1
|
Poslusney M, Ernst G, Huang Y, Gerlach AC, Chapman ML, Santos S, Barrow JC. Development and characterization of pyridyl carboxamides as potent and highly selective Na v1.8 inhibitors. Bioorg Med Chem Lett 2025; 117:130059. [PMID: 39644938 DOI: 10.1016/j.bmcl.2024.130059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 11/22/2024] [Accepted: 12/01/2024] [Indexed: 12/09/2024]
Abstract
The voltage-gated sodium channel Nav1.8 (SCN10A) has strong genetic and pharmacological validation as a potential target for treating acute and chronic pain. While several different chemotypes have been advanced as selective inhibitors, a quinoxaline carboxamide core structure was identified as a particularly attractive core structure due to very high sodium channel subtype selectivity. However, poor solubility and overall ADME properties need to be improved. Scaffold hopping to a central trifluoromethyl pyridine followed by optimization of distal substituents resulted in improved overall properties. Several advanced lead compounds have been identified with excellent potency, selectivity, solubility, and pharmacokinetics. Preliminary mechanism of action studies suggest that this class of compounds are voltage and state independent inhibitors that bind to a novel site on the Nav1.8 channel.
Collapse
Affiliation(s)
- Michael Poslusney
- Lieber Institute for Brain Development, 855 N. Wolfe Street, Baltimore, MD 21205, USA
| | - Glen Ernst
- Lieber Institute for Brain Development, 855 N. Wolfe Street, Baltimore, MD 21205, USA
| | - Yifang Huang
- Lieber Institute for Brain Development, 855 N. Wolfe Street, Baltimore, MD 21205, USA
| | - Aaron C Gerlach
- OmniAb, Inc., 1035 Swabia Ct, Suite 110, Durham, NC 27703, USA
| | - Mark L Chapman
- OmniAb, Inc., 1035 Swabia Ct, Suite 110, Durham, NC 27703, USA
| | - Sónia Santos
- OmniAb, Inc., 1035 Swabia Ct, Suite 110, Durham, NC 27703, USA
| | - James C Barrow
- Lieber Institute for Brain Development, 855 N. Wolfe Street, Baltimore, MD 21205, USA; Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
2
|
Barrionuevo EM, Peralta E, Manzur De Nardi A, Monat J, Fallico MJ, Llanos MA, Gavernet L, Mustafá ER, Martin P, Talevi A. In Silico Screening Identification of Fatty Acids and Fatty Acid Derivatives with Antiseizure Activity: In Vitro and In Vivo Validation. Pharmaceutics 2024; 16:996. [PMID: 39204342 PMCID: PMC11357650 DOI: 10.3390/pharmaceutics16080996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/19/2024] [Accepted: 07/24/2024] [Indexed: 09/04/2024] Open
Abstract
High fat diets have been used as complementary treatments for seizure disorders for more than a century. Moreover, many fatty acids and derivatives, including the broad-spectrum antiseizure medication valproic acid, have been explored and used as pharmacological agents to treat epilepsy. In this work, we have explored the anticonvulsant potential of a large library of fatty acids and fatty acid derivatives, the LIPID MAPS Structure Database, using structure-based virtual screening to assess their ability to block the voltage-gated sodium channel 1.2 (NaV1.2), a validated target for antiseizure medications. Four of the resulting in silico hits were submitted for experimental confirmation using in vitro patch clamp experiments, and their protective role was evaluated in an acute mice seizure model, the Maximal Electroshock seizure model. These four compounds were found to protect mice against seizures. Two of them exhibited blocking effects on NaV1.2, CaV2.2, and CaV3.1.
Collapse
Affiliation(s)
- Emilia Mercedes Barrionuevo
- Laboratory of Bioactive Compound Research and Development (LIDeB), Faculty of Exact Sciences, National University of La Plata (UNLP), Blvd. 120 1489, La Plata 1900, Argentina
- Argentinean National Council of Scientific and Technical Research (CONICET), CCT La Plata, La Plata 1900, Argentina
| | - Estefanía Peralta
- Laboratory of Bioactive Compound Research and Development (LIDeB), Faculty of Exact Sciences, National University of La Plata (UNLP), Blvd. 120 1489, La Plata 1900, Argentina
- Argentinean National Council of Scientific and Technical Research (CONICET), CCT La Plata, La Plata 1900, Argentina
| | - Agustín Manzur De Nardi
- Instituto de Estudios Inmunológicos y Fisiopatológicos (IIFP), Universidad Nacional de La Plata–CICPBA–CONICET, Boulevard 120 no. 1489, La Plata 1900, Argentina
| | - Juliana Monat
- Instituto de Estudios Inmunológicos y Fisiopatológicos (IIFP), Universidad Nacional de La Plata–CICPBA–CONICET, Boulevard 120 no. 1489, La Plata 1900, Argentina
| | - Maximiliano José Fallico
- Laboratory of Bioactive Compound Research and Development (LIDeB), Faculty of Exact Sciences, National University of La Plata (UNLP), Blvd. 120 1489, La Plata 1900, Argentina
- Argentinean National Council of Scientific and Technical Research (CONICET), CCT La Plata, La Plata 1900, Argentina
| | - Manuel Augusto Llanos
- Laboratory of Bioactive Compound Research and Development (LIDeB), Faculty of Exact Sciences, National University of La Plata (UNLP), Blvd. 120 1489, La Plata 1900, Argentina
- Argentinean National Council of Scientific and Technical Research (CONICET), CCT La Plata, La Plata 1900, Argentina
| | - Luciana Gavernet
- Laboratory of Bioactive Compound Research and Development (LIDeB), Faculty of Exact Sciences, National University of La Plata (UNLP), Blvd. 120 1489, La Plata 1900, Argentina
- Argentinean National Council of Scientific and Technical Research (CONICET), CCT La Plata, La Plata 1900, Argentina
| | - Emilio Román Mustafá
- Electrophysiology Laboratory of the Multidisciplinary Institute of Cell Biology [Argentine Research Council (CONICET), Scientific Research Commission of the Province of Buenos Aires (CIC-PBA) and National University of La Plata (UNLP)], La Plata 1900, Argentina
| | - Pedro Martin
- Instituto de Estudios Inmunológicos y Fisiopatológicos (IIFP), Universidad Nacional de La Plata–CICPBA–CONICET, Boulevard 120 no. 1489, La Plata 1900, Argentina
| | - Alan Talevi
- Laboratory of Bioactive Compound Research and Development (LIDeB), Faculty of Exact Sciences, National University of La Plata (UNLP), Blvd. 120 1489, La Plata 1900, Argentina
- Argentinean National Council of Scientific and Technical Research (CONICET), CCT La Plata, La Plata 1900, Argentina
| |
Collapse
|
3
|
Gilchrist JM, Yang ND, Jiang V, Moyer BD. Pharmacologic Characterization of LTGO-33, a Selective Small Molecule Inhibitor of the Voltage-Gated Sodium Channel Na V1.8 with a Unique Mechanism of Action. Mol Pharmacol 2024; 105:233-249. [PMID: 38195157 DOI: 10.1124/molpharm.123.000789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/28/2023] [Accepted: 01/02/2024] [Indexed: 01/11/2024] Open
Abstract
Discovery and development of new molecules directed against validated pain targets is required to advance the treatment of pain disorders. Voltage-gated sodium channels (NaVs) are responsible for action potential initiation and transmission of pain signals. NaV1.8 is specifically expressed in peripheral nociceptors and has been genetically and pharmacologically validated as a human pain target. Selective inhibition of NaV1.8 can ameliorate pain while minimizing effects on other NaV isoforms essential for cardiac, respiratory, and central nervous system physiology. Here we present the pharmacology, interaction site, and mechanism of action of LTGO-33, a novel NaV1.8 small molecule inhibitor. LTGO-33 inhibited NaV1.8 in the nM potency range and exhibited over 600-fold selectivity against human NaV1.1-NaV1.7 and NaV1.9. Unlike prior reported NaV1.8 inhibitors that preferentially interacted with an inactivated state via the pore region, LTGO-33 was state-independent with similar potencies against closed and inactivated channels. LTGO-33 displayed species specificity for primate NaV1.8 over dog and rodent NaV1.8 and inhibited action potential firing in human dorsal root ganglia neurons. Using chimeras combined with mutagenesis, the extracellular cleft of the second voltage-sensing domain was identified as the key site required for channel inhibition. Biophysical mechanism of action studies demonstrated that LTGO-33 inhibition was relieved by membrane depolarization, suggesting the molecule stabilized the deactivated state to prevent channel opening. LTGO-33 equally inhibited wild-type and multiple NaV1.8 variants associated with human pain disorders. These collective results illustrate LTGO-33 inhibition via both a novel interaction site and mechanism of action previously undescribed in NaV1.8 small molecule pharmacologic space. SIGNIFICANCE STATEMENT: NaV1.8 sodium channels primarily expressed in peripheral pain-sensing neurons represent a validated target for the development of novel analgesics. Here we present the selective small molecule NaV1.8 inhibitor LTGO-33 that interdicts a distinct site in a voltage-sensor domain to inhibit channel opening. These results inform the development of new analgesics for pain disorders.
Collapse
Affiliation(s)
| | - Nien-Du Yang
- Latigo Biotherapeutics, Inc., Thousand Oaks, California
| | | | - Bryan D Moyer
- Latigo Biotherapeutics, Inc., Thousand Oaks, California
| |
Collapse
|
4
|
Shinde GH, Ghotekar GS, Amombo Noa FM, Öhrström L, Norrby PO, Sundén H. Regioselective ortho halogenation of N-aryl amides and ureas via oxidative halodeboronation: harnessing boron reactivity for efficient C-halogen bond installation. Chem Sci 2023; 14:13429-13436. [PMID: 38033885 PMCID: PMC10685333 DOI: 10.1039/d3sc04628a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 10/23/2023] [Indexed: 12/02/2023] Open
Abstract
The installation of the C-halogen bond at the ortho position of N-aryl amides and ureas represents a tool to prepare motifs that are ubiquitous in biologically active compounds. To construct such prevalent bonds, most methods require the use of precious metals and a multistep process. Here we report a novel protocol for the long-standing challenge of regioselective ortho halogenation of N-aryl amides and ureas using an oxidative halodeboronation. By harnessing the reactivity of boron over nitrogen, we merge carbonyl-directed borylation with consecutive halodeboronation, enabling the precise introduction of the C-X bond at the desired ortho position of N-aryl amides and ureas. This method offers an efficient, practical, and scalable solution for synthesizing halogenated N-heteroarenes under mild conditions, highlighting the superiority of boron reactivity in directing the regioselectivity of the reaction.
