1
|
Miederer I, Wiegand V, Bausbacher N, Leukel P, Maus S, Hoffmann MA, Lutz B, Schreckenberger M. Quantification of the Cannabinoid Type 1 Receptor Availability in the Mouse Brain. Front Neuroanat 2020; 14:593793. [PMID: 33328905 PMCID: PMC7714830 DOI: 10.3389/fnana.2020.593793] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 11/03/2020] [Indexed: 11/13/2022] Open
Abstract
Introduction: The endocannabinoid system is involved in several diseases such as addictive disorders, schizophrenia, post-traumatic stress disorder, and eating disorders. As often mice are used as the preferred animal model in translational research, in particular when using genetically modified mice, this study aimed to provide a systematic analysis of in vivo cannabinoid type 1 (CB1) receptor ligand-binding capacity using positron emission tomography (PET) using the ligand [18F]MK-9470. We then compared the PET results with literature data from immunohistochemistry (IHC) to review the consistency between ex vivo protein expression and in vivo ligand binding. Methods: Six male C57BL/6J (6–9 weeks) mice were examined with the CB1 receptor ligand [18F]MK-9470 and small animal PET. Different brain regions were evaluated using the parameter %ID/ml. The PET results of the [18F]MK-9470 accumulation in the mouse brain were compared with immunohistochemical literature data. Results: The ligand [18F]MK-9470 was taken up into the mouse brain within 5 min after injection and exhibited slow kinetics. It accumulated highly in most parts of the brain. PET and IHC classifications were consistent for most parts of the telencephalon, while brain regions of the diencephalon, mesencephalon, and rhombencephalon were rated higher with PET than IHC. Conclusions: This preclinical [18F]MK-9470 study demonstrated the radioligand’s applicability for imaging the region-specific CB1 receptor availability in the healthy adult mouse brain and thus offers the potential to study CB1 receptor availability in pathological conditions.
Collapse
Affiliation(s)
- Isabelle Miederer
- Department of Nuclear Medicine, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Viktoria Wiegand
- Department of Nuclear Medicine, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Nicole Bausbacher
- Department of Nuclear Medicine, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Petra Leukel
- Institute of Neuropathology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Stephan Maus
- Department of Nuclear Medicine, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Manuela A Hoffmann
- Department of Nuclear Medicine, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany.,Department of Occupational Health and Safety, Federal Ministry of Defense, Bonn, Germany
| | - Beat Lutz
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany.,Leibniz Institute for Resilience Research, Mainz, Germany
| | - Mathias Schreckenberger
- Department of Nuclear Medicine, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| |
Collapse
|
2
|
Port A, Bordas M, Enrech R, Pascual R, Rosés M, Ràfols C, Subirats X, Bosch E. Critical comparison of shake-flask, potentiometric and chromatographic methods for lipophilicity evaluation (log P o/w) of neutral, acidic, basic, amphoteric, and zwitterionic drugs. Eur J Pharm Sci 2018; 122:331-340. [PMID: 30006180 DOI: 10.1016/j.ejps.2018.07.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 06/29/2018] [Accepted: 07/03/2018] [Indexed: 11/30/2022]
Abstract
In the present study three different procedures have been compared for the determination of the lipophilicity of the unionized species (log Po/w) of neutral, acidic, basic, amphoteric, and zwitterionic drugs. Shake-flask, potentiometric and chromatographic approaches have been assayed in a set of 66 representative compounds in different phases of advanced development. An excellent equivalence has been found between log Po/w values obtained by shake-flask and potentiometry, while the chromatographic approach is less accurate but very convenient for screening purposes when a high-throughput is required. In the case of zwitterionic and amphoteric compounds, either for shake-flask and chromatographic methods, the pH has to be accurately selected in order to ensure the compound to be in its neutral form.
