1
|
Andrade Meirelles M, Almeida VM, Sullivan JR, de Toledo I, Dos Reis CV, Cunha MR, Zigweid R, Shim A, Sankaran B, Woodward EL, Seibold S, Liu L, Mian MR, Battaile KP, Riley J, Duncan C, Simeons FRC, Ferguson L, Joji H, Read KD, Lovell S, Staker BL, Behr MA, Pilli RA, Couñago RM. Rational Exploration of 2,4-Diaminopyrimidines as DHFR Inhibitors Active against Mycobacterium abscessus and Mycobacterium avium, Two Emerging Human Pathogens. J Med Chem 2024. [PMID: 39468773 DOI: 10.1021/acs.jmedchem.4c01594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
Nontuberculous mycobacteria (NTM) are emerging human pathogens linked to severe pulmonary diseases. Current treatments involve the prolonged use of multiple drugs and are often ineffective. Bacterial dihydrofolate reductase (DHFR) is a key enzyme targeted by antibiotics in Gram-negative bacterial infections. However, existing DHFR inhibitors designed for Gram-negative bacteria often fail against mycobacterial DHFRs. Here, we detail the rational design of NTM DHFR inhibitors based on P218, a malarial DHFR inhibitor. We identified compound 8, a 2,4-diaminopyrimidine exhibiting improved pharmacological properties and activity against purified DHFR, and whole cell cultures of two predominant NTM species: Mycobacterium avium and Mycobacterium abscessus. This study underscores the potential of compound 8 as a promising candidate for the in vivo validation of DHFR as an effective treatment against NTM infections.
Collapse
Affiliation(s)
- Matheus Andrade Meirelles
- Department of Organic Chemistry, Institute of Chemistry, University of Campinas, UNICAMP, 13083-970-Campinas, SP, Brazil
| | - Vitor M Almeida
- Center of Medicinal Chemistry (CQMED), Center for Molecular Biology and Genetic Engineering (CBMEG), University of Campinas, UNICAMP, 13083-886-Campinas, SP, Brazil
| | - Jaryd R Sullivan
- Department of Microbiology & Immunology, McGill University, Montréal H3A 2B4, Canada
- Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montréal H4A 3J1, Canada
- McGill International TB Centre, Montréal H4A 3S5, Canada
| | - Ian de Toledo
- Department of Organic Chemistry, Institute of Chemistry, University of Campinas, UNICAMP, 13083-970-Campinas, SP, Brazil
| | - Caio Vinicius Dos Reis
- Center of Medicinal Chemistry (CQMED), Center for Molecular Biology and Genetic Engineering (CBMEG), University of Campinas, UNICAMP, 13083-886-Campinas, SP, Brazil
| | - Micael Rodrigues Cunha
- Center of Medicinal Chemistry (CQMED), Center for Molecular Biology and Genetic Engineering (CBMEG), University of Campinas, UNICAMP, 13083-886-Campinas, SP, Brazil
| | - Rachel Zigweid
- Center for Infectious Disease Research, Seattle Children's Research Institute, Seattle, Washington 98109, United States
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), Seattle, Washington 98109, United States
| | - Abraham Shim
- Center for Infectious Disease Research, Seattle Children's Research Institute, Seattle, Washington 98109, United States
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), Seattle, Washington 98109, United States
| | - Banumathi Sankaran
- Molecular Biophysics and Integrated Bioimaging, Berkeley Center for Structural Biology, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Elijah L Woodward
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), Seattle, Washington 98109, United States
- Protein Structure and X-ray Crystallography Laboratory, Del Shankel Structural Biology Center, University of Kansas, Lawrence, Kansas 66047, United States
| | - Steve Seibold
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), Seattle, Washington 98109, United States
- Protein Structure and X-ray Crystallography Laboratory, Del Shankel Structural Biology Center, University of Kansas, Lawrence, Kansas 66047, United States
| | - Lijun Liu
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), Seattle, Washington 98109, United States
- Protein Structure and X-ray Crystallography Laboratory, Del Shankel Structural Biology Center, University of Kansas, Lawrence, Kansas 66047, United States
| | - Mohammad Rasel Mian
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), Seattle, Washington 98109, United States
- Protein Structure and X-ray Crystallography Laboratory, Del Shankel Structural Biology Center, University of Kansas, Lawrence, Kansas 66047, United States
| | - Kevin P Battaile
- New York Structural Biology Center, Upton, New York 11973, United States
| | - Jennifer Riley
- Drug Discovery Unit, Wellcome Centre for Anti-Infectives Research, Division of Biological Chemistry, University of Dundee, Dundee DD1 5EH, U.K
| | - Christina Duncan
- Drug Discovery Unit, Wellcome Centre for Anti-Infectives Research, Division of Biological Chemistry, University of Dundee, Dundee DD1 5EH, U.K
| | - Frederick R C Simeons
- Drug Discovery Unit, Wellcome Centre for Anti-Infectives Research, Division of Biological Chemistry, University of Dundee, Dundee DD1 5EH, U.K
| | - Liam Ferguson
- Drug Discovery Unit, Wellcome Centre for Anti-Infectives Research, Division of Biological Chemistry, University of Dundee, Dundee DD1 5EH, U.K
| | - Halimatu Joji
- Drug Discovery Unit, Wellcome Centre for Anti-Infectives Research, Division of Biological Chemistry, University of Dundee, Dundee DD1 5EH, U.K
| | - Kevin D Read
- Drug Discovery Unit, Wellcome Centre for Anti-Infectives Research, Division of Biological Chemistry, University of Dundee, Dundee DD1 5EH, U.K
| | - Scott Lovell
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), Seattle, Washington 98109, United States
- Protein Structure and X-ray Crystallography Laboratory, Del Shankel Structural Biology Center, University of Kansas, Lawrence, Kansas 66047, United States
| | - Bart L Staker
- Center for Infectious Disease Research, Seattle Children's Research Institute, Seattle, Washington 98109, United States
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), Seattle, Washington 98109, United States
| | - Marcel A Behr
- Department of Microbiology & Immunology, McGill University, Montréal H3A 2B4, Canada
- Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montréal H4A 3J1, Canada
- McGill International TB Centre, Montréal H4A 3S5, Canada
- Department of Medicine, McGill University Health Centre, Montréal H4A 3J1, Canada
| | - Ronaldo A Pilli
- Department of Organic Chemistry, Institute of Chemistry, University of Campinas, UNICAMP, 13083-970-Campinas, SP, Brazil
| | - Rafael M Couñago
- Center of Medicinal Chemistry (CQMED), Center for Molecular Biology and Genetic Engineering (CBMEG), University of Campinas, UNICAMP, 13083-886-Campinas, SP, Brazil
- Structural Genomics Consortium and Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
2
|
Andreeva DV, Vedekhina TS, Gostev AS, Dezhenkova LG, Volodina YL, Markova AA, Nguyen MT, Ivanova OM, Dolgusheva VА, Varizhuk AM, Tikhomirov AS, Shchekotikhin AE. Thiadiazole-, selenadiazole- and triazole-fused anthraquinones as G-quadruplex targeting anticancer compounds. Eur J Med Chem 2024; 268:116222. [PMID: 38387333 DOI: 10.1016/j.ejmech.2024.116222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 02/05/2024] [Accepted: 02/06/2024] [Indexed: 02/24/2024]
Abstract
G-quadruplex (G4) ligands attract considerable attention as potential anticancer therapeutics. In this study we proposed an original scheme for synthesis of azole-fused anthraquinones and prepared a series of G4 ligands carrying amino- or guanidinoalkylamino side chains. The heterocyclic core and structure of the terminal groups strongly affect on binding to G4-forming oligonucleotides, cellular accumulation and antitumor potency of compounds. In particular, thiadiazole- and selenadiazole- but not triazole-based ligands inhibit the proliferation of tumor cells (e.g. K562 leukemia) and stabilize primarily telomeric and c-MYC G4s. Anthraselenadiazole derivative 11a showed a good affinity to c-MYC G4 in vitro and down-regulated expression of c-MYC oncogene in cellular conditions. Further studies revealed that anthraselenadiazole 11a provoked cell cycle arrest and apoptosis in a dose- and time-dependent manner inhibiting K562 cells growth. Taken together, this work gives a valuable example that the closely related heterocycles may cause a significant difference in biological properties of G4 ligands.