Collapse
Affiliation(s)
- Ganesh H Shinde
- Department of Chemistry and Molecular Biology, University of Gothenburg SE-41296 Gothenburg Sweden
| | - Ganesh S Ghotekar
- Department of Chemistry and Molecular Biology, University of Gothenburg SE-41296 Gothenburg Sweden
| | - Francoise M Amombo Noa
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology SE-41296 Gothenburg Sweden
| | - Lars Öhrström
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology SE-41296 Gothenburg Sweden
| | - Per-Ola Norrby
- Data Science and Modelling, Pharmaceutical Sciences, R&D, AstraZeneca Gothenburg Pepparedsleden 1 Mölndal SE-43183 Sweden
| | - Henrik Sundén
- Department of Chemistry and Molecular Biology, University of Gothenburg SE-41296 Gothenburg Sweden
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology SE-41296 Gothenburg Sweden
| |
Collapse
|
5
|
Hsieh CC, Liao PK, Chen CW, Chiang MH, Horng YC. The effect of anions in the synthesis and structure of pyrazolylamidino copper(II) complexes. Dalton Trans 2023; 52:4429-4441. [PMID: 36916977 DOI: 10.1039/d3dt00103b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
Six new pyrazolylamidino Cu(II) complexes are synthesized directly from the reactions of Cu(X)2 salts (X = ClO4-, BF4-, or Cl-) and pyrazole (pzH) in nitrile solution (RCN, R = Me or Et) at 298 K via the metal-mediated coupling of RCN with pzH: [Cu(HNC(R)pz)2(X)2] (X = ClO4- or BF4-, R = Me, 1 or 7 and Et, 2 or 8, respectively) and dichloro Cu(II) complexes [Cu2Cl2(μ-Cl)2(HNC(Me)pz)2] (3) and [CuCl2(HNC(Et)pz)] (4). Four more new complexes, [Cu2(μ-Cl)2(HNC(Me)pz)2(pzH)2][X]2 (X = ClO4-, 5 and BF4-, 9) and [Cu2(μ-Cl)2(HNC(Et)pz)2(pzH)2(X)2] (X = ClO4-, 6 and BF4-, 10), are obtained indirectly from the anion substitution reaction with Cl- ions in 1 and 7, and 2 and 8, respectively. All complexes are characterized by EA, FTIR, UV-vis and EPR spectroscopy and X-ray crystallographic analyses. HNC(Et)pz or pzH is unobserved in both the nitrile-exchange reaction of 2 to d6-1 and the anion-substitution reaction of 2 to d6-5 in the CD3CN solution. The 1H NMR results reveal that the pzH-RCN coupling is intramolecular and reversible on a Cu(II) center. The crystal structures of these complexes show diverse supramolecular assemblies through imino NH⋯anion hydrogen bonds and pyrazolylamidino pz-pz (π⋯π) and pz-Cu(II) (π⋯metal) interactions. EPR results suggest weak magnetic couplings between Cu(II) centers in the polynuclear Cu(II) complexes. The yield and rate of the formation of 1 are higher in the reaction of Cu(ClO4)2 with a 4-fold molar excess of pzH compared with a 2-fold excess, indicating that [Cu(pzH)4]2+ is the more active species for pzH-RCN coupling. The highest rate for the formation of 1 is achieved when [Cu(pzH)4(ClO4)2] is used in MeCN solution. Thus, a plausible synthetic path for synthesizing pyrazolylamidino Cu(II) complexes is established. An intermediate species, [Cu(HNC(Me)pz)2(pzH)2][ClO4]2 (1a), is proposed for the synthetic process based on spectroscopic studies and DFT calculations. The reaction of [Cu(pzH)4X2] (X = ClO4-, Cl-, NO3-, or BF4-) in MeCN solution suggests that the lability of coordinated anions upon nitrile substitution affects the rate of the formation of bis-pyrazolylamidino Cu(II) complexes.
Collapse
Affiliation(s)
| | - Po-Kuang Liao
- Department of Chemistry, National Changhua University of Education, Changhua 50058, Taiwan.
| | - Chia-Wei Chen
- Department of Chemistry, National Changhua University of Education, Changhua 50058, Taiwan.
| | - Ming-Hsi Chiang
- Institute of Chemistry, Academia Sinica, Taipei 11528, Taiwan.,Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Yih-Chern Horng
- Department of Chemistry, National Changhua University of Education, Changhua 50058, Taiwan.
| |
Collapse
|
6
|
Synthesis and biological evaluation of 2,5-disubstituted furan derivatives containing 1,3-thiazole moiety as potential α-glucosidase inhibitors. Bioorg Med Chem Lett 2023; 83:129173. [PMID: 36764471 DOI: 10.1016/j.bmcl.2023.129173] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 02/01/2023] [Accepted: 02/04/2023] [Indexed: 02/12/2023]
Abstract
α-Glucosidase, which is involved in the hydrolysis of carbohydrates to glucose and directly mediates blood glucose elevation, is a crucial therapeutic target for type 2 diabetes. In this work, 2,5-disubstituted furan derivatives containing 1,3-thiazole-2-amino or 1,3-thiazole-2-thiol moiety (III-01 ∼ III-30) were synthesized and screened for their inhibitory activity against α-glucosidase. α-Glucosidase inhibition assay demonstrated that all compounds had IC50 in the range of 0.645-94.033 μM and more potent than standard inhibitor acarbose (IC50 = 452.243 ± 54.142 µM). The most promising inhibitors of the two series were compound III-10 (IC50 = 4.120 ± 0.764 μM) and III-24 (IC50 = 0.645 ± 0.052 μM), respectively. Kinetic study and molecular docking simulation revealed that compound III-10 (Ki = 2.04 ± 0.72 μM) is a competitive inhibitor and III-24 (Ki = 0.44 ± 0.53 μM) is a noncompetitive inhibitor against α-glucosidase. Significantly, these two compounds showed nontoxicity towards HEK293, RAW264.7 and HepG2 cells, suggesting that compounds may be considered as a class of potential candidates for further developing novel antidiabetic drugs.
Collapse
|
7
|
Kitano Y, Shinozuka T. Inhibition of Na V1.7: the possibility of ideal analgesics. RSC Med Chem 2022; 13:895-920. [PMID: 36092147 PMCID: PMC9384491 DOI: 10.1039/d2md00081d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 07/25/2022] [Indexed: 08/03/2023] Open
Abstract
The selective inhibition of NaV1.7 is a promising strategy for developing novel analgesic agents with fewer adverse effects. Although the potent selective inhibition of NaV1.7 has been recently achieved, multiple NaV1.7 inhibitors failed in clinical development. In this review, the relationship between preclinical in vivo efficacy and NaV1.7 coverage among three types of voltage-gated sodium channel (VGSC) inhibitors, namely conventional VGSC inhibitors, sulphonamides and acyl sulphonamides, is discussed. By demonstrating the PK/PD discrepancy of preclinical studies versus in vivo models and clinical results, the potential reasons behind the disconnect between preclinical results and clinical outcomes are discussed together with strategies for developing ideal analgesic agents.
Collapse
Affiliation(s)
- Yutaka Kitano
- R&D Division, Daiichi Sankyo Co., Ltd. 1-2-58 Hiromachi Shinagawa-ku Tokyo 140-8710 Japan
| | - Tsuyoshi Shinozuka
- R&D Division, Daiichi Sankyo Co., Ltd. 1-2-58 Hiromachi Shinagawa-ku Tokyo 140-8710 Japan
| |
Collapse
|
8
|
Structural basis for high-voltage activation and subtype-specific inhibition of human Na v1.8. Proc Natl Acad Sci U S A 2022; 119:e2208211119. [PMID: 35858452 PMCID: PMC9335304 DOI: 10.1073/pnas.2208211119] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Pain management represents an unmet healthcare need in many countries. Nav1.8 represents a potential target for developing nonaddictive analgesics. Here we present the cryogenic electron microscopy (cryo-EM) structures of human Nav1.8 alone and bound to a selective pore blocker, A-803467. Unlike reported structures of eukaryotic Nav channels wherein the first voltage-sensing domain (VSDI) is well-resolved in one stable conformation, different conformations of VSDI are observed in the cryo-EM maps of Nav1.8. An extracellular interface between VSDI and the pore domain was identified to be a determinant for Nav1.8’s dependence on higher voltage for activation. A-803467 clenches S6IV within the central cavity. Unexpectedly, the channel selectivity for A-803467 is determined by nonligand coordinating residues through an allosteric mechanism. The dorsal root ganglia–localized voltage-gated sodium (Nav) channel Nav1.8 represents a promising target for developing next-generation analgesics. A prominent characteristic of Nav1.8 is the requirement of more depolarized membrane potential for activation. Here we present the cryogenic electron microscopy structures of human Nav1.8 alone and bound to a selective pore blocker, A-803467, at overall resolutions of 2.7 to 3.2 Å. The first voltage-sensing domain (VSDI) displays three different conformations. Structure-guided mutagenesis identified the extracellular interface between VSDI and the pore domain (PD) to be a determinant for the high-voltage dependence of activation. A-803467 was clearly resolved in the central cavity of the PD, clenching S6IV. Our structure-guided functional characterizations show that two nonligand binding residues, Thr397 on S6I and Gly1406 on S6III, allosterically modulate the channel’s sensitivity to A-803467. Comparison of available structures of human Nav channels suggests the extracellular loop region to be a potential site for developing subtype-specific pore-blocking biologics.