Collapse
Affiliation(s)
- Adriana Port
- ESTEVE, Drug Discovery and Preclinical Development, Parc Científic de Barcelona, Baldiri Reixac, 4-8, 08028 Barcelona, Spain.
| | - Magda Bordas
- ESTEVE, Drug Discovery and Preclinical Development, Parc Científic de Barcelona, Baldiri Reixac, 4-8, 08028 Barcelona, Spain.
| | - Raquel Enrech
- ESTEVE, Drug Discovery and Preclinical Development, Parc Científic de Barcelona, Baldiri Reixac, 4-8, 08028 Barcelona, Spain.
| | - Rosalia Pascual
- ESTEVE, Drug Discovery and Preclinical Development, Parc Científic de Barcelona, Baldiri Reixac, 4-8, 08028 Barcelona, Spain.
| | - Martí Rosés
- Institute of Biomedicine (IBUB), Department of Chemical Engineering and Analytical Chemistry, Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain.
| | - Clara Ràfols
- Institute of Biomedicine (IBUB), Department of Chemical Engineering and Analytical Chemistry, Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain.
| | - Xavier Subirats
- Institute of Biomedicine (IBUB), Department of Chemical Engineering and Analytical Chemistry, Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain.
| | - Elisabeth Bosch
- Institute of Biomedicine (IBUB), Department of Chemical Engineering and Analytical Chemistry, Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain.
| |
Collapse
|
3
|
Miederer I, Buchholz HG, Kronfeld A, Maus S, Weyer-Elberich V, Mildenberger P, Lutz B, Schreckenberger M. Pharmacokinetics of the cannabinoid receptor ligand [18
F]MK-9470 in the rat brain - Evaluation of models using microPET. Med Phys 2018; 45:725-734. [DOI: 10.1002/mp.12732] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 10/24/2017] [Accepted: 11/30/2017] [Indexed: 12/19/2022] Open
Affiliation(s)
- Isabelle Miederer
- Department of Nuclear Medicine; University Medical Center of the Johannes Gutenberg University Mainz; Langenbeckstraße 1 55131 Mainz Germany
| | - Hans-Georg Buchholz
- Department of Nuclear Medicine; University Medical Center of the Johannes Gutenberg University Mainz; Langenbeckstraße 1 55131 Mainz Germany
| | - Andrea Kronfeld
- Institute of Microscopic Anatomy and Neurobiology; University Medical Center of the Johannes Gutenberg University Mainz; Langenbeckstraße 1 55131 Mainz Germany
| | - Stephan Maus
- Department of Nuclear Medicine; University Medical Center of the Johannes Gutenberg University Mainz; Langenbeckstraße 1 55131 Mainz Germany
| | - Veronika Weyer-Elberich
- Institute of Medical Biostatistics, Epidemiology and Informatics; University Medical Center of the Johannes Gutenberg University Mainz; Obere Zahlbacher Straße 69 55131 Mainz Germany
| | - Philipp Mildenberger
- Institute of Medical Biostatistics, Epidemiology and Informatics; University Medical Center of the Johannes Gutenberg University Mainz; Obere Zahlbacher Straße 69 55131 Mainz Germany
| | - Beat Lutz
- Institute of Physiological Chemistry; University Medical Center of the Johannes Gutenberg University Mainz; Duesbergweg 6 55128 Mainz Germany
| | - Mathias Schreckenberger
- Department of Nuclear Medicine; University Medical Center of the Johannes Gutenberg University Mainz; Langenbeckstraße 1 55131 Mainz Germany
| |
Collapse
|
4
|
Buchholz H, Uebbing K, Maus S, Pektor S, Afahaene N, Weyer-Elberich V, Lutz B, Schreckenberger M, Miederer I. Whole-body biodistribution of the cannabinoid type 1 receptor ligand [ 18 F]MK-9470 in the rat. Nucl Med Biol 2017. [DOI: 10.1016/j.nucmedbio.2017.06.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
5
|
Kronfeld A, Buchholz HG, Maus S, Reuss S, Müller-Forell W, Lutz B, Schreckenberger M, Miederer I. Evaluation of MRI and cannabinoid type 1 receptor PET templates constructed using DARTEL for spatial normalization of rat brains. Med Phys 2015; 42:6875-84. [DOI: 10.1118/1.4934825] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
