1
|
Hisamuddin M, Rizvi I, Malik A, Nabi F, Hassan MN, Ali SM, Khan JM, Khan TH, Khan RH. Characterization of pH-induced conformational changes in recombinant DENV NS2B-NS3pro. Int J Biol Macromol 2023; 253:126823. [PMID: 37703975 DOI: 10.1016/j.ijbiomac.2023.126823] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 09/07/2023] [Accepted: 09/07/2023] [Indexed: 09/15/2023]
Abstract
The increasing frequency of Dengue is a cause of severe epidemics and therefore demands strategies for effective prevention, diagnosis, and treatment. DENV-protease is being investigated as a potential therapeutic target. However, due to the flat and highly charged active site of the DENV-protease, designing orthosteric medicines is very difficult. In this study, we have done a thorough analysis of pH-dependent conformational changes in recombinantly expressed DENV protease using various spectroscopic techniques. Our spectroscopic study of DENV protease (NS2B-NS3pro) at different pH conditions gives important insights into the dynamicity of structural conformation. At physiological pH, the DENV-protease exists in a random-coiled state. Lowering the pH promotes the formation of alpha-helical and beta-sheet structures i.e. gain of secondary structure as shown by Far-UV CD. The light scattering and Thioflavin T (ThT)-binding assay proved the aggregation-prone tendency of DENV-protease at pH 4.0. Further, the confocal microscopy image intensity showed the amorphous aggregate formation of DENV protease at pH 4.0. Thus, the DENV protease acquires different conformations with changes in pH conditions. Together, these results have the potential to facilitate the design of a conformation destabilizer-based therapeutic strategy for dengue fever.
Collapse
Affiliation(s)
- Malik Hisamuddin
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University Aligarh, UP, India
| | - Irum Rizvi
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University Aligarh, UP, India
| | - Ajamaluddin Malik
- Department of Biochemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh, Saudi Arabia
| | - Faisal Nabi
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University Aligarh, UP, India
| | - Md Nadir Hassan
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University Aligarh, UP, India
| | - Syed Moasfar Ali
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University Aligarh, UP, India
| | - Javed Masood Khan
- Department of Food Science and Nutrition, Faculty of Food and Agricultural Sciences, King Saud University, 2460, Riyadh 11451, Saudi Arabia
| | - Tabish H Khan
- Department of Pathology and Immunology, Washington University in St. Louis School of Medicine, MO, USA
| | - Rizwan H Khan
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University Aligarh, UP, India.
| |
Collapse
|
2
|
Skwarecki AS, Nowak MG, Milewska MJ. Amino Acid and Peptide-Based Antiviral Agents. ChemMedChem 2021; 16:3106-3135. [PMID: 34254457 DOI: 10.1002/cmdc.202100397] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Indexed: 01/10/2023]
Abstract
A significant number of antiviral agents used in clinical practice are amino acids, short peptides, or peptidomimetics. Among them, several HIV protease inhibitors (e. g. lopinavir, atazanavir), HCV protease inhibitors (e. g. grazoprevir, glecaprevir), and HCV NS5A protein inhibitors have contributed to a significant decrease in mortality from AIDS and hepatitis. However, there is an ongoing need for the discovery of new antiviral agents and the development of existing drugs; amino acids, both proteinogenic and non-proteinogenic in nature, serve as convenient building blocks for this purpose. The synthesis of non-proteinogenic amino acid components of antiviral agents could be challenging due to the need for enantiomerically or diastereomerically pure products. Herein, we present a concise review of antiviral agents whose structures are based on amino acids of both natural and unnatural origin. Special attention is paid to the synthetic aspects of non-proteinogenic amino acid components of those agents.
Collapse
Affiliation(s)
- Andrzej S Skwarecki
- Department of Pharmaceutical Technology and Biochemistry and BioTechMed Center, Gdańsk University of Technology, 11/12 Gabriela Narutowicza Street, 80-233, Gdańsk, Poland
| | - Michał G Nowak
- Department of Organic Chemistry and BioTechMed Center, Gdańsk University of Technology, 11/12 Gabriela Narutowicza Street, 80-233, Gdańsk, Poland
| | - Maria J Milewska
- Department of Organic Chemistry and BioTechMed Center, Gdańsk University of Technology, 11/12 Gabriela Narutowicza Street, 80-233, Gdańsk, Poland
| |
Collapse
|
3
|
Voshavar C. Protease Inhibitors for the Treatment of HIV/AIDS: Recent Advances and Future Challenges. Curr Top Med Chem 2019; 19:1571-1598. [PMID: 31237209 DOI: 10.2174/1568026619666190619115243] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Revised: 05/22/2019] [Accepted: 05/27/2019] [Indexed: 02/07/2023]
Abstract
Acquired Immunodeficiency Syndrome (AIDS) is a chronic disease characterized by multiple life-threatening illnesses caused by a retro-virus, Human Immunodeficiency Virus (HIV). HIV infection slowly destroys the immune system and increases the risk of various other infections and diseases. Although, there is no immediate cure for HIV infection/AIDS, several drugs targeting various cruxes of HIV infection are used to slow down the progress of the disease and to boost the immune system. One of the key therapeutic strategies is Highly Active Antiretroviral Therapy (HAART) or ' AIDS cocktail' in a general sense, which is a customized combination of anti-retroviral drugs designed to combat the HIV infection. Since HAART's inception in 1995, this treatment was found to be effective in improving the life expectancy of HIV patients over two decades. Among various classes of HAART treatment regimen, Protease Inhibitors (PIs) are known to be widely used as a major component and found to be effective in treating HIV infection/AIDS. For the past several years, a variety of protease inhibitors have been reported. This review outlines the drug design strategies of PIs, chemical and pharmacological characteristics of some mechanism-based inhibitors, summarizes the recent developments in small molecule based drug discovery with HIV protease as a drug target. Further discussed are the pharmacology, PI drug resistance on HIV PR, adverse effects of HIV PIs and challenges/impediments in the successful application of HIV PIs as an important class of drugs in HAART regimen for the effective treatment of AIDS.