Collapse
|
9
|
Samsonowicz-Górski J, Brodzka A, Ostaszewski R, Koszelewski D. Screening for amidoxime reductases in plant roots and Saccharomyces cerevisiae - Development of biocatalytic method for chemoselective amidine synthesis. Bioorg Chem 2022; 124:105815. [PMID: 35512419 DOI: 10.1016/j.bioorg.2022.105815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 04/12/2022] [Accepted: 04/15/2022] [Indexed: 11/16/2022]
Abstract
The novel biocatalytic method for the synthesis of pharmaceutically relevant N-unsubstituted amidines was presented. The application of whole cells from commonly available vegetables allowed for the chemoselective reduction of the amidoxime moiety in the presence of other substituents prone to reduction or dehalogenation e.g. carbon-carbon double bond. Under optimized conditions several amidines were obtained with high yield up to 97% in aqueous medium at ambient temperature and atmospheric pressure. The practical potential of the newly developed method was shown in the preparative synthesis of anti-parasitic drug, phenamidine. Moreover, for the first time the enantioselective bioreduction of chiral racemic amidoximes to the corresponding amidines has been shown. The developed sustainable biocatalytic protocol fulfils the green chemistry rules and no application of metal catalysts meets the strict requirements of the pharmaceutical industry regarding metal contamination.
Collapse
Affiliation(s)
- Jan Samsonowicz-Górski
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Anna Brodzka
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Ryszard Ostaszewski
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland.
| | - Dominik Koszelewski
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland.
| |
Collapse
|
10
|
Adamik R, Buchholcz B, Darvas F, Sipos G, Novák Z. The Potential of Micellar Media in the Synthesis of DNA-Encoded Libraries. Chemistry 2022; 28:e202103967. [PMID: 35019168 PMCID: PMC9305553 DOI: 10.1002/chem.202103967] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Indexed: 11/17/2022]
Abstract
DNA‐encoded library (DEL) technology has become widely used in drug discovery research. The construction of DELs requires robust organic transformations that proceed in aqueous media under mild conditions. Unfortunately, the application of water as reaction medium for organic synthesis is not evident due to the generally limited solubility of organic reagents. However, the use of surfactants can offer a solution to this issue. Oil‐in‐water microemulsions formed by surfactant micelles are able to localize hydrophobic reagents inside them, resulting in high local concentrations of the organic substances in an otherwise poorly solvated environment. This review provides a conceptual and critical summary of micellar synthesis possibilities that are well suited to DEL synthesis. Existing examples of micellar DEL approaches, together with a selection of micellar organic transformations fundamentally suitable for DEL are discussed.
Collapse
Affiliation(s)
- Réka Adamik
- ELTE "Lendület" Catalysis and Organic Synthesis Research Group, Institute of Chemistry, Eötvös Loránd University, Pázmány Péter stny. 1/A, 1117, Budapest, Hungary
| | | | - Ferenc Darvas
- Innostudio Inc., Záhony u. 7, 1031, Budapest, Hungary
| | | | - Zoltán Novák
- ELTE "Lendület" Catalysis and Organic Synthesis Research Group, Institute of Chemistry, Eötvös Loránd University, Pázmány Péter stny. 1/A, 1117, Budapest, Hungary
| |
Collapse
|
11
|
Merging enzymes with chemocatalysis for amide bond synthesis. Nat Commun 2022; 13:380. [PMID: 35046426 PMCID: PMC8770729 DOI: 10.1038/s41467-022-28005-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 12/16/2021] [Indexed: 01/03/2023] Open
Abstract
Amides are one of the most fundamental chemical bonds in nature. In addition to proteins and other metabolites, many valuable synthetic products comprise amide bonds. Despite this, there is a need for more sustainable amide synthesis. Herein, we report an integrated next generation multi-catalytic system, merging nitrile hydratase enzymes with a Cu-catalysed N-arylation reaction in a single reaction vessel, for the construction of ubiquitous amide bonds. This synergistic one-pot combination of chemo- and biocatalysis provides an amide bond disconnection to precursors, that are orthogonal to those in classical amide synthesis, obviating the need for protecting groups and delivering amides in a manner unachievable using existing catalytic regimes. Our integrated approach also affords broad scope, very high (molar) substrate loading, and has excellent functional group tolerance, telescoping routes to natural product derivatives, drug molecules, and challenging chiral amides under environmentally friendly conditions at scale. Proteins, other metabolites and many valuable synthetic products contain amide bonds and there is a need for more sustainable amide synthesis routes. Here the authors show an integrated next generation multi-catalytic system, merging nitrile hydratase enzymes with a Cu-catalysed N-arylation reaction in a single reaction vessel, for the construction of ubiquitous amide bonds.
Collapse
|
12
|
Matiichuk Y, Gorak Y, Martyak R, Chaban T, Ogurtsov V, Chaban I, Matiychuk V. Synthesis and antimicrobial activity of 4-(5-ARYL-2-FUROYL)morpholines and 4-[(5-ARYL-2-FURYL)carbonothioyl] morpholines. PHARMACIA 2021. [DOI: 10.3897/pharmacia.68.e46942] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
By the reaction of furan-2-carboxylic acids and furfural with diazonium salts 1a-j the arylfuran-2-carboxylic acids 4a-e and 5-arylfuran-2-carbaldehydes 5a-f were synthesized. Acids 4a-e were transformed into appropriated acylchlorides 6a-e and were used for preparation of 4-(5-aryl-2-furoyl)morpholines 7a-e. 4-[(5-Aryl-2-furyl)carbonothioyl]morpholines 8a-f were prepared from aldehydes 5a-f by using Willgerodt-Kindler reaction. The structures of the obtained compounds were confirmed by 1H NMR spectroscopy and elemental analysis. All these new compounds gave spectroscopic data in accordance with the proposed structures. The antimicrobial activities of synthesized compounds 7a-e and 8a-f were investigated and the compounds with high activity against C. neoformans ATCC 208821 were identified.
Collapse
|
13
|
Synthetic Approaches to Zetekitoxin AB, a Potent Voltage-Gated Sodium Channel Inhibitor. Mar Drugs 2019; 18:md18010024. [PMID: 31888062 PMCID: PMC7024329 DOI: 10.3390/md18010024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Revised: 12/23/2019] [Accepted: 12/24/2019] [Indexed: 12/19/2022] Open
Abstract
Voltage-gated sodium channels (NaVs) are membrane proteins that are involved in the generation and propagation of action potentials in neurons. Recently, the structure of a complex made of a tetrodotoxin-sensitive (TTX-s) NaV subtype with saxitoxin (STX), a shellfish toxin, was determined. STX potently inhibits TTX-s NaV, and is used as a biological tool to investigate the function of NaVs. More than 50 analogs of STX have been isolated from nature. Among them, zetekitoxin AB (ZTX) has a distinctive chemical structure, and is the most potent inhibitor of NaVs, including tetrodotoxin-resistant (TTX-r) NaV. Despite intensive synthetic studies, total synthesis of ZTX has not yet been achieved. Here, we review recent efforts directed toward the total synthesis of ZTX, including syntheses of 11-saxitoxinethanoic acid (SEA), which is considered a useful synthetic model for ZTX, since it contains a key carbon-carbon bond at the C11 position.
Collapse
|
14
|
A novel scaffold for EGFR inhibition: Introducing N-(3-(3-phenylureido)quinoxalin-6-yl) acrylamide derivatives. Sci Rep 2019; 9:14. [PMID: 30626888 PMCID: PMC6327040 DOI: 10.1038/s41598-018-36846-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 11/29/2018] [Indexed: 11/08/2022] Open
Abstract
Clinical data acquired over the last decade on non-small cell lung cancer (NSCLC) treatment with small molecular weight Epidermal Growth Factor Receptor (EGFR) inhibitors have shown significant influence of EGFR point mutations and in-frame deletions on clinical efficacy. Identification of small molecules capable of inhibiting the clinically relevant EGFR mutant forms is desirable, and novel chemical scaffolds might provide knowledge regarding selectivity among EGFR forms and shed light on new strategies to overcome current clinical limitations. Design, synthesis, docking studies and in vitro evaluation of N-(3-(3-phenylureido)quinoxalin-6-yl) acrylamide derivatives (7a-m) against EGFR mutant forms are described. Compounds 7h and 7l were biochemically active in the nanomolar range against EGFRwt and EGFRL858R. Molecular docking and reaction enthalpy calculations have shown the influence of the combination of reversible and covalent binding modes with EGFR on the inhibitory activity. The inhibitory profile of 7h against a panel of patient-derived tumor cell lines was established, demonstrating selective growth inhibition of EGFR related cells at 10 μM among a panel of 30 cell lines derived from colon, melanoma, breast, bladder, kidney, prostate, pancreas and ovary tumors.