6
|
Thomae D, Morley TJ, Hamill T, Carroll VM, Papin C, Twardy NM, Lee HS, Hargreaves R, Baldwin RM, Tamagnan G, Alagille D. Automated one-step radiosynthesis of the CB1 receptor imaging agent [(18) F]MK-9470. J Labelled Comp Radiopharm 2014; 57:611-4. [PMID: 25156811 DOI: 10.1002/jlcr.3219] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Revised: 06/24/2014] [Accepted: 06/26/2014] [Indexed: 12/14/2022]
Abstract
The fluorine-18-labeled positron emission tomography (PET) radiotracer [(18) F]MK-9470 is a selective, high affinity inverse agonist that has been used to image the cannabinoid receptor type 1 in human brain in healthy and disease states. This report describes a simplified, one-step [(18) F]radiofluorination approach using a GE TRACERlab FXFN module for the routine production of this tracer. The one-step synthesis, by [(18) F]fluoride displacement of a primary tosylate precursor, gives a six-fold increase in yield over the previous two-step method employing O-alkylation of a phenol precursor with 1,2-[(18) F]fluorobromoethane. The average radiochemical yield of [(18) F]MK-9470 using the one-step method was 30.3 ± 11.7% (n = 12), with specific activity in excess of 6 Ci/µmol and radiochemical purity of 97.2 ± 1.5% (n = 12), in less than 60 min. This simplified, high yielding, automated process was validated for routine GMP production of [(18) F]MK-9470 for clinical studies.
Collapse
Affiliation(s)
- David Thomae
- Institute for Neurodegenerative Disorders, New Haven, CT, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Prospective therapeutic agents for obesity: Molecular modification approaches of centrally and peripherally acting selective cannabinoid 1 receptor antagonists. Eur J Med Chem 2014; 79:298-339. [DOI: 10.1016/j.ejmech.2014.04.011] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Revised: 04/03/2014] [Accepted: 04/04/2014] [Indexed: 01/29/2023]
|
8
|
Mu L, Slavik R, Müller A, Popaj K, Cermak S, Weber M, Schibli R, Krämer SD, Ametamey SM. Synthesis and Preliminary Evaluation of a 2-Oxoquinoline Carboxylic Acid Derivative for PET Imaging the Cannabinoid Type 2 Receptor. Pharmaceuticals (Basel) 2014; 7:339-52. [PMID: 24662272 PMCID: PMC3978495 DOI: 10.3390/ph7030339] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Revised: 02/21/2014] [Accepted: 02/27/2014] [Indexed: 11/27/2022] Open
Abstract
Cannabinoid receptor subtype 2 (CB2) has been shown to be up-regulated in activated microglia and therefore plays an important role in neuroinflammatory and neurodegenerative diseases such as multiple sclerosis, amyotrophic lateral sclerosis and Alzheimer’s disease. The CB2 receptor is therefore considered as a very promising target for therapeutic approaches as well as for imaging. A promising 2-oxoquinoline derivative designated KP23 was synthesized and radiolabeled and its potential as a ligand for PET imaging the CB2 receptor was evaluated. [11C]KP23 was obtained in 10%–25% radiochemical yield (decay corrected) and 99% radiochemical purity. It showed high stability in phosphate buffer, rat and mouse plasma. In vitro autoradiography of rat and mouse spleen slices, as spleen expresses a high physiological expression of CB2 receptors, demonstrated that [11C]KP23 exhibits specific binding towards CB2. High spleen uptake of [11C]KP23 was observed in dynamic in vivo PET studies with Wistar rats. In conclusion, [11C]KP23 showed promising in vitro and in vivo characteristics. Further evaluation with diseased animal model which has higher CB2 expression levels in the brain is warranted.