Collapse
Affiliation(s)
- Daria V Andreeva
- Gause Institute of New Antibiotics, 11 B. Pirogovskaya Street, Moscow, 119021, Russia
| | - Tatiana S Vedekhina
- Lopukhin Federal Research and Clinical Center of Physico-Chemical Medicine, Federal Medical Biological Agency, 119435, Moscow, Malaya Pirogovskaya, 1a, Russia; Lomonosov Institute of Fine Chemical Technologies, MIREA - Russian Technological University, 119571, Moscow, Russia
| | - Alexander S Gostev
- Gause Institute of New Antibiotics, 11 B. Pirogovskaya Street, Moscow, 119021, Russia; Mendeleev University of Chemical Technology of Russia, 125047, Moscow, Miusskaya square, 9, Russia
| | - Lyubov G Dezhenkova
- Gause Institute of New Antibiotics, 11 B. Pirogovskaya Street, Moscow, 119021, Russia
| | - Yulia L Volodina
- Gause Institute of New Antibiotics, 11 B. Pirogovskaya Street, Moscow, 119021, Russia; Blokhin National Medical Center of Oncology, 24 Kashirskoye Shosse, Moscow, 115478, Russia
| | - Alina A Markova
- Emanuel Institute of Biochemical Physics of the Russian Academy of Sciences, Kosygin Street, 4, Moscow, 119334, Russia
| | - Minh Tuan Nguyen
- Emanuel Institute of Biochemical Physics of the Russian Academy of Sciences, Kosygin Street, 4, Moscow, 119334, Russia
| | - Olga M Ivanova
- Lopukhin Federal Research and Clinical Center of Physico-Chemical Medicine, Federal Medical Biological Agency, 119435, Moscow, Malaya Pirogovskaya, 1a, Russia
| | - Vladislava А Dolgusheva
- Lopukhin Federal Research and Clinical Center of Physico-Chemical Medicine, Federal Medical Biological Agency, 119435, Moscow, Malaya Pirogovskaya, 1a, Russia; Department of Biological and Medical Physics, Moscow Institute of Physics and Technology, 141701, Dolgoprudny, Russia
| | - Anna M Varizhuk
- Lopukhin Federal Research and Clinical Center of Physico-Chemical Medicine, Federal Medical Biological Agency, 119435, Moscow, Malaya Pirogovskaya, 1a, Russia; Department of Biological and Medical Physics, Moscow Institute of Physics and Technology, 141701, Dolgoprudny, Russia
| | | | | |
Collapse
|
3
|
Rodriguez JB, Szajnman SH. An updated review of chemical compounds with anti-Toxoplasma gondii activity. Eur J Med Chem 2023; 262:115885. [PMID: 37871407 DOI: 10.1016/j.ejmech.2023.115885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 09/30/2023] [Accepted: 10/15/2023] [Indexed: 10/25/2023]
Abstract
The opportunistic apicomplexan parasite Toxoplasma gondii is the etiologic agent for toxoplasmosis, which can infect a widespread range of hosts, particularly humans and warm-blooded animals. The present chemotherapy to treat or prevent toxoplasmosis is deficient and is based on diverse drugs such as atovaquone, trimethoprim, spiramycine, which are effective in acute toxoplasmosis. Therefore, a safe chemotherapy is required for toxoplasmosis considering that its responsible agent, T. gondii, provokes severe illness and death in pregnant women and immunodeficient patients. A certain disadvantage of the available treatments is the lack of effectiveness against the tissue cyst of the parasite. A safe chemotherapy to combat toxoplasmosis should be based on the metabolic differences between the parasite and the mammalian host. This article covers different relevant molecular targets to combat this disease including the isoprenoid pathway (farnesyl diphosphate synthase, squalene synthase), dihydrofolate reductase, calcium-dependent protein kinases, histone deacetylase, mitochondrial electron transport chain, etc.
Collapse
Affiliation(s)
- Juan B Rodriguez
- Departamento de Química Orgánica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, C1428EHA, Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires, Unidad de Microanálisis y Métodos Físicos en Química Orgánica (UMYMFOR), C1428EHA, Buenos Aires, Argentina.
| | - Sergio H Szajnman
- Departamento de Química Orgánica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, C1428EHA, Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires, Unidad de Microanálisis y Métodos Físicos en Química Orgánica (UMYMFOR), C1428EHA, Buenos Aires, Argentina
| |
Collapse
|
4
|
Kumar A, Bhagat KK, Singh AK, Singh H, Angre T, Verma A, Khalilullah H, Jaremko M, Emwas AH, Kumar P. Medicinal chemistry perspective of pyrido[2,3- d]pyrimidines as anticancer agents. RSC Adv 2023; 13:6872-6908. [PMID: 36865574 PMCID: PMC9972360 DOI: 10.1039/d3ra00056g] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 02/09/2023] [Indexed: 03/04/2023] Open
Abstract
Cancer is a major cause of deaths across the globe due to chemoresistance and lack of selective chemotherapy. Pyrido[2,3-d]pyrimidine is an emerging scaffold in medicinal chemistry having a broad spectrum of activities, including antitumor, antibacterial, CNS depressive, anticonvulsant, and antipyretic activities. In this study, we have covered different cancer targets, including tyrosine kinase, extracellular regulated protein kinases - ABL kinase, phosphatidylinositol-3 kinase, mammalian target of rapamycin, p38 mitogen-activated protein kinases, BCR-ABL, dihydrofolate reductase, cyclin-dependent kinase, phosphodiesterase, KRAS and fibroblast growth factor receptors, their signaling pathways, mechanism of action and structure-activity relationship of pyrido[2,3-d]pyrimidine derivatives as inhibitors of the above-mentioned targets. This review will represent the complete medicinal and pharmacological profile of pyrido[2,3-d]pyrimidines as anticancer agents, and will help scientists to design new selective, effective and safe anticancer agents.