Collapse
|
15
|
Dutta L, Bhuyan PJ. Copper-catalyzed oxidative synthesis of 2-oxo-acetamidines from one-pot three-component reaction of aryl methyl ketones, secondary amines and anilines. Tetrahedron 2018. [DOI: 10.1016/j.tet.2018.08.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
16
|
Wang L, Zellmer SG, Printzenhoff DM, Castle NA. PF-06526290 can both enhance and inhibit conduction through voltage-gated sodium channels. Br J Pharmacol 2018; 175:2926-2939. [PMID: 29791744 DOI: 10.1111/bph.14338] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 03/06/2018] [Accepted: 03/17/2018] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND AND PURPOSE Pharmacological agents that either inhibit or enhance flux of ions through voltage-gated sodium (Nav ) channels may provide opportunities for treatment of human health disorders. During studies to characterize agents that modulate Nav 1.3 function, we identified a compound that appears to exhibit both enhancement and inhibition of sodium ion conduction that appeared to be dependent on the gating state that the channel was in. The objective of the current study was to determine if these different modulatory effects are mediated by the same or distinct interactions with the channel. EXPERIMENTAL APPROACH Electrophysiology and site-directed mutation were used to investigate the effects of PF-06526290 on Nav channel function. KEY RESULTS PF-06526290 greatly slows inactivation of Nav channels in a subtype-independent manner. However, upon prolonged depolarization to induce inactivation, PF-06526290 becomes a Nav subtype-selective inhibitor. Mutation of the domain 4 voltage sensor modulates inhibition of Nav 1.3 or Nav 1.7 channels by PF-06526290 but has no effect on PF-06526290 mediated slowing of inactivation. CONCLUSIONS AND IMPLICATIONS These findings suggest that distinct interactions may underlie the two modes of Nav channel modulation by PF-06526290 and that a single compound can affect sodium channel function in several ways.
Collapse
Affiliation(s)
- Lingxin Wang
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA, USA
| | | | | | | |
Collapse
|
17
|
Kaloğlu M, Özdemir İ. Palladium(II)-N-
Heterocyclic Carbene Complexes: Efficient Catalysts for the Direct C-H Bond Arylation of Furans with Aryl Halides. Appl Organomet Chem 2018. [DOI: 10.1002/aoc.4399] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Murat Kaloğlu
- Department of Chemistry; İnönü University, Faculty of Science and Arts; 44280 Malatya Turkey
- Catalysis Research and Application Center; İnönü University; 44280 Malatya Turkey
| | - İsmail Özdemir
- Department of Chemistry; İnönü University, Faculty of Science and Arts; 44280 Malatya Turkey
- Catalysis Research and Application Center; İnönü University; 44280 Malatya Turkey
| |
Collapse
|
18
|
Pipaliya BV, Chakraborti AK. Ligand-Assisted Heteroaryl C(sp2
)−H Bond Activation by a Cationic Ruthenium(II) Complex for Alkenylation of Heteroarenes with Alkynes Directed by Biorelevant Heterocycles. ChemCatChem 2017. [DOI: 10.1002/cctc.201701016] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Bhavin V. Pipaliya
- Department of Medicinal Chemistry; National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S. A. S.; Nagar 160 062 India
| | - Asit K. Chakraborti
- Department of Medicinal Chemistry; National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S. A. S.; Nagar 160 062 India
| |
Collapse
|
19
|
Bekő K, Koványi B, Gölöncsér F, Horváth G, Dénes Á, Környei Z, Botz B, Helyes Z, Müller CE, Sperlágh B. Contribution of platelet P2Y 12 receptors to chronic Complete Freund's adjuvant-induced inflammatory pain. J Thromb Haemost 2017; 15:1223-1235. [PMID: 28345287 DOI: 10.1111/jth.13684] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Indexed: 11/30/2022]
Abstract
Essentials The role of platelet P2Y12 receptors in the regulation of chronic inflammatory pain is unknown. Complete Freund's Adjuvant (CFA)-induced chronic inflammatory pain model was used in mice. Gene deficiency and antagonists of P2Y12 receptors attenuate hyperalgesia and local inflammation. Platelet P2Y12 receptors contribute to these effects in the chronic phase of inflammation. SUMMARY Background P2Y12 receptor antagonists are widely used in clinical practice to inhibit platelet aggregation. P2Y12 receptors are also known to regulate different forms of pain as well as local and systemic inflammation. However, it is not known whether platelet P2Y12 receptors contribute to these effects. Objectives To explore the contribution of platelet P2Y12 receptors to chronic inflammatory pain in mice. Methods Complete Freund's adjuvant (CFA)-induced chronic inflammatory pain was induced in wild-type and P2ry12 gene-deficient (P2ry12-/- ) mice, and the potent, direct-acting and reversible P2Y12 receptor antagonists PSB-0739 and cangrelor were used. Results CFA-induced mechanical hyperalgesia was significantly decreased in P2ry12-/- mice for up to 14 days, and increased neutrophil myeloperoxidase activity and tumor necrosis factor (TNF)-α and CXCL1 (KC) levels in the hind paws were also attenuated in the acute inflammation phase. At day 14, increased interleukin (IL)-1β, IL-6, TNF-α and KC levels were attenuated in P2ry12-/- mice. PSB-0739 and cangrelor reversed hyperalgesia in wild-type mice but had no effect in P2ry12-/- mice, and PSB-0739 was also effective when applied locally. The effects of both local and systemic PSB-0739 were prevented by A-803467, a selective NaV1.8 channel antagonist, suggesting the involvement of NaV1.8 channels in the antihyperalgesic effect. Platelet depletion by anti-mouse CD41 antibody decreased hyperalgesia and attenuated the proinflammatory cytokine response in wild-type but not in P2ry12-/- mice on day 14. Conclusions In conclusion, P2Y12 receptors regulate CFA-induced hyperalgesia and the local inflammatory response, and platelet P2Y12 receptors contribute to these effects in the chronic inflammation phase.
Collapse
Affiliation(s)
- K Bekő
- Laboratory of Molecular Pharmacology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
- János Szentágothai School of Neurosciences, Semmelweis University School of PhD Studies, Budapest, Hungary
| | - B Koványi
- Laboratory of Molecular Pharmacology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
- János Szentágothai School of Neurosciences, Semmelweis University School of PhD Studies, Budapest, Hungary
| | - F Gölöncsér
- Laboratory of Molecular Pharmacology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
- János Szentágothai School of Neurosciences, Semmelweis University School of PhD Studies, Budapest, Hungary
| | - G Horváth
- Laboratory of Molecular Pharmacology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
- János Szentágothai School of Neurosciences, Semmelweis University School of PhD Studies, Budapest, Hungary
| | - Á Dénes
- Laboratory of Neuroimmunology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| | - Z Környei
- Laboratory of Neuroimmunology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| | - B Botz
- Department of Pharmacology and Pharmacotherapy, Center for Neuroscience, and Molecular Pharmacology, Research Team, János Szentágothai Research Center, University of Pécs, University of Pécs Medical School, Pécs, Hungary
| | - Z Helyes
- Department of Pharmacology and Pharmacotherapy, Center for Neuroscience, and Molecular Pharmacology, Research Team, János Szentágothai Research Center, University of Pécs, University of Pécs Medical School, Pécs, Hungary
- MTA-PTE NAP B Chronic Pain Research Group, University of Pécs, Pécs, Hungary
| | - C E Müller
- Pharmaceutical Institute, PharmaCenter Bonn, University of Bonn, Bonn, Germany
| | - B Sperlágh
- Laboratory of Molecular Pharmacology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| |
Collapse
|
20
|
Tibbs GR, Posson DJ, Goldstein PA. Voltage-Gated Ion Channels in the PNS: Novel Therapies for Neuropathic Pain? Trends Pharmacol Sci 2016; 37:522-542. [DOI: 10.1016/j.tips.2016.05.002] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 03/24/2016] [Accepted: 05/03/2016] [Indexed: 12/19/2022]
|
21
|
Zhang X, Liu J, Yang Y, Wang F, Jiang H, Yin B. Selective Pd-catalyzed α- and β-arylations of the furan rings of (ortho-bromophenyl)furan-2-yl-methanones: C(CO)–C bond cleavage with a furan ring as a leaving group and synthesis of furan-derived fluorenones. Org Chem Front 2016. [DOI: 10.1039/c6qo00277c] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Selective palladium diacetate-catalyzed α- and β-arylations of the furan rings of (ortho-bromophenyl)furan-2-yl-methanones 1 under two different conditions are reported.
Collapse
Affiliation(s)
- Xiaoting Zhang
- School of Chemistry and Chemical Engineering
- South China University of Technology
- Guangzhou 510640
- P.R. China
| | - Jianchao Liu
- School of Chemistry and Chemical Engineering
- South China University of Technology
- Guangzhou 510640
- P.R. China
| | - Yongjie Yang
- School of Chemistry and Chemical Engineering
- South China University of Technology
- Guangzhou 510640
- P.R. China
| | - Furong Wang
- School of Chemistry and Chemical Engineering
- South China University of Technology
- Guangzhou 510640
- P.R. China
| | - Huanfeng Jiang
- School of Chemistry and Chemical Engineering
- South China University of Technology
- Guangzhou 510640
- P.R. China
| | - Biaolin Yin
- School of Chemistry and Chemical Engineering
- South China University of Technology
- Guangzhou 510640
- P.R. China
| |
Collapse
|
22
|
Wang L, Zellmer SG, Printzenhoff DM, Castle NA. Addition of a single methyl group to a small molecule sodium channel inhibitor introduces a new mode of gating modulation. Br J Pharmacol 2015. [PMID: 26220736 DOI: 10.1111/bph.13259] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND AND PURPOSE Aryl sulfonamide Nav 1.3 or Nav 1.7 voltage-gated sodium (Nav ) channel inhibitors interact with the Domain 4 voltage sensor domain (D4 VSD). During studies to better understand the structure-activity relationship of this interaction, an additional mode of channel modulation, specifically slowing of inactivation, was revealed by addition of a single methyl moiety. The objective of the current study was to determine if these different modulatory effects are mediated by the same or distinct interactions with the channel. EXPERIMENTAL APPROACH Electrophysiology and site-directed mutation were used to compare the effects of PF-06526290 and its desmethyl analogue PF-05661014 on Nav channel function. KEY RESULTS PF-05661014 selectively inhibits Nav 1.3 versus Nav 1.7 currents by stabilizing inactivated channels via interaction with D4 VSD. In contrast, PF-06526290, which differs from PF-05661014 by a single methyl group, exhibits a dual effect. It greatly slows inactivation of Nav channels in a subtype-independent manner. However, upon prolonged depolarization to induce inactivation, PF-06526290 becomes a Nav subtype selective inhibitor similar to PF-05661014. Mutation of the D4 VSD modulates inhibition of Nav 1.3 or Nav 1.7 by both PF-05661014 and PF-06526290, but has no effect on the inactivation slowing produced by PF-06526290. This finding, along with the absence of functional inhibition of PF-06526290-induced inactivation slowing by PF-05661014, suggests that distinct interactions underlie the two modes of Nav channel modulation. CONCLUSIONS AND IMPLICATIONS Addition of a methyl group to a Nav channel inhibitor introduces an additional mode of gating modulation, implying that a single compound can affect sodium channel function in multiple ways.