Collapse
Affiliation(s)
- Chandrashekhar Voshavar
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, United States
| |
Collapse
|
4
|
Laxio Arenas J, Kaffy J, Ongeri S. Peptides and peptidomimetics as inhibitors of protein–protein interactions involving β-sheet secondary structures. Curr Opin Chem Biol 2019; 52:157-167. [DOI: 10.1016/j.cbpa.2019.07.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 06/27/2019] [Accepted: 07/18/2019] [Indexed: 02/02/2023]
|
5
|
Wapling J, Srivastava S, Shehu-Xhilaga M, Tachedjian G. Targeting Human Immunodeficiency Virus Type 1 Assembly, Maturation and Budding. Drug Target Insights 2017. [DOI: 10.1177/117739280700200020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Affiliation(s)
- Johanna Wapling
- Molecular Interactions Group, Macfarlane Burnet Institute for Medical Research and Public Health, Melbourne, Victoria, 3004, Australia
- Department of Microbiology, Monash University, Clayton, Victoria 3168, Australia
| | - Seema Srivastava
- Molecular Interactions Group, Macfarlane Burnet Institute for Medical Research and Public Health, Melbourne, Victoria, 3004, Australia
| | - Miranda Shehu-Xhilaga
- Department of Medicine, Monash University, Prahran, Victoria 3181, Australia
- Infectious Diseases Unit, Alfred Hospital, Prahran, Victoria 3181, Australia
| | - Gilda Tachedjian
- Molecular Interactions Group, Macfarlane Burnet Institute for Medical Research and Public Health, Melbourne, Victoria, 3004, Australia
- Department of Microbiology, Monash University, Clayton, Victoria 3168, Australia
- Department of Medicine, Monash University, Prahran, Victoria 3181, Australia
| |
Collapse
|
6
|
Vahdati L, Kaffy J, Brinet D, Bernadat G, Correia I, Panzeri S, Fanelli R, Lequin O, Taverna M, Ongeri S, Piarulli U. Synthesis and Characterization of Hairpin Mimics that Modulate the Early Oligomerization and Fibrillization of Amyloid β-Peptide. European J Org Chem 2017. [DOI: 10.1002/ejoc.201700010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Leila Vahdati
- Università degli Studi dell'Insubria; Dipartimento di Scienza e Alta Tecnologia; Via Valleggio 11 22100 Como Italy
- BioCIS; Univ. Paris-Sud; CNRS; Université Paris-Saclay; 92290 Châtenay-Malabry France
| | - Julia Kaffy
- BioCIS; Univ. Paris-Sud; CNRS; Université Paris-Saclay; 92290 Châtenay-Malabry France
| | - Dimitri Brinet
- BioCIS; Univ. Paris-Sud; CNRS; Université Paris-Saclay; 92290 Châtenay-Malabry France
- Protéins and Nanotechnology in analytical science; Institut Galien de Paris Sud; Univ. Paris-Sud; CNRS; Université Paris-Saclay; 92290 Châtenay-Malabry France
| | - Guillaume Bernadat
- BioCIS; Univ. Paris-Sud; CNRS; Université Paris-Saclay; 92290 Châtenay-Malabry France
| | - Isabelle Correia
- Sorbonne Universités; UPMC Univ Paris 06; Ecole Normale Supérieure; PSL Research University; CNRS; Laboratoire des Biomolécules; 4 place Jussieu 75252 Paris Cedex 05 France
| | - Silvia Panzeri
- Università degli Studi dell'Insubria; Dipartimento di Scienza e Alta Tecnologia; Via Valleggio 11 22100 Como Italy
| | - Roberto Fanelli
- Università degli Studi dell'Insubria; Dipartimento di Scienza e Alta Tecnologia; Via Valleggio 11 22100 Como Italy
| | - Olivier Lequin
- Sorbonne Universités; UPMC Univ Paris 06; Ecole Normale Supérieure; PSL Research University; CNRS; Laboratoire des Biomolécules; 4 place Jussieu 75252 Paris Cedex 05 France
| | - Myriam Taverna
- Protéins and Nanotechnology in analytical science; Institut Galien de Paris Sud; Univ. Paris-Sud; CNRS; Université Paris-Saclay; 92290 Châtenay-Malabry France
| | - Sandrine Ongeri
- BioCIS; Univ. Paris-Sud; CNRS; Université Paris-Saclay; 92290 Châtenay-Malabry France
| | - Umberto Piarulli
- Università degli Studi dell'Insubria; Dipartimento di Scienza e Alta Tecnologia; Via Valleggio 11 22100 Como Italy
| |
Collapse
|
7
|
Shi S, Nguyen PK, Cabral HJ, Diez-Barroso R, Derry PJ, Kanahara SM, Kumar VA. Development of peptide inhibitors of HIV transmission. Bioact Mater 2016; 1:109-121. [PMID: 29744399 PMCID: PMC5883972 DOI: 10.1016/j.bioactmat.2016.09.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 08/18/2016] [Accepted: 09/07/2016] [Indexed: 12/26/2022] Open
Abstract
Treatment of HIV has long faced the challenge of high mutation rates leading to rapid development of resistance, with ongoing need to develop new methods to effectively fight the infection. Traditionally, early HIV medications were designed to inhibit RNA replication and protein production through small molecular drugs. Peptide based therapeutics are a versatile, promising field in HIV therapy, which continues to develop as we expand our understanding of key protein-protein interactions that occur in HIV replication and infection. This review begins with an introduction to HIV, followed by the biological basis of disease, current clinical management of the disease, therapeutics on the market, and finally potential avenues for improved drug development.
Collapse
Key Words
- AIDS, acquired immunodeficiency syndrome
- ART, antiretroviral therapy
- CDC, Centers for Disease Control and Prevention
- Drug development
- FDA, US Food and Drug Administration
- FY, fiscal year
- HAART, highly active antiretroviral therapy
- HCV, hepatitis C Virus
- HIV
- HIV treatment
- HIV, human immunodeficiency virus
- INSTI, Integrase strand transfer inhibitors
- LEDGF, lens epithelium-derived growth factor
- NNRTI, Non-nucleoside reverse transcriptase inhibitors
- NRTI, Nucleoside/Nucleotide Reverse Transcriptase Inhibitors
- Peptide inhibitor
- Peptide therapeutic
- R&D, research and development
- RT, reverse transcriptase
Collapse
Affiliation(s)
- Siyu Shi
- Department of Chemistry, Rice University, Houston, TX 77030, USA
| | - Peter K. Nguyen
- Department of Biomedical Engineering, New Jersey Institute of Technology, University Heights, Newark, NJ 07102, USA
- Department of Chemical, Biological and Pharmaceutical Engineering, New Jersey Institute of Technology, University Heights, Newark, NJ 07102, USA
| | - Henry J. Cabral
- Department of Biomedical Engineering, New Jersey Institute of Technology, University Heights, Newark, NJ 07102, USA
- Department of Chemical, Biological and Pharmaceutical Engineering, New Jersey Institute of Technology, University Heights, Newark, NJ 07102, USA
| | | | - Paul J. Derry
- Department of Chemistry, Rice University, Houston, TX 77030, USA
| | | | - Vivek A. Kumar
- Department of Biomedical Engineering, New Jersey Institute of Technology, University Heights, Newark, NJ 07102, USA
- Department of Chemical, Biological and Pharmaceutical Engineering, New Jersey Institute of Technology, University Heights, Newark, NJ 07102, USA
| |
Collapse
|
8
|
Ghosh AK, Osswald HL, Prato G. Recent Progress in the Development of HIV-1 Protease Inhibitors for the Treatment of HIV/AIDS. J Med Chem 2016; 59:5172-208. [PMID: 26799988 PMCID: PMC5598487 DOI: 10.1021/acs.jmedchem.5b01697] [Citation(s) in RCA: 287] [Impact Index Per Article: 35.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
HIV-1 protease inhibitors continue to play an important role in the treatment of HIV/AIDS, transforming this deadly ailment into a more manageable chronic infection. Over the years, intensive research has led to a variety of approved protease inhibitors for the treatment of HIV/AIDS. In this review, we outline current drug design and medicinal chemistry efforts toward the development of next-generation protease inhibitors beyond the currently approved drugs.