Collapse
Affiliation(s)
- Linjing Mu
- Center for Radiopharmaceutical Sciences of ETH-PSI-USZ, Department of Nuclear Medicine, University Hospital Zürich, CH-8091 Zürich, Switzerland.
| | - Roger Slavik
- Center for Radiopharmaceutical Sciences of ETH-PSI-USZ, Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, CH-8093 Zürich, Switzerland
| | - Adrienne Müller
- Center for Radiopharmaceutical Sciences of ETH-PSI-USZ, Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, CH-8093 Zürich, Switzerland
| | - Kasim Popaj
- Center for Radiopharmaceutical Sciences of ETH-PSI-USZ, Department of Nuclear Medicine, University Hospital Zürich, CH-8091 Zürich, Switzerland
| | - Stjepko Cermak
- Center for Radiopharmaceutical Sciences of ETH-PSI-USZ, Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, CH-8093 Zürich, Switzerland
| | - Markus Weber
- Neuromuscular Diseases Unit/ALS Clinic, Kantonsspital St. Gallen, CH-9007 St. Gallen, Switzerland
| | - Roger Schibli
- Center for Radiopharmaceutical Sciences of ETH-PSI-USZ, Department of Nuclear Medicine, University Hospital Zürich, CH-8091 Zürich, Switzerland
| | - Stefanie D Krämer
- Center for Radiopharmaceutical Sciences of ETH-PSI-USZ, Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, CH-8093 Zürich, Switzerland
| | - Simon M Ametamey
- Center for Radiopharmaceutical Sciences of ETH-PSI-USZ, Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, CH-8093 Zürich, Switzerland
| |
Collapse
|
9
|
Emonds KM, Koole M, Casteels C, Van den Bergh L, Bormans GM, Claus F, De Wever L, Lerut E, Van Poppel H, Joniau S, Dumez H, Haustermans K, Mortelmans L, Goffin K, Van Laere K, Deroose CM, Mottaghy FM. 18F-MK-9470 PET imaging of the type 1 cannabinoid receptor in prostate carcinoma: a pilot study. EJNMMI Res 2013; 3:59. [PMID: 23915639 PMCID: PMC3750838 DOI: 10.1186/2191-219x-3-59] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Accepted: 07/19/2013] [Indexed: 11/30/2022] Open
Abstract
Background Preclinical and histological data show overexpression of the type 1 cannabinoid receptor (CB1R) in prostate carcinoma (PCa). In a prospective study, the feasibility of 18F-MK-9470 positron emission tomography (PET) imaging in patients with primary and metastatic PCa was evaluated. Methods Eight patients were included and underwent 18F-MK-9470 PET/CT imaging. For five patients with primary PCa, dynamic PET/CT imaging was performed over three acquisition intervals (0 to 30, 60 to 90 and 120 to 150 min post-injection). In malignant and benign prostate tissue regions, time activity curves of the mean standardized uptake value (SUVmean) were determined as well as the corresponding area under the curve to compare 18F-MK-9470 uptake over time. Muscle uptake of 18F-MK-9470 was used as reference for non-specific binding. Magnetic resonance imaging (MRI) was used as anatomical reference and for delineating intraprostatic tumours. Histological and immunohistochemical (IHC) examination was performed on the whole-mount histopathology sections of four patients who underwent radical prostatectomy to assess the MRI-based tumour versus benign tissue classification. For three patients with proven advanced metastatic disease, two static PET/CTs were performed 1 and 3 h post-injection. 18F-MK-9470 uptake was evaluated in bone lesions of metastatic PCa by comparing SUVmean values of metastases with these of the contralateral bone tissue. Results 18F-MK-9470 uptake was significantly higher in benign and malignant prostate tissue compared to muscle, but it did not differ between both prostate tissue compartments. IHC findings of corresponding prostatic histopathological sections indicated weak CB1R expression in locally confined PCa, which was not visualized with 18F-MK-9470 PET. Metastases in the axial skeleton could not be detected while some metastases in the appendicular skeleton showed higher 18F-MK-9470 uptake as compared to the uptake in contralateral normal bone. Conclusions 18F-MK-9470 PET could not detect local PCa or bone metastases in the axial skeleton but was able to visualize metastases in the appendicular skeleton. Based on these pilot observations, it seems unlikely that CB1R PET will play a significant role in the evaluation of PCa.