Collapse
|
23
|
|
24
|
Zhao Y, Wong YC, Yeung YY. An Unexpected 2,3-Dihydrofuran Derivative Ring Opening Initiated by Electrophilic Bromination: Scope and Mechanistic Study. J Org Chem 2014; 80:453-9. [DOI: 10.1021/jo502453f] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Yi Zhao
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Ying-Chieh Wong
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Ying-Yeung Yeung
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| |
Collapse
|
25
|
Belkouch M, Dansereau MA, Tétreault P, Biet M, Beaudet N, Dumaine R, Chraibi A, Mélik-Parsadaniantz S, Sarret P. Functional up-regulation of Nav1.8 sodium channel in Aβ afferent fibers subjected to chronic peripheral inflammation. J Neuroinflammation 2014; 11:45. [PMID: 24606981 PMCID: PMC4007624 DOI: 10.1186/1742-2094-11-45] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Accepted: 02/21/2014] [Indexed: 02/05/2023] Open
Abstract
Background Functional alterations in the properties of Aβ afferent fibers may account for the increased pain sensitivity observed under peripheral chronic inflammation. Among the voltage-gated sodium channels involved in the pathophysiology of pain, Nav1.8 has been shown to participate in the peripheral sensitization of nociceptors. However, to date, there is no evidence for a role of Nav1.8 in controlling Aβ-fiber excitability following persistent inflammation. Methods Distribution and expression of Nav1.8 in dorsal root ganglia and sciatic nerves were qualitatively or quantitatively assessed by immunohistochemical staining and by real time-polymerase chain reaction at different time points following complete Freund’s adjuvant (CFA) administration. Using a whole-cell patch-clamp configuration, we further determined both total INa and TTX-R Nav1.8 currents in large-soma dorsal root ganglia (DRG) neurons isolated from sham or CFA-treated rats. Finally, we analyzed the effects of ambroxol, a Nav1.8-preferring blocker on the electrophysiological properties of Nav1.8 currents and on the mechanical sensitivity and inflammation of the hind paw in CFA-treated rats. Results Our findings revealed that Nav1.8 is up-regulated in NF200-positive large sensory neurons and is subsequently anterogradely transported from the DRG cell bodies along the axons toward the periphery after CFA-induced inflammation. We also demonstrated that both total INa and Nav1.8 peak current densities are enhanced in inflamed large myelinated Aβ-fiber neurons. Persistent inflammation leading to nociception also induced time-dependent changes in Aβ-fiber neuron excitability by shifting the voltage-dependent activation of Nav1.8 in the hyperpolarizing direction, thus decreasing the current threshold for triggering action potentials. Finally, we found that ambroxol significantly reduces the potentiation of Nav1.8 currents in Aβ-fiber neurons observed following intraplantar CFA injection and concomitantly blocks CFA-induced mechanical allodynia, suggesting that Nav1.8 regulation in Aβ-fibers contributes to inflammatory pain. Conclusions Collectively, these findings support a key role for Nav1.8 in controlling the excitability of Aβ-fibers and its potential contribution to the development of mechanical allodynia under persistent inflammation.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Philippe Sarret
- Department of Physiology and Biophysics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, 3001, 12th Avenue North, Sherbrooke, Quebec J1H 5N4, Canada.
| |
Collapse
|
26
|
Rossi R, Bellina F, Lessi M, Manzini C. Cross-Coupling of Heteroarenes by CH Functionalization: Recent Progress towards Direct Arylation and Heteroarylation Reactions Involving Heteroarenes Containing One Heteroatom. Adv Synth Catal 2014. [DOI: 10.1002/adsc.201300922] [Citation(s) in RCA: 366] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
27
|
Qi B, Wei Y, Chen S, Zhou G, Li H, Xu J, Ding Y, Lu X, Zhao L, Zhang F, Chen G, Zhao J, Liu S. Nav1.8 channels in ganglionated plexi modulate atrial fibrillation inducibility. Cardiovasc Res 2014; 102:480-6. [PMID: 24419303 DOI: 10.1093/cvr/cvu005] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
AIMS Emerging evidences indicate that SCN10A/NaV1.8 is associated with cardiac conduction and atrial fibrillation, but the exact role of NaV1.8 in cardiac electrophysiology remains poorly understood. The present study was designed to investigate the effects of blocking NaV1.8 channels in cardiac ganglionated plexi (GP) on modulating cardiac conduction and atrial fibrillation inducibility in the canine model. METHODS AND RESULTS Thirteen mongrel dogs were randomly enrolled. Right cervical vagus nerve stimulation (VNS) was applied to determine its effects on the sinus rate, ventricular rate during atrial fibrillation, PR interval, atrial effective refractory period, and the cumulative window of vulnerability. The NaV1.8 blocker A-803467 (1 μmol/0.5 mL per GP, n = 7) or 5% DMSO/95% polyethylene glycol (0.5 mL per GP, n = 6, control) was injected into the anterior right GP and the inferior right GP. The effects of VNS on the sinus rate, ventricular rate, PR interval, atrial effective refractory period, and the cumulative window of vulnerability were significantly eliminated at 10, 35, and 90 min after A-803467 injection. In separate experiments (n = 8), A-803467 blunted the slowing of sinus rate with increasing stimulation voltage of the anterior right GP at 10 min after local injection. CONCLUSIONS Blockade of NaV1.8 channels suppresses the effects of VNS on cardiac conduction and atrial fibrillation inducibility, most likely by inhibiting the neural activity of the cardiac GP.
Collapse
Affiliation(s)
- Baozhen Qi
- Department of Cardiology, Shanghai First People's Hospital, School of Medicine, Shanghai Jiaotong University, NO 100, Haining Road, Hongkou District, Shanghai 200080, China
| | - Yong Wei
- Department of Cardiology, Shanghai First People's Hospital, School of Medicine, Shanghai Jiaotong University, NO 100, Haining Road, Hongkou District, Shanghai 200080, China
| | - Songwen Chen
- Department of Cardiology, Shanghai First People's Hospital, School of Medicine, Shanghai Jiaotong University, NO 100, Haining Road, Hongkou District, Shanghai 200080, China
| | - Genqing Zhou
- Department of Cardiology, Shanghai First People's Hospital, School of Medicine, Shanghai Jiaotong University, NO 100, Haining Road, Hongkou District, Shanghai 200080, China
| | - Hongli Li
- Department of Cardiology, Shanghai First People's Hospital, School of Medicine, Shanghai Jiaotong University, NO 100, Haining Road, Hongkou District, Shanghai 200080, China
| | - Juan Xu
- Department of Cardiology, Shanghai First People's Hospital, School of Medicine, Shanghai Jiaotong University, NO 100, Haining Road, Hongkou District, Shanghai 200080, China
| | - Yu Ding
- Department of Cardiology, Shanghai First People's Hospital, School of Medicine, Shanghai Jiaotong University, NO 100, Haining Road, Hongkou District, Shanghai 200080, China
| | - Xiaofeng Lu
- Department of Cardiology, Shanghai First People's Hospital, School of Medicine, Shanghai Jiaotong University, NO 100, Haining Road, Hongkou District, Shanghai 200080, China
| | - Liqun Zhao
- Department of Cardiology, Shanghai First People's Hospital, School of Medicine, Shanghai Jiaotong University, NO 100, Haining Road, Hongkou District, Shanghai 200080, China
| | - Feng Zhang
- Department of Cardiology, Shanghai First People's Hospital, School of Medicine, Shanghai Jiaotong University, NO 100, Haining Road, Hongkou District, Shanghai 200080, China
| | - Gang Chen
- Department of Cardiology, Shanghai First People's Hospital, School of Medicine, Shanghai Jiaotong University, NO 100, Haining Road, Hongkou District, Shanghai 200080, China
| | - Jing Zhao
- Wolfson Institute for Biomedical Research, University College London, Wing3.1, Cruciform Building, Gower Street, London WC1E 6BT, UK
| | - Shaowen Liu
- Department of Cardiology, Shanghai First People's Hospital, School of Medicine, Shanghai Jiaotong University, NO 100, Haining Road, Hongkou District, Shanghai 200080, China
| |
Collapse
|
28
|
A novel benzazepinone sodium channel blocker with oral efficacy in a rat model of neuropathic pain. Bioorg Med Chem Lett 2013; 23:3640-5. [DOI: 10.1016/j.bmcl.2013.03.121] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Revised: 03/25/2013] [Accepted: 03/27/2013] [Indexed: 11/22/2022]
|
29
|
Hagenacker T, Schäfer N, Büsselberg D, Schäfers M. Analgesic ineffectiveness of lacosamide after spinal nerve ligation and its sodium channel activity in injured neurons. Eur J Pain 2012; 17:881-92. [DOI: 10.1002/j.1532-2149.2012.00260.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/12/2012] [Indexed: 11/10/2022]
Affiliation(s)
- T. Hagenacker
- Department of Neurology; University Hospital Essen; Germany
| | - N. Schäfer
- Department of Neurology; University Hospital Essen; Germany
| | - D. Büsselberg
- Weill Cornell Medical College in Qatar; Qatar Foundation-Education City; Doha; Qatar
| | - M. Schäfers
- Department of Neurology; University Hospital Essen; Germany
| |
Collapse
|
30
|
Eijkelkamp N, Linley JE, Baker MD, Minett MS, Cregg R, Werdehausen R, Rugiero F, Wood JN. Neurological perspectives on voltage-gated sodium channels. Brain 2012; 135:2585-612. [PMID: 22961543 PMCID: PMC3437034 DOI: 10.1093/brain/aws225] [Citation(s) in RCA: 262] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The activity of voltage-gated sodium channels has long been linked to disorders of neuronal excitability such as epilepsy and chronic pain. Recent genetic studies have now expanded the role of sodium channels in health and disease, to include autism, migraine, multiple sclerosis, cancer as well as muscle and immune system disorders. Transgenic mouse models have proved useful in understanding the physiological role of individual sodium channels, and there has been significant progress in the development of subtype selective inhibitors of sodium channels. This review will outline the functions and roles of specific sodium channels in electrical signalling and disease, focusing on neurological aspects. We also discuss recent advances in the development of selective sodium channel inhibitors.