Collapse
Affiliation(s)
- Adarsh Kumar
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab Ghudda Bathinda 151401 India
| | - Kuber Kumar Bhagat
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab Ghudda Bathinda 151401 India
| | - Ankit Kumar Singh
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab Ghudda Bathinda 151401 India
| | - Harshwardhan Singh
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab Ghudda Bathinda 151401 India
| | - Tanuja Angre
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab Ghudda Bathinda 151401 India
| | - Amita Verma
- Bioorganic and Medicinal Chemistry Research Laboratory, Department of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture Technology and SciencesPrayagraj211007India
| | - Habibullah Khalilullah
- Department of Pharmaceutical Chemistry and Pharmacognosy, Unaizah College of Pharmacy, Qassim University Unayzah 51911 Saudi Arabia
| | - Mariusz Jaremko
- Smart-Health Initiative and Red Sea Research Center, Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology P.O. Box 4700 Thuwal 23955-6900 Saudi Arabia
| | - Abdul-Hamid Emwas
- King Abdullah University of Science and Technology, Core Labs Thuwal 23955-6900 Saudi Arabia
| | - Pradeep Kumar
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab Ghudda Bathinda 151401 India
| |
Collapse
|
5
|
A Convergent Multicomponent Synthesis, Spectral Analysis, Molecular Modelling and Docking Studies of Novel 2H-pyrido[1,2-a]pyrimidine-2,4(3H)-dione Derivatives as Potential Anti-Cervical Cancer Agents. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.134982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
6
|
Martinho LA, Andrade CKZ. A greener approach for the synthesis of pyrido[2,3‐
d
]pyrimidine derivatives in glycerol under microwave heating. J Heterocycl Chem 2022. [DOI: 10.1002/jhet.4483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Luan A. Martinho
- Instituto de Química, Laboratório de Química Metodológica e Orgânica Sintética (LaQMOS), Universidade de Brasília
| | - Carlos Kleber Z. Andrade
- Instituto de Química, Laboratório de Química Metodológica e Orgânica Sintética (LaQMOS), Universidade de Brasília
| |
Collapse
|
7
|
Teli G, Chawla PA. Hybridization of Imidazole with Various Heterocycles in Targeting Cancer: A Decade's Work. ChemistrySelect 2021. [DOI: 10.1002/slct.202101038] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Ghanshyam Teli
- Department of Pharmaceutical Chemistry ISF College of Pharmacy Ghal Kalan G.T Road Punjab 142001 India
| | - Pooja A. Chawla
- Department of Pharmaceutical Chemistry ISF College of Pharmacy Ghal Kalan G.T Road Punjab 142001 India
| |
Collapse
|
8
|
Rani NV, Kunta R. PEG-400 promoted a simple, efficient and eco-friendly synthesis of functionalized novel isoxazolyl pyrido[2,3-d]pyrimidines and their antimicrobial and anti-inflammatory activity. SYNTHETIC COMMUN 2021. [DOI: 10.1080/00397911.2021.1871759] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
| | - Ravindhranath Kunta
- Department of Chemistry, Koneru Lakshmaiah Education Foundation, Guntur, India
| |
Collapse
|
9
|
Mahmoudi‐Gom Yek S, Azarifar D, Khaleghi‐Abbasabadi M, Keypour H, Mahmoudabadi M. Heterogenized magnetic graphene oxide‐supported
N
6
‐Schiff base Cu (II) complex as an exclusive nanocatalyst for synthesis of new pyrido[2,3‐
d
]pyrimidine‐7‐carbonitrile derivatives. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.5989] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
| | - Davood Azarifar
- Department of Chemistry Bu‐Ali Sina University Hamedan 65178 Iran
| | | | - Hassan Keypour
- Department of Chemistry Bu‐Ali Sina University Hamedan 65178 Iran
| | | |
Collapse
|
10
|
Dasari SR, Tondepu S, Vadali LR, Seelam N. PEG-400 mediated an efficient eco-friendly synthesis of new isoxazolyl pyrido[2,3-d]pyrimidines and their anti-inflammatory and analgesic activity. SYNTHETIC COMMUN 2020. [DOI: 10.1080/00397911.2020.1787449] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Srinivasa Rao Dasari
- Department of Chemistry, Koneru Lakshmaiah Education Foundation, Vaddeswaram, Guntur, Andhrapradesh, India
- API-Chemical Research Division, Mylan Laboratories Ltd, Hyderabad, India
| | - Subbaiah Tondepu
- Department of Chemical Engineering, Vignan’s Foundation for Science, Technology and Research, Guntur, India
| | | | - Nareshvarma Seelam
- Department of Chemistry, Koneru Lakshmaiah Education Foundation, Vaddeswaram, Guntur, Andhrapradesh, India
| |
Collapse
|
11
|
Pyrimethamine conjugated histone deacetylase inhibitors: Design, synthesis and evidence for triple negative breast cancer selective cytotoxicity. Bioorg Med Chem 2020; 28:115345. [DOI: 10.1016/j.bmc.2020.115345] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 01/12/2020] [Accepted: 01/22/2020] [Indexed: 12/25/2022]
|
12
|
Design, synthesis and biological activity of N 5-substituted tetrahydropteroate analogs as non-classical antifolates against cobalamin-dependent methionine synthase and potential anticancer agents. Eur J Med Chem 2020; 190:112113. [PMID: 32058237 DOI: 10.1016/j.ejmech.2020.112113] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 01/28/2020] [Accepted: 01/31/2020] [Indexed: 12/16/2022]
Abstract
Cobalamin-dependent methionine synthase (MetH) is involved in the process of tumor cell growth and survival. In this study, a novel series of N5-electrophilic substituted tetrahydropteroate analogs without glutamate residue were designed as non-classical antifolates and evaluated for their inhibitory activities against MetH. In addition, the cytotoxicity of target compounds was evaluated in human tumor cell lines. With N5-chloracetyl as the optimum group, further structure research on the benzene substituent and on the 2,4-diamino group was also performed. Compound 6c, with IC50 value of 12.1 μM against MetH and 0.16-6.12 μM against five cancer cells, acted as competitive inhibitor of MetH. Flow cytometry studies indicated that compound 6c arrested HL-60 cells in the G1-phase and then inducted late apoptosis. The molecular docking further explained the structure-activity relationship.
Collapse
|
13
|
Reeve SM, Si D, Krucinska J, Yan Y, Viswanathan K, Wang S, Holt GT, Frenkel MS, Ojewole AA, Estrada A, Agabiti SS, Alverson JB, Gibson ND, Priestley ND, Wiemer AJ, Donald BR, Wright DL. Toward Broad Spectrum Dihydrofolate Reductase Inhibitors Targeting Trimethoprim Resistant Enzymes Identified in Clinical Isolates of Methicillin Resistant Staphylococcus aureus. ACS Infect Dis 2019; 5:1896-1906. [PMID: 31565920 DOI: 10.1021/acsinfecdis.9b00222] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The spread of plasmid borne resistance enzymes in clinical Staphylococcus aureus isolates is rendering trimethoprim and iclaprim, both inhibitors of dihydrofolate reductase (DHFR), ineffective. Continued exploitation of these targets will require compounds that can broadly inhibit these resistance-conferring isoforms. Using a structure-based approach, we have developed a novel class of ionized nonclassical antifolates (INCAs) that capture the molecular interactions that have been exclusive to classical antifolates. These modifications allow for a greatly expanded spectrum of activity across these pathogenic DHFR isoforms, while maintaining the ability to penetrate the bacterial cell wall. Using biochemical, structural, and computational methods, we are able to optimize these inhibitors to the conserved active sites of the endogenous and trimethoprim resistant DHFR enzymes. Here, we report a series of INCA compounds that exhibit low nanomolar enzymatic activity and potent cellular activity with human selectivity against a panel of clinically relevant TMP resistant (TMPR) and methicillin resistant Staphylococcus aureus (MRSA) isolates.
Collapse
Affiliation(s)
- Stephanie M. Reeve
- Department of Pharmaceutical Sciences, University of Connecticut, 69 N. Eagleville Road, Storrs, Connecticut 06269, United States
| | - Debjani Si
- Department of Pharmaceutical Sciences, University of Connecticut, 69 N. Eagleville Road, Storrs, Connecticut 06269, United States
| | - Jolanta Krucinska
- Department of Pharmaceutical Sciences, University of Connecticut, 69 N. Eagleville Road, Storrs, Connecticut 06269, United States
| | - Yongzhao Yan
- Department of Pharmaceutical Sciences, University of Connecticut, 69 N. Eagleville Road, Storrs, Connecticut 06269, United States
| | - Kishore Viswanathan
- Department of Pharmaceutical Sciences, University of Connecticut, 69 N. Eagleville Road, Storrs, Connecticut 06269, United States
| | - Siyu Wang
- Department of Computer Science, Duke University, 308 Research Drive, Durham, North Carolina 27708, United States
- Program in Computational Biology and Bioinformatics, Duke University, 101 Science Drive, Durham, North Carolina 27708, United States
| | - Graham T. Holt
- Department of Computer Science, Duke University, 308 Research Drive, Durham, North Carolina 27708, United States
- Program in Computational Biology and Bioinformatics, Duke University, 101 Science Drive, Durham, North Carolina 27708, United States
| | - Marcel S. Frenkel
- Department of Biochemistry, Duke University Medical Center, 255 Nanaline H. Duke, Durham, North Carolina 27710, United States
| | - Adegoke A. Ojewole
- Department of Computer Science, Duke University, 308 Research Drive, Durham, North Carolina 27708, United States
- Program in Computational Biology and Bioinformatics, Duke University, 101 Science Drive, Durham, North Carolina 27708, United States
| | - Alexavier Estrada
- Department of Pharmaceutical Sciences, University of Connecticut, 69 N. Eagleville Road, Storrs, Connecticut 06269, United States
| | - Sherry S. Agabiti
- Department of Pharmaceutical Sciences, University of Connecticut, 69 N. Eagleville Road, Storrs, Connecticut 06269, United States
| | - Jeremy B. Alverson
- Department of Chemistry, University of Montana, 32 Campus Drive, Missoula, Montana 59812, United States
| | - Nathan D. Gibson
- Department of Chemistry, University of Montana, 32 Campus Drive, Missoula, Montana 59812, United States
| | - Nigel D. Priestley
- Department of Chemistry, University of Montana, 32 Campus Drive, Missoula, Montana 59812, United States
| | - Andrew J. Wiemer
- Department of Pharmaceutical Sciences, University of Connecticut, 69 N. Eagleville Road, Storrs, Connecticut 06269, United States
| | - Bruce R. Donald
- Department of Computer Science, Duke University, 308 Research Drive, Durham, North Carolina 27708, United States
- Department of Biochemistry, Duke University Medical Center, 255 Nanaline H. Duke, Durham, North Carolina 27710, United States
- Department of Chemistry, Duke University, 124 Science Drive, Durham, North Carolina 27708, United States
| | - Dennis L. Wright
- Department of Pharmaceutical Sciences, University of Connecticut, 69 N. Eagleville Road, Storrs, Connecticut 06269, United States
- Department of Chemistry, University of Connecticut, 55 N. Eagleville Road, Storrs, Connecticut 06269, United States
| |
Collapse
|
14
|
Trimethoprim and other nonclassical antifolates an excellent template for searching modifications of dihydrofolate reductase enzyme inhibitors. J Antibiot (Tokyo) 2019; 73:5-27. [PMID: 31578455 PMCID: PMC7102388 DOI: 10.1038/s41429-019-0240-6] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 08/07/2019] [Accepted: 08/22/2019] [Indexed: 12/17/2022]
Abstract
The development of new mechanisms of resistance among pathogens, the occurrence and transmission of genes responsible for antibiotic insensitivity, as well as cancer diseases have been a serious clinical problem around the world for over 50 years. Therefore, intense searching of new leading structures and active substances, which may be used as new drugs, especially against strain resistant to all available therapeutics, is very important. Dihydrofolate reductase (DHFR) has attracted a lot of attention as a molecular target for bacterial resistance over several decades, resulting in a number of useful agents. Trimethoprim (TMP), (2,4-diamino-5-(3′,4′,5′-trimethoxybenzyl)pyrimidine) is the well-known dihydrofolate reductase inhibitor and one of the standard antibiotics used in urinary tract infections (UTIs). This review highlights advances in design, synthesis, and biological evaluations in structural modifications of TMP as DHFR inhibitors. In addition, this report presents the differences in the active site of human and pathogen DHFR. Moreover, an excellent review of DHFR inhibition and their relevance to antimicrobial and parasitic chemotherapy was presented.