Collapse
Affiliation(s)
- Kimy M Emonds
- Department of Nuclear Medicine, University Hospitals Leuven, Leuven 3000, Belgium.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Miederer I, Maus S, Zwiener I, Podoprygorina G, Meshcheryakov D, Lutz B, Schreckenberger M. Evaluation of cannabinoid type 1 receptor expression in the rat brain using [18F]MK-9470 microPET. Eur J Nucl Med Mol Imaging 2013; 40:1739-47. [DOI: 10.1007/s00259-013-2483-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Accepted: 06/04/2013] [Indexed: 02/02/2023]
|
11
|
Ahamed M, Verbruggen A, Bormans G. Synthetic strategies for radioligands forin vivoimaging of brain cannabinoid type-1 receptors. J Labelled Comp Radiopharm 2013; 56:207-14. [DOI: 10.1002/jlcr.3017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2012] [Revised: 11/28/2012] [Accepted: 11/30/2012] [Indexed: 02/03/2023]
Affiliation(s)
- Muneer Ahamed
- Laboratory for Radiopharmacy, IMIR KU Leuven, O&N2; Herestraat 49, Box 821; BE-3000; Leuven; Belgium
| | - Alfons Verbruggen
- Laboratory for Radiopharmacy, IMIR KU Leuven, O&N2; Herestraat 49, Box 821; BE-3000; Leuven; Belgium
| | - Guy Bormans
- Laboratory for Radiopharmacy, IMIR KU Leuven, O&N2; Herestraat 49, Box 821; BE-3000; Leuven; Belgium
| |
Collapse
|
12
|
Turkman N, Shavrin A, Paolillo V, Yeh HH, Flores L, Soghomonian S, Rabinovich B, Volgin A, Gelovani J, Alauddin M. Synthesis and preliminary evaluation of [18F]-labeled 2-oxoquinoline derivatives for PET imaging of cannabinoid CB2 receptor. Nucl Med Biol 2012; 39:593-600. [PMID: 22226022 DOI: 10.1016/j.nucmedbio.2011.10.019] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2011] [Revised: 09/27/2011] [Accepted: 10/25/2011] [Indexed: 10/14/2022]
Abstract
INTRODUCTION The cannabinoid receptor type 2 (CB(2)) is an important target for development of drugs and imaging agents for diseases, such as neuroinflammation, neurodegeneration and cancer. Recently, we reported synthesis and results of in vitro receptor binding of a focused library of fluorinated 2-oxoquinoline derivatives as CB(2) receptor ligands. Some of the compounds demonstrated to be good CB(2)-specific ligands with Ki values in the nanomolar to subnanomolar concentrations; therefore, we pursued the development of their (18)F-labeled analogues that should be useful for positron emission tomography (PET) imaging of CB(2) receptor expression. Here, we report the radiosynthesis of two (18)F-labeled 2-oxoquinoline derivatives and the preliminary in vitro and ex vivo evaluation of one compound as a CB(2)-specific radioligand. METHODS 4-[(18)F]fluorobenzyl amine [(18)F]-3 was prepared by radiofluorination of 4-cyano-N,N,N-trimethylanilinium triflate salt followed by reduction with LiAlH(4) and then coupled with acid chlorides 11 and 12 to afford [(18)F]-13 and [(18)F]-14. In vitro CB(2) receptor binding assay was performed using U87 cells transduced with CB(2) and CB(1) receptor. Ex vivo autoradiography was performed with [(18)F]-14 on spleen and on CB(2)- and CB(1)-expressing and wild-type U87 subcutaneous tumors grown in mice. RESULTS The radiochemical yields of [(18)F]-13 and [(18)F]-14 were 10%-15.0% with an average of 12% (n=10); radiochemical purity was >99% with specific activity 1200 mCi/μmol. The dissociation constant Kd for [(18)F]-14 was 3.4 nM. Ex vivo autoradiography showed accumulation of [(18)F]-14 in the CB(2)-expressing tumor. CONCLUSION Two new [(18)F]-labeled CB(2) ligands have been synthesized. Compound [(18)F]-14 appears to be a potential PET imaging agent for the assessment of CB(2) receptor expression; however, poor solubility restrain its use in vivo.
