Alzheimer's disease (AD) is the most common form of dementia. Cholinergic signaling, which is important in cognition, is slowly lost in AD, so the first line therapy is to treat symptoms with acetylcholinesterase inhibitors to increase levels of acetylcholine. Out of five available FDA-approved AD medications, donepezil, galantamine and rivastigmine are cholinesterase inhibitors while memantine, a N-methyl d-aspartate (NMDA) receptor antagonist, blocks the effects of high glutamate levels. The fifth medication consists of a combination of donepezil and memantine. Although these medications can reduce and temporarily slow down the symptoms of AD, they cannot stop the damage to the brain from progressing. For a superior therapeutic effect, multi-target drugs are required. Thus, a Multi-Target-Directed Ligand (MTDL) strategy has received more attention by scientists who are attempting to develop hybrid molecules that simultaneously modulate multiple biological targets. This review highlights recent examples of the MTDL approach and fragment based strategy in the rational design of new potential AD medications.
Collapse
Affiliation(s)
- Snezana Agatonovic-Kustrin
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, 47500, Selangor Darul Ehsan, Malaysia; School of Pharmacy and Applied Science, La Trobe Institute for Molecular Sciences, La Trobe University, Edwards Rd., Bendigo, 3550, Australia.
| | - Christine Kettle
- School of Pharmacy and Applied Science, La Trobe Institute for Molecular Sciences, La Trobe University, Edwards Rd., Bendigo, 3550, Australia
| | - David W Morton
- School of Pharmacy and Applied Science, La Trobe Institute for Molecular Sciences, La Trobe University, Edwards Rd., Bendigo, 3550, Australia
| |
Collapse
|
50
|
Ţînţaş ML, Gembus V, Alix F, Barré A, Coadou G, Truong L, Sebban M, Papamicaël C, Oulyadi H, Levacher V. Rational design of carbamate-based dual binding site and central AChE inhibitors by a “biooxidisable” prodrug approach: Synthesis, in vitro evaluation and docking studies. Eur J Med Chem 2018; 155:171-182. [DOI: 10.1016/j.ejmech.2018.05.057] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 04/10/2018] [Accepted: 05/31/2018] [Indexed: 12/15/2022]
|