Collapse
Affiliation(s)
- Niels Eijkelkamp
- Molecular Nociception Group, Wolfson Institute for Biomedical Research, University College London, Gower Street, London WC1E 6BT, UK.
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Cui ZN, Shi YX, Zhang L, Ling Y, Li BJ, Nishida Y, Yang XL. Synthesis and fungicidal activity of novel 2,5-disubstituted-1,3,4-oxadiazole derivatives. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2012; 60:11649-11656. [PMID: 23134289 DOI: 10.1021/jf303807a] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
A novel series of 1,3,4-oxadiazole derivatives containing a 5-phenyl-2-furan moiety were synthesized from the intermediates diacylhydrazine 3 and acylhydrazone 5 via an efficient approach under microwave irradiation in good yields. Their structures were characterized by IR, (1)H NMR, and elemental analysis. The antifungal tests indicated that the title compounds showed in vivo fungicidal activity against Botrytis cinerea and Rhizoctonia solanii at 500 μg/mL obviously. Some tested compounds even had a superiority effect over the commercial fungicides 40% Pyrimethanil SC and 3% Validamycin AS. The activity between the title compound and their precursors diacylhydrazine 3 and acylhydrazone 5 was also compared and discussed.
Collapse
Affiliation(s)
- Zi-Ning Cui
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, 100193, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
32
|
McGowan MA, McAvoy CZ, Buchwald SL. Palladium-catalyzed N-monoarylation of amidines and a one-pot synthesis of quinazoline derivatives. Org Lett 2012; 14:3800-3. [PMID: 22765354 PMCID: PMC3485433 DOI: 10.1021/ol301700y] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
A method for the Pd-catalyzed N-arylation of both aryl and alkyl amidines with a wide range of aryl bromides, chlorides, and triflates is described. The reactions proceed in short reaction times and with excellent selectivity for monoarylation. A one-pot synthesis of quinazoline derivatives, via addition of an aldehyde to the crude reaction mixture following Pd-catalyzed N-arylation, is also demonstrated.
Collapse
Affiliation(s)
- Meredeth A. McGowan
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Camille Z. McAvoy
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Stephen L. Buchwald
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
33
|
Rauws TRM, Maes BUW. Transition metal-catalyzed N-arylations of amidines and guanidines. Chem Soc Rev 2012; 41:2463-97. [DOI: 10.1039/c1cs15236j] [Citation(s) in RCA: 153] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
34
|
Theile JW, Cummins TR. Recent developments regarding voltage-gated sodium channel blockers for the treatment of inherited and acquired neuropathic pain syndromes. Front Pharmacol 2011; 2:54. [PMID: 22007172 PMCID: PMC3185237 DOI: 10.3389/fphar.2011.00054] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2011] [Accepted: 09/12/2011] [Indexed: 12/19/2022] Open
Abstract
Chronic and neuropathic pain constitute significant health problems affecting millions of individuals each year. Pain sensations typically originate in sensory neurons of the peripheral nervous system which relay information to the central nervous system (CNS). Pathological pain sensations can arise as result of changes in excitability of these peripheral sensory neurons. Voltage-gated sodium channels are key determinants regulating action potential generation and propagation; thus, changes in sodium channel function can have profound effects on neuronal excitability and pain signaling. At present, most of the clinically available sodium channel blockers used to treat pain are non-selective across sodium channel isoforms and can contribute to cardio-toxicity, motor impairments, and CNS side effects. Numerous strides have been made over the last decade in an effort to develop more selective and efficacious sodium channel blockers to treat pain. The purpose of this review is to highlight some of the more recent developments put forth by research universities and pharmaceutical companies alike in the pursuit of developing more targeted sodium channel therapies for the treatment of a variety of neuropathic pain conditions.
Collapse
Affiliation(s)
- Jonathan W Theile
- Department of Pharmacology and Toxicology, Stark Neurosciences Research Institute, Indiana University School of Medicine Indianapolis, IN, USA
| | | |
Collapse
|
35
|
Shinohara R, Akimoto T, Iwamoto O, Hirokawa T, Yotsu-Yamashita M, Yamaoka K, Nagasawa K. Synthesis of skeletal analogues of saxitoxin derivatives and evaluation of their inhibitory activity on sodium ion channels Na(V)1.4 and Na(V)1.5. Chemistry 2011; 17:12144-52. [PMID: 21922571 DOI: 10.1002/chem.201101058] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2011] [Revised: 07/20/2011] [Indexed: 12/19/2022]
Abstract
Skeletal analogues of saxitoxin (STX) that possess a fused-type tricyclic ring system, designated FD-STX, were synthesized as candidate sodium ion channel modulators. Three kinds of FD-STX derivatives 4a-c with different substitution at C13 were synthesized, and their inhibitory activity on sodium ion channels was examined by means of cell-based assay. (-)-FD-STX (4a) and (-)-FD-dcSTX (4b), which showed moderate inhibitory activity, were further evaluated by the use of the patch-clamp method in cells that expressed Na(V)1.4 (a tetrodotoxin-sensitive sodium channel subtype) and Na(V)1.5 (a tetrodotoxin-resistant sodium channel subtype). These compounds showed moderate inhibitory activity towards Na(V)1.4, and weaker inhibitory activity towards Na(V)1.5. Uniquely, however, the inhibition of Na(V)1.5 by (-)-FD-dcSTX (4b) was "irreversible".
Collapse
Affiliation(s)
- Ryoko Shinohara
- Tokyo University of Agriculture and Technology, Department of Biotechnology and Life Science, Koganei, Tokyo 184-8588, Japan
| | | | | | | | | | | | | |
Collapse
|
36
|
Synthesis of N,N-dialkylaminobenzonitriles and halo-(N,N-dialkyl)benzamidines by reaction of halobenzonitriles with lithium amides. Tetrahedron 2011. [DOI: 10.1016/j.tet.2011.06.066] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
37
|
Yogeeswari P, Menon N, Semwal A, Arjun M, Sriram D. Discovery of molecules for the treatment of neuropathic pain: Synthesis, antiallodynic and antihyperalgesic activities of 5-(4-nitrophenyl)furoic-2-acid hydrazones. Eur J Med Chem 2011; 46:2964-70. [DOI: 10.1016/j.ejmech.2011.04.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2010] [Revised: 04/06/2011] [Accepted: 04/07/2011] [Indexed: 10/18/2022]
|
38
|
Bregman H, Berry L, Buchanan JL, Chen A, Du B, Feric E, Hierl M, Huang L, Immke D, Janosky B, Johnson D, Li X, Ligutti J, Liu D, Malmberg A, Matson D, McDermott J, Miu P, Nguyen HN, Patel VF, Waldon D, Wilenkin B, Zheng XM, Zou A, McDonough SI, DiMauro EF. Identification of a Potent, State-Dependent Inhibitor of Nav1.7 with Oral Efficacy in the Formalin Model of Persistent Pain. J Med Chem 2011; 54:4427-45. [DOI: 10.1021/jm200018k] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Howard Bregman
- Department of Chemistry Research and Discovery, ‡Department of Pharmacokinetics and Drug Metabolism, and §Department of Neuroscience, Amgen Inc., 360 Binney Street, Cambridge, Massachusetts 02142, United States
- Department of Lead Discovery, and ⊥Department of Neuroscience, Amgen, Inc., One Amgen Center Drive, Thousand Oaks, California 91320, United States
| | - Loren Berry
- Department of Chemistry Research and Discovery, ‡Department of Pharmacokinetics and Drug Metabolism, and §Department of Neuroscience, Amgen Inc., 360 Binney Street, Cambridge, Massachusetts 02142, United States
- Department of Lead Discovery, and ⊥Department of Neuroscience, Amgen, Inc., One Amgen Center Drive, Thousand Oaks, California 91320, United States
| | - John L. Buchanan
- Department of Chemistry Research and Discovery, ‡Department of Pharmacokinetics and Drug Metabolism, and §Department of Neuroscience, Amgen Inc., 360 Binney Street, Cambridge, Massachusetts 02142, United States
- Department of Lead Discovery, and ⊥Department of Neuroscience, Amgen, Inc., One Amgen Center Drive, Thousand Oaks, California 91320, United States
| | - April Chen
- Department of Chemistry Research and Discovery, ‡Department of Pharmacokinetics and Drug Metabolism, and §Department of Neuroscience, Amgen Inc., 360 Binney Street, Cambridge, Massachusetts 02142, United States
- Department of Lead Discovery, and ⊥Department of Neuroscience, Amgen, Inc., One Amgen Center Drive, Thousand Oaks, California 91320, United States
| | - Bingfan Du
- Department of Chemistry Research and Discovery, ‡Department of Pharmacokinetics and Drug Metabolism, and §Department of Neuroscience, Amgen Inc., 360 Binney Street, Cambridge, Massachusetts 02142, United States
- Department of Lead Discovery, and ⊥Department of Neuroscience, Amgen, Inc., One Amgen Center Drive, Thousand Oaks, California 91320, United States
| | - Elma Feric
- Department of Chemistry Research and Discovery, ‡Department of Pharmacokinetics and Drug Metabolism, and §Department of Neuroscience, Amgen Inc., 360 Binney Street, Cambridge, Massachusetts 02142, United States
- Department of Lead Discovery, and ⊥Department of Neuroscience, Amgen, Inc., One Amgen Center Drive, Thousand Oaks, California 91320, United States
| | - Markus Hierl
- Department of Chemistry Research and Discovery, ‡Department of Pharmacokinetics and Drug Metabolism, and §Department of Neuroscience, Amgen Inc., 360 Binney Street, Cambridge, Massachusetts 02142, United States
- Department of Lead Discovery, and ⊥Department of Neuroscience, Amgen, Inc., One Amgen Center Drive, Thousand Oaks, California 91320, United States
| | - Liyue Huang
- Department of Chemistry Research and Discovery, ‡Department of Pharmacokinetics and Drug Metabolism, and §Department of Neuroscience, Amgen Inc., 360 Binney Street, Cambridge, Massachusetts 02142, United States
- Department of Lead Discovery, and ⊥Department of Neuroscience, Amgen, Inc., One Amgen Center Drive, Thousand Oaks, California 91320, United States
| | - David Immke
- Department of Chemistry Research and Discovery, ‡Department of Pharmacokinetics and Drug Metabolism, and §Department of Neuroscience, Amgen Inc., 360 Binney Street, Cambridge, Massachusetts 02142, United States
- Department of Lead Discovery, and ⊥Department of Neuroscience, Amgen, Inc., One Amgen Center Drive, Thousand Oaks, California 91320, United States
| | - Brett Janosky