Collapse
Affiliation(s)
- Arun K. Ghosh
- Department of Chemistry and Department of Medicinal Chemistry, Purdue University, West Lafayette, IN 47907
| | - Heather L. Osswald
- Department of Chemistry and Department of Medicinal Chemistry, Purdue University, West Lafayette, IN 47907
| | - Gary Prato
- Department of Chemistry and Department of Medicinal Chemistry, Purdue University, West Lafayette, IN 47907
| |
Collapse
|
9
|
Kaffy J, Brinet D, Soulier JL, Correia I, Tonali N, Fera KF, Iacone Y, Hoffmann ARF, Khemtémourian L, Crousse B, Taylor M, Allsop D, Taverna M, Lequin O, Ongeri S. Designed Glycopeptidomimetics Disrupt Protein-Protein Interactions Mediating Amyloid β-Peptide Aggregation and Restore Neuroblastoma Cell Viability. J Med Chem 2016; 59:2025-40. [PMID: 26789783 DOI: 10.1021/acs.jmedchem.5b01629] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
How anti-Alzheimer's drug candidates that reduce amyloid 1-42 peptide fibrillization interact with the most neurotoxic species is far from being understood. We report herein the capacity of sugar-based peptidomimetics to inhibit both Aβ1-42 early oligomerization and fibrillization. A wide range of bio- and physicochemical techniques, such as a new capillary electrophoresis method, nuclear magnetic resonance, and surface plasmon resonance, were used to identify how these new molecules can delay the aggregation of Aβ1-42. We demonstrate that these molecules interact with soluble oligomers in order to maintain the presence of nontoxic monomers and to prevent fibrillization. These compounds totally suppress the toxicity of Aβ1-42 toward SH-SY5Y neuroblastoma cells, even at substoichiometric concentrations. Furthermore, demonstration that the best molecule combines hydrophobic moieties, hydrogen bond donors and acceptors, ammonium groups, and a hydrophilic β-sheet breaker element provides valuable insight for the future structure-based design of inhibitors of Aβ1-42 aggregation.
Collapse
Affiliation(s)
- Julia Kaffy
- Molécules Fluorées et Chimie Médicinale, BioCIS, Univ. Paris-Sud, CNRS, Université Paris Saclay , 5 rue Jean-Baptiste Clément, 92296 Châtenay-Malabry Cedex, France
| | - Dimitri Brinet
- Molécules Fluorées et Chimie Médicinale, BioCIS, Univ. Paris-Sud, CNRS, Université Paris Saclay , 5 rue Jean-Baptiste Clément, 92296 Châtenay-Malabry Cedex, France.,Protéines et Nanotechnologies en Sciences Séparatives, Institut Galien Paris-Sud, Univ. Paris-Sud, CNRS, Université Paris Saclay , 5 rue Jean-Baptiste Clément, 92296 Châtenay-Malabry Cedex, France
| | - Jean-Louis Soulier
- Molécules Fluorées et Chimie Médicinale, BioCIS, Univ. Paris-Sud, CNRS, Université Paris Saclay , 5 rue Jean-Baptiste Clément, 92296 Châtenay-Malabry Cedex, France
| | - Isabelle Correia
- Sorbonne Universités - UPMC Univ Paris 06, Ecole Normale Supérieure - PSL Research University, CNRS UMR 7203 LBM, 4 place Jussieu, 75252 Paris, Cedex 05, France
| | - Nicolo Tonali
- Molécules Fluorées et Chimie Médicinale, BioCIS, Univ. Paris-Sud, CNRS, Université Paris Saclay , 5 rue Jean-Baptiste Clément, 92296 Châtenay-Malabry Cedex, France
| | - Katia Fabiana Fera
- Molécules Fluorées et Chimie Médicinale, BioCIS, Univ. Paris-Sud, CNRS, Université Paris Saclay , 5 rue Jean-Baptiste Clément, 92296 Châtenay-Malabry Cedex, France
| | - Yasmine Iacone
- Molécules Fluorées et Chimie Médicinale, BioCIS, Univ. Paris-Sud, CNRS, Université Paris Saclay , 5 rue Jean-Baptiste Clément, 92296 Châtenay-Malabry Cedex, France.,Protéines et Nanotechnologies en Sciences Séparatives, Institut Galien Paris-Sud, Univ. Paris-Sud, CNRS, Université Paris Saclay , 5 rue Jean-Baptiste Clément, 92296 Châtenay-Malabry Cedex, France
| | - Anaïs R F Hoffmann
- Sorbonne Universités - UPMC Univ Paris 06, Ecole Normale Supérieure - PSL Research University, CNRS UMR 7203 LBM, 4 place Jussieu, 75252 Paris, Cedex 05, France
| | - Lucie Khemtémourian
- Sorbonne Universités - UPMC Univ Paris 06, Ecole Normale Supérieure - PSL Research University, CNRS UMR 7203 LBM, 4 place Jussieu, 75252 Paris, Cedex 05, France
| | - Benoit Crousse
- Molécules Fluorées et Chimie Médicinale, BioCIS, Univ. Paris-Sud, CNRS, Université Paris Saclay , 5 rue Jean-Baptiste Clément, 92296 Châtenay-Malabry Cedex, France
| | - Mark Taylor
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University , Lancaster LA1 4YQ, U.K
| | - David Allsop
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University , Lancaster LA1 4YQ, U.K
| | - Myriam Taverna
- Protéines et Nanotechnologies en Sciences Séparatives, Institut Galien Paris-Sud, Univ. Paris-Sud, CNRS, Université Paris Saclay , 5 rue Jean-Baptiste Clément, 92296 Châtenay-Malabry Cedex, France
| | - Olivier Lequin
- Sorbonne Universités - UPMC Univ Paris 06, Ecole Normale Supérieure - PSL Research University, CNRS UMR 7203 LBM, 4 place Jussieu, 75252 Paris, Cedex 05, France
| | - Sandrine Ongeri
- Molécules Fluorées et Chimie Médicinale, BioCIS, Univ. Paris-Sud, CNRS, Université Paris Saclay , 5 rue Jean-Baptiste Clément, 92296 Châtenay-Malabry Cedex, France
| |
Collapse
|
10
|
Chauhan J, Chen SE, Fenstermacher KJ, Naser-Tavakolian A, Reingewertz T, Salmo R, Lee C, Williams E, Raje M, Sundberg E, DeStefano JJ, Freire E, Fletcher S. Synthetic, structural mimetics of the β-hairpin flap of HIV-1 protease inhibit enzyme function. Bioorg Med Chem 2015; 23:7095-109. [PMID: 26474665 DOI: 10.1016/j.bmc.2015.09.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 08/20/2015] [Accepted: 09/03/2015] [Indexed: 01/11/2023]
Abstract
Small-molecule mimetics of the β-hairpin flap of HIV-1 protease (HIV-1 PR) were designed based on a 1,4-benzodiazepine scaffold as a strategy to interfere with the flap-flap protein-protein interaction, which functions as a gated mechanism to control access to the active site. Michaelis-Menten kinetics suggested our small-molecules are competitive inhibitors, which indicates the mode of inhibition is through binding the active site or sterically blocking access to the active site and preventing flap closure, as designed. More generally, a new bioactive scaffold for HIV-1PR inhibition has been discovered, with the most potent compound inhibiting the protease with a modest K(i) of 11 μM.