Collapse
|
15
|
Hopper AT, Brockman A, Wise A, Gould J, Barks J, Radke JB, Sibley LD, Zou Y, Thomas S. Discovery of Selective Toxoplasma gondii Dihydrofolate Reductase Inhibitors for the Treatment of Toxoplasmosis. J Med Chem 2019; 62:1562-1576. [PMID: 30624926 DOI: 10.1021/acs.jmedchem.8b01754] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
A safer treatment for toxoplasmosis would be achieved by improving the selectivity and potency of dihydrofolate reductase (DHFR) inhibitors, such as pyrimethamine (1), for Toxoplasma gondii DHFR ( TgDHFR) relative to human DHFR ( hDHFR). We previously reported on the identification of meta-biphenyl analog 2, designed by in silico modeling of key differences in the binding pocket between TgDHFR and hDHFR. Compound 2 improves TgDHFR selectivity 6.6-fold and potency 16-fold relative to 1. Here, we report on the optimization and structure-activity relationships of this arylpiperazine series leading to the discovery of 5-(4-(3-(2-methoxypyrimidin-5-yl)phenyl)piperazin-1-yl)pyrimidine-2,4-diamine 3. Compound 3 has a TgDHFR IC50 of 1.57 ± 0.11 nM and a hDHFR to TgDHFR selectivity ratio of 196, making it 89-fold more potent and 16-fold more selective than 1. Compound 3 was highly effective in control of acute infection by highly virulent strains of T. gondii in the murine model, and it possesses the best combination of selectivity, potency, and prerequisite drug-like properties to advance into IND-enabling, preclinical development.
Collapse
Affiliation(s)
- Allen T Hopper
- Vyera Pharmaceuticals, LLC , 600 Third Avenue, 10th Floor , New York , New York 10016 , United States
| | - Adam Brockman
- Vyera Pharmaceuticals, LLC , 600 Third Avenue, 10th Floor , New York , New York 10016 , United States
| | - Andy Wise
- Evotec (UK) LTD. , Alderley Park , Cheshire SK104TG , U.K
| | - Julie Gould
- Evotec (UK) LTD. , Alderley Park , Cheshire SK104TG , U.K
| | - Jennifer Barks
- Department of Molecular Microbiology , Washington University School of Medicine , 660 S. Euclid Avenue , St. Louis , Missouri 63130 , United States
| | - Joshua B Radke
- Department of Molecular Microbiology , Washington University School of Medicine , 660 S. Euclid Avenue , St. Louis , Missouri 63130 , United States
| | - L David Sibley
- Department of Molecular Microbiology , Washington University School of Medicine , 660 S. Euclid Avenue , St. Louis , Missouri 63130 , United States
| | - Yongmao Zou
- WuXi AppTec (Tianjin) Co., Ltd. , 168 NanHai Road, 10th Avenue, TEDA , Tianjin 300457 , P. R. China
| | - Stephen Thomas
- Vyera Pharmaceuticals, LLC , 600 Third Avenue, 10th Floor , New York , New York 10016 , United States
| |
Collapse
|
16
|
El-Hag FAA, Abdel-Hafez NA, Abbas EMH, El-Manawaty MA, El-Rashedy AA. Synthesis and Antitumor Activity of Some New Fused Heterocyclic Compounds. RUSS J GEN CHEM+ 2019. [DOI: 10.1134/s1070363219010237] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
17
|
Design and synthesis of some new piritrexim analogs as potential anticancer agents. RESEARCH ON CHEMICAL INTERMEDIATES 2018. [DOI: 10.1007/s11164-017-3132-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
18
|
Sellmyer MA, Lee I, Hou C, Weng CC, Li S, Lieberman BP, Zeng C, Mankoff DA, Mach RH. Bacterial infection imaging with [ 18F]fluoropropyl-trimethoprim. Proc Natl Acad Sci U S A 2017; 114:8372-8377. [PMID: 28716936 PMCID: PMC5547613 DOI: 10.1073/pnas.1703109114] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
There is often overlap in the diagnostic features of common pathologic processes such as infection, sterile inflammation, and cancer both clinically and using conventional imaging techniques. Here, we report the development of a positron emission tomography probe for live bacterial infection based on the small-molecule antibiotic trimethoprim (TMP). [18F]fluoropropyl-trimethoprim, or [18F]FPTMP, shows a greater than 100-fold increased uptake in vitro in live bacteria (Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa) relative to controls. In a rodent myositis model, [18F]FPTMP identified live bacterial infection without demonstrating confounding increased signal in the same animal from other etiologies including chemical inflammation (turpentine) and cancer (breast carcinoma). Additionally, the biodistribution of [18F]FPTMP in a nonhuman primate shows low background in many important tissues that may be sites of infection such as the lungs and soft tissues. These results suggest that [18F]FPTMP could be a broadly useful agent for the sensitive and specific imaging of bacterial infection with strong translational potential.
Collapse
Affiliation(s)
- Mark A Sellmyer
- Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104
| | - Iljung Lee
- Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104
| | - Catherine Hou
- Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104
| | - Chi-Chang Weng
- Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104
| | - Shihong Li
- Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104
| | - Brian P Lieberman
- Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104
| | - Chenbo Zeng
- Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104
| | - David A Mankoff
- Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104
| | - Robert H Mach
- Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104
| |
Collapse
|
19
|
Singla P, Luxami V, Paul K. Quinazolinone-benzimidazole conjugates: Synthesis, characterization, dihydrofolate reductase inhibition, DNA and protein binding properties. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2017; 168:156-164. [DOI: 10.1016/j.jphotobiol.2017.02.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 01/18/2017] [Accepted: 02/13/2017] [Indexed: 10/20/2022]
|
20
|
Acosta P, Insuasty B, Ortiz A, Abonia R, Sortino M, Zacchino SA, Quiroga J. Solvent-free microwave-assisted synthesis of novel pyrazolo[4′,3′:5,6]pyrido[2,3-d]pyrimidines with potential antifungal activity. ARAB J CHEM 2016. [DOI: 10.1016/j.arabjc.2015.03.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
21
|
Beingessner RL, Fan Y, Fenniri H. Molecular and supramolecular chemistry of rosette nanotubes. RSC Adv 2016. [DOI: 10.1039/c6ra16315g] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Synthetic strategies used to tune the properties of a class of supramolecular 1D nanostructures, the rosette nanotubes, are reviewed herein.