Collapse
|
13
|
Gao M, Wang M, Miller KD, Hutchins GD, Zheng QH. Synthesis and in vitro biological evaluation of carbon-11-labeled quinoline derivatives as new candidate PET radioligands for cannabinoid CB2 receptor imaging. Bioorg Med Chem 2010; 18:2099-2106. [DOI: 10.1016/j.bmc.2010.02.011] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2010] [Revised: 02/04/2010] [Accepted: 02/05/2010] [Indexed: 11/29/2022]
|
14
|
Sanabria-Bohórquez SM, Hamill TG, Goffin K, De Lepeleire I, Bormans G, Burns HD, Van Laere K. Kinetic analysis of the cannabinoid-1 receptor PET tracer [18F]MK-9470 in human brain. Eur J Nucl Med Mol Imaging 2009; 37:920-33. [DOI: 10.1007/s00259-009-1340-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2009] [Accepted: 11/13/2009] [Indexed: 12/20/2022]
|
15
|
Spivey AC, Tseng CC, Jones TC, Kohler AD, Ellames GJ. A method for parallel solid-phase synthesis of iodinated analogues of the CB1 receptor inverse agonist rimonabant. Org Lett 2009; 11:4760-3. [PMID: 19778010 DOI: 10.1021/ol902038y] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A method for the parallel solid-phase synthesis (SPS) of iodinated analogues of Sanofi-Aventis' type 1 cannabinoid (CB1) receptor inverse agonist rimonabant (acomplia) has been developed. The method allows the synthesis of a range of C3 amide/hydrazide derivatives from a resin-bound C3 ester precursor. The C-Ge linkage to the Hypogel-200 resin is stable to the diversification conditions but allows ipso-iododegermylative cleavage using NaI/NCS even for the products containing the oxidatively labile hydrazide moiety.
Collapse
Affiliation(s)
- Alan C Spivey
- Department of Chemistry, Imperial College, London SW7 2AY, UK.
| | | | | | | | | |
Collapse
|
16
|
Synthesis and in vitro autoradiographic evaluation of a novel high-affinity radioiodinated ligand for imaging brain cannabinoid subtype-1 receptors. Bioorg Med Chem Lett 2009; 19:6209-12. [PMID: 19767206 DOI: 10.1016/j.bmcl.2009.08.092] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2009] [Revised: 08/26/2009] [Accepted: 08/31/2009] [Indexed: 01/19/2023]
Abstract
There is strong interest to study the involvement of brain cannabinoid subtype-1 (CB1) receptors in neuropsychiatric disorders with single photon emission computed tomography (SPECT) and a suitable radioligand. Here we report the synthesis of a novel high-affinity radioiodinated CB1 receptor ligand ([125I]8, [125I]1-(2-iodophenyl)-4-cyano-5-(4-methoxyphenyl)-N-(piperidin-1-yl)-1H-pyrazole-3-carboxylate, [125I]SD7015). By autoradiography in vitro, [125I]8 showed selective binding to CB1 receptors on human brain postmortem cryosections and now merits labeling with iodine-123 for further evaluation as a SPECT radioligand in non-human primate.