Collapse
Affiliation(s)
- Jay Chauhan
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 N. Pine St., Baltimore, MD 21201, USA
| | - Shen-En Chen
- Department of Biology, Johns Hopkins University, 3400 N. Charles St., Baltimore, MD 21218, USA
| | - Katherine J Fenstermacher
- Department of Cell Biology & Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| | - Aurash Naser-Tavakolian
- Department of Biology, Johns Hopkins University, 3400 N. Charles St., Baltimore, MD 21218, USA
| | - Tali Reingewertz
- Department of Microbiology and Immunology, University of Maryland School of Medicine, 725 West Lombard St., Baltimore, MD 21201, USA
| | - Rosene Salmo
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 N. Pine St., Baltimore, MD 21201, USA
| | - Christian Lee
- PharmD Program, University of Maryland School of Pharmacy, 20 N. Pine St., Baltimore, MD 21201, USA
| | - Emori Williams
- Vivien T Thomas Medical Arts Academy, 100 N Calhoun St., Baltimore, MD 21223, USA
| | - Mithun Raje
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 N. Pine St., Baltimore, MD 21201, USA
| | - Eric Sundberg
- Department of Microbiology and Immunology, University of Maryland School of Medicine, 725 West Lombard St., Baltimore, MD 21201, USA
| | - Jeffrey J DeStefano
- Department of Cell Biology & Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| | - Ernesto Freire
- Department of Biology, Johns Hopkins University, 3400 N. Charles St., Baltimore, MD 21218, USA
| | - Steven Fletcher
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 N. Pine St., Baltimore, MD 21201, USA; University of Maryland Greenebaum Cancer Center, 22 S. Greene St., Baltimore, MD 21201, USA.
| |
Collapse
|
11
|
Vahdati L, Fanelli R, Bernadat G, Correia I, Lequin O, Ongeri S, Piarulli U. Synthesis and conformational studies of a stable peptidomimetic β-hairpin based on a bifunctional diketopiperazine turn inducer. NEW J CHEM 2015. [DOI: 10.1039/c4nj01437e] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new β-hairpin mimic foldamer based on the assembly of a reverse turn inducer, a peptidomimetic strand, and a tetrapeptide sequence was prepared, and its conformation in solution was assessed by NMR and computational investigations.
Collapse
Affiliation(s)
- Leila Vahdati
- Università degli Studi dell'Insubria
- Dipartimento di Scienza e Alta Tecnologia
- I-22100 Como
- Italy
- Molécules Fluorées et Chimie Médicinale
| | - Roberto Fanelli
- Università degli Studi dell'Insubria
- Dipartimento di Scienza e Alta Tecnologia
- I-22100 Como
- Italy
| | - Guillaume Bernadat
- Molécules Fluorées et Chimie Médicinale
- BioCIS UMR-CNRS 8076
- LabEx LERMIT
- Université Paris-Sud
- Faculté de Pharmacie
| | - Isabelle Correia
- Sorbonne Universités – UPMC Univ Paris 06
- Ecole Normale Supérieure – PSL Research University
- CNRS UMR 7203 LBM
- 75252 Paris Cedex 05
- France
| | - Olivier Lequin
- Sorbonne Universités – UPMC Univ Paris 06
- Ecole Normale Supérieure – PSL Research University
- CNRS UMR 7203 LBM
- 75252 Paris Cedex 05
- France
| | - Sandrine Ongeri
- Molécules Fluorées et Chimie Médicinale
- BioCIS UMR-CNRS 8076
- LabEx LERMIT
- Université Paris-Sud
- Faculté de Pharmacie
| | - Umberto Piarulli
- Università degli Studi dell'Insubria
- Dipartimento di Scienza e Alta Tecnologia
- I-22100 Como
- Italy
| |
Collapse
|
12
|
Fanelli R, Ressurreição AS, Dufau L, Soulier JL, Vidu A, Tonali N, Bernadat G, Reboud-Ravaux M, Ongeri S. Introduction of polar groups on the naphthalene scaffold of molecular tongs inhibiting wild-type and mutated HIV-1 protease dimerization. MEDCHEMCOMM 2014. [DOI: 10.1039/c4md00032c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new series of naphthalene-based molecular tongs containing polar groups at the 3-position of the naphthalene scaffold was synthesized and its anti-dimerization activity was evaluated against HIV-1 protease.
Collapse
Affiliation(s)
- R. Fanelli
- Molécules Fluorées et Chimie Médicinale
- BioCIS UMR-CNRS 8076
- LabEx LERMIT
- Université Paris-Sud
- Faculté de Pharmacie
| | - A. S. Ressurreição
- Molécules Fluorées et Chimie Médicinale
- BioCIS UMR-CNRS 8076
- LabEx LERMIT
- Université Paris-Sud
- Faculté de Pharmacie
| | - L. Dufau
- Sorbonne Universités
- UPMC Univ Paris 06
- UMR 8256
- B2A
- Biological Adaptation and Ageing, Integrated Cellular Ageing and Inflammation, Molecular & Functional Enzymology
| | - J.-L. Soulier
- Molécules Fluorées et Chimie Médicinale
- BioCIS UMR-CNRS 8076
- LabEx LERMIT
- Université Paris-Sud
- Faculté de Pharmacie
| | - A. Vidu
- Molécules Fluorées et Chimie Médicinale
- BioCIS UMR-CNRS 8076
- LabEx LERMIT
- Université Paris-Sud
- Faculté de Pharmacie
| | - N. Tonali
- Molécules Fluorées et Chimie Médicinale
- BioCIS UMR-CNRS 8076
- LabEx LERMIT
- Université Paris-Sud
- Faculté de Pharmacie
| | - G. Bernadat
- Molécules Fluorées et Chimie Médicinale
- BioCIS UMR-CNRS 8076
- LabEx LERMIT
- Université Paris-Sud
- Faculté de Pharmacie
| | - M. Reboud-Ravaux
- Sorbonne Universités
- UPMC Univ Paris 06
- UMR 8256
- B2A
- Biological Adaptation and Ageing, Integrated Cellular Ageing and Inflammation, Molecular & Functional Enzymology
| | - S. Ongeri
- Molécules Fluorées et Chimie Médicinale
- BioCIS UMR-CNRS 8076
- LabEx LERMIT
- Université Paris-Sud
- Faculté de Pharmacie
| |
Collapse
|
13
|
Ponterini G. Fluorescence Observables and Enzyme Kinetics in the Investigation of PPI Modulation by Small Molecules: Detection, Mechanistic Insight, and Functional Consequences. DISRUPTION OF PROTEIN-PROTEIN INTERFACES 2013. [PMCID: PMC7123529 DOI: 10.1007/978-3-642-37999-4_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The potential of fluorescence-based methods and kinetic analysis in the screening and molecular-scale mechanistic investigation of PPI modulation by small molecules is discussed through several representative examples collected and commented. These experimental approaches take advantage of a variety of observables. Changes in the protein aggregation pattern have been monitored through fluorescence properties such as spectra, intensities (related to quantum yields), time-decays, and anisotropies of intrinsic protein fluorophores, of extrinsic fluorescent tags and, even, of the same small molecules added to modulate PPIs, as well as through bimolecular excited-state processes such as static and collisional quenching, including electron and excitation-energy transfer, or exciton interaction, whose efficiencies are crucially structure dependent. Besides allowing for qualitative and quantitative information on the small-molecule induced PPI modulation, these approaches can take advantage from the sensitivity of fluorescence observables on fine structural details to shed light on the molecular-scale mechanisms of action and their functional consequences. Direct investigation of the latter by kinetic inhibition analysis represents a useful change in perspective whenever PPI are relevant for enzyme activity. Dissociative inhibition, that is, the ability of some small molecules to inhibit enzymes by disrupting their active oligomeric assembly is shortly reviewed.