Collapse
Affiliation(s)
| | - Yiwen Fan
- Department of Chemical Engineering
- Northeastern University
- 253 Snell Engineering Center
- Boston
- USA
| | - Hicham Fenniri
- Department of Chemical Engineering
- Northeastern University
- 253 Snell Engineering Center
- Boston
- USA
| |
Collapse
|
22
|
Buron F, Mérour JY, Akssira M, Guillaumet G, Routier S. Recent advances in the chemistry and biology of pyridopyrimidines. Eur J Med Chem 2015; 95:76-95. [PMID: 25794791 DOI: 10.1016/j.ejmech.2015.03.029] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Revised: 02/19/2015] [Accepted: 03/13/2015] [Indexed: 11/17/2022]
Abstract
The interest in pyridopyrimidine cores for pharmaceutical products makes this scaffold a highly useful building block for organic chemistry. These derivatives have found applications in various areas of medicine such as anticancer, CNS, fungicidal, antiviral, anti-inflammatory, antimicrobial, and antibacterial therapies. This review mainly focuses on the progress achieved since 2004 in the chemistry and biological activity of pyridopyrimidines.
Collapse
Affiliation(s)
- F Buron
- Institut de Chimie Organique et Analytique, Université d'Orléans, UMR CNRS 7311, rue de Chartres, BP 6759, 45067 Orléans Cedex 2, France
| | - J Y Mérour
- Institut de Chimie Organique et Analytique, Université d'Orléans, UMR CNRS 7311, rue de Chartres, BP 6759, 45067 Orléans Cedex 2, France
| | - M Akssira
- Équipe de Chimie Bioorganique & Analytique, URAC 22, Université Hassan II Mohammedia-Casablanca, BP 146, 28800 Mohammedia, Morocco
| | - G Guillaumet
- Institut de Chimie Organique et Analytique, Université d'Orléans, UMR CNRS 7311, rue de Chartres, BP 6759, 45067 Orléans Cedex 2, France
| | - S Routier
- Institut de Chimie Organique et Analytique, Université d'Orléans, UMR CNRS 7311, rue de Chartres, BP 6759, 45067 Orléans Cedex 2, France.
| |
Collapse
|
23
|
Newer thiazolopyrimidine-based sulfonamides clubbed with benzothiazole moiety: synthesis and biological evaluation. Med Chem Res 2014. [DOI: 10.1007/s00044-014-1052-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
24
|
Synthesis of bis-heterocyclic compounds with a phenylene bridge from 1,4- and 1,3-bis(2-chloro-2-cyanovinyl)benzenes. Chem Heterocycl Compd (N Y) 2013. [DOI: 10.1007/s10593-013-1325-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
25
|
Memarzadeh R, Noh HB, Javadpour S, Panahi F, Feizpour A, Shim YB. Carbon Monoxide Sensor Based on a B2HDDT-doped PEDOT:PSS Layer. B KOREAN CHEM SOC 2013. [DOI: 10.5012/bkcs.2013.34.8.2291] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
26
|
Tosso RD, Andujar SA, Gutierrez L, Angelina E, Rodríguez R, Nogueras M, Baldoni H, Suvire FD, Cobo J, Enriz RD. Molecular modeling study of dihydrofolate reductase inhibitors. Molecular dynamics simulations, quantum mechanical calculations, and experimental corroboration. J Chem Inf Model 2013; 53:2018-32. [PMID: 23834278 DOI: 10.1021/ci400178h] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A molecular modeling study on dihydrofolate reductase (DHFR) inhibitors was carried out. By combining molecular dynamics simulations with semiempirical (PM6), ab initio, and density functional theory (DFT) calculations, a simple and generally applicable procedure to evaluate the binding energies of DHFR inhibitors interacting with the human enzyme is reported here, providing a clear picture of the binding interactions of these ligands from both structural and energetic viewpoints. A reduced model for the binding pocket was used. This approach allows us to perform more accurate quantum mechanical calculations as well as to obtain a detailed electronic analysis using the quantum theory of atoms in molecules (QTAIM) technique. Thus, molecular aspects of the binding interactions between inhibitors and the DHFR are discussed in detail. A significant correlation between binding energies obtained from DFT calculations and experimental IC₅₀ values was obtained, predicting with an acceptable qualitative accuracy the potential inhibitor effect of nonsynthesized compounds. Such correlation was experimentally corroborated synthesizing and testing two new inhibitors reported in this paper.
Collapse
Affiliation(s)
- Rodrigo D Tosso
- Departamento de Química, Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, Chacabuco 917, 5700 San Luis, Argentina
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Khalafi-Nezhad A, Panahi F, Golesorkhi B. One-Pot Synthesis of 5,7,8,9,9a,10-Hexahydro-8-thioxotetrahydropyrido[2,3-d : 6,5-d′]dipyrimidine-2,4,6(1H,3H,5aH)-trionesviaa Four-Component Coupling Reaction of Aldehydes, Amines, Barbituric Acids, and Thiouracil. Helv Chim Acta 2013. [DOI: 10.1002/hlca.201200350] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
28
|
Zhu ZQ, Beaudry CM. Structural revision of garuganin IV and 1,9'-didesmethylgaruganin III through total synthesis. J Org Chem 2013; 78:3336-41. [PMID: 23480215 DOI: 10.1021/jo302723n] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The chemical structures of garuganin IV and 1,9'-didesmethylgaruganin III were misassigned. The structures were revised on the basis of analysis of the NMR data, and the revisions were verified through total synthesis.
Collapse
Affiliation(s)
- Zhi-Qiang Zhu
- Department of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, Oregon 97331, USA
| | | |
Collapse
|
29
|
|
30
|
Bolstad DB, Bolstad ES, Wright DL, Anderson AC. Dihydrofolate reductase inhibitors: developments in antiparasitic chemotherapy. Expert Opin Ther Pat 2012; 18:143-57. [PMID: 20553119 DOI: 10.1517/13543776.18.2.143] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND Infections caused by parasitic protozoa present a growing health concern, particularly in developing parts of the world. Although malaria is clearly the most well-known and deadly of these diseases, infections caused by other parasites, such as Toxoplasma, Cryptosporidia and Trypanosoma are emerging infectious threats. The success of inhibitors of the enzyme dihydrofolate reductase (DHFR) against malaria has encouraged further exploration of this strategy against other parasites. OBJECTIVE This review presents antifolate inhibitors that have appeared in the patent literature and elaborates on their potency and selectivity against the DHFR enzyme from parasitic protozoa. METHODS The patent literature since 1994 was surveyed for antiparasitic DHFR inhibitors. RESULTS/CONCLUSIONS Over the past several years, there have been a variety of novel, potent and selective inhibitors disclosed in patents, primarily from academic researchers. This review summarizes the recent development of antifolates as specific agents against parasitic protozoa.
Collapse
Affiliation(s)
- David B Bolstad
- University of Connecticut, Department of Pharmaceutical Sciences, 69 N Eagleville Road, Storrs, CT 06269, USA +1 860 486 6145 ; +1 860 486 6857 ;
| | | | | | | |
Collapse
|
31
|
Brown-Elliott BA, Nash KA, Wallace RJ. Antimicrobial susceptibility testing, drug resistance mechanisms, and therapy of infections with nontuberculous mycobacteria. Clin Microbiol Rev 2012; 25:545-82. [PMID: 22763637 PMCID: PMC3416486 DOI: 10.1128/cmr.05030-11] [Citation(s) in RCA: 335] [Impact Index Per Article: 27.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Within the past 10 years, treatment and diagnostic guidelines for nontuberculous mycobacteria have been recommended by the American Thoracic Society (ATS) and the Infectious Diseases Society of America (IDSA). Moreover, the Clinical and Laboratory Standards Institute (CLSI) has published and recently (in 2011) updated recommendations including suggested antimicrobial and susceptibility breakpoints. The CLSI has also recommended the broth microdilution method as the gold standard for laboratories performing antimicrobial susceptibility testing of nontuberculous mycobacteria. This article reviews the laboratory, diagnostic, and treatment guidelines together with established and probable drug resistance mechanisms of the nontuberculous mycobacteria.