- Department of Chemistry Research and Discovery, ‡Department of Pharmacokinetics and Drug Metabolism, and §Department of Neuroscience, Amgen Inc., 360 Binney Street, Cambridge, Massachusetts 02142, United States
- Department of Lead Discovery, and ⊥Department of Neuroscience, Amgen, Inc., One Amgen Center Drive, Thousand Oaks, California 91320, United States
| | - Danielle Johnson
- Department of Chemistry Research and Discovery, ‡Department of Pharmacokinetics and Drug Metabolism, and §Department of Neuroscience, Amgen Inc., 360 Binney Street, Cambridge, Massachusetts 02142, United States
- Department of Lead Discovery, and ⊥Department of Neuroscience, Amgen, Inc., One Amgen Center Drive, Thousand Oaks, California 91320, United States
| | - Xingwen Li
- Department of Chemistry Research and Discovery, ‡Department of Pharmacokinetics and Drug Metabolism, and §Department of Neuroscience, Amgen Inc., 360 Binney Street, Cambridge, Massachusetts 02142, United States
- Department of Lead Discovery, and ⊥Department of Neuroscience, Amgen, Inc., One Amgen Center Drive, Thousand Oaks, California 91320, United States
| | - Joseph Ligutti
- Department of Chemistry Research and Discovery, ‡Department of Pharmacokinetics and Drug Metabolism, and §Department of Neuroscience, Amgen Inc., 360 Binney Street, Cambridge, Massachusetts 02142, United States
- Department of Lead Discovery, and ⊥Department of Neuroscience, Amgen, Inc., One Amgen Center Drive, Thousand Oaks, California 91320, United States
| | - Dong Liu
- Department of Chemistry Research and Discovery, ‡Department of Pharmacokinetics and Drug Metabolism, and §Department of Neuroscience, Amgen Inc., 360 Binney Street, Cambridge, Massachusetts 02142, United States
- Department of Lead Discovery, and ⊥Department of Neuroscience, Amgen, Inc., One Amgen Center Drive, Thousand Oaks, California 91320, United States
| | - Annika Malmberg
- Department of Chemistry Research and Discovery, ‡Department of Pharmacokinetics and Drug Metabolism, and §Department of Neuroscience, Amgen Inc., 360 Binney Street, Cambridge, Massachusetts 02142, United States
- Department of Lead Discovery, and ⊥Department of Neuroscience, Amgen, Inc., One Amgen Center Drive, Thousand Oaks, California 91320, United States
| | - David Matson
- Department of Chemistry Research and Discovery, ‡Department of Pharmacokinetics and Drug Metabolism, and §Department of Neuroscience, Amgen Inc., 360 Binney Street, Cambridge, Massachusetts 02142, United States
- Department of Lead Discovery, and ⊥Department of Neuroscience, Amgen, Inc., One Amgen Center Drive, Thousand Oaks, California 91320, United States
| | - Jeff McDermott
- Department of Chemistry Research and Discovery, ‡Department of Pharmacokinetics and Drug Metabolism, and §Department of Neuroscience, Amgen Inc., 360 Binney Street, Cambridge, Massachusetts 02142, United States
- Department of Lead Discovery, and ⊥Department of Neuroscience, Amgen, Inc., One Amgen Center Drive, Thousand Oaks, California 91320, United States
| | - Peter Miu
- Department of Chemistry Research and Discovery, ‡Department of Pharmacokinetics and Drug Metabolism, and §Department of Neuroscience, Amgen Inc., 360 Binney Street, Cambridge, Massachusetts 02142, United States
- Department of Lead Discovery, and ⊥Department of Neuroscience, Amgen, Inc., One Amgen Center Drive, Thousand Oaks, California 91320, United States
| | - Hanh Nho Nguyen
- Department of Chemistry Research and Discovery, ‡Department of Pharmacokinetics and Drug Metabolism, and §Department of Neuroscience, Amgen Inc., 360 Binney Street, Cambridge, Massachusetts 02142, United States
- Department of Lead Discovery, and ⊥Department of Neuroscience, Amgen, Inc., One Amgen Center Drive, Thousand Oaks, California 91320, United States
| | - Vinod F. Patel
- Department of Chemistry Research and Discovery, ‡Department of Pharmacokinetics and Drug Metabolism, and §Department of Neuroscience, Amgen Inc., 360 Binney Street, Cambridge, Massachusetts 02142, United States
- Department of Lead Discovery, and ⊥Department of Neuroscience, Amgen, Inc., One Amgen Center Drive, Thousand Oaks, California 91320, United States
| | - Daniel Waldon
- Department of Chemistry Research and Discovery, ‡Department of Pharmacokinetics and Drug Metabolism, and §Department of Neuroscience, Amgen Inc., 360 Binney Street, Cambridge, Massachusetts 02142, United States
- Department of Lead Discovery, and ⊥Department of Neuroscience, Amgen, Inc., One Amgen Center Drive, Thousand Oaks, California 91320, United States
| | - Ben Wilenkin
- Department of Chemistry Research and Discovery, ‡Department of Pharmacokinetics and Drug Metabolism, and §Department of Neuroscience, Amgen Inc., 360 Binney Street, Cambridge, Massachusetts 02142, United States
- Department of Lead Discovery, and ⊥Department of Neuroscience, Amgen, Inc., One Amgen Center Drive, Thousand Oaks, California 91320, United States
| | - Xiao Mei Zheng
- Department of Chemistry Research and Discovery, ‡Department of Pharmacokinetics and Drug Metabolism, and §Department of Neuroscience, Amgen Inc., 360 Binney Street, Cambridge, Massachusetts 02142, United States
- Department of Lead Discovery, and ⊥Department of Neuroscience, Amgen, Inc., One Amgen Center Drive, Thousand Oaks, California 91320, United States
| | - Anruo Zou
- Department of Chemistry Research and Discovery, ‡Department of Pharmacokinetics and Drug Metabolism, and §Department of Neuroscience, Amgen Inc., 360 Binney Street, Cambridge, Massachusetts 02142, United States
- Department of Lead Discovery, and ⊥Department of Neuroscience, Amgen, Inc., One Amgen Center Drive, Thousand Oaks, California 91320, United States
| | - Stefan I. McDonough
- Department of Chemistry Research and Discovery, ‡Department of Pharmacokinetics and Drug Metabolism, and §Department of Neuroscience, Amgen Inc., 360 Binney Street, Cambridge, Massachusetts 02142, United States
- Department of Lead Discovery, and ⊥Department of Neuroscience, Amgen, Inc., One Amgen Center Drive, Thousand Oaks, California 91320, United States
| | - Erin F. DiMauro
- Department of Chemistry Research and Discovery, ‡Department of Pharmacokinetics and Drug Metabolism, and §Department of Neuroscience, Amgen Inc., 360 Binney Street, Cambridge, Massachusetts 02142, United States
- Department of Lead Discovery, and ⊥Department of Neuroscience, Amgen, Inc., One Amgen Center Drive, Thousand Oaks, California 91320, United States
| |
Collapse
|
39
|
Cortes-Salva M, Garvin C, Antilla JC. Ligand-Free Copper-Catalyzed Arylation of Amidines. J Org Chem 2011; 76:1456-9. [PMID: 21250705 DOI: 10.1021/jo102235u] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Michelle Cortes-Salva
- Department of Chemistry, University of South Florida, 4202 East Fowler Avenue CHE 205A, Tampa, Florida 33620, United States
| | - Corey Garvin
- Department of Chemistry, University of South Florida, 4202 East Fowler Avenue CHE 205A, Tampa, Florida 33620, United States
| | - Jon C. Antilla
- Department of Chemistry, University of South Florida, 4202 East Fowler Avenue CHE 205A, Tampa, Florida 33620, United States
| |
Collapse
|
40
|
Recent Advances Toward Pain Therapeutics. ANNUAL REPORTS IN MEDICINAL CHEMISTRY 2011. [DOI: 10.1016/b978-0-12-386009-5.00025-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register]
|
41
|
Kort ME, Atkinson RN, Thomas JB, Drizin I, Johnson MS, Secrest MA, Gregg RJ, Scanio MJ, Shi L, Hakeem AH, Matulenko MA, Chapman ML, Krambis MJ, Liu D, Shieh CC, Zhang X, Simler G, Mikusa JP, Zhong C, Joshi S, Honore P, Roeloffs R, Werness S, Antonio B, Marsh KC, Faltynek CR, Krafte DS, Jarvis MF, Marron BE. Subtype-selective Nav1.8 sodium channel blockers: Identification of potent, orally active nicotinamide derivatives. Bioorg Med Chem Lett 2010; 20:6812-5. [DOI: 10.1016/j.bmcl.2010.08.121] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2010] [Accepted: 08/24/2010] [Indexed: 12/19/2022]
|
42
|
A-887826 is a structurally novel, potent and voltage-dependent Nav1.8 sodium channel blocker that attenuates neuropathic tactile allodynia in rats. Neuropharmacology 2010; 59:201-7. [DOI: 10.1016/j.neuropharm.2010.05.009] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2010] [Revised: 05/19/2010] [Accepted: 05/23/2010] [Indexed: 12/19/2022]
|
43
|
Lenkey N, Karoly R, Epresi N, Vizi E, Mike A. Binding of sodium channel inhibitors to hyperpolarized and depolarized conformations of the channel. Neuropharmacology 2010; 60:191-200. [PMID: 20713065 DOI: 10.1016/j.neuropharm.2010.08.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2010] [Revised: 07/23/2010] [Accepted: 08/07/2010] [Indexed: 12/13/2022]
Abstract
Sodium channels are inhibited by a chemically diverse group of compounds. In the last decade entirely new structural classes with superior properties have been discovered, and novel therapeutic uses of sodium channel inhibitors (SCIs) have been suggested. Many promising novel drug candidates have been described and characterized. Published structure-activity relationship studies, pharmacophore models, and mutagenesis studies seem to lag behind, dealing with only a limited group of inhibitor compounds. The abundance of novel compounds requires an organized comparison of drug potencies. The affinity of sodium channel inhibitors can vary typically ten- to thousand-fold depending on the voltage protocol; therefore comparison of electrophysiology data is difficult. In this study we describe a method for standardization of these data with the help of a simple model of state-dependence. We derived hyperpolarized (resting) and depolarized (generally termed "inactivated") state affinities for the studied drugs, which made the measurements comparable. We show a rank order of SCIs based on resting and inactivated affinity values. In an attempt to define basic chemical requirements for sodium channel inhibitor activity we investigated the dependence of both resting and inactivated state affinities on individual chemical descriptors. Lipophilicity (most often expressed by the logP value) is the single most important determinant of SCI potency. We investigated the independent impact of several other calculated chemical properties by standardizing drug potencies for logP values. By combining these two approaches: standardization of affinity values, and standardization of potencies, we concluded that while resting affinity is mostly determined by lipophilicity, inactivated state affinity is determined by a more complex interaction of chemical properties, including hydrogen bond acceptors, aromatic rings, and molecular weight.