Collapse
|
14
|
Dufau L, Marques Ressurreição AS, Fanelli R, Kihal N, Vidu A, Milcent T, Soulier JL, Rodrigo J, Desvergne A, Leblanc K, Bernadat G, Crousse B, Reboud-Ravaux M, Ongeri S. Carbonylhydrazide-based molecular tongs inhibit wild-type and mutated HIV-1 protease dimerization. J Med Chem 2012; 55:6762-75. [PMID: 22800535 DOI: 10.1021/jm300181j] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We have designed and synthesized new molecular tongs based on a rigid naphthalene scaffold and evaluated their antidimer activity on HIV-1 protease (PR). We inserted carbonylhydrazide and oligohydrazide (azatide) fragments into their peptidomimetic arms to reduce hydrophobicity and increase metabolic stability. These fragments are designed to disrupt the protein-protein interactions by reproducing the hydrogen bond pattern found in the antiparallel β-sheet formed between the N- and C-ends of the two monomers in the native PR. Kinetic analyses and fluorescent probe binding studies showed that several molecular tongs can inhibit PR dimerization. The best nonpeptidic molecular tongs to date were obtained with an inhibition constant K(id) of 50 nM for PR and 80 nM for the multimutated protease ANAM-11. The PR inhibition was selective, the aspartic proteases renin and pepsin were not inhibited.
Collapse
Affiliation(s)
- Laure Dufau
- UMR-CNRS 8076, Molécules Fluorées et Chimie Médicinale, LabEx LERMIT, Faculté de Pharmacie, Université Paris-Sud 11, 5 rue J. B. Clément, 92296 Châtenay-Malabry Cedex, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Loughlin WA, Tyndall JDA, Glenn MP, Hill TA, Fairlie DP. Update 1 of: Beta-Strand Mimetics. Chem Rev 2011; 110:PR32-69. [DOI: 10.1021/cr900395y] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Wendy A. Loughlin
- School of Science, Nathan Campus, Griffith University, Brisbane, QLD 4111, Australia, and Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD 4072, Australia This is a Chemical Reviews Perennial Review. The root paper of this title was published in Chem. Rev. 2004, 104 (12), 6085−6117, DOI: 10.1021/cr040648k; Published (Web) Nov. 4, 2004. Updates to the text appear in red type
| | - Joel D. A. Tyndall
- School of Science, Nathan Campus, Griffith University, Brisbane, QLD 4111, Australia, and Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD 4072, Australia This is a Chemical Reviews Perennial Review. The root paper of this title was published in Chem. Rev. 2004, 104 (12), 6085−6117, DOI: 10.1021/cr040648k; Published (Web) Nov. 4, 2004. Updates to the text appear in red type
| | - Matthew P. Glenn
- School of Science, Nathan Campus, Griffith University, Brisbane, QLD 4111, Australia, and Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD 4072, Australia This is a Chemical Reviews Perennial Review. The root paper of this title was published in Chem. Rev. 2004, 104 (12), 6085−6117, DOI: 10.1021/cr040648k; Published (Web) Nov. 4, 2004. Updates to the text appear in red type
| | - Timothy A. Hill
- School of Science, Nathan Campus, Griffith University, Brisbane, QLD 4111, Australia, and Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD 4072, Australia This is a Chemical Reviews Perennial Review. The root paper of this title was published in Chem. Rev. 2004, 104 (12), 6085−6117, DOI: 10.1021/cr040648k; Published (Web) Nov. 4, 2004. Updates to the text appear in red type
| | - David P. Fairlie
- School of Science, Nathan Campus, Griffith University, Brisbane, QLD 4111, Australia, and Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD 4072, Australia This is a Chemical Reviews Perennial Review. The root paper of this title was published in Chem. Rev. 2004, 104 (12), 6085−6117, DOI: 10.1021/cr040648k; Published (Web) Nov. 4, 2004. Updates to the text appear in red type
| |
Collapse
|
16
|
Vidu A, Dufau L, Bannwarth L, Soulier JL, Sicsic S, Piarulli U, Reboud-Ravaux M, Ongeri S. Toward the First Nonpeptidic Molecular Tong Inhibitor of Wild-Type and Mutated HIV-1 Protease Dimerization. ChemMedChem 2010; 5:1899-906. [DOI: 10.1002/cmdc.201000308] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
17
|
Current and Novel Inhibitors of HIV Protease. Viruses 2009; 1:1209-39. [PMID: 21994591 PMCID: PMC3185513 DOI: 10.3390/v1031209] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2009] [Revised: 12/07/2009] [Accepted: 12/07/2009] [Indexed: 12/25/2022] Open
Abstract
The design, development and clinical success of HIV protease inhibitors represent one of the most remarkable achievements of molecular medicine. This review describes all nine currently available FDA-approved protease inhibitors, discusses their pharmacokinetic properties, off-target activities, side-effects, and resistance profiles. The compounds in the various stages of clinical development are also introduced, as well as alternative approaches, aiming at other functional domains of HIV PR. The potential of these novel compounds to open new way to the rational drug design of human viruses is critically assessed.