Collapse
|
32
|
Lindert S, Durrant JD, McCammon JA. LigMerge: a fast algorithm to generate models of novel potential ligands from sets of known binders. Chem Biol Drug Des 2012; 80:358-65. [PMID: 22594624 PMCID: PMC3462068 DOI: 10.1111/j.1747-0285.2012.01414.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
One common practice in drug discovery is to optimize known or suspected ligands in order to improve binding affinity. In performing these optimizations, it is useful to look at as many known inhibitors as possible for guidance. Medicinal chemists often seek to improve potency by altering certain chemical moieties of known/endogenous ligands while retaining those critical for binding. To our knowledge, no automated, ligand-based algorithm exists for systematically ‘swapping’ the chemical moieties of known ligands to generate novel ligands with potentially improved potency. To address this need, we have created a novel algorithm called ‘LigMerge’. LigMerge identifies the maximum (largest) common substructure of two three-dimensional ligand models, superimposes these two substructures, and then systematically mixes and matches the distinct fragments attached to the common substructure at each common atom, thereby generating multiple compound models related to the known inhibitors that can be evaluated using computer docking prior to synthesis and experimental testing. To demonstrate the utility of LigMerge, we identify compounds predicted to inhibit peroxisome proliferator–activated receptor gamma, HIV reverse transcriptase, and dihydrofolate reductase with affinities higher than those of known ligands. We hope that LigMerge will be a helpful tool for the drug design community.
Collapse
Affiliation(s)
- Steffen Lindert
- Department of Pharmacology, University of California San Diego, La Jolla, 92093, USA.
| | | | | |
Collapse
|
33
|
Cody V, Pace J, Stewart E. Structural analysis of Pneumocystis carinii dihydrofolate reductase complexed with NADPH and 2,4-diamino-6-[2-(5-carboxypent-1-yn-1-yl)-5-methoxybenzyl]-5-methylpyrido[2,3-d]pyrimidine. Acta Crystallogr Sect F Struct Biol Cryst Commun 2012; 68:418-23. [PMID: 22505410 PMCID: PMC3325810 DOI: 10.1107/s1744309112008688] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2012] [Accepted: 02/27/2012] [Indexed: 05/31/2023]
Abstract
Structural data are reported for 2,4-diamino-6-[2-(5-carboxypent-1-yn-1-yl)-5-methoxybenzyl]-5-methylpyrido[2,3-d]pyrimidine (PY1014) complexed with Pneumocystis carinii dihydrofolate reductase (pcDHFR) refined to 1.8 Å resolution. These data reveal that the carboxylate of the ω-carboxyalkynyl side chain of PY1014, the most pcDHFR-selective analog in this series, forms ionic interactions with the conserved Arg75 in the substrate-binding pocket of pcDHFR. The reversal of the 2',5'-substitution pattern of this analog compared with the highly selective diaminopyrimidine analog PY1011 (i.e. the 5'-pentynylcarboxy-5'-methoxy pattern of PY1014 versus the 3',4'-dimethoxy-5'-pentynylcarboxy pattern of PY1011) is necessary to achieve optimal interaction with Arg75 as observed in other structures. The larger diaminopyrido[2,3-d]pyrimidine ring of PY1014 places the 5'-methoxy group closer to Leu25 and Ser64 than does the diaminopyrimidine ring of PY1011. The 5'-methoxy O atom forms a hydrogen bond to the amide of Leu25 (O···N, 2.7 Å) and the 5'-methoxy methyl group makes a hydrophobic contact of 3.1 Å with C(β) of Ser64. Although the IC(50) values of PY1014 and PY1011 are similar, inhibition data show that the selectivity of PY1011 for pcDHFR is significantly greater. The greater selectivity for pcDHFR compared with mammalian DHFR of these inhibitors is also influenced by the enhanced hydrophobic interactions of the side-chain methylene atoms with Phe69 of pcDHFR compared with Asn64 of mammalian DHFR.
Collapse
Affiliation(s)
- Vivian Cody
- Structural Biology Department, Hauptman-Woodward Medical Research Institute, 700 Ellicott Street, Buffalo, NY 14203, USA.
| | | | | |
Collapse
|
34
|
Rodriguez JB, Szajnman SH. New antibacterials for the treatment of toxoplasmosis; a patent review. Expert Opin Ther Pat 2012; 22:311-33. [PMID: 22404108 DOI: 10.1517/13543776.2012.668886] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Toxoplasma gondii is an opportunistic protozoan parasite responsible for toxoplasmosis. T. gondii is able to infect a wide range of hosts, particularly humans and warm-blooded animals. Toxoplasmosis can be considered as one of the most prevalent parasitic diseases affecting close to one billion people worldwide, but its current chemotherapy is still deficient and is only effective in the acute phase of the disease. AREAS COVERED This review covers different approaches to toxoplasmosis chemotherapy focused on the metabolic differences between the host and the parasite. Selective action on different targets such as the isoprenoid pathway, dihydrofolate reductase, T. gondii adenosine kinase, different antibacterials, T. gondii histone deacetylase and calcium-dependent protein kinases is discussed. EXPERT OPINION A new and safe chemotherapy is needed, as T. gondii causes serious morbidity and mortality in pregnant women and immunodeficient patients undergoing chemotherapy. A particular drawback of the available treatments is the lack of efficacy against the tissue cyst of the parasite. During this review a broad scope of several attractive targets for drug design have been presented. In this context, the isoprenoid pathway, dihydrofolate reductase, T. gondii histone deacetylase are promising molecular targets.
Collapse
Affiliation(s)
- Juan Bautista Rodriguez
- Universidad de Buenos Aires, Química Orgánica & UMYMFOR (CONICET-FCEyN), Facultad de Ciencias Exactas y Naturales, Pab 2, Ciudad Universitaria, Buenos Aires, C1428EHA, Argentina.
| | | |
Collapse
|
35
|
Moreno E, Plano D, Lamberto I, Font M, Encío I, Palop JA, Sanmartín C. Sulfur and selenium derivatives of quinazoline and pyrido[2,3-d]pyrimidine: synthesis and study of their potential cytotoxic activity in vitro. Eur J Med Chem 2011; 47:283-98. [PMID: 22104973 DOI: 10.1016/j.ejmech.2011.10.056] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2011] [Revised: 10/25/2011] [Accepted: 10/28/2011] [Indexed: 12/21/2022]
Abstract
The synthesis, cytotoxic activities and selectivities of 35 derivatives related to quinazoline and pyrido[2,3-d]pyrimidine are described. The synthesized compounds were screened in vitro against four tumoral cell lines - leukemia (CCRF-CEM), colon (HT-29), lung (HTB-54) and breast (MCF-7) - and two cell lines derived from non-malignant cell lines, one mammary (184B5) and one from bronchial epithelium (BEAS-2B). MCF-7 and HTB-54 were the most sensitive cell lines with GI(50) values below 10μM for eleven and ten compounds, respectively. Two compounds (2o and 3a) were identified that evoked a marked cytotoxic effect in all cell lines tested and one compound, 7h, was potent and selective against MCF-7. A preliminary study into the mechanism of the potent derivatives 2o, 3a and 7h indicated that the cytotoxic activities of these compounds might be mediated by inducing cell death without affecting cell cycle phases.