Collapse
Affiliation(s)
- N Lenkey
- Department of Pharmacology, Institute of Experimental Medicine, Hungarian Academy of Sciences, P.O.B. 67, H-1450 Budapest, Hungary
| | | | | | | | | |
Collapse
|
44
|
Isoform-selective voltage-gated Na+ channel modulators as next-generation analgesics. Future Med Chem 2010; 2:775-90. [DOI: 10.4155/fmc.10.26] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
For many patients the current therapies for controlling chronic pain are inadequate. This has driven the search for analgesics with improved efficacy and side effect profiles. Some anticonvulsants have voltage-gated Na+ channels (VGSCs) as their molecular targets and are used to treat pain, but the efficacy seen is marginal and the drugs are generally poorly tolerated. The clinically used VGSC-modulating analgesics show no isoform selectivity, which probably limits their use. Thus, focus has fallen on VGSCs expressed selectively by primary afferent neurons and the search for isoform-selective drugs. In this review, we describe developments in our understanding of the biology of VGSCs, screening technologies and the pharmacological properties of VGSC modulators with promise as analgesics. Also highlighted are the challenges associated with targeting isoform-selective VGSCs.
Collapse
|
45
|
Abstract
Neuropathic pain, a severe chronic pain condition characterized by a complex pathophysiology, is a largely unmet medical need. Ion channels, which underlie cell excitability, are heavily implicated in the biological mechanisms that generate and sustain neuropathic pain. This review highlights the biological evidence supporting the involvement of voltage-, proton- and ligand-gated ion channels in the neuropathic pain setting. Ion channel modulators at different research or development stages are reviewed and referenced. Ion channel modulation is one of the main avenues to achieve novel, improved neuropathic pain treatments. Voltage-gated sodium and calcium channel and glutamate receptor modulators are likely to produce new, improved agents in the future. Rationally targeting subtypes of known ion channels, tackling recently discovered ion channel targets or combining drugs with different mechanism of action will be primary sources of new drugs in the longer term.
Collapse
|
46
|
|
47
|
Abstract
Drugs inhibiting voltage-gated sodium channels have long been used as analgesics, beginning with the use of local anaesthetics for sensory blockade and then with the discovery that Nav-blocking anticonvulsants also have benefit for pain therapy. These drugs were discovered without knowledge of their molecular target, using traditional pharmacological methods, and their clinical utility is limited by relatively narrow therapeutic windows. Until recently, attempts to develop improved inhibitors using modern molecular-targeted screening approaches have met with limited success. However, in the last few years there has been renewed activity following the discovery of human Nav1.7 mutations that cause striking insensitivity to pain. Together with recent advances in the technologies required to prosecute ion channels as drug targets, this has led to significant progress being made. This article reviews these developments and summarises current findings with these emerging new Nav inhibitors, highlighting some of the unanswered questions and the challenges that remain before they can be developed for clinical use.
Collapse
Affiliation(s)
- Jeffrey J Clare
- Cell-Based Assays Group, Millipore Corporation, St Charles, Missouri 63304, USA.
| |
Collapse
|
48
|
Kistner K, Zimmermann K, Ehnert C, Reeh PW, Leffler A. The tetrodotoxin-resistant Na+ channel Nav1.8 reduces the potency of local anesthetics in blocking C-fiber nociceptors. Pflugers Arch 2010; 459:751-63. [DOI: 10.1007/s00424-010-0785-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2009] [Revised: 01/03/2010] [Accepted: 01/07/2010] [Indexed: 10/19/2022]
|
49
|
Lampert A, O'Reilly AO, Reeh P, Leffler A. Sodium channelopathies and pain. Pflugers Arch 2010; 460:249-63. [PMID: 20101409 DOI: 10.1007/s00424-009-0779-3] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2009] [Revised: 12/13/2009] [Accepted: 12/18/2009] [Indexed: 12/19/2022]
Abstract
Chronic pain often represents a severe, debilitating condition. Up to 10% of the worldwide population are affected, and many patients are poorly responsive to current treatment strategies. Nociceptors detect noxious conditions to produce the sensation of pain, and this signal is conveyed to the CNS by means of action potentials. The fast upstroke of action potentials is mediated by voltage-gated sodium channels, of which nine pore-forming alpha-subunits (Nav1.1-1.9) have been identified. Heterogeneous functional properties and distinct expression patterns denote specialized functions of each subunit. The Nav1.7 and Nav1.8 subunits have emerged as key molecules involved in peripheral pain processing and in the development of an increased pain sensitivity associated with inflammation and tissue injury. Several mutations in the SCN9A gene encoding for Nav1.7 have been identified as important cellular substrates for different heritable pain syndromes. This review aims to cover recent progress on our understanding of how biophysical properties of mutant Nav1.7 translate into an aberrant electrogenesis of nociceptors. We also recapitulate the role of Nav1.8 for peripheral pain processing and of additional sodium channelopathies which have been linked to disorders with pain as a significant component.
Collapse
Affiliation(s)
- Angelika Lampert
- Department of Physiology and Pathophysiology, Friedrich-Alexander University Erlangen-Nuremberg, Universitätsstrasse 17, 91054, Erlangen, Germany.
| | | | | | | |
Collapse
|
50
|
Block of sensory neuronal Na+ channels by the secreolytic ambroxol is associated with an interaction with local anesthetic binding sites. Eur J Pharmacol 2010; 630:19-28. [PMID: 20044988 DOI: 10.1016/j.ejphar.2009.12.027] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2009] [Revised: 12/05/2009] [Accepted: 12/18/2009] [Indexed: 10/20/2022]
Abstract
Voltage-gated Na(+) channels (Na(v)) regulate the excitability of sensory neurons and are potential targets for novel analgesics. The secreolytic ambroxol reduces pain-related behavior in rodents and alleviates pain in humans. With properties resembling those of local anesthetics, ambroxol has been reported to block Na(+) currents in sensory neurons with a preference for tetrodotoxin-resistant (TTXr) Na(+) currents encoded by Na(v)1.8. However, the molecular determinants for ambroxol-induced block of Na(+) channels and a preferential block of Na(v)1.8 opposed to tetrodotoxin-sensitive (TTXs) Na(v) alpha-subunits have not been studied in detail. By means of whole-cell voltage clamp recordings, we studied the effects of ambroxol and local anesthetics on the recombinant TTXr subunit Na(v)1.8, on TTXs Na(v) alpha-subunits and on mutants of Na(v)1.4 that are insensitive to local anesthetics. Tonic and use-dependent block by ambroxol was strongly alleviated in local anesthetic-insensitive Na(v)1.4 mutants. Use-dependent block, but not tonic block was significantly stronger on Na(v)1.8 than on TTXs channels. The TTXs subunit Na(v)1.3 displayed the least degree of use-dependent block by ambroxol. The local anesthetics mepivacaine and S(-)-bupivacaine also blocked Na(v)1.8 and TTXs channels differentially. While mepivacaine displayed a preferential use-dependent block of Na(v)1.8, S(-)-bupivacaine displayed a preference for TTXs Na(+) channels. Our data show that ambroxol acts as a typical local anesthetic on Na(+) channels interacting with specific residues in the S6 segments. This property probably meditates the analgesic effect of ambroxol. Ambroxol preferentially blocks Na(v)1.8, however shares this property with established local anesthetics like mepivacaine.
Collapse
|