Collapse
|
18
|
Verkhivker G. Computational proteomics analysis of binding mechanisms and molecular signatures of the HIV-1 protease drugs. Artif Intell Med 2009; 45:197-206. [DOI: 10.1016/j.artmed.2008.08.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2007] [Revised: 08/12/2008] [Accepted: 08/19/2008] [Indexed: 11/25/2022]
|
19
|
Bannwarth L, Rose T, Dufau L, Vanderesse R, Dumond J, Jamart-Grégoire B, Pannecouque C, De Clercq E, Reboud-Ravaux M. Dimer Disruption and Monomer Sequestration by Alkyl Tripeptides Are Successful Strategies for Inhibiting Wild-Type and Multidrug-Resistant Mutated HIV-1 Proteases. Biochemistry 2008; 48:379-87. [DOI: 10.1021/bi801422u] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Ludovic Bannwarth
- Enzymologie Moléculaire et Fonctionnelle, FRE 2852, CNRS, Université Paris 6 UPMC, Institut Jacques Monod, 2 place Jussieu, 75251 Paris Cedex 5, France, Institut Pasteur, PFBMI, Département de Biologie Structurale, 25 rue du Dr. Roux, 75724 Paris Cedex 15, France, Laboratoire de Chimie Physique Macromoléculaire, UMR 7568 CNRS-INPL, ENSIC 1, rue Grandville, 54001 Nancy, France, and Rega Institute for Medical Research, Katholieke Universiteit Leuven, Minderbroedersstraat 10, 3000 Leuven, Belgium
| | - Thierry Rose
- Enzymologie Moléculaire et Fonctionnelle, FRE 2852, CNRS, Université Paris 6 UPMC, Institut Jacques Monod, 2 place Jussieu, 75251 Paris Cedex 5, France, Institut Pasteur, PFBMI, Département de Biologie Structurale, 25 rue du Dr. Roux, 75724 Paris Cedex 15, France, Laboratoire de Chimie Physique Macromoléculaire, UMR 7568 CNRS-INPL, ENSIC 1, rue Grandville, 54001 Nancy, France, and Rega Institute for Medical Research, Katholieke Universiteit Leuven, Minderbroedersstraat 10, 3000 Leuven, Belgium
| | - Laure Dufau
- Enzymologie Moléculaire et Fonctionnelle, FRE 2852, CNRS, Université Paris 6 UPMC, Institut Jacques Monod, 2 place Jussieu, 75251 Paris Cedex 5, France, Institut Pasteur, PFBMI, Département de Biologie Structurale, 25 rue du Dr. Roux, 75724 Paris Cedex 15, France, Laboratoire de Chimie Physique Macromoléculaire, UMR 7568 CNRS-INPL, ENSIC 1, rue Grandville, 54001 Nancy, France, and Rega Institute for Medical Research, Katholieke Universiteit Leuven, Minderbroedersstraat 10, 3000 Leuven, Belgium
| | - Régis Vanderesse
- Enzymologie Moléculaire et Fonctionnelle, FRE 2852, CNRS, Université Paris 6 UPMC, Institut Jacques Monod, 2 place Jussieu, 75251 Paris Cedex 5, France, Institut Pasteur, PFBMI, Département de Biologie Structurale, 25 rue du Dr. Roux, 75724 Paris Cedex 15, France, Laboratoire de Chimie Physique Macromoléculaire, UMR 7568 CNRS-INPL, ENSIC 1, rue Grandville, 54001 Nancy, France, and Rega Institute for Medical Research, Katholieke Universiteit Leuven, Minderbroedersstraat 10, 3000 Leuven, Belgium
| | - Julien Dumond
- Enzymologie Moléculaire et Fonctionnelle, FRE 2852, CNRS, Université Paris 6 UPMC, Institut Jacques Monod, 2 place Jussieu, 75251 Paris Cedex 5, France, Institut Pasteur, PFBMI, Département de Biologie Structurale, 25 rue du Dr. Roux, 75724 Paris Cedex 15, France, Laboratoire de Chimie Physique Macromoléculaire, UMR 7568 CNRS-INPL, ENSIC 1, rue Grandville, 54001 Nancy, France, and Rega Institute for Medical Research, Katholieke Universiteit Leuven, Minderbroedersstraat 10, 3000 Leuven, Belgium
| | - Brigitte Jamart-Grégoire
- Enzymologie Moléculaire et Fonctionnelle, FRE 2852, CNRS, Université Paris 6 UPMC, Institut Jacques Monod, 2 place Jussieu, 75251 Paris Cedex 5, France, Institut Pasteur, PFBMI, Département de Biologie Structurale, 25 rue du Dr. Roux, 75724 Paris Cedex 15, France, Laboratoire de Chimie Physique Macromoléculaire, UMR 7568 CNRS-INPL, ENSIC 1, rue Grandville, 54001 Nancy, France, and Rega Institute for Medical Research, Katholieke Universiteit Leuven, Minderbroedersstraat 10, 3000 Leuven, Belgium
| | - Christophe Pannecouque
- Enzymologie Moléculaire et Fonctionnelle, FRE 2852, CNRS, Université Paris 6 UPMC, Institut Jacques Monod, 2 place Jussieu, 75251 Paris Cedex 5, France, Institut Pasteur, PFBMI, Département de Biologie Structurale, 25 rue du Dr. Roux, 75724 Paris Cedex 15, France, Laboratoire de Chimie Physique Macromoléculaire, UMR 7568 CNRS-INPL, ENSIC 1, rue Grandville, 54001 Nancy, France, and Rega Institute for Medical Research, Katholieke Universiteit Leuven, Minderbroedersstraat 10, 3000 Leuven, Belgium
| | - Erik De Clercq
- Enzymologie Moléculaire et Fonctionnelle, FRE 2852, CNRS, Université Paris 6 UPMC, Institut Jacques Monod, 2 place Jussieu, 75251 Paris Cedex 5, France, Institut Pasteur, PFBMI, Département de Biologie Structurale, 25 rue du Dr. Roux, 75724 Paris Cedex 15, France, Laboratoire de Chimie Physique Macromoléculaire, UMR 7568 CNRS-INPL, ENSIC 1, rue Grandville, 54001 Nancy, France, and Rega Institute for Medical Research, Katholieke Universiteit Leuven, Minderbroedersstraat 10, 3000 Leuven, Belgium
| | - Michèle Reboud-Ravaux
- Enzymologie Moléculaire et Fonctionnelle, FRE 2852, CNRS, Université Paris 6 UPMC, Institut Jacques Monod, 2 place Jussieu, 75251 Paris Cedex 5, France, Institut Pasteur, PFBMI, Département de Biologie Structurale, 25 rue du Dr. Roux, 75724 Paris Cedex 15, France, Laboratoire de Chimie Physique Macromoléculaire, UMR 7568 CNRS-INPL, ENSIC 1, rue Grandville, 54001 Nancy, France, and Rega Institute for Medical Research, Katholieke Universiteit Leuven, Minderbroedersstraat 10, 3000 Leuven, Belgium
| |
Collapse
|
20
|
Kaushik-Basu N, Basu A, Harris D. Peptide inhibition of HIV-1: current status and future potential. BioDrugs 2008; 22:161-75. [PMID: 18481899 DOI: 10.2165/00063030-200822030-00003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
More than 2 decades of intensive research has focused on defining replication mechanisms of HIV type 1 (HIV-1), the etiologic agent of AIDS. The delineation of strategies for combating this viral infection has yielded many innovative approaches toward this end. HIV-1 is a lentivirus in the family retroviridae that is relatively small with regard to both structure and genome size, having a diploid RNA genome of approximately 9 kb, with only three major genes and several gene products resulting from alternate splicing and translational frameshifting. Most marketed drugs for treating AIDS are inhibitors of HIV-1 reverse transcriptase or protease enzymes, but new targets include the integrase enzyme, cell surface interactions that facilitate viral entry, and also virus particle maturation and assembly. The emergence of drug-resistant variants of HIV-1 has been the main impediment to successful treatment of AIDS. Thus, there is a pressing need to develop novel treatment strategies targeting multiple stages of the virus life-cycle. Research efforts aimed at developing successful means for combating HIV-1 infection have included development of peptide inhibitors of HIV-1. This article summarizes past and current endeavors in the development of peptides that inhibit replication of HIV-1 and the role of peptide inhibitors in the search for new anti-HIV drugs.