Collapse
Affiliation(s)
- Esther Moreno
- Sección de síntesis, Departamento de Química Orgánica y Farmacéutica, University of Navarra, Irunlarrea, 1, E-31008 Pamplona, Spain
| | | | | | | | | | | | | |
Collapse
|
36
|
Cody V, Pace J, Nowak J. Structural analysis of human dihydrofolate reductase as a binary complex with the potent and selective inhibitor 2,4-diamino-6-{2'-O-(3-carboxypropyl)oxydibenz[b,f]-azepin-5-yl}methylpteridine reveals an unusual binding mode. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2011; 67:875-80. [PMID: 21931219 PMCID: PMC3176622 DOI: 10.1107/s0907444911030071] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2011] [Accepted: 07/25/2011] [Indexed: 11/10/2022]
Abstract
In order to understand the structure-activity profile observed for a series of substituted dibenz[b,f]azepine antifolates, the crystal structure of the binary complex of human dihydrofolate reductase (hDHFR) with the potent and selective inhibitor 2,4-diamino-6-{2'-O-(3-carboxypropyl)oxydibenz[b,f]-azepin-5-yl}methylpteridine (PT684) was determined to 1.8 Å resolution. These data revealed that the carboxylate side chain of PT684 occupies two alternate positions, neither of which interacts with the conserved Arg70 in the active-site pocket, which in turn hydrogen bonds to water. These observations are in contrast to those reported for the ternary complex of mouse DHFR (mDHFR) with NADPH [Cody et al. (2008), Acta Cryst. D64, 977-984], in which the 3-carboxypropyl side chain of PT684 was hydrolyzed to its hydroxyl derivative, PT684a. The crystallization conditions differed for the human and mouse DHFR crystals (100 mM K2HPO4 pH 6.9, 30% ammonium sulfate for hDHFR; 15 mM Tris pH 8.3, 75 mM sodium cacodylate, PEG 4K for mDHFR). Additionally, the side chains of Phe31 and Gln35 in the hDHFR complex have a single conformation, whereas in the mDHFR complex they occupied two alternative conformations. These data show that the hDHFR complex has a decreased active-site volume compared with the mDHFR complex, as reflected in a relative shift of helix C (residues 59-64) of 1.2 Å, and a shift of 1.5 Å compared with the ternary complex of Pneumocystis carinii DHFR (pcDHFR) with the parent dibenz[b,f]azepine PT653. These data suggest that the greater inhibitory potency of PT684 against pcDHFR is consistent with the larger active-site volume of pcDHFR and the predicted interactions of the carboxylate side chain with Arg75.
Collapse
Affiliation(s)
- Vivian Cody
- Structural Biology Department, Hauptman-Woodward Medical Research Institute, 700 Ellicott Street, Buffalo, NY 14203, USA.
| | | | | |
Collapse
|
37
|
Li X, Hilgers M, Cunningham M, Chen Z, Trzoss M, Zhang J, Kohnen L, Lam T, Creighton C, G C K, Nelson K, Kwan B, Stidham M, Brown-Driver V, Shaw KJ, Finn J. Structure-based design of new DHFR-based antibacterial agents: 7-aryl-2,4-diaminoquinazolines. Bioorg Med Chem Lett 2011; 21:5171-6. [PMID: 21831637 DOI: 10.1016/j.bmcl.2011.07.059] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2011] [Revised: 07/14/2011] [Accepted: 07/14/2011] [Indexed: 11/28/2022]
Abstract
Dihydrofolate reductase (DHFR) inhibitors such as trimethoprim (TMP) have long played a significant role in the treatment of bacterial infections. Not surprisingly, after decades of use there is now bacterial resistance to TMP and therefore a need to develop novel antibacterial agents with expanded spectrum including these resistant strains. In this study, we investigated the optimization of 2,4-diamnoquinazolines for antibacterial potency and selectivity. Using structure-based drug design, several 7-aryl-2,4-diaminoquinazolines were discovered that have excellent sub-100 picomolar potency against bacterial DHFR. These compounds have good antibacterial activity especially on gram-positive pathogens including TMP-resistant strains.
Collapse
Affiliation(s)
- Xiaoming Li
- Trius Therapeutics, San Diego, CA 92121, United States
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Cody V, Pace J, Piraino J, Queener SF. Crystallographic analysis reveals a novel second binding site for trimethoprim in active site double mutants of human dihydrofolate reductase. J Struct Biol 2011; 176:52-9. [PMID: 21684339 DOI: 10.1016/j.jsb.2011.06.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2011] [Revised: 05/19/2011] [Accepted: 06/01/2011] [Indexed: 11/29/2022]
Abstract
In order to produce a more potent replacement for trimethoprim (TMP) used as a therapy for Pneumocystis pneumonia and targets dihydrofolate reductase from Pneumocystis jirovecii (pjDHFR), it is necessary to understand the determinants of potency and selectivity against DHFR from the mammalian host and fungal pathogen cells. To this end, active site residues in human (h) DHFR were replaced with those from pjDHFR. Structural data are reported for two complexes of TMP with the double mutants Gln35Ser/Asn64Phe (Q35S/N64F) and Gln35Lys/Asn64Phe (Q35K/N64F) of hDHFR that unexpectedly show evidence for the binding of two molecules of TMP: one molecule that binds in the normal folate binding site and the second molecule that binds in a novel subpocket site such that the mutated residue Phe64 is involved in van der Waals contacts to the trimethoxyphenyl ring of the second TMP molecule. Kinetic data for the binding of TMP to hDHFR and pjDHFR reveal an 84-fold selectivity of TMP against pjDHFR (K(i) 49 nM) compared to hDHFR (K(i) 4093 nM). Two mutants that contain one substitution from pj--and one from the closely related Pneumocystis carinii DHFR (pcDHFR) (Q35K/N64F and Q35S/N64F) show K(i) values of 593 and 617 nM, respectively; these K(i) values are well above both the K(i) for pjDHFR and are similar to pcDHFR (Q35K/N64F and Q35S/N64F) (305nM). These results suggest that active site residues 35 and 64 play key roles in determining selectivity for pneumocystis DHFR, but that other residues contribute to the unique binding of inhibitors to these enzymes.
Collapse
Affiliation(s)
- Vivian Cody
- Structural Biology Department, Hauptman Woodward Medical Research Institute, 700 Ellicott St. Buffalo, NY 14203, USA.
| | | | | | | |
Collapse
|
39
|
Cody V, Pace J. Structural analysis of Pneumocystis carinii and human DHFR complexes with NADPH and a series of five potent 6-[5'-(ω-carboxyalkoxy)benzyl]pyrido[2,3-d]pyrimidine derivatives. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2011; 67:1-7. [PMID: 21206056 PMCID: PMC3016015 DOI: 10.1107/s0907444910041004] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2010] [Accepted: 10/12/2010] [Indexed: 11/10/2022]
Abstract
Structural data are reported for five antifolates, namely 2,4-diamino-6-[5'-(5-carboxypentyloxy)-2'-methoxybenzyl]-5-methylpyrido[2,3-d]pyrimidine, (1), and the 5'-[3-(ethoxycarbonyl)propoxy]-, (2), 5'-[3-(ethoxycarbonyl)butoxy]-, (3), 5'-[3-(ethoxycarbonyl)pentyloxy]-, (4), and 5'-benzyloxy-, (5), derivatives, which are potent and selective for Pneumocystis carinii dihydrofolate reductase (pcDHFR). Crystal structures are reported for their ternary complexes with NADPH and pcDHFR refined to between 1.4 and 2.0 Å resolution and for that of 3 with human DHFR (hDHFR) to 1.8 Å resolution. These data reveal that the carboxylate of the ω-carboxyalkoxy side chain of 1, the most potent inhibitor in this series, forms ionic interactions with the conserved Arg75 in the substrate-binding pocket of pcDHFR, whereas the less potent ethyl esters of 2-4 bind with variable side-chain conformations. The benzyloxy side chain of 5 makes no contact with Arg75 and is the least active inhibitor in this series. These structural results suggest that the weaker binding of this series compared with that of their pyrimidine homologs in part arises from the flexibility observed in their side-chain conformations, which do not optimize intermolecular contact to Arg75. Structural data for the binding of 3 to both hDHFR and pcDHFR reveals that the inhibitor binds in two different conformations, one similar to each of the two conformations observed for the parent pyrido[2,3-d]pyrimidine, piritrexim (PTX), bound to hDHFR. The structure of the pcDHFR complex of 4 reveals disorder in the side-chain orientation; one orientation has the ω-carboxyalkoxy side chain positioned in the folate-binding pocket similar to the others in this series, while the second orientation occupies a new site near the nicotinamide ring of NADPH. This alternate binding site has not been observed in other DHFR structures. Structural data for the pcDHFR complex of 5 show that its benzyl side chain forms intermolecular van der Waals interactions with Phe69 in the binding pocket that could account for its enhanced binding selectivity compared with the other analogs in this series.