Collapse
|
17
|
Synthesis and evaluation of N-[(1S,2S)-3-(4-chlorophenyl)-2-(3-cyanophenyl)-1-methylpropyl]-2-methyl-2-aminopropanamide as human cannabinoid-1 receptor (CB1R) inverse agonists. Bioorg Med Chem Lett 2009; 19:5195-9. [DOI: 10.1016/j.bmcl.2009.07.046] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2009] [Revised: 06/29/2009] [Accepted: 07/02/2009] [Indexed: 11/17/2022]
|
18
|
Finnema SJ, Donohue SR, Zoghbi SS, Brown AK, Gulyás B, Innis RB, Halldin C, Pike VW. Evaluation of [11C]PipISB and [18F]PipISB in monkey as candidate radioligands for imaging brain cannabinoid type-1 receptors in vivo. Synapse 2009; 63:22-30. [PMID: 18925657 DOI: 10.1002/syn.20578] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
N-(4-Fluorobenzyl)-4-[3-(piperidin-1-yl)indole-1-sulfonyl]benzamide] (PipISB, 3) is a selective and high-potency cannabinoid subtype-1 (CB1) receptor inverse agonist. We have previously reported radiosyntheses of [11C]3 and [18F]3. Here, we aimed to evaluate the uptake and CB(1) receptor-specific binding of each radioligand in monkey brain in vivo with positron emission tomography (PET). [11C]3 or [18F]3 was injected intravenously into rhesus or cynomolgus monkey, respectively, and examined with PET at baseline or after pretreatment with a receptor-saturating dose of CB1 receptor-selective ligand (3 for [11C]3 or 8 for [18F]3). In one PET experiment, the dose of 3 was administered at 100 min after [11C]3. Relative plasma concentrations of radioligand and radiometabolites were concurrently measured in baseline experiments with high-performance liquid chromatography. Brain radioactivity uptake was highest in striatum and cerebellum, and it reached 170-270% standardized uptake value (SUV) at 120 min after injection of [11C]3 and 180% SUV at 240 min after injection of [18F]3. Radioactivity was well retained in all CB1 receptor-rich regions. No reference region could be identified for nonspecifically bound radioligand. Under CB1 receptor pretreatment and displacement conditions, initial brain uptakes of radioactivity were similar to those at baseline. Regional brain radioactivity concentrations then became homogeneous and diminished to between 70 and 80% SUV at 120 min after injection of [11C]3 and to 25% SUV at 240 min after injection of [18F]3. [18F]3 was not defluorinated but was metabolized to less lipophilic radiometabolites, as was [11C]3. Hence, [11C]3 and [18F]3 showed high CB1 receptor-specific binding in monkey brain in vivo and merit further investigation as prospective PET radioligands in humans.
Collapse
Affiliation(s)
- Sjoerd J Finnema
- Karolinska Institutet, Department of Clinical Neuroscience, Psychiatry Section, Karolinska Hospital, S-17176 Stockholm, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
19
|
PET Imaging Studies in Rhesus Monkey with the Cannabinoid-1 (CB1) Receptor Ligand [11C]CB-119. Mol Imaging Biol 2009; 11:246-52. [DOI: 10.1007/s11307-008-0194-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2008] [Revised: 08/13/2008] [Accepted: 09/08/2008] [Indexed: 11/26/2022]
|
20
|
Donohue SR, Krushinski JH, Pike VW, Chernet E, Phebus L, Chesterfield AK, Felder CC, Halldin C, Schaus JM. Synthesis, ex vivo evaluation, and radiolabeling of potent 1,5-diphenylpyrrolidin-2-one cannabinoid subtype-1 receptor ligands as candidates for in vivo imaging. J Med Chem 2008; 51:5833-42. [PMID: 18800770 DOI: 10.1021/jm800416m] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We have reported that [methyl- (11)C] (3 R,5 R)-5-(3-methoxyphenyl)-3-[(R)-1-phenylethylamino]-1-(4-trifluoromethylphenyl)pyrrolidin-2-one ([(11)C] 8, [(11)C]MePPEP) binds with high selectivity to cannabinoid type-1 (CB 1) receptors in monkey brain in vivo. We now describe the synthesis of 8 and four analogues, namely, the 4-fluorophenyl (16, FMePPEP), 3-fluoromethoxy (20, FMPEP), 3-fluoromethoxy- d 2 (21, FMPEP- d 2), and 3-fluoroethoxy analogues (22, FEPEP), and report their activity in an ex vivo model designed to identify compounds suitable for use as positron emission tomography (PET) ligands. These ligands exhibited high, selective potency at CB 1 receptors in vitro (K b < 1 nM). Each ligand (30 microg/kg, iv) was injected into rats under baseline and pretreatment conditions (3, rimonabant, 10 mg/kg, iv) and quantified at later times in frontal cortex ex vivo with liquid chromatography-mass spectrometry (LC-MS) detection. Maximal ligand uptakes were high (22.6-48.0 ng/g). Under pretreatment, maximal brain uptakes were greatly reduced (6.5-17.3 ng/g). Since each ligand readily entered brain and bound with high selectivity to CB 1 receptors, we then established and here describe methods for producing [(11)C] 8, [(11)C] 16, and [(18)F] 20- 22 in adequate activities for evaluation as candidate PET radioligands in vivo.