Collapse
Affiliation(s)
- Neerja Kaushik-Basu
- Department of Biochemistry and Molecular Biology, UMDNJ-New Jersey Medical School, Newark, NJ 07103, USA.
| | | | | |
Collapse
|
21
|
Zanuy D, Flores-Ortega A, Casanovas J, Curcó D, Nussinov R, Alemán C. The energy landscape of a selective tumor-homing pentapeptide. J Phys Chem B 2008; 112:8692-700. [PMID: 18588341 DOI: 10.1021/jp711477k] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Recently, a potentially powerful strategy based on phage-display libraries has been presented to target tumors via homing peptides attached to nanoparticles. The Cys-Arg-Glu-Lys-Ala (CREKA) peptide sequence has been identified as a tumor-homing peptide that binds to clotted plasmas proteins present in tumor vessels and interstitium. The aim of this work consists of mapping the conformational profile of CREKA to identify the bioactive conformation. For this purpose, a conformational search procedure based on modified simulated annealing combined with molecular dynamics was applied to three systems that mimic the experimentally used conditions: (i) the free peptide; (ii) the peptide attached to a nanoparticle; and (iii) the peptide inserted in a phage display protein. In addition, the free peptide was simulated in an ionized aqueous solution environment, which mimics the ionic strength of the physiological medium. Accessible minima of all simulated systems reveal a multiple interaction pattern involving the ionized side chains of Arg, Glu, and Lys, which induces a beta-turn motif in the backbone observed in all simulated CREKA systems.
Collapse
Affiliation(s)
- David Zanuy
- Departament d'Enginyeria Química, E. T. S. d'Enginyeria Industrial de Barcelona, Universitat Politècnica de Catalunya, Diagonal 647, Barcelona E-08028, Spain.
| | | | | | | | | | | |
Collapse
|
22
|
Abstract
Biochemical experiments have recently revealed that the p-S8 peptide, with an amino-acid sequence identical to the conserved fragment 83-93 (S8) of the HIV-1 protease, can inhibit catalytic activity of the enzyme by interfering with protease folding and dimerization. In this study, we introduce a hierarchical modeling approach for understanding the molecular basis of the HIV-1 protease folding inhibition. Coarse-grained molecular docking simulations of the flexible p-S8 peptide with the ensembles of HIV-1 protease monomers have revealed structurally different complexes of the p-S8 peptide, which can be formed by targeting the conserved segment 24-34 (S2) of the folding nucleus (folding inhibition) and by interacting with the antiparallel termini beta-sheet region (dimerization inhibition). All-atom molecular dynamics simulations of the inhibitor complexes with the HIV-1 PR monomer have been independently carried out for the predicted folding and dimerization binding modes of the p-S8 peptide, confirming the thermodynamic stability of these complexes. Binding free-energy calculations of the p-S8 peptide and its active analogs are then performed using molecular dynamics trajectories of the peptide complexes with the HIV-1 PR monomers. The results of this study have provided a plausible molecular model for the inhibitor intervention with the HIV-1 PR folding and dimerization and have accurately reproduced the experimental inhibition profiles of the active folding inhibitors.
Collapse
|
23
|
Koh Y, Matsumi S, Das D, Amano M, Davis DA, Li J, Leschenko S, Baldridge A, Shioda T, Yarchoan R, Ghosh AK, Mitsuya H. Potent Inhibition of HIV-1 Replication by Novel Non-peptidyl Small Molecule Inhibitors of Protease Dimerization. J Biol Chem 2007; 282:28709-28720. [PMID: 17635930 DOI: 10.1074/jbc.m703938200] [Citation(s) in RCA: 106] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Dimerization of HIV-1 protease subunits is essential for its proteolytic activity, which plays a critical role in HIV-1 replication. Hence, the inhibition of protease dimerization represents a unique target for potential intervention of HIV-1. We developed an intermolecular fluorescence resonance energy transfer-based HIV-1-expression assay employing cyan and yellow fluorescent protein-tagged protease monomers. Using this assay, we identified non-peptidyl small molecule inhibitors of protease dimerization. These inhibitors, including darunavir and two experimental protease inhibitors, blocked protease dimerization at concentrations of as low as 0.01 microm and blocked HIV-1 replication with IC(50) values of 0.0002-0.48 microm. These agents also inhibited the proteolytic activity of mature protease. Other approved anti-HIV-1 agents examined except tipranavir, a CCR5 inhibitor, and soluble CD4 failed to block the dimerization event. Once protease monomers dimerize to become mature protease, mature protease is not dissociated by this dimerization inhibition mechanism, suggesting that these agents block dimerization at the nascent stage of protease maturation. The proteolytic activity of mature protease that managed to undergo dimerization despite the presence of these agents is likely to be inhibited by the same agents acting as conventional protease inhibitors. Such a dual inhibition mechanism should lead to highly potent inhibition of HIV-1.
Collapse
Affiliation(s)
- Yasuhiro Koh
- Department of Hematology, Kumamoto University Graduate School of Medical and Pharmaceutical Sciences, 1-1-1 Honjo, Kumamoto 860-8556, Japan; Department of Infectious Diseases, Kumamoto University Graduate School of Medical and Pharmaceutical Sciences, 1-1-1 Honjo, Kumamoto 860-8556, Japan
| | - Shintaro Matsumi
- Department of Hematology, Kumamoto University Graduate School of Medical and Pharmaceutical Sciences, 1-1-1 Honjo, Kumamoto 860-8556, Japan; Department of Infectious Diseases, Kumamoto University Graduate School of Medical and Pharmaceutical Sciences, 1-1-1 Honjo, Kumamoto 860-8556, Japan
| | - Debananda Das
- Experimental Retrovirology Section, NCI, National Institutes of Health, Bethesda, Maryland 20892
| | - Masayuki Amano
- Department of Hematology, Kumamoto University Graduate School of Medical and Pharmaceutical Sciences, 1-1-1 Honjo, Kumamoto 860-8556, Japan; Department of Infectious Diseases, Kumamoto University Graduate School of Medical and Pharmaceutical Sciences, 1-1-1 Honjo, Kumamoto 860-8556, Japan
| | - David A Davis
- Retroviral Disease Section, HIV and AIDS Malignancy Branch, NCI, National Institutes of Health, Bethesda, Maryland 20892
| | - Jianfeng Li
- Departments of Chemistry and Medicinal Chemistry, Purdue University, West Lafayette, Indiana 47907
| | - Sofiya Leschenko
- Departments of Chemistry and Medicinal Chemistry, Purdue University, West Lafayette, Indiana 47907
| | - Abigail Baldridge
- Departments of Chemistry and Medicinal Chemistry, Purdue University, West Lafayette, Indiana 47907
| | - Tatsuo Shioda
- Department of Viral Infections, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan
| | - Robert Yarchoan
- Retroviral Disease Section, HIV and AIDS Malignancy Branch, NCI, National Institutes of Health, Bethesda, Maryland 20892
| | - Arun K Ghosh
- Departments of Chemistry and Medicinal Chemistry, Purdue University, West Lafayette, Indiana 47907
| | - Hiroaki Mitsuya
- Department of Hematology, Kumamoto University Graduate School of Medical and Pharmaceutical Sciences, 1-1-1 Honjo, Kumamoto 860-8556, Japan; Department of Infectious Diseases, Kumamoto University Graduate School of Medical and Pharmaceutical Sciences, 1-1-1 Honjo, Kumamoto 860-8556, Japan; Experimental Retrovirology Section, NCI, National Institutes of Health, Bethesda, Maryland 20892.