Collapse
Affiliation(s)
- Vivian Cody
- Structural Biology Department, Hauptman-Woodward Medical Research Institute, Buffalo, New York 14203, USA.
| | | |
Collapse
|
40
|
Synthesis of bioactive polyheterocyclic ring systems as 5α-reductase inhibitors. Eur J Med Chem 2010; 45:4838-44. [DOI: 10.1016/j.ejmech.2010.07.053] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2010] [Revised: 07/24/2010] [Accepted: 07/27/2010] [Indexed: 11/15/2022]
|
41
|
Bag S, Tawari NR, Queener SF, Degani MS. Synthesis and biological evaluation of biguanide and dihydrotriazine derivatives as potential inhibitors of dihydrofolate reductase of opportunistic microorganisms. J Enzyme Inhib Med Chem 2009; 25:331-9. [DOI: 10.3109/14756360903179443] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Seema Bag
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Nathalal Parekh Marg, Matunga, Mumbai, India
| | - Nilesh R. Tawari
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Nathalal Parekh Marg, Matunga, Mumbai, India
| | - Sherry F. Queener
- Department of Pharmacology and Toxicology, School of Medicine, Indiana University, Indianapolis, IN, USA
| | - Mariam S. Degani
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Nathalal Parekh Marg, Matunga, Mumbai, India
| |
Collapse
|
42
|
Bag S, Tawari N, Degani M. Insight into Inhibitory Activity ofMycobacterialDihydrofolate Reductase Inhibitors byIn-silicoMolecular Modeling Approaches. ACTA ACUST UNITED AC 2009. [DOI: 10.1002/qsar.200860067] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
43
|
Schormann N, Senkovich O, Walker K, Wright DL, Anderson AC, Rosowsky A, Ananthan S, Shinkre B, Velu S, Chattopadhyay D. Structure-based approach to pharmacophore identification, in silico screening, and three-dimensional quantitative structure-activity relationship studies for inhibitors of Trypanosoma cruzi dihydrofolate reductase function. Proteins 2008; 73:889-901. [PMID: 18536013 DOI: 10.1002/prot.22115] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We have employed a structure-based three-dimensional quantitative structure-activity relationship (3D-QSAR) approach to predict the biochemical activity for inhibitors of T. cruzi dihydrofolate reductase-thymidylate synthase (DHFR-TS). Crystal structures of complexes of the enzyme with eight different inhibitors of the DHFR activity together with the structure in the substrate-free state (DHFR domain) were used to validate and refine docking poses of ligands that constitute likely active conformations. Structural information from these complexes formed the basis for the structure-based alignment used as input for the QSAR study. Contrary to indirect ligand-based approaches the strategy described here employs a direct receptor-based approach. The goal is to generate a library of selective lead inhibitors for further development as antiparasitic agents. 3D-QSAR models were obtained for T. cruzi DHFR-TS (30 inhibitors in learning set) and human DHFR (36 inhibitors in learning set) that show a very good agreement between experimental and predicted enzyme inhibition data. For crossvalidation of the QSAR model(s), we have used the 10% leave-one-out method. The derived 3D-QSAR models were tested against a few selected compounds (a small test set of six inhibitors for each enzyme) with known activity, which were not part of the learning set, and the quality of prediction of the initial 3D-QSAR models demonstrated that such studies are feasible. Further refinement of the models through integration of additional activity data and optimization of reliable docking poses is expected to lead to an improved predictive ability.
Collapse
Affiliation(s)
- N Schormann
- Department of Pharmaceutical Sciences, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
MacNeil SL, Gray M, Gusev DG, Briggs LE, Snieckus V. Carbanionic Friedel−Crafts Equivalents. Regioselective Directed Ortho and Remote Metalation−C−N Cross Coupling Routes to Acridones and Dibenzo[b,f]azepinones. J Org Chem 2008; 73:9710-9. [DOI: 10.1021/jo801856n] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Stephen L. MacNeil
- Department of Chemistry, Wilfrid Laurier University, Waterloo, ON, Canada N2L 3C5, and Department of Chemistry, Queen’s University, Kingston, ON, Canada K7L 3N6
| | - Matthew Gray
- Department of Chemistry, Wilfrid Laurier University, Waterloo, ON, Canada N2L 3C5, and Department of Chemistry, Queen’s University, Kingston, ON, Canada K7L 3N6
| | - Dmitry G. Gusev
- Department of Chemistry, Wilfrid Laurier University, Waterloo, ON, Canada N2L 3C5, and Department of Chemistry, Queen’s University, Kingston, ON, Canada K7L 3N6
| | - Laura E. Briggs
- Department of Chemistry, Wilfrid Laurier University, Waterloo, ON, Canada N2L 3C5, and Department of Chemistry, Queen’s University, Kingston, ON, Canada K7L 3N6
| | - Victor Snieckus
- Department of Chemistry, Wilfrid Laurier University, Waterloo, ON, Canada N2L 3C5, and Department of Chemistry, Queen’s University, Kingston, ON, Canada K7L 3N6
| |
Collapse
|
45
|
Cody V, Pace J, Rosowsky A. Structural analysis of a holoenzyme complex of mouse dihydrofolate reductase with NADPH and a ternary complex with the potent and selective inhibitor 2,4-diamino-6-(2'-hydroxydibenz[b,f]azepin-5-yl)methylpteridine. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2008; 64:977-84. [PMID: 18703847 PMCID: PMC2615397 DOI: 10.1107/s0907444908022348] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2008] [Accepted: 07/16/2008] [Indexed: 11/10/2022]
Abstract
It has been shown that 2,4-diamino-6-arylmethylpteridines and 2,4-diamino-5-arylmethylpyrimidines containing an O-carboxylalkyloxy group in the aryl moiety are potent and selective inhibitors of the dihydrofolate reductase (DHFR) from opportunistic pathogens such as Pneumocystis carinii, the causative agent of Pneumocystis pneumonia in HIV/AIDS patients. In order to understand the structure-activity profile observed for a series of substituted dibenz[b,f]azepine antifolates, the crystal structures of mouse DHFR (mDHFR; a mammalian homologue) holo and ternary complexes with NADPH and the inhibitor 2,4-diamino-6-(2'-hydroxydibenz[b,f]azepin-5-yl)methylpteridine were determined to 1.9 and 1.4 A resolution, respectively. Structural data for the ternary complex with the potent O-(3-carboxypropyl) inhibitor PT684 revealed no electron density for the O-carboxylalkyloxy side chain. The side chain was either cleaved or completely disordered. The electron density fitted the less potent hydroxyl compound PT684a. Additionally, cocrystallization of mDHFR with NADPH and the less potent 2'-(4-carboxybenzyl) inhibitor PT682 showed no electron density for the inhibitor and resulted in the first report of a holoenzyme complex despite several attempts at crystallization of a ternary complex. Modeling data of PT682 in the active site of mDHFR and P. carinii DHFR (pcDHFR) indicate that binding would require ligand-induced conformational changes to the enzyme for the inhibitor to fit into the active site or that the inhibitor side chain would have to adopt an alternative binding mode to that observed for other carboxyalkyloxy inhibitors. These data also show that the mDHFR complexes have a decreased active-site volume as reflected in the relative shift of helix C (residues 59-64) by 0.6 A compared with pcDHFR ternary complexes. These data are consistent with the greater inhibitory potency against pcDHFR.
Collapse
Affiliation(s)
- Vivian Cody
- Structural Biology Department, Hauptman-Woodward Medical Research Institute, 700 Ellicott Street, Buffalo, NY 14203, USA.
| | | | | |
Collapse
|
46
|
Sanmartín C, Domínguez MV, Cordeu L, Cubedo E, García-Foncillas J, Font M, Palop JA. Synthesis and Biological Evaluation of 2,4,6-Functionalized Derivatives of Pyrido[2,3-d]pyrimidines as Cytotoxic Agents and Apoptosis Inducers. Arch Pharm (Weinheim) 2007; 341:28-41. [DOI: 10.1002/ardp.200700133] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
47
|
|