Collapse
Affiliation(s)
- Sean R Donohue
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Donohue SR, Pike VW, Finnema SJ, Truong P, Andersson J, Gulyás B, Halldin C. Discovery and labeling of high-affinity 3,4-diarylpyrazolines as candidate radioligands for in vivo imaging of cannabinoid subtype-1 (CB1) receptors. J Med Chem 2008; 51:5608-16. [PMID: 18754613 DOI: 10.1021/jm800329z] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Imaging of cannabinoid subtype-1 (CB1) receptors in vivo with positron emission tomography (PET) is likely to be important for understanding their role in neuropsychiatric disorders and for drug development. Radioligands for imaging with PET are required for this purpose. We synthesized new ligands from a 3,4- diarylpyrazoline platform of which (-)-12a ((-)-3-(4-chlorophenyl)-N'-[(4-cyanophenyl)sulfonyl]-4-phenyl- 4,5-dihydro-1H-pyrazole-1-carboxamidine) was found to have high-affinity and selectivity for binding to CB1 receptors. (-)-12a and its lower affinity enantiomer ((+)-12a) were labeled with carbon-11 (t1/2 ) 20.4 min) using [11C]cyanide ion as labeling agent and evaluated as PET radioligands in cynomolgus monkeys. After injection of [11C](-)-12a, there was high uptake and retention of radioactivity across brain according to the rank order of CB1 receptor densities. The distomer, [11C](+)-12a, failed to give a sustained CB1 receptor-specific distribution. Polar radiometabolites of [11C](-)-12a appeared moderately slowly in plasma. Radioligand [11C](-)-12a is promising for the study of brain CB1 receptors and merits further investigation in human subjects.
Collapse
Affiliation(s)
- Sean R Donohue
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland 20892, USA.
| | | | | | | | | | | | | |
Collapse
|
22
|
Furuya T, Kaiser HM, Ritter T. Palladium-mediated fluorination of arylboronic acids. Angew Chem Int Ed Engl 2008; 47:5993-6. [PMID: 18604865 DOI: 10.1002/anie.200802164] [Citation(s) in RCA: 254] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Takeru Furuya
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, MA 02138, USA
| | | | | |
Collapse
|
23
|
Furuya T, Kaiser H, Ritter T. Palladiumvermittelte Fluorierung von Arylboronsäuren. Angew Chem Int Ed Engl 2008. [DOI: 10.1002/ange.200802164] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
24
|
Hagmann WK. The Discovery of Taranabant, a Selective Cannabinoid‐1 Receptor Inverse Agonist for the Treatment of Obesity. Arch Pharm (Weinheim) 2008; 341:405-11. [DOI: 10.1002/ardp.200700255] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
25
|
Van Laere K, Koole M, Sanabria Bohorquez SM, Goffin K, Guenther I, Belanger MJ, Cote J, Rothenberg P, De Lepeleire I, Grachev ID, Hargreaves RJ, Bormans G, Burns HD. Whole-Body Biodistribution and Radiation Dosimetry of the Human Cannabinoid Type-1 Receptor Ligand 18F-MK-9470 in Healthy Subjects. J Nucl Med 2008; 49:439-45. [DOI: 10.2967/jnumed.107.047290] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
26
|
Donohue SR, Halldin C, Schou M, Hong J, Phebus L, Chernet E, Hitchcock SA, Gardinier KM, Ruley KM, Krushinski JH, Schaus J, Pike VW. Radiolabeling of a high potency cannabinoid subtype-1 receptor ligand,N-(4-fluoro-benzyl)-4-(3-(piperidin-1-yl)-indole-1-sulfonyl)benzamide (PipISB), with carbon-11 or fluorine-18. J Labelled Comp Radiopharm 2008. [DOI: 10.1002/jlcr.1491] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
27
|
Van Laere K. In vivo imaging of the endocannabinoid system: a novel window to a central modulatory mechanism in humans. Eur J Nucl Med Mol Imaging 2007; 34:1719-26. [PMID: 17643242 DOI: 10.1007/s00259-007-0505-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|