| |
Collapse
|
24
|
Mirambeau G, Lyonnais S, Coulaud D, Hameau L, Lafosse S, Jeusset J, Borde I, Reboud-Ravaux M, Restle T, Gorelick RJ, Le Cam E. HIV-1 protease and reverse transcriptase control the architecture of their nucleocapsid partner. PLoS One 2007; 2:e669. [PMID: 17712401 PMCID: PMC1940317 DOI: 10.1371/journal.pone.0000669] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2007] [Accepted: 06/18/2007] [Indexed: 11/18/2022] Open
Abstract
The HIV-1 nucleocapsid is formed during protease (PR)-directed viral maturation, and is transformed into pre-integration complexes following reverse transcription in the cytoplasm of the infected cell. Here, we report a detailed transmission electron microscopy analysis of the impact of HIV-1 PR and reverse transcriptase (RT) on nucleocapsid plasticity, using in vitro reconstitutions. After binding to nucleic acids, NCp15, a proteolytic intermediate of nucleocapsid protein (NC), was processed at its C-terminus by PR, yielding premature NC (NCp9) followed by mature NC (NCp7), through the consecutive removal of p6 and p1. This allowed NC co-aggregation with its single-stranded nucleic-acid substrate. Examination of these co-aggregates for the ability of RT to catalyse reverse transcription showed an effective synthesis of double-stranded DNA that, remarkably, escaped from the aggregates more efficiently with NCp7 than with NCp9. These data offer a compelling explanation for results from previous virological studies that focused on i) Gag processing leading to nucleocapsid condensation, and ii) the disappearance of NCp7 from the HIV-1 pre-integration complexes. We propose that HIV-1 PR and RT, by controlling the nucleocapsid architecture during the steps of condensation and dismantling, engage in a successive nucleoprotein-remodelling process that spatiotemporally coordinates the pre-integration steps of HIV-1. Finally we suggest that nucleoprotein remodelling mechanisms are common features developed by mobile genetic elements to ensure successful replication.
Collapse
Affiliation(s)
- Gilles Mirambeau
- Laboratoire de Microscopie Moléculaire, UMR 8126: Interactions moléculaires et cancer, CNRS, Université Paris Sud-Institut de Cancérologie Gustave Roussy, Villejuif, France
- Division de Biochimie, UFR des Sciences de la Vie, Université Pierre et Marie Curie-Paris, Paris, France
- * To whom correspondence should be addressed. E-mail: (GM); (ELC)
| | - Sébastien Lyonnais
- Laboratoire de Microscopie Moléculaire, UMR 8126: Interactions moléculaires et cancer, CNRS, Université Paris Sud-Institut de Cancérologie Gustave Roussy, Villejuif, France
| | - Dominique Coulaud
- Laboratoire de Microscopie Moléculaire, UMR 8126: Interactions moléculaires et cancer, CNRS, Université Paris Sud-Institut de Cancérologie Gustave Roussy, Villejuif, France
| | - Laurence Hameau
- Laboratoire de Microscopie Moléculaire, UMR 8126: Interactions moléculaires et cancer, CNRS, Université Paris Sud-Institut de Cancérologie Gustave Roussy, Villejuif, France
| | - Sophie Lafosse
- Laboratoire de Microscopie Moléculaire, UMR 8126: Interactions moléculaires et cancer, CNRS, Université Paris Sud-Institut de Cancérologie Gustave Roussy, Villejuif, France
| | - Josette Jeusset
- Laboratoire de Microscopie Moléculaire, UMR 8126: Interactions moléculaires et cancer, CNRS, Université Paris Sud-Institut de Cancérologie Gustave Roussy, Villejuif, France
| | - Isabelle Borde
- Laboratoire Biologie et Multimedia, Université Pierre et Marie Curie-Paris, Paris, France
| | - Michèle Reboud-Ravaux
- Laboratoire d'Enzymologie Moléculaire et Fonctionnelle, CNRS FRE 2852, Institut Jacques Monod, CNRS-Université Pierre et Marie Curie-Paris, Paris, France
| | - Tobias Restle
- Institut für Molekulare Medizin, Universitätsklinikum Schleswig-Holstein and ZMSB, Lübeck, Germany
| | - Robert J. Gorelick
- AIDS Vaccine Program, Basic Research Program, Science Applications International Corporation at Frederick, The National Cancer Institute at Frederick, Frederick, Maryland, United States of America
| | - Eric Le Cam
- Laboratoire de Microscopie Moléculaire, UMR 8126: Interactions moléculaires et cancer, CNRS, Université Paris Sud-Institut de Cancérologie Gustave Roussy, Villejuif, France
- * To whom correspondence should be addressed. E-mail: (GM); (ELC)
| |
Collapse
|
25
|
Bannwarth L, Reboud-Ravaux M. An alternative strategy for inhibiting multidrug-resistant mutants of the dimeric HIV-1 protease by targeting the subunit interface. Biochem Soc Trans 2007; 35:551-4. [PMID: 17511649 DOI: 10.1042/bst0350551] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Mutations that occur in response to the HIV-1 protease inhibitors are responsible for the development of multidrug cross-resistance to these antiproteases in AIDS treatment. One alternative to inhibiting the active site of HIV-1 protease is to target the dimer interface of the homodimeric enzyme at the antiparallel beta-sheet formed by the interdigitation of the C- and N-ends of each monomer. This region is highly conserved and is responsible for approx. 75% of the dimer-stabilization energy. The strategies that have been used to design small molecules to target the interface antiparallel beta-sheet have produced lipopeptides, guanidinium derivatives and peptides (or peptidomimetics) cross-linked with spacers. The mechanism of inhibition was determined using a combination of kinetic and biophysical methods. These dimerization inhibitors proved equally active in vitro against both wild-type and mutated proteases. They are therefore promising alternatives to active-site-directed inhibitors in AIDS therapy. Disruption of protein-protein interactions by small molecules is a new way to obtain potentially therapeutic molecules.
Collapse
Affiliation(s)
- L Bannwarth
- Enzymologie Moléculaire et Fonctionnelle, FRE 2852, CNRS-Université Paris 6, Institut Jacques Monod, 2 place Jussieu, 75251 Cedex 05, France
| | | |
Collapse
|